A Domain-Specific Parallel Programming System II. Automatic Data Partitioning

Elaine Wenderholm
Syracuse University
A Domain-Specific Parallel Programming System

II. Automatic Data Partitioning

Elaine Wenderholm

May 1995
Abstract

\(\mathcal{E}m \) is a high-level programming system which puts parallelism within the reach of scientists who are not sophisticated programmers. \(\mathcal{E}m \) both restricts and simplifies the programming interface, and thereby eases both the conceptual task of the programmer and the analytical task of the compiler.

The \(\mathcal{E}m \) compiler performs automatic data structure definition, scheduling and data partitioning.

This document presents the automatic data partitioning algorithm used in \(\mathcal{E}m \).
1 Introduction

Em is a high-level programming system which puts parallelism into the hands of scientists who are not sophisticated programmers. Em both restricts and simplifies the programming interface, and thereby eases both the conceptual task of the programmer and the analytical task of the compiler.

There are several examples of successful specialized programming systems, two of which are financial spreadsheets such as Lotus, and symbolic computation systems such as Mathematica. Each of these tools has allowed a community of users to write applications that previously required specialist programmers. Many users simply would be unable to develop such applications without the use of these specialized software systems. These tools share three characteristics:

1. Each addresses a restricted and well-defined problem domain.

2. The interface to each tool is designed to be intuitive to the target user community.

3. Features from declarative and functional programming are incorporated into the language, thereby freeing the user from programming details, and the need to manage storage and other machine resources.

The design of Em exhibits these same characteristics:

1. Em's problem domain centers on the class of simulation problems which is statically decomposed, has communication localized to a fixed neighborhood, and is loosely synchronous, i.e., time is incremented synchronously after all spatial components are updated.
2. \mathcal{Em} provides a high-level interface with a domain-specific library. The library can be customized to a specific area of scientific investigation.

3. \mathcal{Em} programs are almost purely functional. This relieves the programmer of the need to manage storage and other machine resources, a most difficult task when writing parallel programs.

This paper proceeds as follows. Section 2 defines the semantics of the loop nest in an \mathcal{Em} program. Section 3 describes the types of problems which may be solved using \mathcal{Em}. In Section 4, the main features of the data partitioning strategy are presented, along with definitions necessary for understanding the rest of the paper. A three-dimensional iteration space is used, in Section 5, as an example to present the algorithm to minimize communication. The algorithm and proof are presented in full generality in the Appendix. Calculation of communication weights is presented in Section 6. Section 7 presents examples of the partitioning algorithm, and is followed by concluding remarks.

2 Loop Structure

An \mathcal{Em} program contains one loop. Figure 1 shows an \mathcal{Em} loop and its semantically equivalent loop nest. The outermost loop (time) is sequential, and enforces synchronization at the end of each iteration. The set of n-1 inner loops have no loop-dependent dependences and may be written as $DoAll$ loops. These inner loops are parallel and generally update large data sets. The data updates are performed relative to a statically defined neighborhood. The code body, S, resides within the innermost loop. It consists of procedure calls and may contain conditional statements.

Associated with each \mathcal{Em} procedure is a procedure summary. The procedure summary contains data access information as read, write, +reduce (sum reduction) and *reduce
\(\mathcal{E}m \) Loop

\[
\begin{align*}
\text{loop} & \\
\text{...} & \\
S & \\
\text{...} & \\
\text{end loop}
\end{align*}
\]

Semantic Equivalent

\[
\begin{align*}
L_1 & : \text{Do time} = \text{ltime, utime} \\
L_2 & : \text{DoAll I}_2 = L_2, U_2 \\
& \quad \ldots \\
L_n & : \text{DoAll I}_n = L_n, U_n \\
& \quad \ldots \\
& \quad S \\
& \quad \ldots \\
& \quad \text{End DoAll I}_n \\
& \quad \ldots \\
& \quad \text{End DoAll I}_2 \\
& \quad \text{End Do time}
\end{align*}
\]

Figure 1: \(\mathcal{E}m \) Loop and Semantically Equivalent Loop Nest

(product reduction). Each data access is specified as relative address (offset) to the current cell, or as an absolute address of the iteration space. The set of array accesses for each cell, which contains one or more array variables, is referred to as the cell’s stencil [RAP87, FJL+88, HA90]. Since a data access is a component-wise definition of communication, the stencil may be used to quantify communication by component.

3 Problem Domain

\(\mathcal{E}m \) is a system which is used to solve problems in which array accesses are localized to a statically defined neighborhood.

The iterative solution of simple elliptical partial-differential equations provides an
easy example of a nearest neighbor problem. Given Laplace's equation

\[\frac{\partial^2 \phi}{\partial x^2}(x, y) + \frac{\partial^2 \phi}{\partial y^2}(x, y) = 0 \]

the central-difference equation is

\[4\phi(i,j) - \phi(i+1,j) - \phi(i-1,j) - \phi(i,j+1) - \phi(i,j-1) = 0 \]

where \(i, j \) are indices over the grid. Using the Jacobi iteration, the approximation at iteration \(k \) of a grid point at \((i, j) \) is the average of the neighboring values at iteration \(k-1 \).

\[\phi(i,j)^k = 0.25 \times (\phi(i + 1, j)^{k-1} + \phi(i - 1, j)^{k-1} + \phi(i, j + 1)^{k-1} + \phi(i, j - 1)^{k-1}) \]

These array accesses have center symmetry, and an optimal partitioning of a square data space is square [FJL+88].

The partitioning problem is not always so obvious: array accesses need not be center symmetric, e.g., when forward-difference and backward-difference methods are used; or the iteration space may not be regular.

4 Data Partitioning

This paper presents a new data partitioning strategy. In particular,

1. There is no restriction to a square iteration space as in [HA90, RAP87]; it is generalized to a non-regular \(n \)-dimensional iteration space \(D_1 \times D_2 \times \ldots \times D_n \).
 In practical physical simulations, however, \(n \) does not exceed four.

2. One or more data sets may be used.

3. Conditional procedure invocation, whose execution count may be determined at compile time, is incorporated into the strategy.
4. Data sets which have an iteration space of less than n dimensions are accommodated. This is motivated by practical ecological modelling problems. Ecological modelling generally requires several state variables, and often requires state variables which span different dimensions. As a case in point, the wetland example presented in [WB94] defines a 3-dimensional iteration space: water spans the entire space; ducks span only the x-y plane at z=1.

The partitioning strategy assumes a distributed multiprocessor system. The number of processors is a power of two. The data is partitioned statically across processors. The loop nest is the type shown in Figure 1.
4.1 Definitions

Definition 1 Given a loop $L = L_1, \ldots, L_n$, and a statement S within L, an iteration vector $\vec{i} = (i_1, \ldots, i_n) \in \mathbb{Z}^n$, $i_j \in [L_j : U_j][1 \leq j \leq n]$ corresponds to an execution instance of S [ZC91].

Definition 2 The iteration space, It^n, of loop $L = L_1, \ldots, L_n$ is a finite region in n-dimensional discrete Cartesian space whose points correspond one-to-one to iteration vectors [ZC91].

It follows that: the axes of the iteration space lexicographically correspond one-to-one to the loop nest; all edges incident on a vertex are mutually orthogonal.

Definition 3 $D_j(1 \leq j \leq n)$ denotes the span, $U_j - L_j + 1$, of the j^{th}-dimension of It^n.

Definition 4 By P, denote the number of processors. A partition of the iteration space It^n is a set, block$^b(1 \leq b \leq P)$, of discrete Cartesian subspaces such that

1. the subspaces are mutually disjoint, block$^{b_1} \cap$ block$^{b_2} = \emptyset$, for $(1 \leq b_1 < b_2 \leq P)$,
2. exhaustive, $\bigcup_{1 \leq b \leq P}$ block$^b = It^n$,
3. and nonempty.

Definition 5 A block$^b(1 \leq b \leq P)$ consists of a set of iteration vectors $\vec{1}^b = (i_1^b, \ldots, i_n^b) \in \mathbb{Z}^n$, $i_j^b \in [l_j^b : u_j^b]$, $L_j \leq l_j^b \leq u_j^b \leq U_j$, $(1 \leq j \leq n)$.

Definition 6 $d_j^b(1 \leq j \leq n)$ denotes the span, $d_j^b = u_j^b - l_j^b + 1$ of the j^{th}-dimension of block$^b(1 \leq b \leq P)$.
Definition 7 A face, face_i^b, perpendicular to the i^{th} component of block b, $(1 \leq i \leq n)$, is that subset of block b, \{ $^i_1 = (i_1, \ldots, i^b_i, \ldots, i_n^b) : i_j^b \in [l_j^b : u_j^b]$ $(1 \leq j \neq i \leq n)$ and either $f_i^b = l_i^b$ or $f_i^b = u_i^b$ \}. The face in which $f_i^b = l_i^b$ is the lower face, denoted $l\text{face}_i^b$; the face in which $f_i^b = u_i^b$ is the upper face, denoted $u\text{face}_i^b$. A face has dimension $n-1$.

The faces are the extremal $(n-1)$-dimensional subspaces bounding the n-dimensional block. There are two parallel faces per dimension, which are orthogonal to all other faces.

The number of extremal subspaces of dimension $k < n$ is determined by first choosing k dimensions in the space. There are $\binom{n}{k}$ ways to chose k dimensions. Fixing the remaining $n - k$ dimensions to one of the extremal values, gives the number of $k < n$ subspaces as $\binom{n}{k} 2^{n-k}$. For example the number of faces in 3-dimensional space is $2n = 6$. In general, since there are two parallel faces per dimension, this results in a total of $2n$ faces for an n-dimensional block.

Definition 8 Given vectors \vec{p}_1, \vec{p}_2 in I^n, \vec{p}_o is an offset vector of \vec{p}_1 if $\vec{p}_1 + \vec{p}_o = \vec{p}_2$.

Definition 9 An access vector, $\vec{av} = [av_1, \ldots, av_n]$, is an ordered tuple where each component, av_i, $(1 \leq i \leq n)$, of \vec{av} is either

1. an offset address, $av_i \in \mathbb{Z}$,

2. or an absolute address $av_i \in \{lb[+E], ub[-E]\}$, $E \in \mathbb{Z}$, and $L_i \leq av_i \leq U_i$.

Let v be a variable, and let p be a procedure invocation in an $\mathcal{E}m$ program. By $av(v)$, denote an access vector for variable v. By $av(v, p)$, denote an access vector for variable v in procedure invocation p. By $av_i(v)$, denote the i^{th} component of $av(v)$. By $av_i(v, p)$, denote the i^{th} component of $av(v, p)$. A stencil will be regarded as a set of access vectors.
Definition 10 The communication weight is a vector \(\vec{w} = (w_1, \ldots, w_n) \in \mathbb{N}^n \).

Definition 11 The communication weight along component \(i \), \(w_i \), is the weight assigned to face \(i \).

Figure 2 shows a 3-dimensional iteration space of \(D_1 \times D_2 \times D_3 \). Within this space is block \(d_1 d_2 d_3 \). Communication may occur at block boundaries across the upper and lower faces of \(d_1 d_2 \), \(d_2 d_3 \), and \(d_3 d_1 \). The vectors \(w_1 \) \(w_2 \) and \(w_3 \) denote the dimension along which communication may occur. Section 6 presents the computation of communication weights.

Definition 12 The surface area of face \(\text{face}_i \) is \(S_{f_i} = \prod_{\substack{j \neq i \ 1 \leq j \leq n}} d_j \).

Definition 13 The weighted surface area of face \(\text{face}_i \) is \(w_i S_{f_i} = w_i (\prod_{\substack{j \neq i \\
 1 \leq j \leq n}} d_j) \).

It can be seen that positive-valued \(w_i \) cross up\(\text{face}_i \), and negative-valued \(w_i \) cross down\(\text{face}_i \).

5 Minimizing Communication

The objective in any data partitioning strategy is to minimize the ratio of communication to computation. Additionally, in order to have the workload balanced between all processors, each processor should perform an identical amount of computation. In general, communication is minimized by minimizing the "surface area" of the data.

\footnotetext[1]{Definition 19 will refine this to \(\vec{w} \in (\mathbb{N}^+)^n \).}
\footnotetext[2]{The superscript denoting the block, as in \(\text{block}^b \), \(d_j^b \) and \(\text{face}_j^b \), will be omitted whenever no confusion exists.}
space; load balancing is accomplished by partitioning the data space into equal "volumes" across processors.\(^3\)

This partitioning strategy uses the weighted surface area. Using Figure 2 as the example, and assuming all communication weights are nonzero, the weighted surface area of each block is the sum of the weighted surface areas of all faces:

\[S_b = 2w_1d_2d_3 + 2w_2d_1d_3 + 2w_3d_1d_2 \]

(1)

The data is to be partitioned equally among the processors, so that the volume \(V \) of each block is

\[d_1d_2d_3 = V = \frac{D_1D_2D_3}{P}. \]

(2)

The problem is to minimize the surface area per block

\[\frac{\partial S_b}{\partial d_1}dd_1 + \frac{\partial S_b}{\partial d_2}dd_2 + \frac{\partial S_b}{\partial d_3}dd_3 = 0 \]

(3)

subject to the constraint imposed by equation 2, i.e.,

\[\varphi = d_1d_2d_3 - V = 0. \]

(4)

Using the technique of Lagrange multipliers [SR58], equations 3 and 4 yield

\[\frac{\partial S_b}{\partial d_1} + \lambda \frac{\partial \varphi}{\partial d_1} = w_2d_3 + w_3d_2 + \lambda(d_2d_3) = 0 \]

\[\frac{\partial S_b}{\partial d_2} + \lambda \frac{\partial \varphi}{\partial d_2} = w_1d_3 + w_3d_1 + \lambda(d_1d_3) = 0 \]

\[\frac{\partial S_b}{\partial d_3} + \lambda \frac{\partial \varphi}{\partial d_3} = w_1d_2 + w_2d_1 + \lambda(d_1d_2) = 0 \]

To simplify these equations, multiply the first by \(d_1 \), the second by \(d_2 \), and the third by \(d_3 \). The result is

\[w_2d_1d_3 + w_3d_1d_2 + \lambda(d_1d_2d_3) = 0 \]

\[w_1d_2d_3 + w_3d_1d_2 + \lambda(d_1d_2d_3) = 0 \]

\[w_1d_2d_3 + w_2d_1d_3 + \lambda(d_1d_2d_3) = 0 \]

\(^3\)It should be noted that blocks are always of dimension \(n \). In discussions of partitioning strategies, one commonly encounters phrases such as "...in an \(n \) by \(n \) domain, a one-dimensional decomposition is ...and the two-dimensional case is...". This dimension refers to the number of dimensions over which communication occurs. In the case where there are \(k < n \) dimensions of communication, the iteration space itself forms \(n - k \) boundaries, obviating the need for communication. A toroidal \(It^n \) has no boundary conditions, and communication is of dimension \(n \).
By subtracting the equations “round robin”, i.e., first from second, second from third, and third from first, the equations are simplified to the ratios

\[
\frac{d_1}{d_2} = \frac{w_1}{w_2}; \quad \frac{d_2}{d_3} = \frac{w_2}{w_3}; \quad \frac{d_3}{d_1} = \frac{w_3}{w_1}.
\]

(5)

Solving for \(d_1\) using equations 5 and 2,

\[
d_1 = d_2 \frac{w_1}{w_2} = \frac{Vw_1}{d_1 d_3 w_2} = \frac{V(w_1)^2}{(d_1)^2 w_2 w_3},
\]

and

\[
(d_1)^3 = \frac{V(w_1)^2}{w_2 w_3}.
\]

Substituting for \(V\),

\[
(d_1)^3 = \frac{D_1 D_2 D_3 (w_1)^2}{w_2 w_3}.
\]

Defined logarithmically (the base is irrelevant),

\[
\log d_1 = \frac{1}{3} \log \left(\frac{(w_1)^2 D_1 D_2 D_3}{P w_2 w_3} \right)
\]

and similarly for \(d_2\) and \(d_3\),

\[
\log d_2 = \frac{1}{3} \log \left(\frac{(w_2)^2 D_1 D_2 D_3}{P w_1 w_3} \right)
\]

\[
\log d_3 = \frac{1}{3} \log \left(\frac{(w_3)^2 D_1 D_2 D_3}{P w_1 w_2} \right).
\]

so that

\[
d_1 = \text{antilog} \left(\frac{1}{3} \log \left(\frac{(w_1)^2 D_1 D_2 D_3}{P w_2 w_3} \right) \right)
\]

and similarly for \(d_2\) and \(d_3\).

A proof is provided in the appendix for a general n-dimensional iteration space, where communication weights may be zero. In [HA90], zero communication weights are not considered.

The total number of processors, \(P\), is an integer power of 2, and \(P = p_1 \cdot \ldots \cdot p_n\), where \(p_i\) is the number of subdivision of component \(i\), \((1 \leq i \leq n)\). Therefore each \(p_i\) is also an integer power of 2. The \(p_i\) are calculated using \(p_i = \frac{D_i}{d_i} \).
In those cases where the calculated p_i is not an integer power of 2, the p_i are approximated by rounding up/down to the nearest integer power of 2, and calculating a non-minimal surface area. The chosen values of p_i are those which give the smallest calculated surface area. In the worst case, n dimensions must be estimated, resulting in an upper bound of 2^n comparisons of calculated surface areas. In most cases, n is quite small.

6 Quantification of Communication Weight

The communication weight is computed using a min-max construction \cite{HA90}, and is considered a "best case" estimate since it assumes that all data external to a block need be communicated only once to satisfy all internal references. This construction is suitable to an Em program. Em programs are highly functional, and Em array access rules require that all updates are local to the cell.

6.1 Simplest Programming Model

The simplest programming model in Em is comprised of one array variable spanning the iteration space, and one procedure inside the loop. In addition, there is no conditional procedure execution. This insures identical communication between blocks. Communication weight calculation for this model is identical to \cite{HA90}:

Definition 14 The simplest communication weight along component i, w_i, is defined

$$w_i = \max(\{av_i : av_i \geq 0\} \cup \{0\}) + |\min(\{av_i : av_i < 0\} \cup \{0\})|$$

where av_i denotes an access vector along component i, and $(1 \leq i \leq n)$.
6.2 $\mathcal{E}m$ Program Model

An $\mathcal{E}m$ program consists of one or more procedure invocations within a loop, and one or more array variables.

For this model, communication weight is extended to be a function of variable. Let Var be the set of array variables.

Definition 15 The variable communication weight, $w_i(v)$, along component i for variable $v \in V$ is

\[
w_i(v) = \max(\{a_{vi}(v) : a_{vi}(v) \geq 0\} \cup \{0\}) + |\min(\{a_{vi}(v) : a_{vi}(v) < 0\} \cup \{0\})|
\]

where $(1 \leq i \leq n)$.

Obviously, the component-wise communication weight incurred for several variables is additive.

Definition 16 The communication weight w_i for component i over variables $v \in V$ is

\[
w_i = \sum_{v \in V} w_i(v)
\]

Definition 17 Since expansion of the scalar w_i into vector $|\vec{w}| = n$ is $\vec{w}_i = (0, \ldots, w_i, \ldots, 0)$, $(1 \leq i \leq n)$, the overall communication weight, \vec{w} is

\[
\vec{w} = \sum_{1 \leq i \leq n} \vec{w}_i
\]
6.3 Iteration Subspaces

An $\mathcal{E}m$ procedure summary may contain array accesses which define a subspace of the iteration space.

Definition 18 A slice is a subset of the iteration space over which an array variable is accessed.

Procedures may be required which only handle iteration space boundary conditions. Therefore, array accesses performed by such procedures occur only at boundaries of the iteration space. Section 4 provides a good example: given an iteration space (x, y, z), variable v spans the x-y plane only at $z=1$. An access vector for v is, say, $av(v) = [0, 2, lb]$, where lb denotes the lower bound of the third component of the iteration space.

Assuming a span, D_3, for the third component, this array access may be weighted as $(1/D_3)[0, 2, 0] = [0, 2/D_3, 0]$. In other words, a slice has width 1 and contributes $1/D_3$ to the communication of the access vector, and the remaining $D_3 - (1/D_3)$ “slices” have no communication.

Conversely, consider an access vector for variable v, $av(v)$, where $av_i(v)$ is an offset address. Then $av_i(v)$ applies to the span of component i; there are D_i “slices”, each contributing $1/D_i$ to the communication. The sliced communication weight is simply $(D_i)(1/D_i) \times av(v) = av(v)$.

Definition 19 The function slice is defined:

\[
slice : (v \times i) \times av \mapsto \{1, 1/D_i\},
\]

and

\[
slice(v, i)[., \ldots, av_i, \ldots] = \begin{cases}
1/D_i & \text{if } av_i = lb[+E] \text{ or } av_i = ub[-E] \\
1 & \text{otherwise}
\end{cases}
\]
where, \(av \) is an access vector \([av_1, \ldots, av_n] \) for variable \(v \in V \), and \(1 \leq i \leq n \).

Lastly, a sliced access vector must be transformed into a nonsliced vector.

Definition 20 *The function '*' is defined:*

\[
* : av \mapsto av
\]

and

\[
*av = \begin{cases}
0 & \text{if } av_i = lb[i+E] \text{ or } av_i = ub[-E] \\
av_i & \text{otherwise}
\end{cases}
\]

where \(av \) is an access vector, and \(1 \leq i \leq n \).

It is then possible to weight the sliced access vectors and use weighted access vectors to calculate the communication weights.

\[
wavi(v) = (\text{slice}(v, i)av(v))(*av(v))
\]

where \((1 \leq i \leq n) \). This definition states the weighted slice of an access vector with one “slice” at \(i \). However in general, an access vector may be sliced over more than one component. Obviously, the sliced area of the access vector is simply calculated as the product of the slices over all components.

Definition 21 *Let*

\[
\text{prod}(av_i(v)) = (\prod_{1 \leq i \leq n} \text{slice}(v, i)av(v))(*av(v)).
\]

Then the weighted access vector, \(wavi(v) \), over component \(i \) for variable \(v \in V \) is

\[
wavi(v) = \max\{{\text{prod}(av_i(v)) : \text{prod}(av_i(v)) \geq 0} \cup \{0\}\} + \left| \min\{{\text{prod}(av_i(v)) : \text{prod}(av_i(v)) < 0} \cup \{0\}\} \right|
\]
Now, Definition 16, which defines $w_i(v)$ as a function of access vectors, may be defined as a function of weighted access vectors, viz.,

$$w_i(v) = \max(\{w_{avi}(v) : w_{avi}(v) \geq 0\} \cup \{0\}) + |\min(\{w_{avi}(v) : w_{avi}(v) < 0\} \cup \{0\})|$$

The option exists in the Em compiler to select the degree of accuracy for determining the communication weight by either incorporating or not incorporating sliced access vectors into the calculation.

7 Examples

This section presents examples of three kinds. First, array accesses where all communication weights are greater than zero are discussed. In fact, only those problems whose weights are not zero have been considered by the researchers previously cited. Next, communication weights of zero are discussed. And lastly, a simple example is presented of iteration spaces slices, and how slices affect the data partition.

7.1 Non-Zero Weighted Communication

Frequently used discretization stencils [RAP87] are shown in Figure 3, along with their communication weight vectors determined by the algorithm herein. The set of access vectors for a 7-point star stencil is

$$\{-1, 0, 1\}, \{0, 1\}, \{1, 0\}, \{1, -1\}, \{0, -1\}, \{-1, 0\}$$

and the w_i are calculated

$w_1 = \max(\{-1, 0, 1, 0, -1\} \cup \{0\}) + |\min(\{-1, 0, 1, 0, -1\} \cup \{0\})| = 2$

By definition, communication weights are not negative valued.
\[w_2 = \max(\{1, 1, 0, -1, -1, 0\} \cup \{0\}) + \min(\{1, 1, 0, -1, -1, 0\} \cup \{0\}) = 2 \]

hence, \(\bar{w} = [2, 2] \)

The communication weights of these stencils share a common property: all components are in a 1 : 1 ratio, indicating a center symmetric communication pattern. It is possible to take exception to this statement by noting that, e.g., a 7-point star stencil is not center symmetric due to the diagonal offsets which contain both horizontal and vertical components. However, as proven in [HA90], this additional communication
results in a constant error term, is independent of the dimension of the rectangular partition, and whose magnitude is independent of optimization technique.

A naive approach to communication would construct four messages for the north, south, east, and west faces of the block, and two additional messages for the two remaining diagonal elements of the block. But as out in [FJL+88]⁵, separate communication for diagonal elements is not necessary for Cartesian partitions: a maximum of 2n messages are required. All stencils in Figure 3 require four messages.

Non-center symmetric stencils are shown in Figure 4. The communication weight vector for the forward-difference and backward-distance stencil is \(\vec{w} = [2, 1] \); the communication weight vector for the 6-point star stencil is \(\vec{w} = [2, 4] \). An optimal

\(^{5}\text{Ch. 16}\)
Table 1: Comparison of w_2 for $I t^3 = n \times n \times n$

<table>
<thead>
<tr>
<th>defined w</th>
<th>partition</th>
<th>result \bar{w}</th>
<th>%error</th>
<th>partition</th>
<th>result \bar{w}</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,0,1]</td>
<td>[4,1,4]</td>
<td>[1,0,1]</td>
<td>0</td>
<td>[8,1,4]</td>
<td>([4,1,8])</td>
<td>5.6</td>
</tr>
<tr>
<td>1,1,1</td>
<td>2,4,2</td>
<td>[1,1,1]</td>
<td>5.8</td>
<td>[4,2,4]</td>
<td>[1,1,1]</td>
<td>5.0</td>
</tr>
<tr>
<td>1,2,1</td>
<td>4,1,4</td>
<td>[1,2,1]</td>
<td>5.0</td>
<td>[4,2,4]</td>
<td>[1,1,1]</td>
<td>0</td>
</tr>
<tr>
<td>1,3,1</td>
<td>4,1,4</td>
<td>[1,3,1]</td>
<td>0.9</td>
<td>[4,2,4]</td>
<td>[1,3,1]</td>
<td>1.9</td>
</tr>
<tr>
<td>1,4,1</td>
<td>4,1,4</td>
<td>[1,4,1]</td>
<td>0</td>
<td>[4,2,4]</td>
<td>[1,4,1]</td>
<td>5.8</td>
</tr>
<tr>
<td>1,5,1</td>
<td>4,1,4</td>
<td>[1,0,1]</td>
<td>0</td>
<td>[4,2,4]</td>
<td>[1,5,1]</td>
<td>4.4</td>
</tr>
<tr>
<td>1,6,1</td>
<td>4,1,4</td>
<td>[1,0,1]</td>
<td>0</td>
<td>[8,1,4]</td>
<td>([4,1,8])</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Partition [HA90] is achieved when the ratio of the block faces are 2 : 1, 1 : 2 resp.

It should be noted that communication vectors, say, [2, 1] and [4, 2], have identical ratios, and produce identical partitions. Their difference reflects the quantity of data to be communicated across each face. This is a separate topic and is outside the scope of this paper.

7.2 Zero-Weighted Communication

Appendix A presents the proof for communication weights which include zero-valued weights. Lemma A proves there are two situations in which a communication weight, w_i, is zero:

1. $w_i = 0$ by definition.

2. The minimization determines that $d_i = D_i$, so that no communication occurs along component i, and results in a computed communication weight $w_i = 0$.

Table 7.1 demonstrates this Lemma. The first row shows a weight whose second component is zero by definition. In the resulting partition, the second component is 1, showing that the processor boundary is the iteration space boundary. The following rows demonstrate the effect of increasing the weight along component two: there is
a point at which the magnitude of the communication along component becomes so large that the algorithm reduces the number of dimensions for communication from three to two.

7.3 Iteration Subspaces

As discussed in Section 6.3, the unique aspect of Em is the ability to determine communication weights for subspaces of the iteration space.

Consider a 3-dimensional iteration space whose components are denoted, respectively, as (x, y, z). Next, consider a procedure, $P(a, b)$, which executes over all of x and y at $z = 1$. The code for the correct execution of this procedure requires the conditional execution of P. The conditional execution of P is an example of *control dependence*.

This code may be written in several ways. For example, a programmer may write the code with the loop nest either enclosed within the conditional statement, or enclosing the conditional statement. This is shown in Figure 5.

An optimizing compiler may or may not be able to detect control dependence, depending on the way in which the code is written. This is especially true for interprocedural analysis.

The Em language overcomes these difficulties:

1. Em enforces a standardized calling sequence for procedures.

2. The procedure summary of Em encodes control dependence as array access vectors.

Specifically, any access vector component which is not an offset address specifies a control dependence. The combination of the procedure summary and standard
do x = x1, xn
 do y = y1, yn
 do z = z1, zn
 if (z .eq. 1) then
 call P(a,b)
 endif
 enddo
 enddo
enddo

Subroutine P(a,b)
...
endif

diff

diff

diff

Figure 5: Coding Styles for the Conditional Execution of Procedure $P(a, b)$
Table 2: \vec{w} and \vec{w}_s for water and soil structure

<table>
<thead>
<tr>
<th></th>
<th>water</th>
<th>soil structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{w}</td>
<td>[2, 2, 10]</td>
<td>[4, 8, 0]</td>
</tr>
<tr>
<td>\vec{w}_s</td>
<td>[2, 2, 10]</td>
<td>(0.5)[4, 8, 0]</td>
</tr>
</tbody>
</table>

Table 2: \vec{w} and \vec{w}_s for water and soil structure

Table 3: Partitions for Three Cases in Conditional Array Assignment

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{w}</td>
<td>[2, 2, 10]</td>
<td>[6, 10, 10]</td>
<td>[4, 6, 10]</td>
</tr>
<tr>
<td>partition</td>
<td>[8, 8, 1]</td>
<td>[4, 4, 4]</td>
<td>[8, 4, 2]</td>
</tr>
</tbody>
</table>

Table 3: Partitions for Three Cases in Conditional Array Assignment

procedure interface makes the job for the $\mathcal{E}m$ compiler very easy. It is so easy that $\mathcal{E}m$ generates the code for the loop nest and conditional execution of procedures.

7.3.1 Conditional Execution: An Example

The following example illustrates the effect of conditional array assignment on the calculated data partition.

Consider the variables, soil structure, and water, which span a cubic iteration space. The data structures for soil structure and water span the entire space. Communication for water and soil structure occur across all face$_i$ of the space. However, the communication for soil structure across face$_3$ is required over only one-half the space, and this communication is uniformly distributed.

Table 7.3 displays the result of calculating the unsliced, w, and sliced, w_{sl}, communication weights for these variables from their sets of access vectors. The choice for any compiler is whether or not to include the conditional execution of an array assignment. To demonstrate the effect, three cases are tested:
Case 1: A conditional array assignment is ignored.

The communication weight only for water is considered.

\[\tilde{w} = \tilde{w}(water) = [2, 2, 10] \]

Case 2: A conditional array assignment is treated as an unconditional assignment.

The communication weight is calculated using both variables as the sum of the \(\tilde{w} \) of variables soil_structure and water.

\[\tilde{w} = \tilde{w}(soil_structure) + \tilde{w}(water) = [4, 8, 0] + [2, 2, 10] = [6, 10, 10] \]

Case 3: A conditional array assignment is treated as a conditional assignment; sliced communication weights are used.

The sliced communication weight is the sum of the sliced communication weights of variables water and soil_structure. Note that \(\tilde{w}(water) = \tilde{w}_{sl}(water) \).

\[\tilde{w}_{sl} = \tilde{w}_{sl}(soil_structure) + \tilde{w}_{sl}(water) = [2, 2, 10] + (0.5)[4, 8, 0] = [4, 6, 10] \]

The results are listed in Table 7.3. This example assumed a uniform distribution of communication across face_3. However, this need not be the case: array accesses may not be uniformly distributed across the subspace. In this situation there may be an imbalance of communication: the subspace requiring communication may be, say,
defined as the “upper half” of face$_3$. Then it would be reasonable to assume a worst-case communication strategy and calculate the data partition using the assumption of Case 2.

8 Conclusion

The data partitioning algorithm is implemented in Prolog [Wie94] as part of the \mathcal{Em} compiler. It may also be invoked separately, and interactively, to provide only data partitioning results. Run separately, the user need specify only three data:

1. iteration space bounds
2. number of processors
3. communication weight vector

The \mathcal{Em} compiler not only performs automatic data partitioning, but also automatically deduces array bounds, which are used to write array declarations. Should the \mathcal{Em} program be changed by the programmer to, say, incorporate an additional (or merely modified) set of procedures which access different portions of array variables, or new array variables, the compiler automatically adjusts the array declarations and data partition. This eliminates the need for the programmer to modify, often erroneously, the program.

The \mathcal{Em} compiler not only uses the access vectors containing slices to compute the sliced communication weight, but also to write the source code for the conditional execution of the procedure. This eliminates the need for the programmer to write conditional statements for bounds checking. An example of the source code generated may be found in [WB94].
The general partitioning algorithm, presented in the Appendix, naturally accommodates arrays of dimension $< n$. As stated above, the Em compiler determines the array declaration, and hence the array dimensions. As shown in the Appendix, a communication weight $w_i = 0$ implies no communication across $face_i$, which is semantically identical to an array of dimension $k < n$.

The most general programming model supports multiple programs executing on different processors with different data sets. In this case, both the programs and/or the data are partitioned across processors, and is difficult to optimize. This model is beyond the scope of Em which is designed to support the SPMD (Single Program Multiple Data) Model. However, the procedure summary information specifies array access as a function of variable and procedure name. It is a simple compiler task to map the procedure summary data into communication weight defined as a function of variable name, array access, and procedure invocation. Weights defined as such may be used as input to algorithms which partition not only data, but also procedures, across multiple processors. In this case, the problems solved would still remain restricted to access data within a statically-defined local neighborhood.
References

A Appendix

Lemma A
The weighted surface area of $\text{face}_i = 0$ only if $w_i = 0$.

Proof
By definition of block, $\nexists_{1 \leq j \leq n} d_j = 0$. Therefore it must be that $w_i = 0$. There are two cases in which $w_i = 0$:

case 1 $w_i = 0$ is defined by the stencil.

case 2 The minimization determines that $d_i = D_i$. Then component i of the iteration space is not decomposed. The processor boundary on the i-th component is the iteration space boundary. Thus, no communication occurs along component i, which results in a computed communication weight $w_i = 0$.

Problem
Given a n-dimensional space $D_1 \times D_2 \times \ldots \times D_n$ partitioned into P blocks of equal volume $V = (D_1 \cdot \ldots \cdot D_n) / P = d_1 \cdot \ldots \cdot d_n > 1$, and communications weights w_1, w_2, \ldots, w_n, minimize the weighted surface area per block

$$S_b = w_1 d_2 d_3 \cdot \ldots \cdot d_n + w_2 d_1 d_3 \cdot \ldots \cdot d_n + \ldots + w_{n-1} d_1 d_2 \cdot \ldots \cdot d_{n-2} d_n + w_n d_1 d_2 \cdot \ldots \cdot d_{n-2} d_{n-1}$$

constrained by $\varphi = (\Pi_{1 \leq j \leq n} d_j) - V = 0$.

Claim 1
Minimization of the weighted surface area per block is achieved by satisfying ratio equations

$$\frac{w_{I(l+1)}}{w_{I(l)}} = \frac{d_{I(l+1)}}{d_{I(l)}} \quad (0 \leq l < k)$$

(1)
where,
$I = \{i : w_i \neq 0 \text{ and } (1 \leq i \leq n)\}$ is the ordered index set of weights w_i, $I(i)$ denotes the $(i + 1)$st element of I, k is the length of I, and $(l + 1)$ is evaluated mod k.

Proof

S_b may be written as a sum of products.

$$S_b = \sum_{1 \leq i \leq n} (w_i)(\prod_{j \neq i} d_j),$$

Substituting D_i for d_i for those $i : w_i = 0$, $(1 \leq i \leq n)$, gives

$$S_b = \sum_{i \in I} (w_i)(\prod_{j \neq i} d_j)(\prod_{1 \leq q \leq n} D_q).$$

Similarly, φ may be written

$$\varphi = (\prod_{j \in I} d_j)(\prod_{1 \leq q \leq n} D_q) - \nu = 0$$

Using the method of Lagrange multipliers, the set of partial differential equations for $l \in I$, $(0 \leq l < k)$ is

$$\frac{\partial S_b}{\partial d_l} + \lambda \left(\frac{\partial \varphi}{\partial d_l}\right) = \sum_{i \neq l} (w_i)(\prod_{j \neq i} d_j) + \lambda(\prod_{j \neq i} d_j) = 0$$

Multiplying the l-th partial differential equation by d_l,

$$\sum_{i \in I} (w_i)(\prod_{j \neq i} d_j) + \lambda(\prod_{j \in I} d_j) = 0.$$

This produces a set of equations E_k, such that upon subtraction of $E_m - E_{m+1}$, $(0 \leq m < k$, $m + 1$ evaluated mod k), all summands except those two containing $w_{I(m)}$, $w_{I(m+1)}$ in the product are identical.

6The constant product $\prod_{1 \leq q \leq n} (D_q)$ occurs in each summand of S_b and in φ. Both sides of the equation are divided by this product.
The result of this subtraction is the set of equations

\[
\sum_{\substack{i \neq i' \in I_j \atop j \in I}} (w_i) (\prod_{j' \in I} d_{j'}) = \sum_{\substack{i \in I \atop i \neq I(l+1)}} (w_i) (\prod_{j \in I} d_{j})
\]

which simplifies to

\[
w_{I_{l+1}} \prod_{j \notin I_{l+1}} d_j = w_{I_{l}} \prod_{j \notin I_{l}} d_j.
\]

Upon further simplification, the \(d_j\) (\(j \notin I(l), I(l+1)\)) cancel and the resulting equations are

\[
w_{I_{l+1}} d_{I(l)} = w_{I_{l}} d_{I(l+1)}, \quad (0 \leq l < k \text{ and } (l + 1) \text{ evaluated mod } k)
\]
or, rewritten as ratios,

\[
\frac{w_{I_{l+1}}}{w_{I_{l}}} = \frac{d_{I_{l+1}}}{d_{I_{l}}}.
\]

\[\square\]

Claim 2

The block dimensions are

\[
\log_2 d_i = \begin{cases} \frac{1}{k} \log_2 \left(\frac{w_i}{k} \prod_{j' \in I} D_{j'} \right) & \text{if } i \in I \text{ and } d_i \leq D_i \\ \log_2 D_i & \text{otherwise} \end{cases}
\]

where \(1 \leq i \leq n\).

Proof

Let \(1 \leq i \leq n, i, j, l, (j + 1), (l + 1) \in I, j' \notin I, \text{ and } (l + 1), (j + 1) \text{ be evaluated mod } k\).

In order to solve for \(d_i, i \in I\), take the ratio equation 1

\[
\frac{d_{I(l)}}{d_{I(l+1)}} = \frac{w_{I(l)}}{w_{I(l+1)}}
\]

and solve for \(d_{I(l)}\).

\[
d_{I(l)} = \frac{w_{I(l)}}{w_{I(l+1)}} d_{I(l+1)}
\]
Substituting for those $d_i = D_i$ the volume equation becomes

$$

\nu = \prod d_i = \frac{\prod D_i}{P} \\
= \prod_{j \in I} d_j \prod_{j' \notin I} D_{j'} = \frac{(\prod_{j \in I} D_j)(\prod_{j' \notin I} D_{j'})}{P} \\
= \prod_{j \in I} d_j = \frac{\prod_{j \in I} D_j}{P}

$$

Next, rewrite $\prod_{j \in I} d_j$ as

$$(d_{I(l)})(d_{I(I+1)})\left(\prod_{j \in I, j \neq I, l+1} d_j \right) = \frac{\prod_{j \in I} D_j}{P}$$

Solving for $d_{I(l+1)}$

$$
d_{I(l+1)} = \frac{\prod_{j \in I} D_j}{P} \prod_{j \in I, j \neq I, l+1} d_j
$$

and substituting into 3 gives

$$
d_{I(l)} = \frac{w_{I(l)}}{w_{I(l+1)}} \frac{\prod_{j \in I} D_j}{P} \prod_{j \in I, j \neq I, l+1} d_j
$$

$$
(d_{I(l)})^2 = \frac{w_{I(l)}}{w_{I(l+1)}} \frac{\prod_{j \in I} D_j}{P} \prod_{j \in I, j \neq I, l+1} d_j
$$

Using the remaining $k - 1$ ratio equations to substitute weights for dimensions, and by Lemma A the resulting solution for d_i is

$$
d_{I(l)}^k = \frac{(w_{I(l)})^{k-1} \prod_{j \in I} D_j}{P \prod_{j \notin I} w_j} \\
= \frac{(w_{I(l)})^{k} \prod_{j \in I} D_j}{P \prod_{j \notin I} w_j} \quad \text{(4)}
$$

$$
\log d_{I(l)} = \frac{1}{k} \log \frac{(w_{I(l)})^{k} \prod_{j \in I} D_j}{P \prod_{j \notin I} w_j} \quad \text{(5)}
$$

Consider $d_i, (1 \leq i \leq n)$.
1. \(d_i > 0 \).

 All factors of the quotient on the RHS of Equation 4 are positive, and so the quotient is positive. The \(k \)-th root of \(d_i \) is therefore positive.

2. \(i \notin I \).

 Then by Lemma A \(w_i = 0 \) and \(d_i = D_i \).

3. Suppose \(d_i > D_i \).

 The equations in the problem statement specify a family of problems since they reflect the volume of the iteration space, but are indifferent to the shape of the iteration space. Therefore, it is possible to get spurious solutions, i.e., solutions that satisfy the equations but not the intended shape of the iteration space. A spurious solution is indicated when the computed \(d_i \) exceeds the iteration space dimension \(D_i \).

 Intuitively, these equations represent a worst-case solution: the constraint on communication assumes there exists at least one block which is internal to the iteration space, viz., completely surrounded by other blocks.

 By setting \(d_i := D_i \), and Lemma A, the problem is refined by reducing the dimension for communication to \(k' := k - 1 \). This is equivalent to setting \(w_i := 0 \) and recomputing the index set \(I \). Therefore, \(d_i \) is defined by Equation 2.

The computation of \(d_i \) is iterative, and guaranteed to terminate. Iteration over \(d_{1 \leq k \leq n} \) is required only if \(d_i > D_i \). In this case, \(w_i := 0 \) and \(d_i := D_i \). Each iteration reduces the number of undefined block dimensions by at least one. The algorithm terminates when all \(d_i \) are defined.

\(\Box \).