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Abstract

We study the classical dimer model on a square lattice with a single vacancy
by developing a graph-theoretic classification of the set of all configurations
which extends the spanning tree formulation of close-packed dimers. With
this formalism, we can address the question of the possible motion of the
vacancy induced by dimer slidings. We find a probability 57/4 − 10

√
2 for

the vacancy to be strictly jammed in an infinite system. More generally, the
size distribution of the domain accessible to the vacancy is characterized by a
power law decay with exponent 9/8. On a finite system, the probability that
a vacancy in the bulk can reach the boundary falls off as a power law of the
system size with exponent 1/4. The resultant weak localization of vacancies
still allows for unbounded diffusion, characterized by a diffusion exponent that
we relate to that of diffusion on spanning trees. We also implement numerical
simulations of the model with both free and periodic boundary conditions.

1. Introduction

1.1. The problem

The statistical mechanics of rigid dimers arranged on a lattice is relevant to many
physical systems and has appeared repeatedly in the literature over the years. The study
of dimer models can shed light on diatomic gases, the thermodynamics of adsorbed films
[1] and the classical limit of resonating valence bond (RVB) models of high-temperature
superconductivity [2].

The case of close-packed dimers on planar lattices is exactly solvable and the associ-
ated mathematical techniques have proven very powerful [3-8]. It provides a paradigm
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(b)(a)
Fig. 1: An example of a dimer move on the square lattice. The dimer
slides into the empty site (vacancy) of configuration (a), resulting in a new
configuration (b) where the vacancy has jumped by two lattice spacings.

of a geometrically constrained statistical system with a strong interplay between the
physical degrees of freedom and the symmetry of the underlying lattice.

New challenges appear if we extend the close-packed dimer models by allowing
for defects in the form of vacancies, namely sites not covered by dimers [7,9-11]. The
presence of defects allows dynamical moves for dimers by sliding them into empty sites,
as illustrated in Fig. 1. This in turn induces motion of the vacancies in the form of
discrete jumps, each by two lattice spacings. It is of great interest to characterize as
explicitly as possible the nature of the constrained dynamics of vacancies as a model
glassy system. In particular, we would like to determine the extent to which a vacancy
can diffuse, both spatially and temporally.

In this paper, we consider the simplest case of an isolated vacancy in a sea of dimers
on the square lattice. Our primary interest is the structure of the space accessible to the
vacancy. In particular, we address the question of whether or not the vacancy is local-
ized, namely confined to a finite region. We find that our model exhibits localization but
in a very weak form. Although the motion of the vacancy in a fixed dimer background
is localized to a finite domain, the mean size of this domain nevertheless diverges upon
averaging over all possible dimer backgrounds. We call this property weak localization,
as it allows vacancies to diffuse arbitrarily far on average. It is also important to in-
vestigate the kinetics of vacancy diffusion. We find an anomalous diffusion exponent
determined both by the internal structure of the space available to the vacancy and the
effects of weak localization which control the size of this space.

1.2. Outline and summary of results

Our paper is structured as follows. In Sect. 2, we recast our dimer problem with
a single vacancy as a model of spanning graphs on a rectangular grid by extending
a famous construction by Temperley. This construction is recalled in Sect. 2.1 and
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provides a bijection between dimer configurations with the vacancy on the boundary

of the grid and spanning trees on a subgrid. The generalization of this construction,
in Sect. 2.2, to a vacancy in the bulk leads to more general spanning webs, consisting
of a central tree component on which the vacancy can freely diffuse, surrounded by a
number of nested loops with branches, which act as cages for the vacancy. We then
derive in Sect. 2.3 a determinant formula for the partition function of these spanning
webs.

Sect. 3 is devoted to a finite size study of dimers on a square grid of size L, with a
vacancy at the center, and the asymptotic limit L → ∞. In Sect. 3.1, we use our deter-
minant formula to compute the probability that the vacancy can reach the boundary of
the grid, in which case it can reach all sites of the grid. This “delocalization probability”
is found to decay with the system size as L−1/4. In Sect. 3.2, we analyze the distribution
p(s) for the size s of the domain accessible to the vacancy in an infinite system. In the
spanning web formulation, this domain is nothing but the central tree component that
contains the vacancy. We characterize p(s) by first giving the exact value of p(1), which
measures the probability that the vacancy is strictly jammed. We then derive its large s
behavior p(s) ∼ s−9/8 from the associated scaling of the delocalization probability. This
power law behavior with an exponent larger than −2 is responsible for the announced
weak localization property. We finally discuss in Sect. 3.3 the diffusion exponent on
spanning webs (η) and on spanning trees (η0) and find the relation η/η0 = 7/8, which
measures the slowing of diffusion by weak localization.

We complete our analysis in Sect. 4 by a number of numerical simulations both
on the statistics of spanning webs and the dynamics of diffusion. In Sect. 4.1, we show
how to modify the well known Propp-Wilson algorithm for the generation of random
spanning trees so as to obtain spanning webs with a uniform measure. We present
results for the delocalization probability and for the size distribution p(s), finding good
agreement with the analytic predictions. We check the universality of p(s) by also
carrying out simulations with periodic boundary conditions. There we used the efficient
“pivot algorithm” to generate configurations directly in the dimer formulation. Sect. 4.2
is devoted to the numerical computation of the diffusion exponents η0 on spanning trees
and η on spanning webs, whose ratio agrees with the analytic prediction.

Appendix A gives a heuristic derivation of the decay exponent for the delocalization
probability via Coulomb gas arguments. Appendix B discusses the technical details of
the extension of the Propp-Wilson algorithm to the generation of spanning webs.

2. Vacancy in a dense sea of dimers: graph-theoretic treatment

2.1. Tree formulation

Let us first recall Temperley’s bijection between dimer configurations on a rectan-
gular grid and spanning trees on a grid with double mesh size [12,13]. More precisely,
let us consider a rectangular grid with 2L + 1 columns and 2M + 1 rows, so that the
total number of vertices is odd. The vertices of the grid can be colored, say in black
and white, so that neighboring vertices have different colors, with the vertex in the
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(a)

(d)(c)

(b)

Fig. 2: A 9×7 grid (a) is bicolored with one more white than black vertex.
The set of white vertices is made of two intercalated grids of double mesh
size (b) with respective sizes 5 × 4 and 4 × 3. The first one (c) will be
referred to as the odd white grid and the second one (d) as the even white
grid. The latter is extended (dashed lines) so as to include an extra vertex
(here represented by a double boundary) dual to the exterior face.

upper right corner being white. With this coloring, there is one more white vertex than
black vertex and the grid can be fully covered by a set of dimers with a single vacancy
on a white vertex. Note that the set of white vertices can be viewed as made of two

intercalated grids, of size (L + 1) × (M + 1) and L × M respectively, both with double
mesh size (see Fig. 2). We shall refer to these grids as the odd white grid and the even

white grid respectively. It is convenient to extend the even white grid by an additional
white vertex dual to the exterior face of the original grid, together with edges from that
new vertex to all vertices on the boundary of the even white grid (see Fig. 2). With this
convention, the “extended” even white grid is simply the dual graph of the odd white
grid. Note finally that the black vertices sit precisely on the edges of either of these two

4



(a) (b)

(d)(c)

Fig. 3: A sample dimer configuration on a 17×13 lattice (a) with a single
vacancy (

⊗

) in the upper right corner. In (b) we keep only those dimers
that cover a vertex of the odd white grid and translate them in (c) into
oriented edges of that grid, resulting in a spanning tree configuration whose
edges are oriented toward the upper right corner. In (d), we also show the
dual tree (red) which spans the extended even white grid and is oriented
to the exterior face. The configuration (a) is recovered by replacing every
oriented edge of (d) by a dimer on its first half.

dual white grids.

Let us assume that we place the vacancy on a white vertex of the boundary of the
grid, necessarily part of the odd white grid. Now any other vertex of the odd white grid
carries a dimer (see Fig. 3-(a)). This dimer selects an edge of the odd white grid, which
we decide to mark and orient from the white vertex carrying that dimer to its neighbor
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on the odd white grid (see Fig. 3-(b,c)). The graph made of all these marked oriented
edges together with all the original vertices of the odd white grid forms a spanning tree
of the odd white grid whose edges are moreover oriented toward the vacancy (see Fig. 3-
(d)). To understand the absence of loops in the graph, note that a loop would enclose
an interior region of the original lattice with an odd number of vertices that therefore
could not be fully covered by dimers (here it is crucial that we have taken the vacancy
to lie strictly on the boundary). As the graph has exactly one more vertex than edges
(as the vertex carrying the vacancy does not give rise to a marked edge), it is necessarily
made of a single tree spanning the whole odd white grid. The edge orientations produce
the unique flow on the tree toward the vacancy (with exactly one edge exiting from all
vertices but the vacancy). In particular, if we fix the position of the vacancy, say in
the upper right corner, the above construction provides a bijection between fully-packed
dimer configurations of a (2L + 1) × (2M + 1) grid with one vacancy in the corner
and spanning trees of the associated (L + 1)× (M + 1) odd white grid. To go from the
spanning tree configuration back to the original dimer configuration, we first orient each
edge of the tree so as to reproduce the unique flow toward the upper right corner and
replace each edge of the tree by a dimer on the first half of the edge. We then consider
the “dual tree” of the spanning tree, made of those edges of the extended even white
grid that do not cross the edges of the spanning tree. This dual graph is itself a tree
spanning the extended even white grid which we orient toward the exterior vertex (see
Fig. 3-(d)). We finally repeat the above construction and replace each oriented edge of
the dual tree by a dimer on the first half of the edge.

Clearly, we have a similar bijection if we place the vacancy at some arbitrary
but fixed white vertex on the boundary of the grid. This simply amounts to consider
spanning trees with another orientation of the edges, now pointing toward the new
position of the vacancy on the boundary. If we leave the position of the vacancy free
along the boundary, we clearly get a 2(L + M) to 1 mapping instead.

Fig. 4: The elementary motion of the vacancy resulting from the sliding
of a dimer (top). In the tree formulation, this amounts to reversing the
orientation of the corresponding edge on the (oriented) spanning tree.

Let us now consider the motion of the vacancy generated by sliding of dimers. In the
tree formulation, as illustrated in Fig. 4, performing an elementary slide corresponds to
picking an edge adjacent to the vacancy (and necessarily pointing to it) and reversing its
orientation so that the flow now points to a new vertex. We can then repeat the process,
which allows the vacancy to reach any vertex on the spanning tree, hence any vertex
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of the odd white grid. In the tree formulation, the dimer configurations accessible by
slidings are therefore described by the same spanning tree and differ only by the choice
of the (arbitrary) vacancy site on the odd white grid toward which we orient all the
edges of this tree. Each orientation may then be mapped into dimers as above. Note
that the dimers corresponding to edges of the dual tree cannot be affected by slidings
and are in practice frozen. Note finally that the property that the vacancy can reach
any site of the odd white grid holds only because the vacancy was on the boundary in
the first place. As shall see just below, this property is not true in general for vacancies
that lie inside the grid. To conclude, the motion of the vacancy can be analyzed as
simple diffusion on a spanning tree picked uniformly at random.

2.2. Extension to webs

Let us now consider the more general case where the vacancy originally lies on an

arbitrary vertex of the odd white grid, not necessarily on the boundary (see Fig. 5-(a)).
We can repeat the above construction by marking and orienting, for each vertex of
the odd white grid except the vacancy vertex, the edge that is selected by the dimer
covering that vertex (see Fig. 5-(b)). As before, we consider the graph made of all these
marked oriented edges together with all the original vertices of the odd white grid. As
there is exactly one oriented edge exiting from each vertex but the vacancy vertex,
any connected component of this graph is either a tree containing the vacancy vertex
and with edges pointing to that vertex or it is made of an oriented loop with attached
branches oriented toward it (see Fig. 5-(c)). In this latter case, the connected component
cannot contain the vacancy vertex. Moreover, as before, any such loop encloses an odd
number of vertices, so it must encircle the vacancy, which is possible only if the vacancy
does not lie on the boundary. To summarize, the general structure of the graph is a tree
containing the vacancy vertex (the tree may be as small as a single vertex) surrounded
by a number of nested loop components (made of a loop and attached branches) so that
the graph spans the entire odd white grid. We shall call such a structure a “spanning
web” of the odd white grid rooted at the vacancy vertex.

Conversely, given such a graph, we note that the “dual web” made of those edges
of the extended even white grid that do not cross the edges of the spanning web is itself
a spanning web of the extended even white grid (see Fig. 5-(d)). It is made of a set of
nested loop components, with branches, complemented by a tree rooted at the exterior
vertex. The loops of the dual web and that of the original spanning web alternate
and therefore match in number. We can translate the spanning web configuration into
a dimer configuration by successively orienting the edges of its tree component toward
one of its vertices, where we put the vacancy, the edges of each loop in the same direction,
chosen arbitrarily for each loop, and finally the edges of the attached branches toward
the loops. Similarly, we orient the edges of the tree component of the dual web toward
the exterior vertex, those of the loops in the same direction, arbitrarily for each loop and
those of the attached branches toward the loops. The dimer configuration is obtained
by replacing each of these oriented edges by a dimer on the first half of the edge.

The above construction provides a bijection between dimer configurations with
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(a) (b)

(d)(c)

Fig. 5: A sample dimer configuration (a) with a single vacancy (
⊗

) in the
bulk of the odd white grid. In (b) we show only those dimers that cover
a vertex of the odd white grid. When mapping them into oriented edges
of that grid, the resulting spanning web (c) consists of a tree component
containing the vacancy, surrounded by a number of loop components (here
2). The edges belonging to branches of the tree component are oriented
toward the vacancy while those belonging to branches of the loop compo-
nents are oriented toward the loop. On each loop, all edges have the same
orientation. In (d), we also show the “dual web” (red) which spans the
extended even white grid and is made of an equal number of loop com-
ponents surrounding the vacancy together with an extra tree component
attached to the exterior face. The edges belonging to branches of this tree
component are oriented toward the exterior face while those belonging to
branches of the loop components are oriented toward the loop. Again, all
edges have the same orientation on each loop. The configuration (a) is
recovered by replacing every oriented edge of (d) by a dimer on its first
half. 8



a vacancy at a fixed position on the odd white grid and spanning webs whose tree
component contains the vacancy, together with a choice of orientation for each loop of
the spanning web and each loop of the dual web. As there are 2 possible orientations
per loop and an equal number of loops on both web configurations, we can get rid of
the orientations by counting each loop of the original spanning web with a degeneracy
factor 4.

Again, let us examine how the vacancy can move under the sliding of dimers. As
before, an elementary slide amounts in the spanning web language to reversing the
orientation of one edge pointing to the vacancy so that it points to a new vertex. Under
repeated moves, the vacancy can reach every white site of the tree component of the
spanning web, which therefore constitutes a complete specification of the set of sites
accessible to the vacancy. Note that all the dimers corresponding to oriented edges of
either the loop components of the spanning web or any component of its dual web are
frozen. In particular, the vacancy cannot cross a loop of either web.

On a finite grid, we may therefore divide the configurations into two classes, de-
pending on whether or not the vacancy can reach the boundary. If the vacancy can reach
the boundary, there cannot be any loop as the loops are required to encircle the tree
component of the spanning web. In this case, the spanning web reduces to a spanning
tree and the vacancy can reach any vertex of the odd white grid. If the vacancy cannot
reach the boundary, there must be a loop component containing all the white boundary
vertices. There are in general several nested loops, the interior-most one acting as a cage
for the vacancy. The motion of the vacancy may then be analyzed as simple diffusion
on the tree component of the web. For a fixed initial position of the vacancy on the
grid, the ratio between the number of dimer configurations for which the vacancy can
reach the boundary and the total number of dimer configurations can be interpreted as
a delocalization probability. This probability will be studied in detail in Sect. 3.1 below
for the case of a square grid with vacancy in the center.

On an infinite grid, the vacancy is always localized to a finite tree component but
we shall see that the mean size of this tree in fact diverges.

2.3. Determinant formulae

It is well known that the number of spanning trees on a graph with n vertices is
given by any principal (n − 1) × (n − 1) minor of the Laplacian matrix of this graph.
This is the celebrated matrix-tree theorem attributed to Kirchhoff [14]. Recall that the
coefficients of the Laplacian matrix simply read

∆ij =







di for i = j
−1 for i and j neighbors

0 otherwise ,
(2.1)

where i and j are vertices of the graph and di is the degree of i (number of incident
edges) on the graph.

Here we are interested in the case of a rectangular grid where di can be 2, 3 or 4
according to whether i lies at a corner, on the side or in the bulk of the grid. Computing
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the minor amounts to removing a given vertex i0, i.e. restricting the indices of the matrix
to all i 6= i0. Note that although i0 is removed, the degrees of its neighbors are kept
unchanged. The number Ztree of spanning trees therefore reads

Ztree = det (∆ij)i,j 6=i0
. (2.2)

0i

Fig. 6: A graphical representation of a term in the expansion of the de-
terminant in Eq. (2.2) by use of oriented blue and red edges. There is
exactly one outgoing arrow from every vertex distinct from i0. Blue edges
must form oriented cycles, each cycles receiving a weight −1. Red edges
may either form oriented cycles or branches oriented toward a (blue or red)
cycle or toward i0.

Let us sketch a proof of this result, along the lines of Ref. [15], that can be easily
extended to spanning webs. Writing the determinant as a sum over permutations, we see
that the only permutations having a non-zero contribution are those with the following
two types of cycles: (i) trivial cycles of length one (fixed points), each contributing a
weight equal to the degree the associated vertex, (ii) cycles of length larger or equal
to 2 for which any two successive elements of the cycle are neighbors on the grid.
The net contribution of any such non-trivial cycle to the determinant (including the
signature of the permutation) is easily seen to be −1. It is convenient to have a pictorial
representation of each such permutation as follows. Any cycle of type (ii) above can
be represented as a closed oriented loop on the grid by joining each vertex to its image
under the permutation. The loops moreover avoid the removed vertex i0. Such loops
are represented in blue in Fig. 6 and will be henceforth referred to as blue loops. Each
blue loop contributes a factor −1. For the trivial cycles (i), the contribution di of the
associated vertex i is properly accounted for by considering the di possible choices of an
edge incident to that vertex. For each choice, we mark and orient the edge away from
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the vertex. Such oriented edges are represented in red in Fig. 6 and will be referred
to as red edges. Any permutation is thus represented by a number of configurations
(corresponding to the different choices of red edges for trivial cycles) made of blue loops
and red edges with the only constraint that there is exactly one outgoing (blue or red)
edge from each vertex of the grid but the removed vertex i0. Each configuration is now
weighted by a factor 1 per red edge and −1 per blue loop. Now clearly, any configuration
in which the red edges form a loop is canceled exactly by a similar configuration where
all the edges of this loop are blue. The only configurations that remain therefore consist
of red edges forming a spanning tree, necessarily oriented toward the removed vertex
i0. This completes the proof.

From the determinant formula in Eq. (2.2), one can easily derive a closed formula
for Ztree as a product over eigenvalues of ∆ [16].

(b)(a)

0i 0i

Fig. 7: The odd white grid (a) completed with a seam from i0 to the
boundary (thick dashed line). This seam crosses a number of edges that
we call seam edges and that we orient so as to point to the right when
flowing on the seam from i0 to the boundary. In the graphical expansion
of the determinant (b), the seam modifies the weight of the blue edges
crossing it, resulting in a new weight for blue loops. Here the blue loop
that winds around i0 passes through exactly one seam edge (with the
wrong orientation), resulting in a weight factor −1/a instead of −1 in the
absence of a seam. On the contrary, the lower-left blue loop that does not
wind around i0 passes exactly twice through seam edges, with canceling
orientations so that its weight is unchanged.

The expression (2.2) is easily modified to obtain the number Zweb(i0) of spanning
webs on a rectangular grid rooted at some fixed vertex i0. We simply construct an
oriented seam from i0 to the exterior face that crosses edges only (see Fig. 7). Each
crossed edge, which we denote a seam edge, can be oriented so as to point right when
flowing along the seam. We may then modify the Laplacian matrix into a matrix ∆(a)
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defined as:

∆(a)ij =



















di for i = j
−1 for i, j neighbors not separated by a seam edge
−a for i, j neighbors separated by a seam edge oriented from i to j
− 1

a for i, j neighbors separated by a seam edge oriented from j to i
0 otherwise .

(2.3)
For any choice of the seam, the quantity

Z(y; i0) ≡ det (∆(a)ij)i,j 6=i0
(2.4)

then counts the number of spanning webs with root i0 and with a weight

y = 2 − a − 1

a
(2.5)

per loop. In particular, we recover Ztree = Z(0; i0) for a = 1 while for spanning webs,
the desired weight 4 per loop is obtained by choosing a = −1, i.e.

Zweb(i0) = Z(4; i0) = det (∆(−1)ij)i,j 6=i0
. (2.6)

To obtain this result, we simply use for the determinant the same representation as above
in terms of blue loops and red edges. Defining the algebraic number of seam crossings
as the number of passages across seam edges in the correct orientation minus that in
the wrong orientation, this number is zero for a loop that does not encircle i0, +1 for
a loop that encircles i0 clockwise, and −1 for a loop that encircles i0 counterclockwise.
The blue loops that wind around the vertex i0 now get a modified weight −a or −1/a
according to whether they are oriented clockwise or counterclockwise. As the weight of
red edges is unaffected, any clockwise (resp. counterclockwise) red loop encircling the
vertex i0 combined with the same configuration with a blue loop instead gives rise to
a weight 1 − a (resp. 1 − 1/a). Summing over both orientation results in the weight y
above.

3. Finite size analysis

3.1. Determinant calculations and asymptotic estimates

In this section, we shall restrict our analysis to the case of dimers on a square grid
with the vacancy in the center. We shall consider only squares of size (4L+1)×(4L+1)
so that the center vertex i0 lies on the odd white grid, of size (2L+1)×(2L+1). With this
geometry, we can rely on the fourfold rotational symmetry of the problem to perform a
block-diagonalization of ∆(a) which translates into the factorization:

Z(y; i0) = PL(α)PL(−α)PL(iα)PL(−iα) , (3.1)

12



i0

(a)

i

(b)

0

Fig. 8: The reduction of the odd white grid (a) to one of its quadrants
(b) completed by oriented winding edges.

where α4 = a with a as in Eq. (2.5), namely

y = 2 − α4 − 1

α4
. (3.2)

Here PL(α) is the determinant of a square matrix ∆̄(α) of size L(L + 1) (compared to
4L(L + 1) for ∆(a)) corresponding to a modified Laplacian on a quarter grid. More
precisely, we consider the graph of Fig. 8 obtained by keeping only one quadrant of the
original odd white grid and completing it by adding L oriented “winding edges” joining
the vertices of two consecutive sides of the quadrant as shown. The matrix ∆̄(α) has
diagonal elements ∆̄(α)ii = di where di is the degree of site i on the graph of Fig. 8
completed by the vertex i0 as shown, which is also the degree of the corresponding
vertex on the original odd white grid. The off-diagonal elements ∆̄(α)ij are given by
the sum over all edges connecting i and j of a contribution equal to −1 for regular
(non-winding) edges, −α (resp. −1/α) for winding edges oriented from i to j (resp.
from j to i).

It is interesting to note that PL(α) can be interpreted as the number of spanning
web configurations rooted at the center of the square grid of size (2L + 1) × (2L + 1)
and which are symmetric under π/2 rotations around the vacancy vertex. For any
such symmetric spanning web, the loops now come with a weight y = 2 − α − 1/α.
In particular, for α = −1, PL(−1) counts the number of fourfold symmetric dimer
configurations on the square grid of size (4L + 1) × (4L + 1).

Using Mathematica, we have computed PL(α) exactly up to L = 60, corresponding
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Fig. 9: The numerical value (a) of log10(πL,i) versus i for L = 10, 20, 30,
40, 50, and 60, from bottom to top. All the data fall on the same scaling
curve (b) upon using reduced variables i/L and log10(πL,i)/ log10(πL,0).

to dimers on a 241 × 241 grid. For L = 1, 2, 3, we have

P1(α) = 4 −
(

α +
1

α

)

P2(α) = 178 − 60

(

α +
1

α

)

+

(

α2 +
1

α2

)

P3(α) = 82128 − 31667

(

α +
1

α

)

+ 1160

(

α2 +
1

α2

)

−
(

α3 +
1

α3

)

.

(3.3)

More generally, PL(α) is a Laurent polynomial of α of the form

PL(α) =

L
∑

i=−L

πL,i(−α)i (3.4)

where the πL,i are positive integers and satisfy πL,−i = πL,i. Their numerical values for
L = 10, 20, 30, 40, 50 and 60 are displayed in Fig. 9.

From our data, we first conjecture the amusing fact that PL(i) counts the number
of fully packed dimer configurations on a cylinder of height 2L and circumference 2L+1.

More relevant to our study, we expect a large L behavior

PL(α) ∼ c̃(α)
µL(L+1) λL

Lγ̃(α)
, (3.5)

where the area entropy factor µ and the boundary entropy factor λ are independent of
α while the prefactor c and the exponent γ̃ depend on α. The values of µ and λ are
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known to be [16]

µ = exp

(

1

4π2

∫ 2π

0

dk

∫ 2π

0

dℓ ln (4 − 2 cos k − 2 cos ℓ)

)

= exp

(

4G

π

)

= 3.209912300728158 . . .

λ =
√

2 − 1 ,

(3.6)

where G =
∑∞

i=0(−1)i/(2i+1)2 is Catalan’s constant. We have checked the consistency
of our exact finite size data with these values. For instance, the value of µ can be es-
timated by considering the ratio AL(α) = PL+2(α)PL(α)/(PL+1(α))2, which converges
to µ2 at large L, and applying to AL standard convergence acceleration techniques. In
this paper, we found it convenient to use a simple linear convergence algorithm which
consists, for any sequence UL tending at large L to U∞, in building new sequences

U
(k)
L = ∆(k)

[

LkUL/k!
]

for increasing integers k, where ∆(k) denotes the k-th iteration

of the finite difference operator ∆f(L) ≡ f(L+1)−f(L). The sequence U
(k)
L is expected

to tend faster to U∞ for larger k as long as k is kept reasonably small (in practice we
used mostly k = 4 and went as far as k = 11 for the jamming probability of Sect.3.2
below). For instance, if UL has a Taylor expansion in 1/L, then the Taylor expansion

of U
(k)
L has its first k correction terms vanishing.

α=-1
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3.21
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3.2085

3.208

3.2075

Fig. 10: Estimate for the area entropy µ at α = ±1 from the data of
PL(α) for L up to 60.

The estimates for µ when α = +1 and α = −1 are plotted in Fig. 10 as a function
of L. We obtain the value µ = 3.2099123(1), fully consistent with the exact analytic
expression above.
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More interesting is the value of the exponent γ̃. Here we shall be interested
only in real values of y in the range [0, 4]. This corresponds to taking complex val-
ues of α on the unit circle. The value of γ̃ can be estimated from the quantity
BL = −(L3/2) ln

(

PL+3(α)(PL+1(α))3/(PL(α)(PL+2(α))3)
)

, which converges to γ̃(α)
at large L. Again the results are improved by use of our convergence acceleration
algorithm.
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γ̃
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0.2

0
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Fig. 11: Estimates of the exponent γ̃(α) for, from top to bottom, α = 1,
α = exp(±iπ/4), α = ±i, α = exp(±3iπ/4) and α = −1, as obtained from
the data of PL(α) for L up to 60.

Fig. 11 displays the estimated values of γ̃ as a function of L for the various values
of α corresponding to y = 0 (α4 = 1) and y = 4 (α4 = −1). We obtain the asymptotic
estimates

γ̃(1) = 0.749999(1)

γ̃(−1) = −0.249999(1)

γ̃(i) = γ̃(−i) = 0.000000(1)

(3.7)

for the four roots of α4 = 1 and

γ̃(exp(iπ/4)) = γ̃(exp(−iπ/4)) = 0.3125002(2)

γ̃(exp(3iπ/4)) = γ̃(exp(−3iπ/4)) = −0.187499(1)
(3.8)
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for the four roots of α4 = −1. From these estimates, we conjecture the exact values

γ̃(1) = 3/4

γ̃(−1) = −1/4

γ̃(i) = γ̃(−i) = 0

γ̃(exp(iπ/4)) = γ̃(exp(−iπ/4)) = 5/16

γ̃(exp(3iπ/4)) = γ̃(exp(−3iπ/4)) = −3/16 .

(3.9)

3/4 − e(2 − e)

Estimate

e

γ̃
(

α
=

ex
p
(i

π
e)

)

21.510.50

0.8
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0.6
0.5
0.4
0.3
0.2
0.1

0
-0.1
-0.2
-0.3

Fig. 12: Estimated value of γ̃(α) for α = exp(iπe) with 0 ≤ e ≤ 2,
as obtained from the data of consecutive values of PL(α) for L near 60
(red line). The dashed green line indicates the conjectured exact result
γ̃(α) = 3/4 − e(2 − e).

More generally, Fig. 12 displays the estimate of γ̃(α) for all values of α on the unit
circle. These data are fully consistent with the following analytic expression for γ̃:

γ̃(α) =
3

4
− e(2 − e) , α = exp(iπe) , 0 ≤ e ≤ 2 . (3.10)

This form for the exponent, quadratic in the phase e, is frequently encountered in models
with statistical weights associated to loops and will be assumed exact in all subsequent
analysis.

From Eq. (3.1), we immediately deduce from our data the exact generating function
ZL(y) ≡ Z(y; i0) for a (2L + 1)× (2L + 1) odd white grid with i0 in the center for L up
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to 60. For instance, we get

Z1(y) = 192 + y

Z2(y) = 557568000 + 10474560 y + y2

Z3(y) = 19872369301840986112 + 647704492383277056 y + 1642581444224 y2 + y3 .

(3.11)
Note that Z60(0) and Z60(4) are 7323 digit numbers! From Eqs. (3.1) and (3.5), we
have the following large L behavior for Z(y; i0)

Z(y; i0) ∼ c(y)
µ(2L+1)2λ4L

Lγ(y)
, (3.12)

where γ(y) = γ̃(α) + γ̃(−α) + γ̃(iα) + γ̃(−iα) with α as in Eq. (3.2) and c(y) =
c̃(α)c̃(−α)c̃(iα)c̃(−iα)/µ.
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Fig. 13: A direct estimate of the exponents γ(0) and γ(4) obtained from
the data of ZL(0) and ZL(4) for L up to 60.

In particular, for y = 0 (α4 = 1) and y = 4 (α4 = −1), we obtain γ(0) = 3/4 −
1/4 + 0 + 0 = 1/2 and γ(4) = 5/16 + 5/16 − 3/16 − 3/16 = 1/4, namely:

Ztree ∼ c(0)
µ(2L+1)2λ4L

L1/2

Zweb(i0) ∼ c(4)
µ(2L+1)2λ4L

L1/4
.

(3.13)

Note that the first exponent (1/2) can be obtained directly from the asymptotics of the
closed product formula for Ztree [16]. As shown in Fig. 13, these values are corroborated
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by a direct estimate of γ from the exact values of ZL(0) and ZL(4) for L up to 60. We
indeed estimate γ(0) = 0.499999(1) and γ(4) = 0.250001(1).

Taking the ratio of Ztree and Zweb(i0), we deduce that the delocalization probability
PL of a vacancy at the center of a (4L + 1) × (4L + 1) square decays at large L as

PL ≃ 1

L1/4
, (3.14)

with some prefactor c(4)/c(0).

More generally, we immediately get from the expression (3.10) (with α restricted,
without loss of generality, to 0 ≤ e ≤ 1/2):

γ(y) = u2 +
1

4
, y = (2 cos(πu))

2
, −1

2
≤ u ≤ 1

2
, (3.15)

where we have set u = 1/2 − 2e. This expression can be alternatively obtained from a
heuristic argument based on an effective Coulomb gas description of the model. This
argument is presented in Appendix A.

The degree of localization of the vacancy is also measured by the number L of loops
of the spanning web that surround it. The average of L over all spanning webs reads

〈L〉 = y
d

d y
lnZ(y; i0) . (3.16)

At large L, we find from the asymptotic behavior (3.12) that

〈L〉 ∼ −y
d

d y
γ(y) lnL =

u

π tan(πu)
lnL , (3.17)

where we have used the explicit form (3.15) of γ(y) with y = (2 cos(πu))2. For instance,
when y = 4, (i.e. u → 0), we find that the average over all possible dimer configurations
of the number of loops around the vacancy scales as

〈L〉 ∼ 1

π2
lnL (3.18)

at large L.

From the exact values of ZL(y), we also have access to the exact probability for
spanning webs to have L loops on a finite square grid with the vacancy in the center.
Fig. 14 displays these probabilities in the case y = 4 for L = 0 (which is nothing but PL)
and L = 1, 2, with L up to 60. Note that for this range of grid sizes, the probability that
L ≥ 3 is negligible (less than 10−5). All these probabilities are expected to eventually
decay as L−1/4 at large L.
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Fig. 14: The exact probabilities for having L loops in a spanning web
with y = 4 for an odd white grid of size (2L + 1) × (2L + 1) with the
vacancy in the center. We represent only the cases of L = 0, 1, 2 as the
other probabilities are negligible.

3.2. Asymptotic size distribution

We have established so far that, for a finite grid, the delocalization probability PL

decreases with the system size L as a power law with exponent 1/4. Let us now see
how to extract from this result the value of two other exponents which characterize
the possible motion of a single vacancy in a sea of dimers on an infinite grid. A first
exponent, δ, characterizes the size distribution of sites accessible to a vacancy. More
precisely, let us consider again a grid of size (4L+1)×(4L+1) covered by dimers with a
vacancy at the center and consider the probability pL(s) that the tree component of the
associated spanning web has s vertices. We expect this probability to tend at large L
to some limiting law p(s) = limL→∞ pL(s), with a finite value for all positive integers s.
This asymptotic distribution should be universal in the sense that it should not depend
on the precise initial position of the vacancy in the bulk or on the imposed boundary
conditions.

Of particular interest is the value of p(1) which measures the probability that the
vacancy is fully jammed. This value is easily estimated from the exact values of pL(1)
at finite L. For s = 1, the tree component of the spanning web is reduced to the single
vertex i0. In the determinant formulation of Sect. 2.3, this simply means that no red
edge points toward i0. Imposing s = 1 therefore amounts to changing di → di − 1 in
Eq. (2.3) for the diagonal terms associated with the four neighbors of i0 on the grid.
Again we can rely on the fourfold symmetry to reduce by four the size of the matrix
involved. We have computed pL(1) for L up to 50, as plotted in Fig. 15. By applying
our convergence algorithm, we estimate p(1) = 0.10786437626904951198(1) from which
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Fig. 15: The probability pL(1) that the vacancy at the center of a (4L +
1) × (4L + 1) grid is strictly jammed.

we conjecture the exact value

p(1) =
57

4
− 10

√
2 . (3.19)

This value was identified thanks to Plouffe’s Inverter [17] applied on the first 10 digits
of 1/

√

p(1). We then verified that it indeed reproduces all 20 digits of p(1) above ! It
would be nice to have an analytic proof of this result.

We have also computed pL(2) exactly for L up to 34, from which we estimate
p(2) = 0.055905353801942(1). We have not been able to guess an exact expression for
p(2).

At large s, the distribution p(s) should behave as

p(s) ≃ s−δ (3.20)

with an exponent δ that we shall now compute. First, since the delocalization probability
PL tends to 0 at large L, it follows that the vacancy in an infinite system is always
localized. This implies that the distribution p(s) is normalized to 1, namely

∑∞
s=1 p(s) =

1.
To evaluate δ, we consider the probability 1−PL that the vacancy in a finite grid is

localized, i.e. cannot reach the boundary of the grid. At large L, we can indeed estimate
this probability as the probability that s remains less than a maximal size of order 4L2,
namely

1 − PL ∼
4L2

∑

s=1

p(s) = 1 −
∞
∑

s=4L2+1

p(s) ∼ 1 −
∫ ∞

4L2

p(s)d s ∼ 1 − const. L2(1−δ) (3.21)
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Comparing with (3.14), one finds

2(1 − δ) = −1

4
, (3.22)

from which we deduce

δ =
9

8
. (3.23)

Despite the fact that the vacancy is localized on a finite tree, the result that δ < 2
implies that the mean size 〈s〉 of this tree nevertheless diverges. For some observables,
the vacancy behaves on average as if it were delocalized. In this sense, our model
possesses a rather unusual property which we may call weak localization.

3.3. Diffusion exponent

As an illustration of this unusual property, let us now discuss the dynamics of
diffusion of a single vacancy in a dense sea of dimers. As we discussed, the motion of
the vacancy is induced by a dimer sliding axially into it, resulting in a jump of the
vacancy by two lattice spacings. In the spanning web language, this simply amounts to
moving the vacancy to one of its neighbors on the tree component of the spanning web.
A natural choice of dynamics consists in choosing, at each time step, one of the four
neighbors of the vacancy on the odd white grid at random, and moving the vacancy
to that neighbor if possible, i.e. if this neighbor belongs to the tree component of the
spanning web. We then define S(t) as the total number of sites visited by the vacancy
after t steps. Although S(t) is clearly bounded by the size s of the tree component of
the spanning web, we expect from our weak localization property that it can become
on average arbitrarily large, with a large time behavior of the form

〈S̄(t)〉 ∼ ktη , (3.24)

with some constant k. Here we first average over all possible motions of the vacancy
up to time t (S̄(t)) for a fixed initial sea of dimers (with the vacancy in the center) and
then average over uniformly chosen realizations of this initial dimer configuration.

It is natural to compare this diffusion to that of a particle diffusing with the same
dynamical rules on a uniformly chosen infinite spanning tree. This latter diffusion is
characterized by a similar exponent η0 with

〈S̄(t)〉0 ∼ k0t
η0 , (3.25)

where the average 〈·〉0 is now taken over all possible (infinite) spanning trees.
A simple scaling argument relates the exponents η and η0. Denoting by s the size

of the tree component of the spanning web for a fixed dimer configuration, we expect
that S̄(t) ∼ k0t

η0 with the infinite spanning tree diffusion exponent η0 as long as k0t
η0

is less than s, while it saturates at S̄(t) ∼ s for longer times. Using Eq. (3.20) for the
distribution of sizes s, we can estimate

〈S̄(t)〉 ∼
∫ k0tη0

0

ds s p(s) +

∫ ∞

k0tη0

ds k0t
η0 p(s) ≃ tη0(2−δ) . (3.26)
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Note that it is crucial that 1 < δ < 2 for the two integrals to scale in the same way,
determined by the t dependent limits of the integrals. In other words, the weak local-
ization property of our model is essential for a well defined scaling. Taking δ = 9/8, we
have the relation

η =
7

8
η0 , (3.27)

which measures the lowering of the diffusion exponent due to weak localization.

4. Monte Carlo simulations

4.1. Simulations of spanning webs

We have also found it revealing to perform numerical simulations of our model. As
we shall see, we find very good agreement for all quantities for which we gave analytic
predictions. Moreover, the simulations allow us to estimate both diffusion exponents η
and η0 independently, as well as other dynamical exponents.

To begin with, we have simulated spanning webs using a modification of the Propp-
Wilson cycle-popping algorithm for finding spanning trees of an arbitrary directed graph
[18]. This algorithm is presented in detail in Appendix B and works as follows: for every
vertex of the odd white grid other than the vacancy vertex, we pick a possible outgoing
arrow at random. If the resulting graph contains one or more cycles, we choose a cycle
and “pop” it by picking a new random outgoing arrow for every vertex on the cycle. We
then keep popping cycles until no cycle is left, resulting in a spanning tree. Propp and
Wilson were able to show that this process terminates with probability one, and that
the final result is independent of the order in which cycles are popped and produces
trees uniformly distributed in the space of spanning trees. To generate spanning webs,
we simply modified this algorithm by not popping cycles that encircle the vacancy. The
proofs in Ref. [18] generalize straightforwardly to show that the modified algorithm
results in web configurations uniform in the space of spanning webs. More precisely,
this algorithm produces spanning webs with oriented loops, hence corresponding to a
weight y = 2 per loop. It is then straightforward to correct for this weight so as to get
an arbitrary value of y.

As a preliminary check, we have confirmed that for a number of system sizes less
than 50, the algorithm produces probabilities for the number of loops (in practice 0, 1
or 2) in good agreement with the exact probabilities obtained for y = 2 by the methods
of Sect. 3.1.

We generated y = 2 spanning webs on odd white grids of size (2L+1)×(2L+1) with
the vacancy at the center (these correspond to dimer grids of sizes (4L+1)× (4L+1)).
Our system sizes were 2L+1 = 25, 35, 51, 75, 101, 151, 201, 301, 401, 501, 701, and 1001.
The number of spanning webs generated was 25000 for all system sizes 2L + 1 ≤ 301,
30000 for 2L + 1 = 401, 10000 for 2L + 1 = 501, 3000 for 2L + 1 = 701, and 1500 for
2L + 1 = 1101. The results were then transformed into probabilities for y = 4 spanning
webs (dimer packings) by weighting configurations with L loops by an extra factor 2L.
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Fig. 16: Fraction of delocalized configurations, PL, as a function of the
system size.

The delocalization probability is measured by the fraction of spanning trees among
spanning webs. This fraction is shown in Fig. 16 as a function of the system size and
is well fit by a power law. Dropping the two smallest system sizes (2L + 1 = 25 and
2L+1 = 35), which are still consistent with a power law fit but are too small to be safely
in the large system limit, we get a delocalization exponent 0.246 ± 0.006, in agreement
with the value 1/4 predicted in Eq. (3.14).

As for the distribution p(s), we first checked that the probability pL(1) of a fully
jammed state is in good agreement with both the exact value that we obtained for small
system sizes (L ≤ 50) and with the asymptotic prediction of Eq. (3.19) for p(1) (see
Fig. 17).

The distribution pL(s) for L = 200 is shown in Fig. 18. At this stage, it is important
to analyze the effect of the boundary in a finite size grid, which can be described as
follows: whenever the tree component of the spanning web touches the boundary, it must
span the whole grid, hence has size (2L + 1)2. For s ≤ L, the tree component cannot
reach the boundary so we expect pL(s) to be an accurate estimate of the asymptotic p(s).
For L < s ≤ (2L− 1)2, pL(s) should become significantly lower than p(s) as s increases
since configurations that contribute to pL(s) are required to avoid the boundary, a
constraint that does not exist in the asymptotic limit. Finally, the only possible value
with s > (2L− 1)2 is s = (2L + 1)2 and corresponds to delocalized configurations, with

a value pL

(

(2L + 1)
2
)

= PL that is not directly relevant to estimating p
(

(2L + 1)
2
)

.

This value is not shown in Fig. 18. By eye, the distribution appears to be a power
law over almost four decades. Upon fitting the data however, a small but significant
curvature appears for tree sizes greater than 102.5, as expected from the above argument.
To obtain the exponent, we thus fit only for tree sizes less than 200 (trees that cannot
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Fig. 17: Comparison between the exact finite size values of pL(1), together
with its conjectured exact asymptotic value, and the numerical probability
of strict jamming.

Fit on s < 200

Free b.c.

Periodic b.c.

log10(s)

lo
g
1
0
(p

(s
))

6543210

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

Fig. 18: Distribution p(s) for the size s of the tree component as measured
from spanning web simulations with free boundary conditions (green filled
circles) on a 401× 401 odd white grid (corresponding to a 801× 801 dimer
grid) with the vacancy at the center, and directly from dimer simulations
with periodic boundary conditions (red open circles) on a 1101×1101 dimer
grid. The fit (blue line) is for free boundary conditions and tree sizes less
than 200.
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reach the boundary), which gives a power law exponent δ = 1.122 ± 0.008, in good
agreement with the prediction δ = 9/8 = 1.125 of Eq. (3.23). It is surprising that
the power law fit of the data extends all the way down to s = 1. In other words, the
data are well approximated by a (normalized) pure power law distribution s−9/8/ζ(9/8).
For s = 1, it gives a value 1/ζ(9/8) = 0.116 . . ., to be compared with the exact value
0.108 . . . of Eq. (3.19).

As we mentioned above, we expect that the asymptotic distribution p(s) should not
depend on the finite size boundary conditions from which it is determined. In this vein,
we have also generated dimer packings with periodic boundary conditions, for grids of
odd linear size with a single vacancy. Note that the spanning web construction, central
to this paper, no longer applies as, in particular, we have lost the global notion of distinct
odd and even white grids in this case, or even the global notion of bicolorability. Still,
these notions are preserved locally and for localized configurations with small enough s,
the set of accessible sites again forms a tree whose statistics we can analyze along the
same lines as for free boundary conditions.

One advantage of periodic boundary conditions is that one can quickly generate
many configurations, directly in the dimer setting, with the so-called “pivot algorithm”
[19,20]. Since there is no longer the constraint for localized configurations of avoiding
the boundary, periodic boundary conditions have the further advantage of reaching
larger values of s at fixed L, leading to smaller finite size effects. For a linear size of
1101 (corresponding to L = 275 in the spanning web language), the resulting tree size
distribution is well fit by a power law over a larger range (tree sizes 1 ≤ s ≤ 104.5)
than for spanning webs, with an exponent δ = 1.121 ± 0.003, in good agreement with
Eq. (3.23).

Looking at system sizes ranging from 101 to 1101, in steps of 100, we find that
the fraction of delocalized configurations (now defined as configurations in which the
vacancy can reach any vertex) has a power law exponent of 0.260 ± 0.005, again in
agreement with Eq. (3.14).

4.2. Vacancy diffusion

Let us now come to the prediction (3.27) relating the diffusion exponent η for the
growth with time of the number of sites visited by a diffusing vacancy to the correspond-
ing exponent η0 for diffusion on an infinite spanning tree. To our knowledge, none of
these exponents is known exactly and we therefore simulated both diffusion processes.

For diffusion on uniform spanning trees, the simulations were done for free boundary
conditions on a 401 × 401 grid, with the diffusing vacancy initially at the center of the
lattice. At each time-step, the vacancy chooses one of the four compass directions at
random and attempts a move in that direction. If there is a tree edge in that direction the
move is carried out and otherwise, the vacancy stays at the same position. This slightly
unusual random walk rule is chosen to mimic the standard Monte Carlo dynamics for
the underlying dimers, where each time-step consists of an attempted dimer move. This
means that a vacancy that has more possible moves should on average wait less time
before moving.
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Fig. 19: Number of distinct sites visited by a diffusing vacancy on a
401 × 401 uniform spanning tree as a function of time.
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Fig. 20: Squared displacement of a diffusing vacancy on a 401 × 401
uniform spanning tree as a function of time.

An ensemble of 1000 spanning trees was generated and, for each tree, the vacancy
underwent 107 time steps. The resulting graphs for the number of sites visited as a
function of time, and the squared displacement as a function of time, are shown in
Figs. 19 and 20. There is a relatively large curvature at smaller times (t < 100), so
such times are excluded from the fit. Both graphs show good power law behavior by
eye over the last five decades of time. Closer inspection shows that both graphs do have
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a small but significant curvature, which we use to estimate the error bars of the slope
(the statistical errors are negligible).

From Fig. 19, we obtain η0 = 0.61±0.02, while from Fig. 20, we get θ0 = 0.62±0.02,
where we have defined the exponent θ0 through

〈r̄2(t)〉0 ∝ tθ0 , (4.1)

where r(t) is the Euclidean distance of the vacancy to the center of the grid at time t .
These estimates are consistent with the two exponents being identical.
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Fig. 21: Number of distinct sites visited by a diffusing vacancy on a
401 × 401 uniform spanning web as a function of time.

We then simulated the diffusion of a vacancy on spanning webs. The spanning
webs were generated with the algorithm described in Sect. 4.1. An ensemble of 10000
spanning webs was generated, each of the same size 401× 401 as for the spanning trees
above. For each web, the vacancy moved for the same total time and with the same
dynamics as before.

Figs. 21 and 22 show the number of sites visited and the squared displacement in
the case of spanning webs. Again, we fit only for times t > 100, and use the curvature
to estimate the error bars. Good power law behaviors are again seen over five decades.
We obtain η = 0.54 ± 0.03 and θ = 0.56 ± 0.01 (with θ defined as θ0 but for spanning
webs). Again, these estimates are consistent with the two exponents being identical.

Finally, we estimate the ratio η/η0 = 0.89± 0.06, in agreement with the prediction
7/8 = 0.875 of Eq. (3.27).

5. Discussion

In this paper, we have analyzed the possible motion of an isolated vacancy in an
otherwise fully packed dimer model on the square lattice. We find that the vacancy
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Fig. 22: Squared displacement of a diffusing vacancy on a 401 × 401
uniform spanning web as a function of time.

exhibits weak localization: the size of its accessible domain scales as a power law with
diverging average size. Exact finite size enumerations allowed us to identify several
exponents as well as determine the probability for strict jamming. Some of these results
are still awaiting exact and/or rigorous proofs. We also gave a universal relation between
the exponents η and η0 for the diffusion on spanning webs (vacancy diffusion) and that on
spanning trees. We have no prediction for their individual values but from the numerical
data, η0 is consistent with a simple value 5/8, which would result in a vacancy diffusion
exponent η equal to 35/64.

The emergence of spanning webs as generalizations of spanning trees is quite natural
here and one might hope that they will appear in other physical and mathematical
problems.

There are several directions in which the present work can be extended. Introduc-
ing multiple vacancies will lead to vacancy interactions whose treatment will almost
certainly require more elaborate geometrical structures. The power of the analysis in
this paper relies heavily on special features of the square lattice. Extension to other
lattices will require new insight. Key among them is the triangular lattice, for which
we expect vacancies to be localized, with the size distribution of accessible sites now
decaying exponentially at a rate determined by the known entropy mismatch between
dimer configurations and spanning tree configurations. If we assume that this size is a
good measure of the extent to which a vacancy perturbs its dimer background, the local-
ization should be related to the exponential convergence of the “monomer-monomer”
correlation function to a plateau at large separation (deconfinement), as observed in
Ref. [21]. Note finally that a random lattice version of the problem looks particularly
promising for obtaining exact results.
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Appendix A. Coulomb gas argument

Let us present here a heuristic derivation of the relation (3.15) based on a Coulomb
gas formulation of the problem.

(a) (b)

Fig. 23: (a): The paths of the maze made of a spanning web (black)
and its dual web (red) form a set of loops (green) that completely encode
the (unrooted) spanning web. (b): The loops are fully-packed, concentric
around the root of the original spanning web and can be oriented so as
to follow a Manhattan orientation of the underlying grid (as indicated by
arrows).

First we note that, as illustrated in Fig. 23, any spanning web configuration with
L loop components can be alternatively coded by a configuration of 2L + 1 loops on a
square grid dual to the original dimer grid. These loops are such that: (i) each loop
encloses the root vertex i0, (ii) the loops are self- and mutually-avoiding and fully-
packed, i.e. each vertex of the dual grid is visited by a loop, (iii) the loops can be
oriented consistently so as to follow a Manhattan orientation on the dual grid. We
can relax condition (i) and assign a weight n0 for each loop that does not enclose i0
and a weight n for each loop that does enclose i0. The correct statistics with a weight
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y per loop component of the spanning web is then recovered by choosing n0 = 0 and
n =

√
y (and dividing by the residual weight

√
y associated with the loop around the tree

component). The model is expected to lie in the universality class of the dense O(n0)
model which can be described by a one-dimensional height field.1 In terms of this height
field, the loop model is mapped onto a Coulomb gas model for which various exponents
can be obtained exactly [22]. The anomalous weight n for the loops that enclose i0 is
properly accounted for by introducing an electric operator at i0 with charge q such that
n = 2 cos(π(q − u0)). The dimension of such an electric operator is

x =
q(q − 2u0)

2g0
, (A.1)

where n0 = 2 cos(πu0) (0 ≤ u0 ≤ 1), g0 = 1 − u0 and with the determination of
q such that u0 − 1/2 ≤ q ≤ u0 + 1/2. Here we want n0 = 0, i.e. u0 = 1/2 and
n =

√
y = 2 cos(πu) with u as in Eq. (3.15), i.e. q = u + 1/2. We end up with

x = u2 − 1

4
. (A.2)

The dimension x of the electric operator measures in particular the algebraic decay as
L−x of its average in a finite geometry of linear size L. For a square grid geometry, this
average is nothing but the ratio Z(y; i0)/Z(0; i0) where the denominator is identified as
the partition function of the system in the absence of electric operator. We immediately
deduce the relation x = γ(y)− γ(0), i.e.

γ(y) = u2 − 1

4
+ γ(0) . (A.3)

To end the argument and recover Eq. (3.15), we simply rely on a direct calculation of
γ(0) = 1/2, as obtained in Ref. [16] from the exact product formula for Z(0; i0) = Ztree.

Appendix B. Generating spanning webs via cycle-popping

In this appendix we explain how to generate a random spanning web using a “cycle-
popping” algorithm inspired from the Propp-Wilson algorithm for the generation of a

1 It is known that fully-packed loops are in general in a different universality class than

dense loops. In particular, on the square lattice, the fully-packed loop universality class is

described by a 3-dimensional height variable. For the model at hand with the extra constraint

(iii) above, however, two of the height components are eliminated, leading to an effectively

one-dimensional model.
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(a)

0i 0i

(b)

Fig. 24: An example of a configuration (a) obtained by drawing at random
an edge from each vertex but the root i0. A possible configuration (b)
obtained from (a) by popping the magenta cycle. The tree component
flowing to i0 (here in green) can only grow in the process. To generate
spanning webs instead of spanning trees, we make all cycles winding around
i0 (such as the brown cycle) unpoppable.

random spanning tree. More precisely we extend to random webs the RandomTreeWith-
Root() procedure explained in Sect. 6 of Ref. [18].

Let us begin by recalling how the Propp-Wilson algorithm works in our specific
setting. Start with a rectangular grid on which the spanning tree is to be constructed,
with the root i0 at a given position. At each vertex distinct from i0, draw a random
incident edge uniformly and independently from the other vertices. Pictorially the edge
is marked and oriented away from the vertex : a possible outcome of this procedure is
illustrated in Fig. 24-(a). Note the similarity with the proof of the determinant formula
(2.2). By chance, the graph made of the selected edges can be a spanning tree rooted
at i0 (with edges oriented towards the root), but more likely it will contain one or
more (disjoint) cycles (loops) as in Fig. 24-(a). Cycle-popping consists in choosing an
arbitrary cycle and popping it, i.e. for each vertex on the cycle, drawing a new random
outgoing edge uniformly and independently of all previous draws. For instance, Fig. 24-
(b) shows a possible outcome after the popping of the magenta cycle in Fig. 24-(a).
The resulting graph can again contain cycles (some preexisting and some created by
popping): in that case repeat the procedure by choosing another cycle and popping
it. Otherwise the resulting graph is a spanning tree and the procedure terminates. In
Fig. 24, the green edges “flow” to the root, hence they cannot be in a cycle and they
must belong to the final tree. One then sees that the green graph can only grow at each
step, eventually covering the whole grid.

There are several ways to choose which cycle to pop at each step of the procedure
(one could imagine doing it deterministically or randomly), but Propp and Wilson have

32



shown that the actual procedure is (in some precise sense) irrelevant. Furthermore: (i)
the procedure terminates almost surely, i.e. only a finite number of cycles have to be
popped before none remains, and (ii) the resulting spanning tree is a perfect sample
of the uniform measure on the set of spanning trees rooted at i0. Propp and Wilson
actually deal with a slightly more general case, not needed here, and compute bounds
on the running time, which establish that this is a very efficient algorithm.

The modification of the algorithm to generate spanning webs is easy. Perform the
procedure as before, except that cycles winding around the root i0 are now considered
unpoppable and stay in the resulting graph. For instance in Fig. 24-(b) the brown cycle
would be unpoppable if we were to generate a spanning web. Only the cycles not
winding around the root are popped, until none remains. Propp and Wilson’s analysis
(in Sect. 7 of Ref. [18]) extends straightforwardly to the case of the unpoppable cycles,
and we find that : (i) the procedure terminates almost surely, and (ii) the resulting
graph is a now a perfect sample of the uniform measure on graphs (made out of oriented
edges, with exactly one edge going out of every vertex, except for the root that has
none) whose cycles are all unpoppable. One sees easily that such a graph is nothing
but a spanning web rooted at i0, as defined in Sect. 2.2, with additional orientations
such that each edge not belonging to a cycle “flows” towards the root or an attractor
cycle. Since each cycle has two possible orientations that are equally likely, we conclude
that the probability to obtain a given unoriented spanning web containing L loops is
2L/Z(2, i0), where Z(2, i0) is the generating function for spanning webs on the grid at
hand, rooted at i0 and counted with a weight y = 2 per loop, as defined in Eq. (2.4). This
is to be contrasted with the weight y = 4 per loop that arises from the correspondence
with dimer configurations with a vacancy, drawn with uniform probability. Knowing
the exact bias, it is however straightforward to translate the statistical properties of
spanning webs as measured through this algorithm into dimer statistics. Moreover,
one can correct the bias directly in the algorithm, at the price of introducing suitable
weights for edges along a seam.

In conclusion, we have provided an algorithm for the generation of random spanning
webs belonging to the class of exact or perfect algorithms [18,23]. By the correspondence
of Sect. 2.2, it can be used to simulate dimer configurations on a square lattice with
a vacancy. We have not performed a detailed analysis of its efficiency, but we believe
it is comparable to the original Propp-Wilson algorithm for rooted spanning trees, and
much better than generic CFTP-type algorithms. The comparison with other Monte
Carlo algorithms, such as the pivot algorithm [19,20] for the case of periodic boundary
conditions is not so clear: typically, these are designed with efficiency in mind, but
without an exact knowledge of their “randomness”. Both approaches provide useful
and mutually consistent results in our study.
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