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Dynamics and instabilities of defects in two-dimensional crystals

on curved backgrounds

Mark Bowick,1 Homin Shin,1 and Alex Travesset2
1 Department of physics, Syracuse University, Syracuse New York 13244-1130, USA

2 Ames Laboratory and Department of Physics and Astronomy,

Iowa State University, Ames, Iowa 50011, USA

Point defects are ubiquitous in two-dimensional crystals and play a fundamental role in deter-
mining their mechanical and thermodynamical properties. When crystals are formed on a curved
background, finite-length grain boundaries (scars) are generally needed to stabilize the crystal. We
provide a continuum elasticity analysis of defect dynamics in curved crystals. By exploiting the fact
that any point defect can be obtained as an appropriate combination of disclinations, we provide
an analytical determination of the elastic spring constants of dislocations within scars and compare
them with existing experimental measurements from optical microscopy. We further show that va-
cancies and interstitials, which are stable defects in flat crystals, are generally unstable in curved
geometries. This observation explains why vacancies or interstitials are never found in equilibrium
spherical crystals. We finish with some further implications for experiments and future theoretical
work.

PACS numbers: 82.70.Dd,61.72.Bb,61.72.Ji,61.72.Mm

I. INTRODUCTION

The rich physics of the ordering of matter on planar
surfaces takes on a new complexion when the ordering
occurs on a curved two-dimensional manifold. Gaussian
curvature, for example, favors the appearance of topo-
logical defects that are energetically prohibitive in planar
systems. This has been demonstrated in the case of suf-
ficiently large spherical crystals [1, 2, 3, 4, 5, 6], toroidal
hexatics [7], and both crystals and hexatics draped over
a Gaussian bump [8, 9].

For the simplest case of crystalline order on the con-
stant curvature two-sphere (the surface of a solid ball
in R3) the key new feature is the appearance of scars
(Fig. 1), linear strings of dislocations around a cen-
tral disclination that freely terminate inside the crystal,
for crystals with radius above a microscopic-potential-
dependent critical radius [1, 2, 3]. Scars have been ob-
served experimentally in systems of colloidal beads self-
adsorbed on spherical water droplets in an oil emulsion
[10]. The imaging technique (conventional microscopy)
in these experiments only allowed spherical caps covering
10%− 20% of the full sphere to be imaged. Recently the
use of fluorescently labeled colloidal particles and laser
scanning confocal microscopy allowed the imaging of 50%
of the sphere. In this way the global spatial distribution
of scars was also measured [11].

Recent experiments [12, 13] have investigated the dy-
namics of defects by directly visualizing colloidal parti-
cles absorbed on spherical oil-water interfaces. It was
shown that dislocation glide within the scars (see Fig. 2)
could be described very accurately by a harmonic poten-
tial binding the dislocation to the scar and an empirical
Peierls potential that models the underlying crystalline
lattice. The spring constants of the harmonic potentials,
the elastic stiffness of the dislocation, were obtained from
fits to the experimental results. In this paper, we show

that continuum elasticity theory [1, 2] can be used to
provide explicit first-principles predictions for the elastic
stiffness.

Defects such as vacancies and interstitials are quite
common in two-dimensional crystals [14]. It has been
shown that, quite generally, the presence of vacancies and
interstitials significantly reduces the crystal’s strength as

FIG. 1: (Color online) A light microscope image, reproduced
from [12], of a water droplet with an 85 µm diameter and 1.9
µm mean particle spacing (R/a ≈ 22). Fivefold (+1) disclina-
tions are colored red, Sevenfold (−1) disclinations are colored
yellow, and tightly bound five to seven pairs represent dislo-
cations. The three dislocations whose dynamics are analyzed
in this paper are displayed within the blue box.
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a result of stress enhancement effects [15]. Jain and Nel-
son [16] performed an extensive investigation of inter-
stitials and vacancies in two-dimensional planar crystals
and identified three different interstitials and vacancies,
depending on their symmetry, as the prevalent struc-
tures. Subsequent experiments [17] confirmed the stabil-
ity of these defects and studied their dynamics. Very re-
cently, Brownian dynamics simulations [18] have revealed
a complex kinetics with a variety of modes that allow
defects to glide and rotate. Rather interestingly, vacan-
cies and interstitials have not been observed either ex-
perimentally or in numerical simulations [19] in spherical
crystals. In this paper, we provide a study of the stability
of vacancies and interstitials in curved two-dimensional
crystals. Our analysis uses continuum theory, and there-
fore the results are directly applicable to other systems
such as, for example, the analysis of vacancies and their
relation to failure stress, which has recently investigated
in straight carbon nanotubes [20], which provides another
example for curved crystals.

The paper is organized as follows: In Sec. II we de-
scribe the dynamics of scar defects and the continuum
elasticity theory of defect interactions. The theoretical
results so obtained are compared to the experiment in
Sec. III. In Sec. IV we study the instability of intersti-
tials and vacancies in curved crystals with the continuum
elastic model. The Thomson problem java applet used
for this analysis is described in the Appendix.

FIG. 2: (Color online) The dynamics of the three dislocations
within the blue box of Fig. 1 taken from Ref. [12]. Motion
consists of local Brownian fluctuation about the equilibrium
position together with larger-scale glide.

FIG. 3: (Color online) Spring model of dislocation binding.
The red dot (D) represents the central disclination and the
blue sticks (i = 1, 2,...) represent successive dislocations em-
anating from the central disclination. The spring constants
k1, k2,... represent the binding of each dislocation to its parent
scar.

II. DYNAMICS OF SCAR DEFECTS

A. Empirical description of scar dynamics

The scar dynamics is obtained from light microscopy
as discussed in Ref. [12]. A typical snapshot of a config-
uration is shown in Fig. 1 and its evolution as a function
of time is shown in Fig. 2, showing some dislocations
within the scar gliding at different times. In Ref. [12], it
was shown that these data are well described by a model
where each dislocation within the scar is pinned by a har-
monic potential with spring constant ki (here i labels the
position of the dislocation within the scar) as shown in
Fig. 3—that is,

U tot
i =

1

2
kis

2
i − U0 cos(2πsi/a) , (1)

where si is the geodesic displacement of the ith dislo-
cation on the surface of a sphere and the last term is
the Peierls potential [21], which models the underlying
crystalline structure of the lattice. Values for the exper-
imentally determined spring constants were determined
in Ref. [12]. We now provide the details leading to an
explicit evaluation for the elastic stiffness.

B. Continuum elasticity of scars in curved

backgrounds

We first present a discussion of the elasticity of scars.
Point topological defects can be parametrized by discli-
nations. We therefore introduce a disclination density

Q(x) =
π

3
√

g(x)

N
∑

i=1

qiδ(x − xi) , (2)

where qi is the disclination charge (qi = +1 for 5’s and −1
for 7’s). The elastic energy of an arbitrary disclination
density has been discussed extensively [1, 2, 3] and is
given by

E =
Y

2

∫ ∫

d2
xd2

y

√

g(x)
√

g(y)[K(x) − Q(x)]
1

∆2

∣

∣

∣

∣

xy
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×[K(y) − Q(y)] + NEc , (3)

where K(x) is the Gaussian curvature of the background
with metric g(x), Y is the two-dimensional Young’s mod-
ulus, and Ec is the disclination core energy. Both Y and
Ec depend on the microscopic particle potential.

The free energy of Eq. (3) for a spherical crystal with
the disclination density of Eq. (2) is then [1, 2, 3]

E =
πY

36
R2

N
∑

i=1

N
∑

i>j

qiqjχ(θi, φi; θj , φj) + NEc , (4)

where

χ(β) = 1 +

∫ (1−cosβ)/2

0

dz
ln z

1 − z
(5)

and β is the angular geodesic length between points
(θi, φi) and (θj , φj):

cosβ = cos θi cos θj + sin θi sin θj cos(φi − φj) . (6)

The previous energy is a function of disclinations only.
It is convenient to introduce dislocations explicitly. A
dislocation can be regarded as a tightly bound disclina-
tion dipole, leading to a defect density

Q(x) =
π

3
√

g(x)

N1
∑

i=1

qiδ(x − xi)

+
1

√

g(x)

N2
∑

j=1

bj
αǫαβ∂j

βδ(x − xj) . (7)

As discussed elsewhere [1, 2, 3] the number of disclina-
tions, N1, is determined by the Euler characteristic χ of
the background N1 = 6χ, thus giving 12 for the sphere.

We also note that the Burgers vector~b is perpendicular to
the dipole direction defined by the vector connecting the
two disclinations forming the dislocation. The elastic en-
ergy, Eq. (4), includes now a disclination-dislocation en-
ergy EDd and a dislocation-dislocation energy Edd given
by

EDd = Y

∫ ∫

d2
xd2

y
π

3

N1
∑

i=1

qiδ(x − xi)
1

∆2

∣

∣

∣

∣

xy

×

N2
∑

j=1

bj
αǫαβ∂j

βδ(y − yj)

=
Y R2

12

N1
∑

i=1

N2
∑

j=1

qib
j
αǫαβ∂j

βχ(θi, φi; θj , φj) (8)

and

Edd = Y

∫ ∫

d2
xd2

y

N2
∑

i=1

bi
αǫαβ∂i

βδ(x − xi)
1

∆2

∣

∣

∣

∣

xy

FIG. 4: (Color online) Schematic diagram of a single scar
aligned along a geodesic meridian on the two-sphere. The
red arrows indicate the associated Burgers vector for each
dislocation.

×

N2
∑

i>j

bj
γǫγδ∂

j
δδ(y − yj)

=
Y R2

4π

N2
∑

i=1

N2
∑

i>j

[bi
αǫαβ∂i

β ][bj
γǫγδ∂

j
δ ]χ(θi, φi; θj , φj) .

(9)

In spherical coordinates, we have bi
αǫαβ∂i

β = bi
θ∂

i
φ −

bi
φ∂i

θ. We assume that both components of the angu-

lar Burgers vector, bi
θ and bi

φ, are approximately |~bi|/R,

where |~bi| is taken to be the lattice spacing a. An explicit
expression for the energy of an arbitrary dislocation dis-
tribution interacting with N1 disclinations is provided by
combining Eqs. (8) and (9).

Let us consider geodesically straight scars, symmet-
ric about their midpoint and aligned along the fixed-φ
meridian, as shown in Fig. 4. With this choice Eq. (6)
gives φi = φj and cosβ = cos(θi − θj). The Burgers vec-

tors ~bi
φ are orthogonal to the disclination dipole ~βij and

symmetry implies that
∑

i
~bi = 0.

Since we shall only consider glide motion for which
dislocations move in the φ direction, we may set bi

θ = 0.
The elastic D-d interaction, Eq. (8), then reduces to

EDd ≡

N1
∑

i=1

N2
∑

j=1

EDd(βij) , (10)

with

EDd(βij) = −
Y R

12
qib

j





sin βij ln
(

1−cos βij

2

)

1 + cosβij



 . (11)

The dislocation-dislocation interaction, Eq.(9), becomes

Edd ≡

N2
∑

i=1

N2
∑

i>j

Edd(βij) , (12)
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FIG. 5: (Color online) The Disclination-dislocation (D-d) and
dislocation-dislocation (d-d) interaction energies as a function
of defect separation β. The inset is a blowup of the short-
distance region of the plot.

where

Edd(βij) =
Y

4π
bibj



−
ln
(

1−cos βij

2

)

1 + cosβij
− 1



 . (13)

From now on we confine ourselves to the interaction be-
tween defects in a single scar and ignore the effects of the
neighboring scars. In Fig. 5 we plot EDd (solid line) and
Edd (dotted line) as a function of the angular separation
β, in units of Y a2. Note that the disclination-dislocation
interaction is attractive (for sufficiently short angular dis-
tance) while the dislocation-dislocation interaction is re-
pulsive. The formation of grain boundary scars may now
be understood as arising from the competition between
the attractive binding of a dislocation to an excess discli-
nation (D-d interaction) and the mutual repulsion be-
tween dislocations (d-d interaction). Figure 6 shows the
D-d interaction energy as a function of angular distance
for a variety of system sizes. The functional dependence
of EDd/(Y a2) on R/a given by Eq. (11) implies that the
strength of the short-distance attraction increases with
system size. As a result the strong D-d attraction for
large systems leads to more excess dislocations within
a scar to stabilize geometric frustration. Note that the
crossover from an attractive to a repulsive interaction oc-
curs at a universal value of the order of 1 rad, consistent
with the predictions of Refs. [1, 3].

The potential energy Es of a single scar can be now
obtained directly from the finite sum of pair interactions
between defects:

Es =
∑

i

EDd(βi) +
∑

i>j

Edd(βij) , (14)

where βi is the angular distance of the ith dislocation
from the center of the scar.
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FIG. 6: (Color online) The disclination-dislocation (D-d) in-
teraction energy versus angular separation β for a variety of
system sizes.

C. Dislocation elastic stiffness

We now compute the elastic stiffness [the spring con-
stant in Eq.(1)] of dislocations within a scar. For that
purpose, we consider small fluctuations of dislocations.
Let us consider now small fluctuations of dislocations
around their equilibrium positions in a scar with a fixed
central disclination. The geodesic displacement of the ith
dislocations will be denoted by si. We assume that the
ith dislocation glides along the direction defined by the
geodesic that starts at a point θdi

and forms an angle of
π/2 with respect to the arc connecting θdi

to the other
defect location under consideration (the disclination θD

or the jth dislocations θdj
). The deformed geodesic arc

distances β̃ will then be

βi : D(θD, 0) di(θdi
, 0)

⇒ β̃i : D(θD, 0) di(θdi
, si/R) ,

βij : di(θdi
, 0) dj(θdj

, 0)

⇒ β̃ij : di(θdi
, si/R) dj(θdj

, sj/R) ,

(15)

where θD, θdi
, and θdj

are the initial locations of the
disclination and the ith and jth dislocations, respectively,
and si, sj ≪ 0. For an arbitrary scar along a meridian,

the relation between β and β̃ is given by

cos β̃i = cosβi cos(si/R) ,

cos β̃ij = cosβij cos[(si − sj)/R] . (16)

Expanding to second order gives

Ẽs = Ẽs

∣

∣

∣

(0,0)
+





∂Ẽs

∂si

∣

∣

∣

∣

∣

(0,0)

si +
∂Ẽs

∂sj

∣

∣

∣

∣

∣

(0,0)

sj



+



5

1

2





∂2Ẽs

∂s2
i

∣

∣

∣

∣

∣

(0,0)

s2
i + 2

∂2Ẽs

∂si∂sj

∣

∣

∣

∣

∣

(0,0)

sisj +
∂2Ẽs

∂s2
j

∣

∣

∣

∣

∣

(0,0)

s2
j



 .

(17)

The first derivatives are easily seen to vanish, confirming
that the initial configuration (linear and central symmet-
ric) is a local minima:

∂Ẽs

∂si

∣

∣

∣

∣

∣

(0,0)

=
∂Ẽs

∂sj

∣

∣

∣

∣

∣

(0,0)

= 0 . (18)

The second derivatives are given by

∂2Ẽs

∂s2
i

∣

∣

∣

∣

∣

(0,0)

=
∑

(

∂ẼDd

∂ cos β̃i

)(

∂2 cos β̃i

∂s2
i

)∣

∣

∣

∣

∣

(0,0)

+
∑

(

∂Ẽdd

∂ cos β̃ij

)(

∂2 cos β̃ij

∂s2
ij

)∣

∣

∣

∣

∣

(0,0)

∂2Ẽs

∂s2
j

∣

∣

∣

∣

∣

(0,0)

=
∑

(

∂Ẽdd

∂ cos β̃ij

)(

∂2 cos β̃ij

∂s2
j

)∣

∣

∣

∣

∣

(0,0)

∂2Ẽs

∂si∂sj

∣

∣

∣

∣

∣

(0,0)

=
∑

(

∂Ẽdd

∂ cos β̃ij

)(

∂2 cos β̃ij

∂si∂sj

)∣

∣

∣

∣

∣

(0,0)

.

(19)

Equation (17) can then be written in terms of effective
spring as

∆Es =
1

2

∑

i

Kis
2
i +

1

2

∑

i>j

Kij(si − sj)
2 , (20)

where

Ki =
Y a

12R



−
1

sin βi
−

ln
(

1−cos βi

2

)

sinβi(1 + cosβi)



 cosβi (21)

and

Kij =
Y a2

4πR2



−
1

sin2 βij

−
ln
(

1−cos βij

2

)

(1 + cosβij)2



 cosβij , (22)

with βi and βij determined by the initial configuration
to be

βi = | θD − θdi
| ,

βij = | θdi
− θdj

| . (23)

We note that the expressions for Ki and Kij show sin-
gularities at β = 0, π. Those singularities are not real,
as the validity of the above expressions is limited to
β > (a/R). Although expressions that correctly capture
the β → 0 limit may be derived, they are not necessary
for the subsequent analysis.

We note that the deformation energy in Eq. (20)
contains nondiagonal terms induced by the dislocation-
dislocation interactions. The two stiffness coefficients Ki

and Kij result from D-d attractions (Edd) and d-d re-
pulsions (Edd), respectively, which implies that Ki > 0
and Kij < 0 for sufficiently short angular distance—i.e.,
(a/R) < β < 1 rad. Summing up we may write the
energy shift as a general quadratic polynomial

∆Es =
1

2

∑

ij

Kijsisj , (24)

with Kij given by

Kij =







Ki +
∑

i>k

Kik if i = j,

−2Kij if i > j.
(25)

For a pinned, small-angle grain boundary in flat space,
the restoring force to shear stress has been obtained in
Ref. [22], where it results from dislocation-dislocation in-
teractions alone. The presence of disclination-dislocation
interactions is a special feature of the two-dimensional
curvature of the crystal. The eigenvalues ki of the ma-
trix K,

KV = kiV , (26)

give the effective stiffness coefficients with negative val-
ues, indicating that the associated dislocation will not
bind to an equilibrium scar.

III. COMPARISON TO EXPERIMENT

We now use the formulas developed in the previous sec-
tion to compute the elastic stiffness. The elastic stiffness
depends on the particular configuration of dislocations.
We compare our results with the experimental data given
in Ref. [12]. The stiffness coefficients will depend on the
detailed defect spacings in the ground-state configura-
tions as well as the total number of excess dislocations in
a scar. We assume that dislocations are equally spaced,
as actually observed experimentally (see Fig. 2), although
theoretical calculations predict that the spacing should
grow with distance from the center of the scar [2, 4]. We
take the first dislocation be a distance 2a from the cen-
tral disclination with the remaining dislocations spaced
a distance 3a apart, as shown in Fig. 7.

-1+1+1-1 -1+1 -1+1+1-1

D d
1d

1
d

2d
2

d
Nd

N

-1+1+1-1 -1+1

3a 2a2a

+1

3a

FIG. 7: (Color online) Dislocation spacings for a linear sym-
metric scar as highlighted within the blue box in Fig. 1.
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R/a k1 k2 k3 k4 k5

Expt. 22 N/A 1.70 1.30 1.10

Theory 22 12.78 1.86 1.28

26 13.78 1.96 0.75 0.11

32 15.20 2.52 1.00 0.44

50 18.19 3.57 0.98 0.83 0.07

TABLE I: Comparison of the numerical spring constants (in
units of KBT/a2), for individual dislocations, with the exper-
imental values [12].

For the numerical spring constants, we use the experi-
mentally measured [12] two-dimensional Young’s modu-
lus Y = 167kBT/a2. Note that the units of ki and Y are
all kBT/a2.

Spring constants for typical experimental sizes are
plotted in Fig. 8. We see clearly that the elastic stiffness
falls quickly as a function of distance from the central
disclination, in agreement with general experimental re-
sults. At a quantitative level, the predicted values for
the elastic stiffness, in unit of kBT/a2, are compared to
the experimental quoted results of Ref. [12] in Table I.
The continuum model predicts a very large value for the
stiffness of the dislocation closest to the central disclina-
tion, and indeed, this dislocation appeared immobile in
the experiments in Ref. [12], and no elastic stiffness could
be measured. The results for the next dislocations are in
very good agreement, more so given that the experiment
only contains a single scar realization, and the theoret-
ical calculations ignore interactions among scars or the
coupling of dislocations to the underlying lattice.

IV. DYNAMICS OF VACANCIES AND

INTERSTITIALS IN SPHERICAL CRYSTALS

We now analyze the dynamics of interstitials and va-
cancies. In Ref. [16], three types of vacancies V2a(crushed
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FIG. 8: (Color online) Spring constants ki for each dislocation
di, calculated for the configuration shown in Fig. 7.

FIG. 9: (Color online) We first consider an initial lattice
with icosahedron symmetry, an (8, 3) icosadeltahedral lattice
(stage 0). The I2 interstitial is generated by adding one extra
particle (stage 1), which evolves into a I3 interstitial (stage
2). The curvature-driven unbinding of dislocations starts—
the decay of an interstitial (stages 3 and 4). Individual dislo-
cation glides towards the nearest isolated disclination (stage
5 and 6). Each dislocation binds to a disclination to form
three miniscars (stage 7). The results are obtained from the
java applet developed in Ref. [23], according to the procedure
described in the Appendix.

vacancy), SV (split vacancy), and V3 (threefold symmet-
ric vacancy) were identified together with three inter-
stitials I3 (threefold symmetric interstitial), I2 (twofold
symmetric interstitial), and I2d (disjoint twofold symmet-
ric interstital). The I3 interstitial and V3 were found to
be the most stable. Subsequent experiments [17] showed
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FIG. 10: (Color online) We first consider an initial lattice
with icosahedron symmetry, an (8, 3) icosadeltahedral lattice
(stage 0). The SV vacancy is generated by subtracting one
particle (stage 1), which evolves into a S3 vacancy (stage 2).
The curvature-driven unbinding of dislocations starts—the
decay of an vacancy (stages 3 and 4). Individual disloca-
tion glides towards the nearest isolated disclination (stages
5 and 6). Each dislocation binds to a disclination to form
three miniscars (stage 7). The results are obtained from the
java applet developed in Ref. [23], according to the procedure
described in the Appendix.

that the different interstitials and vacancies exist as sta-
ble defects, and their dynamics has recently been stud-
ied [18]. This situation is in contrast with spherical crys-
tals where, to our knowledge, no interstitials or vacancies
have been observed.

In order to investigate vacancies and interstitials we

Stage βd1D1 βd1D2 βd1D3 βd1d2 βd1d3

2 0.5954 0.7379 0.6796 0.1222 0.1222

3 0.4402 0.8379 0.7335 0.2116 0.2445

4 0.3231 0.9420 0.8003 0.4224 0.4402

5 0.3231 0.9420 0.8003 0.5594 0.5594

6 0.2116 1.0488 0.8767 0.7379 0.7379

7 0.1222 1.0739 0.9601 0.9420 0.9420

TABLE II: Angular distance between defects during the re-
laxation of the interstitial shown in Fig. 9.
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FIG. 11: (Color online) Continuum elastic energy from
Eq. (14) for the configurations in Figs. 9 and 10. The ini-
tial configuration is an I3 interstitial or a V3 vacancy, both of
which are unstable to scar formation. The small difference in
elastic energy for both I3 and V3 results from different final
configurations (see Figs. 9 and 10).

consider a system of 972 particles interacting with a
Coulomb potential. In the initial configuration, there
are only 12 disclination defects with the symmetry of the
icosahedron, as shown in Fig. 9 (stage 0); this is an (8,3)
icosadeltahedral configuration. We now force an I2 inter-
stitial by adding a particle, as shown in Fig. 9 (stage 1).
I2 evolves into I3, the bound complex of dislocations with
zero net Burgers vector (stage 2). It is found that the
I3 interstitial is unstable and starts to be ripped apart
into three dislocations (stages 3 and 4) and eventually
becomes three separate dislocations which each glide to-
ward a fivefold disclination (stage 5 and 6). They quickly
form a miniscar (a 5-7-5 grain boundary) at each of the
vertices 5s by joining the nearest disclinations (stage 7).
Snapshots of the dynamical sequence discussed above are
shown in Fig. 9.

A similar analysis may be done for vacancies. By
subtracting a particle from the initial icosadeltahedral
configuration (8,3) in Fig. 10, the lattice develops the
structurally unstable SV vacancy (stage 1), which sub-
sequently evolves into V3 (stage 2). Due to the energetic
instability, V3 eventually forms three scars via curvature
driven unbinding (stages 3-7), similar to the interstitial.

Similar results also follow by considering 972 particles
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interacting with a general potential 1/rγ (the generalized
Thomson problem), thus showing that the instabilities of
vacancies and interstitials are a universal feature of two-
dimensional spherical crystals.

The instabilities of vacancies and interstitials are pre-
dicted from the continuum elastic model described in this
paper. To apply Eq. (14) we first need to estimate the an-
gular distances between defects at each stage. An (8, 3)
icosadeltahedral lattice, with M = 972 particles, corre-
sponds to system size R/a ≈ 8.2 [using M ≈ 8π

√

3
(R

a )2].

The relevant angular distances between defects can then
all be calculated by simple counting together with spher-
ical trigonometry. The results so obtained are shown in
Table II. Taking the orientation of the Burgers vectors
appropriately into account we may then compute the to-
tal interaction energy at each stage using Eq. (14). The
evolution of the total energy is shown in Fig. 11. The en-
ergy monotonically decreases until the final scarred state
is reached.

V. CONCLUSIONS

In this paper we have studied the dynamics of point
defects in two-dimensional spherical crystals. Our re-
sults provide explicit predictions for the dislocation elas-
tic stiffness that compare quite favorably with experi-
mental data. We also analyzed the dynamics of intersti-
tials and vacancies and found that the effects of curvature
are quite dramatic, as defects that are stable in flat space
become unstable in curved space.

A number of issues raised in this paper will require fur-
ther investigations. The process of generating vacancies
and interstitials can be repeated indefinitely. It should
be expected that in this way, we can grow longer scars,
whose length should saturate at some point. What struc-
tures follow will be the subject of further investigations.
Although our presentation has focused on the sphere, the
results should apply equally to other geometries. It is
expected that in arbitrary geometries, vacancies or inter-
stitials should become unstable to the formation of scars
nucleated by existing disclinations.

Detailed experimental verification of our results could
be achieved from experiments of colloids absorbed on oil-
water interface as in Refs. [10, 12]. Using holographi-
cal optical tweezers [17] applied to a spherical crystal,
it should be possible to remove one colloid, thus creat-

ing a vacancy, which according to the results in our pa-
per would become unstable and join existing scars, which
could be visualized as described in Ref. [12]. More rig-
orous validations for the predictions in this paper can be
accomplished by a more comprehensive analysis of exper-
imental data such as the one presented in Ref. [12].

In summary, the results presented in this paper show
the dramatic effects of curvature in two-dimensional crys-
tals. It is our expectation that this paper will motivate
further experimental and computational work.
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APPENDIX: ANALYSIS OF VACANCIES AND

INTERSTITIALS USING THE JAVA APPLET

The analysis of the stability of vacancies and intersti-
tials (see Figs. 9 and 10) has been obtained using the java
applet available at Ref. [23]. In order to reproduce the
results, we generate a (8,3) icosadeltahedral tessellation
using the Construct(m, n) algorithm with m = 8 and n.
Now add or remove a single particle to the lattice at the
barycenter of a spherical triangle whose vertices are three
nearest-neighbor five-fold disclinations by (shift + click)
or (Ctrl + click). The self-interstitial (or self-vacancy)
so formed is then relaxed by a standard relaxation al-
gorithm. One immediately finds that a V2 interstitial
(or a SV vacancy) is structurally unstable. In a few
time steps it morphs into a complex of dislocations with
zero net Burgers vector—the most common structure ob-
served is a set of three dislocations (I3 or V3) arranged
in a hexagon. Removing a particle (or adding a particle)
back restores the particle number to the original 972 and
relaxing still leaves scars with total energy lower than
the starting configuration with 12 isolated 5’s. This es-
tablishes that scars are definitely low-energy equilibrium
states rather than artifacts of the relaxation algorithm.

[1] M.J. Bowick, D.R. Nelson, and A. Trav-
esset, Phys. Rev. B 62, 8738 (2000)
http://arxiv.org/abs/cond-mat/9911379.

[2] M. Bowick, A. Cacciuto, D.R. Nelson, and A.
Travesset, Phys. Rev. Lett. 89, 185502 (2002)
http://arxiv.org/abs/cond-mat/0206144.

[3] M.J. Bowick, A. Cacciuto, D.R. Nelson, and
A. Travesset, Phys. Rev. B 73, 024115 (2006)

http://arxiv.org/abs/cond-mat/0509777.
[4] A. Travesset, Phys. Rev. E 72, 036110 (2005)

http://arxiv.org/abs/cond-mat/0601586.
[5] A. Perez-Garrido, M.J.W. Dodgson, and

M.A. Moore, Phys. Rev. B 56, 3640 (1997)
http://arxiv.org/abs/cond-mat/9701090.

[6] V.N. Manoharan, Solid State Commun. 139, 557 (2006).
[7] M. Bowick, D.R. Nelson, and A. Trav-

http://arxiv.org/abs/cond-mat/9911379
http://arxiv.org/abs/cond-mat/0206144
http://arxiv.org/abs/cond-mat/0509777
http://arxiv.org/abs/cond-mat/0601586
http://arxiv.org/abs/cond-mat/9701090


9

esset, Phys. Rev. E 69, 041102 (2004)
http://arxiv.org/abs/cond-mat/0309709.

[8] V. Vitelli and D.R. Nelson, Phys. Rev. E 70, 051105
(2004) http://arxiv.org/abs/cond-mat/0406328.

[9] V. Vitelli, J.B. Lucks, and D.R. Nelson, Proc.
Natl. Acad. Sci. U.S.A 103, 12323 (2006)
http://arxiv.org/abs/cond-mat/0604203.

[10] A. Bausch et al., Science 299, 1716 (2003)
http://arxiv.org/abs/cond-mat/0303289.

[11] T. Einert, P. Lipowski, J. Schilling, M. Bow-
ick, and A.R. Bausch, Langmuir 21, 12076 (2005)
http://arxiv.org/abs/cond-mat/0506741.

[12] P. Lipowsky, M.J. Bowick, J.H. Meinke, D.N. Nel-
son, and A.R. Bausch, Nat. Mater. 4, 407 (2005)
http://arxiv.org/abs/cond-mat/0506366.

[13] X.S. Ling, Nat. Mater. 4, 360 (2005).
[14] D.S. Fisher, B.I. Halperin, and R. Morf, Phys. Rev. B

20, 4692 (1979).
[15] R.L. Blumberg Selinger, Z-G Wang, and W. Gelbart, J.

Chem. Phys. 95, 9128 (1991).
[16] S. Jain and D.R. Nelson, Phys. Rev. E 61, 1599 (2000)

http://arxiv.org/abs/cond-mat/9904102.
[17] A. Pertsinidis and X.S. Ling, Nature (London) 413,

147 (2001); Phys. Rev. Lett. 87, 098303 (2001)
http://arxiv.org/abs/cond-mat/0012306; New J. Phys.
7, 33 (2005).

[18] A. Libal, C. Reichhardt, and C.J. Olson Re-
ichhardt, Phys. Rev. E 75, 011403 (2007)
http://arxiv.org/abs/cond-mat/0609676.

[19] E.L. Altschuler and A. Perez-Garrido, Phys. Rev. E 71,
047703 (2005) http://arxiv.org/abs/cond-mat/0408355.

[20] S. Xiao and W. Hou, Phys. Rev. B 73, 115406 (2006).
[21] R. Peierls, Proc. Phys. Soc. London 52, 34 (1940).
[22] R. Bruinsma, B.I. Halperin, and A. Zippelius, Phys. Rev.

B 25, 579 (1982).
[23] M. Bowick, C. Cecka, and A. Middleton,

http://physics.syr.edu/condensedmatter/thomson/.

http://arxiv.org/abs/cond-mat/0309709
http://arxiv.org/abs/cond-mat/0406328
http://arxiv.org/abs/cond-mat/0604203
http://arxiv.org/abs/cond-mat/0303289
http://arxiv.org/abs/cond-mat/0506741
http://arxiv.org/abs/cond-mat/0506366
http://arxiv.org/abs/cond-mat/9904102
http://arxiv.org/abs/cond-mat/0012306
http://arxiv.org/abs/cond-mat/0609676
http://arxiv.org/abs/cond-mat/0408355
http://physics.syr.edu/condensedmatter/thomson/

	Dynamics and Instabilities of Defects in Two-Dimensional Crystals on Curved Backgrounds
	Recommended Citation

	vani.eps

