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MULTIPLE COMPARISONS WITH THE BEST, WITH 
ECONOMIC APPLICATIONS 

William C. Horrace, University of Arizona 
Peter Schmidt, Michigan State University 

 
SUMMARY 

In this paper we discuss a statistical method called multiple comparisons with the best, or MCB. Suppose that we 
have N populations, and population i has parameter value . Let  the parameter value for the ‘best’ 
population. Then MCB constructs joint confidence intervals for the differences  It is not 
assumed that it is known which population is best, and part of the problem is to say whether any population is so 
identified, at the given confidence level. This paper is meant to introduce MCB to economists. We discuss possible 
uses of MCB in economics. The application that we treat in most detail is the construction of confidence intervals 
for inefficiency measures from stochastic frontier models with panel data. We also consider an application to the 
analysis of labour market wage gaps 
 

1. INTRODUCTION 
Empirical research often involves comparisons. For instance, one may wish to compare the effectiveness of several 
different drugs in the treatment of a disease, or crop yields for a variety of fertilizers, or productivity levels of 
different firms, or earnings of individuals exposed to a variety of types of training. Typically this would involve the 
calculation and comparison of some outcome measure or measures for the various populations of interest. 
Statistically speaking, calculation of an outcome measure is naturally viewed as the estimation of some parameter 
indexing outcomes, such as mean lifetime or mean earnings, and the comparison of these estimates would often 
involve statistical hypothesis testing and/or the construction of confidence intervals, so as to reflect the statistical 
uncertainty about the parameter values. 

To be more precise, suppose that there are N populations, with parameter value  and estimate  for 
population . Then, for given populations i and j, under standard assumptions one can generally test the 
hypothesis , or construct a confidence interval for the difference . For example, under the assumption of 
random samples from independent normal populations with equal variance, such a hypothesis test or confidence 
interval would involve the Student-t distribution. 

In this paper, our interest will be on multiple comparisons rather than on individual ones. The simplest type 
of multiple comparison procedure is referred to as multiple comparisons with a control (or MCC for short), and 
constructs a joint confidence interval for the vector of differences  where population N is 
the `control' population, such as the current drug treatment. The motivation for such a multiple comparison 
procedure is what Hochberg and Tamhane (1987) refer to as the multiplicity effect, which is simply the fact that, if 
enough comparisons are made, some of them are more or less sure to be `significant'. That is, with multiple 
individual comparisons, it is difficult or impossible to assess the `significance' of an individual difference without 
knowing how many comparisons were made and how the particular individual difference was selected from all those 
considered. For example, if we read in the newspaper that left-handed individuals who eat broccoli for lunch on 
Tuesday have rates of colon cancer that are significantly different from the overall population, we would not be 
impressed by the `significance' of this difference at usual confidence levels like the 5% level if we knew that 10,000 
similar comparisons were made and only the most `significant' differences were reported. From the perspective of 
hypothesis testing, recognition of the multiplicity effect argues for the use of a test of the joint hypothesis 

 to control the size of the overall testing procedure. From the perspective of the construction of 
confidence intervals for differences, recognition of the multiplicity effect argues for the construction of a joint 
confidence interval for the vector of differences, which MCC provides. 

This paper deals with an extension of MCC called multiple comparisons with the best (or MCB), which 
constructs a joint confidence interval for the vector of differences from the unknown `best' population parameter. 
That is, suppose that the problem is parameterized in such a way that bigger  is better than smaller , in the sense of 
a more favourable outcome, such as longer expected lifetime or greater expected earnings. Now define 

 so that (N) is the index of the best population and  is the best value of  in the N populations. 
Then MCB constructs a joint confidence interval for the vector of differences . This is 
different from and more difficult than the MCC problem, because the relevant control population is assumed to be 
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the best population, and the identity of the best population is not assumed to be known. MCB also provides a subset 
of populations which (at the specified confidence level) contains the best population. Thus MCB tells us, with a 
specified level of confidence, which populations may be best, and it provides upper and lower bounds on the 
deviations of all N values of  from the best value. 

The purpose of this paper is to introduce MCB to economists and to illustrate its use in a few applications. 
One application is to the `wage gap' literature, in which earnings of various groups are compared to the earnings of 
the highest-earning group. Another application is to the measurement of productive efficiency from stochastic 
frontier models with panel data. MCB has been applied to the stochastic frontier model in an earlier paper (Horrace 
and Schmidt, 1996), which was concerned with confidence statements for efficiency measures from a wider variety 
of stochastic frontier models, but the earlier paper did not attempt to develop or explain MCB methods in the way 
that the present paper does. 

This paper is organized as follows. Section 2 gives a brief historical account of MCB and presents the main 
results for MCC and MCB under the `standard' assumptions of balanced random sampling from independent, normal 
populations with equal variance. Section 3 discusses MCB in the more difficult and less well-explored case that the 
estimates  have a general covariance structure. Section 4 discusses issues in applying MCB in the regression model 
with panel data. Section 5 gives empirical examples of MCB. Finally, Section 6 draws some conclusions and 
suggests areas for additional research. 

 
2. STANDARD MCB 

 
2.1 Introduction 

As in Section 1 above, we suppose that we are interested in a vector of parameters , where the 
interpretation is that each  corresponds to some distinct population. Correspondingly we suppose that we have a 
vector of estimates  Generally the estimate  will be based on some number of observations, say  
on population i, so that we effectively have a panel data setting. However, at the present level of generality we will 
simply make assumptions about the distributional properties of , without explicit reference to the nature of the 
sample or method of estimation. 

In this section we will describe multiple comparisons with a control (MCC) and multiple comparisons with 
the best (MCB). We will focus on the simplest and most commonly used versions of these techniques, which we will 
refer to as standard MCC and MCB. We make the following assumptions. 

 
Assumptions 1 and 2 will be maintained throughout the paper. MCC and MCB are generally viewed as 

exact (finite-sample) procedures, but we could consider an asymptotically valid version that replaced the normality 
assumption in Assumption 1 with asymptotic normality. From the panel data perspective, this would correspond to 
the case of  with N fixed. Similarly, in thinking about Assumption 2, in virtually all applications we can 
envisage, there will be enough degrees of freedom that the scale parameter  can effectively be taken as known. 

Assumption 3 is the defining assumption for standard MCC and MCB. It will be maintained throughout 
this section, but will be relaxed in the next section and in some of our subsequent empirical work. 

A simple model to which standard MCC and MCB are applicable, and which is the basis for the usual 
discussions of standard MCC and MCB, is the `balanced one-way model' (e.g. Hsu, 1996, p. 43). Here we have N 
independent normal populations with equal variance but different means, and a random sample of size T from each 
population. Thus we have mutually independent observations , where  is distributed as 

 Then Assumptions 1, 2 and 3 hold, with  equal to the usual pooled variance estimate, 
and . This is (perhaps) a model of broad empirical applicability, but it is not necessarily general enough 
for applications to the regression model, as we shall see. 
 

2.2 Standard MCC 
MCC is a type of multiple comparison procedure. There are several other types, including multiple comparisons 
with the best, which is the subject of this paper, and all pairwise comparisons, which we will not discuss. The 
literature on multiple comparisons first evolved during the late 1940s and early 1950s, primarily due to David 
Duncan, S. N. Roy, Henry  and John Tukey. Harter (1980) gives a good historical account. Shortly thereafter 
a related body of literature on ranking and selection surfaced with the work of Bechhofer (1954). Additional ranking 
procedures followed due to Gupta (1956, 1965), Fabian (1962) and Desu (1970). MCC procedures as described in 
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this section were primarily due to Dunnett (1955, 1964). A good textbook treatment can be found in Hsu (1996, 
Chapter 3). 

MCC is concerned with the following vector of differences: 
 

For any integer m, let  be the  identity matrix, and  be an  vector of ones. We define the following 
matrices: 

 
These matrices arise naturally in considering  and its estimate . We have . Since  is distributed 
as  by Assumption 1, it follows that  is distributed as . That is, B is (up to proportionality) the 
variance matrix of ; and R is the corresponding correlation matrix. 

For the case of standard MCC, we also impose Assumption 3, so that  (with k known). Then simple 
algebra reveals that . This is a matrix with diagonal elements equal to 2k and off-diagonal 
elements equal to k. It follows that the corresponding correlation matrix R has an equicorrelated structure with all 
correlations equal to . That is, , where  is the  matrix defined as follows:  

 
That is, for the case of standard  

Under Assumptions 1, 2 and 3,  is distributed as multivariate Student-t, with dimension , 
degrees of freedom v, and correlation matrix , which we will represent with the notation . (If  is 
assumed known, which is also possible under Assumption 2, we have a multivariate normal distribution of 
dimension  and variance matrix  This is subsumed in the previous discussion as the case corresponding to 

.) Now, for a given confidence level , we define the critical value  as the two-sided critical value for the 
maximal value (over its  components) of the Student-t random variable. That is, if z is an  dimensional 
random vector distributed as , we define  as the solution to 

 
Then we have the following set of joint confidence intervals: 

 
These are the MCC confidence intervals. 

Obviously the intervals in equation (5) are two-sided. One-sided intervals are also possible but seem less 
likely to be of interest in econometric applications. They would be constructed in essentially the same way; of 
course,  would have to be a one-sided critical value. 

The critical values  for standard MCC are widely tabulated (see e.g. Dunnett, 1964; Dunn and Massey, 
1965; Hahn and Hendrickson, 1971; Bechhofer and Dunnett, 1988; or Hochberg and Tamhane, 1987). The MCC 
literature has typically considered rather small values of N, such as  Horrace (1998) gives values of  for 
larger values of N, with  (which is not restrictive for large values of N). The values of  in Horrace (1998) are 
calculated by simulation, directly from the definition in equation (5). In the MCC literature,  is typically calculated 
by evaluating the probability in equation (5) numerically. This is feasible because, given the equicorrelated structure 
of R, the  dimensional probability statement in equation (5) can be reduced to a double integral. Specifically,  
is the solution in t to the following equation: 

 
where  is the standard normal cdf, and  is the cdf of the distribution of . For economic applications, 
there is no compelling reason to prefer the numerical solution of equation (6) to a simulation, or vice versa; our 
simulations reproduced earlier tabulations where they overlapped. The earlier MCB literature emphasized 
deterministic (as opposed to stochastic) approximations for critical values because MCB was originally developed in 
a biomedical setting, and the nature of FDA regulation made it desirable for repeated analysis of the same data to 
reach exactly the same conclusions. 

Naturally, the values of  increase with the number of comparisons . Essentially, it takes a larger 
deviation to be judged significant if more comparisons are made. For example, for  0.05 and  1, we have the 
usual value of 1.96 for  2, but 2.44 for  5, 2.81 for  15, 3.29 for  100 and 3.64 for  500. 
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2.3 Standard MCB 
The point of MCB is to construct joint confidence intervals for the differences of each  from the best, and also to 
construct a set of populations which could be the best. More precisely, we consider the populations in (unknown) 
rank order: 

 
so that, as in Section 1, (N) is the index of the best population and  is the standard of comparison for the . Then 
we seek upper and lower bounds  and a set S of indices of those populations in contention for the best, such 
that: 

 
In this section we consider the construction of the set S and the bounds  for the case of standard MCB, which 
corresponds to the imposition of Assumptions 1, 2 and 3 above. As with standard MCC, the primary example is the 
balanced one-way model discussed in Section 2.1. 

MCB evolved in the early 1980s with the work of Jason Hsu. Hsu (1981) constructed parametric and non-
parametric simultaneous one-sided confidence intervals for the balanced one-way model. Hsu (1984) constructed 
simultaneous two-sided MCB confidence intervals. Edwards and Hsu (1983) provided a general technique for 
adapting MCC intervals to MCB intervals. Hochberg and Tamhane (1987, Section 5.3) summarize the main results 
of these papers. A more detailed discussion is given in Hsu (1996, Chapter 4). 

There is room for possible confusion over different kinds of confidence intervals found in the MCB 
literature. The intervals that we will discuss, as given in equation (8), are two-sided intervals for 

. These are the intervals considered in the early MCB literature, and they seem most natural 
to us; they correspond directly to the parameters of interest in the applications we consider in this paper. An 
alternative considered in the more recent MCB literature is to consider confidence intervals for . Hsu 
(1996, pp. ) argues that these intervals are easier to interpret and that they simplify some of the derivations. 
Ultimately this is a matter of taste. However, Hsu also features confidence intervals for  that are 
constrained to contain the point zero. These constrained intervals correspond to one-sided intervals for 

, with an upper bound  but with . We prefer two-sided intervals because, for example, we want 
to be able to place upper and lower bounds on the technical efficiency of inefficient firms. 

To give the basic result of standard MCB, we define the following notation: 
 

with  defined by equation (4): 

† 
Edwards and Hsu (1983) showed that, given these definitions, equation (8) holds; that is, 

. This is the fundamental result for standard MCB. It provides, at a 
confidence level of at least , a set S of populations that contains the best population, and upper and lower 
bounds for each difference from the best. 

We will not give a detailed proof, which can be found in Hsu (1996, pp. ). However, the idea behind 
the proof is simple. We begin by considering the standard MCC problem in which the control population is the 
unknown best, indexed by (N). Thus we have , where E is the event: 

 
Now, it is easy to see that the event E implies the event , since E implies   which 
implies . Also, the condition  can be converted into simply  since the inequality 
clearly holds for , since  so long as . Thus E is equivalent to the event : 

 
In this event  is unknown since (N) is unknown. (In particular,  is the estimate of , the value of  for the 
best population; it is not necessarily equal to max  However, given , we know that (N) is in the set S. Thus we 
can replace  on the left-hand side of the inequalities in equation (11) by , and we can replace  on the 
right hand side of these inequalities by  , to obtain an event that has probability at least as large 
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as . All that remains then is a little logic to ensure non-negativity of the bounds, and to avoid setting a 
needlessly high bound for the population that corresponds to the maximal  

Recall that the MCC confidence interval for , an interval of width 2h. The MCB intervals 
may be narrower or wider, depending on whether  and/or  = 0.When both  and  are positive (the conditions 
for which will be discussed further in the next section), the MCB intervals are wider, with a width of 

. That is, the uncertainty about which population is best adds to the width of the confidence intervals. 
However, if S consists of a single population, then the MCB intervals for the other populations are exactly the same 
as the MCC intervals with that population as the control. This occurs because in this case, at the specified 
confidence level, there is no uncertainty about the identity of the best population. 

It should be noted that the MCB confidence intervals are conservative. Whereas the MCC statement (10) 
holds with a probability of exactly , the MCB statement (8) holds with a probability of at least , and the 
inequality occurs because of uncertainty about the identity of the best population. This uncertainty can be large 
when the  are estimated imprecisely and when  is not much larger than one or more of the other . In such 
cases the MCB statement would actually hold with much higher probability than , and correspondingly the 
MCB intervals are (in principle) needlessly wide. There does not seem to be published evidence on the actual 
coverage probabilities of the MCB intervals. Ongoing work by Yangseon Kim and one of the authors provides 
Monte Carlo evidence on this question. For what seem to be empirically plausible parameter values, the MCB 90% 
probability statement often holds with a probability of over 99%. Thus one might hope to be able to improve on the 
MCB intervals, but how to do so is a matter for future research. 

While the focus of the current paper is on multiple comparisons, we note in passing that it is also possible 
to make marginal (or univariate) comparisons with the best. Kim and Schmidt (1999, unpublished manuscript) show 
how to construct a set S and upper and lower bounds  such that , where 
this statement holds for a single, given value of i. 
 

2.4 Possible Results from MCB 
The easiest case to discuss is the one in which the set S of possibly best populations has a single element, say  
This occurs if , with h defined in equation (9a); that is, if  is the largest value of  in the sample and 
it exceeds the second-largest value by at least h. In this case, at confidence level , population i is clearly the best. 
As noted in the previous section, this implies that the MCB intervals for populations  are exactly the same as the 
MCC intervals with population i as the control. 

When  it is easy to see that . In fact,  if and only if , because the condition for 
 is  which is the same as the condition for . Similarly,  is equivalent to  

as is easily seen from the definition of  in equation (9c). Thus the following three conditions are equivalent: (a) S 
 (b) . (c)   

Things are a little more complicated when S contains multiple populations. In this case  for all i, since 
 for any i would imply that i was the only population in S. Furthermore, it is easy to see that, if . 

Interestingly, however, the converse is not true. We can have  even for i that are not in S. The condition for 
 is that  which is weaker than the condition for , which is that . That is, 

population i is in S if  is within h of the maximal value of  whereas  is within h of the minimal value of 
^y for populations in S. 

Thus, when S contains multiple populations, our sample is split into possibly three groups: (a) populations 
in S; these have  (b) populations not in S, but close to S; these also have ; (c) populations not in 
S and not close to S; they have . 
 

3. MCB WITH GENERAL COVARIANCE STRUCTURE 
3.1 Mechanics of MCB with General Covariance Structure 

In this section we consider MCC and MCB when  has a general covariance structure. We will call this general 
MCB. Thus we maintain Assumption 1, that  is distributed as  with C known; but we do not maintain 
Assumption 3, so we do not assert that C is proportional to . As before we also maintain Assumption 2 so that a 
suitable estimate  is available. 

General MCB seems to be much less well explored than standard MCB. For example, Edwards and Hsu 
(1983), Hochberg and Tamhane (1987) and Hsu (1996, Chapter 4) discuss the generalization of standard MCB in 
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terms of the unbalanced one-way model, which differs from the balanced one-way model discussed in Section 3.1 
only in that the sample sizes in the different populations are allowed to be unequal. Unequal error variances across 
populations would fit the same pattern. This imposes some structure on the matrix C, whereas in this section we will 
assume only that C is known. 

We consider general MCB in two steps. The first step is to perform N general MCC problems, with each of 
the N populations taking its turn as the control. The second step is to convert these MCC intervals into MCB 
intervals. All the difficulty relative to the case of standard MCB lies in the first step. 

We begin with the problem of performing MCC using population j as the control; we will repeat this for 
 We define  as the  vector whose typical element is ; explicitly, ,  

 We can write  where  has  as its jth column, and the remaining columns are the 
columns (in order) of . Suppose that  is the estimate of  so that  is the estimate of . Then, if the 
variance matrix of  is , the variance matrix of  is , where . Let  be the correlation matrix 
corresponding to . In the special case of standard MCC,  did not depend on j, and it took the form of the 
equicorrelation matrix  In the general case  has no specific form, though it is easily calculated. Finally, we 
define  the standard deviation of the element of  that equals . 

The MCC confidence intervals with population j as a control will take the form: 

 
where  and where  is the critical value from the appropriate multivariate t distribution. Specifically, if z is 
an -dimensional random vector distributed as , then  is defined as the solution to: 

 
The solution  generally depends on j (the control population), because the correlation matrix  generally 

depends on j. This will generally need to be calculated via a simulation, since the -dimensional integral implicit 
in equation (13) will simplify only in special cases. Tabulation is impossible except in special cases that dictate the 
form of  in terms of a small number of parameters. To calculate the  by simulation, one possibility is to do N 
distinct simulations, one for each value of j. When N is large, this will be computer time-consuming both because 
the number of simulations is large and because each of the individual simulations is complicated (involving -
dimensional probability statements). A computationally more efficient procedure would calculate all N values of the 

 in one large simulation (that is, based on one set of pseudo-random draws). Specifically, suppose we make a large 
number of draws  of the N-dimensional random variable  from the  distribution. Now we can 
calculate the -dimensional draws  whereas before  is the differencing matrix with 
respect to the jth entry. Thus  is a draw from  where . We require draws from  where  is 
the correlation matrix corresponding to  Since  where  is the diagonal matrix with ith diagonal element 
equal to , the required draws are . This just corresponds to dividing the ith element of  by . Then, for 
given j, sort as before to find the appropriate quantile. While most of the calculations must be done separately for 
each j, they are all based on the same set of random draws. This procedure is computationally efficient because most 
of the computer time is used in drawing the basic random variables, not in manipulating them after they are drawn.  

Once we have calculated the allowances  that are part of the general MCC procedures, it is 
easy to move on to MCB intervals. The logic is essentially as before, and indeed the attraction of the argument of 
Edwards and Hsu (1983) is that we can convert MCC intervals into MCB intervals independently of how we 
constructed the MCC intervals; all that is needed is that they are valid. 

Define the following notation: 

 
With this notation the MCC confidence intervals (12) can be rewritten as . That is,  
and  are the lower and upper MCC bounds for , when MCC is performed with population j as the control. 
The last phrase, about which population is the control, matters for general MCC, although it did not matter for 
standard MCC. In the case of standard MCC, where all the  are the same, we have  so that the lower 
bound for  when j is the control is the negative of the upper bound for  when i is the control. In the 
general case, however,  and so  

We now define the further notation: 
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Then we have the MCB result:  For the proof, see Edwards and Hsu (1983, p. 
966). As in the standard case, the intuition is straightforward. The lower bound is taken by minimizing the MCC 
lower bounds over all control populations that might be best (are in S), while the upper bound is taken by 
maximizing the MCC upper bounds over the populations in S. 

These results are similar in form to the corresponding results for standard MCB, as given in equation (9). 
They reduce to the results for standard MCB in the special case that the  do not depend on i or j. 
 

3.2 Results from MCB with General Covariance Structure 
The condition for population i to be in the set S (so that population i is possibly best) is that  for all  That 
is, in the MCC confidence intervals with population i as a control, the upper bounds for  are all non-negative; 
the prospect of  is not ruled out for any j. 

As in the case of standard MCB, if  then . (This is easily seen from equation (15b), since if , 
 Thus  implies that i is not in S. However, as in the case of standard MCB, we may 

have  for populations i that are not in S. Thus, in general, MCB once again splits the sample into potentially 
three groups: populations in S, with ;  and populations not in S, but with . 

The biggest difference between general and standard MCB is in the characterization of the case in which 
there is a single population in the set S of potentially best populations. As in Section 3.4, consider the following 
three conditions:  These three conditions are equivalent for standard MCB but 
not for general MCB. To further explore the relationships between these three conditions, observe that the condition 
for  is that i is in S but no other j is in S. Thus for  we have  so that i is in S; and also, 

 
 so that j is not in S. Since the set S cannot be empty, in fact equation (16) is necessary and sufficient for the event 

 The population k that dominates population j may be different for different values of j. A sufficient condition 
for  is that condition (19) holds with ; that is, 

 
However, from equation (15c), this is a necessary and sufficient condition for . Thus  implies  but 
not conversely. This is not a sensible outcome, since if one population is uniquely identified as best (at the given 
confidence level) we logically should have . Thus the definition of  in equation (15c) should be 
modified to require  if  This point appears to have been missed in some of the MCB literature, including 
Edwards and Hsu (1983), but is recognized by Hsu (1996, p. 112). 

Similarly, the event  implies the event , but not conversely. To see the first implication, 
we simply observe that S cannot be empty, and  implies that j is not in S. To proceed further, we observe that 

 if and only if  Since . implies that S contains only the single population i, a 
necessary and sufficient condition for  

 
or, equivalently, . It is evident that this is not implied by equation (16), so that  does not imply 
that  

Finally, there is no apparent connection between the events  and . To see this, compare 
equations (17) and (18), which are identical except for that  appears in (17) where  appears in (18). Thus these 
conditions would be the same if  for all j, as is the case in standard MCB, but not in general. 
 

3.3 The Equicorrelated Case and Other Special Cases 
For this section we return to the simplified notation of Section 2.2. Thus  is the variance matrix of ,  

 is the variance matrix of , and R is the correlation matrix corresponding to B. 
The essential requirement for the applicability of standard MCB is that , as defined in equation (3). 

That is, the differences of the  must be equicorrelated, with correlation equal to  Our Assumption 3, that , 
is sufficient but not necessary for  and thus for the applicability of standard MCB. A weaker condition than 
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 that still implies  is that the  be equicorrelated, with arbitrary correlation. More formally, we have 
the following result. 
Result 1: The following conditions are equivalent, and imply , for some scalars a and b. 
(b)  for some scalar w. (c)   for some scalar w. 

This result is well known in the MCB literature and proof is given by Hsu (1996, p. 187). The scalars w in 
(b) and (c) are the same, and equal 2b, where b is the scalar in (a). Hsu (1996, p. 187) refers to this as the variance-
balanced case. 

The conditions in Result 1 are weaker than Assumption 3, but they are still sufficient but not necessary for 
. It is well known, and easy to verify, that  is equivalent to the following structure for B: 

 
A condition on C that is equivalent to equation (19), and which is therefore necessary and sufficient for , 
does not seem to be given in the MCB literature. To give such a condition, recall the definition of D in equation (2a) 
above, and define , the Moore-Penrose inverse of D (which exists in this form because  
is non- singular). Now consider the following condition: 

� 
for some scalar a and some B of the form given in equation (19). Then we have the following result: 
Result 2: The following are equivalent. (a) . (b) B is of the form given in equation (19). (c) C is of the form 
given in equation (20). 

To prove this result, we note first that  and . Then (c) implies (b) because, if C is of the 
form in equation (20),  is of the form of equation (19). To prove that (b) implies (c), define 

 so  Then  This implies that E must lie in the null space of D, 
or E  for some scalar a. 

Results 1 and 2 are of theoretical interest, and may be of use in practical applications in deciding whether 
standard MCB is applicable, or approximately applicable. However, they are of somewhat limited practical use 
because, given the matrix C (the variance matrix of , the matrix R is easily calculated. To see whether standard 
MCB is applicable or approximately applicable, it is an easy matter to calculate R and see whether , either 
exactly or approximately. 

Two additional special cases that are featured prominently in the MCB literature are one-way structure and 
product structure (see e.g. Hsu, 1996, Section 7.1). The model is said to have product structure if the matrix R (the 
correlation matrix of , the vector of differences of estimated  has the form:  for some set of scalars 

 The model is said to have one-way structure if and for some set of 
positive scalars  One-way structure is sufficient but not necessary for product structure. Specifically, one-
way structure implies product structure with  The motivation for the terminology is that one-way 
structure arises when C, the variance matrix of  is diagonal with ith diagonal element  This occurs in the 
unbalanced one-way model, in which we are estimating the means of a set of independent normal populations, but 
the populations have different variances or different numbers of observations (or both). It may also occur in the 
regression model with panel data, as we will discuss in the next section. In the presence of product structure, some 
significant simplifications are possible relative to the purely general case. Specifically, the integral defining the 
MCC critical values can be expressed as a double integral (instead of an -dimensional integral) (see e.g. Hsu, 
1996, p. 63, equation (3.15) for the form of this integral). 
 

3.4 Approximations 
If we cannot appeal to any special structure of the variance matrix C, the general MCC and MCB procedures 
described in Sections 3.1 and 3.2 apply, but are computer time-intensive. An alternative is to replace the exact but 
complicated general MCC procedure with a conservative approximation. Such approximations provide an easily 
calculated upper bound on the significance point for the  distribution. That is, they provide a value  such 
that , whereas the exact MCC procedure finds  such that this probability equals . 
Hsu (1996, Section 7.2.1 and Appendix A) discusses a number of conservative approximations, based on the 
Bonferroni inequality, Scheeffé's inequality, Slepian's inequality, an inequality due to Sidák (1967), an inequality 
due to Hunter (1976) and Worsley (1982), and a so-called `factor analytic method' due to Hsu (1992), for which the 
one-factor case corresponds to product structure as discussed in Section 3.3; in this case exact results are possible. 
Matejcik (1992, unpublished manuscript) discusses some of these inequalities as well as a method suggested by 
Tamhane (1977) based on Banerjee's inequality, a procedure using a moment-based approximation to the Behrens-
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Fisher problem, also suggested by Tamhane (1977), and a new technique based on a heteroscedastic selection 
procedure. McCann and Edwards (1996) provide a brief survey and a new procedure based on a path length 
inequality due to Naiman (1986). The above-mentioned approximations are all numerical (deterministic) and, as 
stated earlier, there is no compelling reason to prefer numerical approximations over simulated (stochastic) ones in 
an economic setting. Some techniques that employ Monte Carlo Methods to approximate critical points are provided 
in Foutz (1981), Edwards and Berry (1987) and Naiman and Wynn (1992). The salient feature of these techniques is 
that when N is large they produce approximate critical values quickly, compared to the potentially time-consuming 
process of generating critical values directly from simulation of equation (13). 

Many of these techniques are available using standard commercial software. For example, see Tobias 
(1996) for a discussion of MCB software in SAS. 
 

4. MCB IN THE PANEL DATA REGRESSION MODEL 
In this section we consider the panel data regression model: 

 
We suppose that the parameters of interest for the MCB analysis are the intercepts, which we express as the vector a 

 (In Section 5 we will give some empirical examples in which these are indeed the parameters of 
interest.) These can be ordered in the usual way as . Then we denote the differences of intercepts 
from the best as , for which MCB will provide joint confidence intervals. 

Throughout this section we assume that the errors  are i.i.d. , and we treat the  as fixed 
(independent of v). Also, unless stated otherwise, we assume a balanced panel (T observations for each value of i). 
This model might be estimated in a number of different ways depending on what one is willing to assume about the 

. We will consider the simplest and most generally relevant case, which is to treat the  as fixed parameters, in 
which case the model would typically be estimated by the within (fixed-effects) estimator. 

We begin with a simple point.  we could write  This is the balanced one-way 
model to which standard MCB applies. 

Since standard MCB would be applicable if  were known, it is reasonable to presume that standard MCB 
is a good approximation if  is estimated sufficiently precisely. More precisely, suppose that  is the within (fixed-
effects) estimator, and we ignore its variability and apply standard MCB. As is well known, we can obtain the fixed 
effects estimates of  and the  by regressing  on  and a set of N dummy variables representing populations 
(values of i). Equivalently, we can obtain the within estimate  from the regression in deviations from individual 
means (i.e. by regressing  and then  This leads to the following expression for  

 
The variance of  is of order  while the variance of  is of order  As a result, we would expect 
standard MCB to be approximately valid when N is large, since the variability in  will be small relative to the 
variability in  (Similarly, in the case of an unbalanced panel, we would expect the one-way structure, and therefore 
the product structure, to hold approximately when N is large.) This is an important observation, because general 
MCB will be numerically very complicated when N is large. 

MCB is not designed as an asymptotic procedure. Indeed, the problem of comparing N populations is hard 
to conceptualize unless N is fixed. However, since econometricians often think in terms of asymptotics, the 
following two comments may be helpful. First, as just noted, standard MCB may be approximately valid when N is 
large. Second, MCB assumes that the  are normally distributed. This should be so if the errors  are normal or if T 
is large. 

Whether or not N is large, general MCB can be applied. Let  be the  matrix of x's expressed in 
deviations from individual means, so that its typical row is of the form . Let  be the  matrix whose ith 
row is . Then the variance matrix of  is  and correspondingly 

� 
Given the matrix C, we can calculate the matrices B and R, and we can see whether or not R approximately equals 

. If it does, standard MCB is approximately applicable. If not, general MCB or an approximation will be 
required. 

Interestingly, in our empirical work we often found that C approximately had an equicorrelated structure, 
so that R was approximately equal to . To understand why this is not a surprising outcome, consider the 
following argument. For  the variance matrix of  we have 
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� 
Given independent populations, we would expect terms like  to be small for  since they 
essentially measure the covariance of the xs across populations i and j. However, the same type of terms with  
should not necessarily be small, since they essentially measure a variance. Each element of  for  contains only 
one `variance' term, namely . However,  contains two `variance' terms, namely  

 and  Thus, heuristically, diagonal elements of B should be roughly twice as large 
as off-diagonal elements, and R should be roughly equal to . We will discuss this point further in our empirical 
section. 
 

5. EMPIRICAL APPLICATIONS 
5.1 Stochastic Frontier Models 

In this section we demonstrate the use of MCB to construct confidence intervals for measures of technical efficiency 
in stochastic frontier models with panel data. We use three previously analysed panel data sets. For these data sets, 
Horrace and Schmidt (1996) constructed confidence intervals for efficiency measures using a number of different 
procedures (i.e. under a number of different assumptions), including standard MCB. Here the emphasis will be on 
whether standard MCB was appropriate, and whether general MCB would make a difference. We find that general 
MCB is called for in one of the three cases, and that it then makes a moderate difference. 

Our three data sets possess rather different characteristics, most notably in the relative numbers of firms 
and time periods. In the first data set, the number of time periods is much smaller than the number of firms. In the 
second, the number of time periods is approximately equal to the number of firms, and the number of time periods is 
different across firms. In the third data set the number of time periods is larger than the number of firms. These 
characteristics affect the results in predictable ways. For example, only when the number of time periods is large and 
the number of firms is small are we able to identify a unique best firm. 

We begin with a brief discussion of the stochastic frontier model with panel data. Stochastic frontier 
models were originally due to Aigner et al. (1977) and Meeusen and van den Broeck (1977). These models were 
based on cross-sectional data and strong distributional assumptions. Models with alternative distributional 
assumptions have been presented by Stevenson (1980), Greene (1990) and many others. The use of panel data in 
frontier models was first suggested by Pitt and Lee (1981) and Schmidt and Sickles (1984). More recent treatments 
include Cornwell and Schmidt (1995) and Greene (1997). This discussion will follow Schmidt and Sickles (1984) 
and Horrace and Schmidt (1996). 

Consider the following logarithmic specification (e.g. Cobb-Douglas or translog) of a production function: 

� 
Here i indexes firms or productive units and t indexes time periods.  is the scalar dependent variable representing 
the logarithm of output for the ith firm in period t,  is a scalar intercept,  is a  vector of functions of inputs 
(e.g. in logarithms for the Cobb-Douglas specification),  is a  vector of coefficients and  is an i.i.d. error 
term with zero mean and finite variance. The  satisfy  and  is an indication of technical inefficiency. 
Note that  is time-invariant. For a logarithmic specification such as this the technical efficiency of the ith firm is 
given by  so technical inefficiency is . 

Different treatments of this model follow from different assumptions. For example, Pitt and Lee (1981) 
discussed maximum likelihood estimation, under the assumptions that the  are fixed, the  are i.i.d. normal, the 

 are i.i.d. according to a specified distribution (e.g. half-normal), and the  and  are independent. Further 
discussion can be found in Schmidt and Sickles (1984) or Horrace and Schmidt (1996). In this section, we treat the 

 as fixed. If we let , equation (25) becomes the standard fixed effects regression model given in equation 
(21) above. Then  and  are obtained as described in Section 4 above. 

Given the estimates  one can then define  and  Loosely speaking, these 
estimates are consistent as N and T both approach infinity. We require  so that  whereas in equation 
(22) the term  as either  or , the term  is the average of T values of  and  is 
required for it to converge in probability to zero. Furthermore, we require  (and some restrictions on the 
distribution of the ) so that . Since   we basically need the density of u 
to be non-zero in a neighborhood of zero so that the minimum of the  converges to zero as the number of  
increases. These arguments were given by Schmidt and Sickles (1984). A more rigorous treatment of the 
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asymptotics for this model is given by Park and Simar (1994), who show that, in addition to  and , we 
need to require   in order to ensure the consistency of  This latter requirement limits the rate at which 
N can grow relative to T, in order to ensure that the upward bias induced by the `max' operation disappears 
asymptotically. If N increased too rapidly relative to T, the increased bias due to maximizing over 
more  could dominate the convergence of each individual  to the corresponding  

The above discussion regards zero as the absolute minimum value of the , and hence  as the absolute 
maximal value of the , over any possible sample (essentially, as ). This can be distinguished from the 
minimal value of the  and maximal value of the  in a given sample of size N, and this distinction is relevant when 
N is small, and therefore treated as fixed for purposes of asymptotics. For fixed N, let the ordering of the  be as 
before: , so that  with . Similarly, let the ordering of the  in reverse order 
be  so that  with . Then clearly  or equivalently . 
This corresponds to comparing the  to the absolute standard  . The alternative is to compare the  to the within-
sample standard . This leads to the definition:  so that  (Note that  corresponds 
to  of Section 4.) 

The relevance of this distinction to the present discussion is straightforward. MCB naturally takes the 
number of populations (N) as fixed, and generates a confidence interval for the vector of differences relative to the 
best population. That is, MCB will construct joint confidence intervals for the , not for the  . Similarly, the joint 
confidence intervals for the  can be easily converted into joint confidence intervals for the values of , 
which we distinguish from . The intervals for  are a monotonic transformation of the intervals for 

. It should be noted that this transformation will cause lower bounds to become upper bounds, and vice versa. 
Koop et al. (1997) have provided a Bayesian analysis of the stochastic frontier model that has some strong 

parallels to MCB. They consider four different models, depending on different assumptions about the effects. Their 
Standard Individual Effects (SIE) model uses an uninformative prior for  and  and is therefore very similar in 
spirit to the usual classical fixed effects model. They describe how to calculate the marginal posterior distribution of 

 , in their notation) and   so that they make marginal rather than multiple comparisons with the best, 
but presumably multiple comparisons could also be made. An interesting question that we have not yet pursued is 
how different such a Bayesian analysis based on an uninformative prior would be from MCB, in typical 
applications. Incidentally, both Koop et al. (1997) and Horrace and Schmidt (1996) note that construction of 
confidence intervals for  rather than  fundamentally requires an assumed distribution for . The reader is 
referred to those papers for more discussion of inference on  given such a distributional assumption. 
 

5.2 Empirical Examples of MCB in Stochastic Frontier Models 
Indonesian rice farms 

We analyse data previously analyzed by Erwidodo (1990, unpublished manuscript), Lee (1991, unpublished 
manuscript), Lee and Schmidt (1993) and Horrace and Schmidt (1996). For a complete discussion of the data see 
Erwidodo (1990, unpublished manuscript). One hundred and seventy-one rice farms in Indonesia were observed for 
six growing seasons, so  171 and  6, in our previous notation. The data were collected by the Agro Economic 
Survey, as part of the Rural Dynamic Study in the rice production area of the Chimanuk River Basin, West Java and 
obtained from the Center for Agro Economic Research, Ministry of Agriculture, Indonesia. The 171 farms were 
located in six different villages and the six growing seasons consisted of three wet and three dry seasons. 

The model is a Cobb-Douglas (loglinear) production function, with some additional dummy variables. 
Output is measured as kilograms of rice produced. Inputs included in the specification are seed (kg), urea (kg), 
trisodium phosphate (TSP) (kg), labour (labour-hours) and land (hectares). The specification also included the 
following dummy variables. DP equals 1 if pesticides were used and 0 otherwise. DV1 equals 1 if high yield 
varieties of rice were planted. DV2 equals 1 if mixed varieties were planted; the omitted category represents that 
traditional varieties were planted. DSS equals 1 for the wet season. There were several other time invariant dummy 
variables which had to be excluded from the analysis to preclude multicollinearity. 

The estimated coefficients are not presented here, because they are not relevant to this discussion; they can 
be found in Horrace and Schmidt (1996, p. 268). The estimate of a, while relevant, consists of 171 elements and is 
too large to be presented in its entirety. Some salient facts concerning  are: 
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Some of the results from standard MCB are presented in Table I. They are based on the 90% confidence 
level (  0.10), and a simulated critical value for  of 3.18. This implies an MCB `allowance' of 
0.6022. The set S of possibly efficient firms contains 92 of the 171 farms. The value of  was 4.955. Because 
all the remaining 79 farms had values of  that were within 0.6022 of 4.955, all the farms had upper bounds for 

 to one (i.e. lower bounds for  equal to zero). The lower bounds for  ranged from 0.5874 for 
145 to 0.2001 for  45. It would take up too much space to present results for all 171 farms, so Table I presents 
the results for only eight farms: the three with the largest  the farm with the median value of  the farm 
with the smallest value of  for  and the three farms with the smallest  For each of these eight farms, 
we give the value of  the standard error of  and the MCB lower and upper bounds for the confidence intervals 
for . 

These confidence intervals are very wide and indicate that the point estimates of efficiencies contain too 
much statistical noise to be taken very seriously. Horrace and Schmidt (1996) performed some sensitivity analyses 
to try to understand the reason for such wide confidence intervals. The intervals are shortened, but not by a large 
amount, if we do MCC with farm  164 as a control (i.e. treat the identity of the most efficient firm as known); if 
we reduce the number of farms for which we construct confidence intervals; or if we change the confidence level 
from 0.90 to 0.75. The main reason why the confidence intervals are wide is that the  are not estimated very 
precisely, and this is due to a small value of T and a relatively large value of .1 Our conclusion is that analysis of 
technical efficiency for these data is difficult, and would require stronger assumptions than the fixed effects model 
makes. 

 
We now turn to the question of whether standard MCB is appropriate for this analysis. As discussed in 

Section 4, we might hope that standard MCB will be appropriate, because N is fairly large. A direct check on the 
applicability of standard MCB is to calculate the correlation matrix R of the vector of differences  and see how 
close it is to  When we calculated R with farm 164 as the control, we obtained an average correlation of 0.4967, 
with a standard deviation of 0.0139. The correlations of elements of  were close enough to  to convince us that 
standard MCB was approximately valid. This is a good thing, because with 171, general MCB would have been 
extremely time-consuming. 
 

Texas utilities 
In this section we reanalyse data previously analyzed by Kumbhakar (1996) and Horrace and Schmidt (1996). 
Kumbhakar estimated a cost function, whereas we will estimate the production function. The data set consists of 
observations on 10 major privately owned Texas electric utilities observed annually over 18 years from 
1966 to 1983, and includes information on annual labour, capital and fuel (inputs) for electrical power generation 
(output).With 18 periods of observation per firm we have T larger than N, the opposite of the case with the 
Erwidodo rice farm data. 

The model is a Cobb-Douglas production function. The within-estimates of the regression coefficients of 
this model are given in Horrace and Schmidt (1996, p. 272). We note that the estimate of  is 0.0029, which is 
much smaller than in the case of the Erwidodo data. Table II gives the intercepts  their standard errors, and the 
results of standard MCB at the 90% confidence level. The critical value of 2.42 implies an MCB allowance of 
0.0434. Because  exceeds all the other  by at least 0.0434,  {5}; that is, firm 5 is identified as the best firm. 
Because there is a unique best firm, the upper and lower bounds for the efficiency levels of the other firms are not 

                                                           
1 It may be noted that the standard errors of the  give a good idea of the precision of estimation of the , but not of the precision of estimation 
of differences of the  which is what is relevant for MCB. Because the  are strongly positive correlated, the standard error of the difference 

 is actually typically smaller than the standard error of  or  For example, for 164 and 118, Table I reports standard errors of 
0.260 and 0.253, while the difference has a standard error of 0.192. Nevertheless, the standard error of the difference is large relative to the 
difference (5.556 5.486  0.07), so that there is considerable uncertainty about the level of inefficiency even if it were known that firm 164 was 
most efficient. See Horrace and Schmidt (1996) for more detail. 
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equal to one. The bounds for the efficiency levels of the firms are much tighter than they were for the Erwidodo 
data. For example, firm 8 has confidence interval for  of [0.7847, 0.8562], which is arguably tight enough to be 
informative. The bounds are tighter in this case than in the previous analysis primarily because differences of the  
are estimated more precisely, and this is so because T is larger and  is smaller.2 
 

 
 

Of course, while a larger value of T improves precision of estimation, it also makes the assumption of time-
invariant efficiency less plausible. Various models that allow time-varying efficiency exist (e.g. Kumbhakar, 1990; 
Battese and Coelli, 1992; Lee and Schmidt, 1993) and MCB would in principle be applicable; for each time period, 
we simply need to be able to calculate the joint distribution of the N estimated intercepts. As a rough test of the need 
for such a model, we did a Chow test of the hypothesis that the slopes and intercepts are all constant (against the 
alternative that one or more differs between the first nine observations and the last nine).We found  
which is significant at any reasonable level, and indicates the need to consider seriously that something has changed 
over time. Further pursuit of these considerations is empirically relevant but not within the scope of this paper. 

We now ask whether standard MCB is in fact appropriate for this data set. In fact, it is not, because the 
correlation matrix R is not close to . For  defined with firm 5 as the control, the average correlation between 
elements of  equalled 0.8599, which is not at all close to , and ranged from 0.7374 to 0.9520, with a standard 
deviation of 0.0429. Similar results hold for  defined with other firms as the control. As a result, standard MCB 
should not have been expected to be a good approximation to general MCB. 

While it is not the purpose of this paper to be a corrigendum for Horrace and Schmidt (1996), it may be 
worth discussing the argument they used (erroneously) to justify standard MCB, so that others do not follow their 
example. They presented the following facts about  

 
Based on these facts, they argued that the equicorrelated structure for  approximately held, and that standard 
MCB was applicable. The approximate equality of the elements of  is indeed relevant, but the relevant 
comparison is of the differences of these elements to  The mean of the elements of  is irrelevant, 
because the variance matrix of , and the differencing matrix 
D removes the mean from  and leaves only the differences. For standard MCB to apply these differences need 
to be small relative to . Although the variation in the elements of  was not large relative to the mean 
value of , it was quite large relative to 

                                                           
2We might note that the  themselves are not estimated more precisely for this data set than for the previous one. The standard errors of the   
are very similar in Tables I and II. However, the standard error of the difference  is only 0.0653, compared to 0.192 for the comparable 
difference for the rice farm data, and this comparison does not depend much on choice of firms. In the present data set more of the variability of 

 is due to error in the estimation of , and this largely differences away. 
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, whose diagonal elements equal only 0.00032. As a result, the correlation matrix R is not very nearly 
equal to . 

As the preceding discussion makes clear, the moral of the story is simply to compute R and compare it to 
 before proceeding with standard MCB. There is no obviously preferred metric for this comparison. 

Table III reports the results of general MCB applied to the Kumbhakar data. The major difference from the 
standard MCB results is that the set S of possibly efficient firms now contains two firms (  {5, 3}) rather than just 
one (  {5}). For the firms not in S, this results in only minor changes in the lower bounds for technical efficiency, 
but it leads to significant increases in the upper bounds. For example, the confidence interval for  was [0.7847, 
0.8562] from standard MCB, but is now [0.7595, 0.9731] from general MCB. The increase in width is 
fundamentally due to the enlargement of the set of possibly efficient firms, and is not a general consequence of the 
difference between standard and general MCBÐ general MCB could yield a larger or smaller set S, or narrower or 
wider intervals, than standard MCB. What is clear is that, for this data set, standard versus general MCB matters. 
Given the lack of similarity of R to , we trust the general MCB results, not those from standard MCB. 

Given that standard MCB was not applicable, we could have considered the applicability of other 
procedures that are simpler (less computer time-consuming) than general MCB. For example, a referee pointed out 
correctly that we could have checked how close the correlation matrix R came to having the product structure 
discussed in Section 3.3 above. This comparison can be made using standard software, such as PROC FACTOR in 
SAS. Product structure would result in considerable simplifications relative to general MCB. 
 

Egyptian tileries 
In this section we analyse data previously analyzed by Seale (1990) and Horrace and Schmidt (1996). The data were 
collected by the Non-Farm Employment Project in 1982±3. The firms were located in Fayoum and Kalyubiya, 
Egypt.  25 Egyptian small-scale floor tile manufacturers were observed over 3-week periods for 66 weeks, for a 
total of 22 separate observation periods. The data contain some missing observations, so the number of separate 
observation periods varies across firms, making this an unbalanced panel. The total number of observations is 484, 
so  is on average about 19. For a complete discussion of the data see Seale (1990). 
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Inputs to the production of cement floor tiles are labour (labour-hours) and machines (machine-hours). 
Output is in square metres of tile. The model is a Cobb-Douglas production function. The within-estimates of the 
regression coefficients are given in Horrace and Schmidt (1996, p. 276). The estimate of  equals 0.1147, which is 
comparable to the value for the Erwidodo data. 

Horrace and Schmidt (1996) performed MCB under the assumption of the product structure discussed in 
Section 4.3. However, their results are incorrect due to an error in the calculation of the appropriate critical values. 
The corrected results for MCB assuming one-way structure and using the 90% confidence level are given in Table 
IV. All but five of the firms are in the set S, so we are not very sure about the identity of the best firm. The 
confidence intervals for the individual technical efficiencies are also fairly wide; they are much wider than for the 
Kumbhakar data, though not as wide as for the Erwidodo data. 

The values of  range from 0.0587 to 0.1106, with a mean of 0.0857 and a standard deviation of 
0.00941. This degree of variation does not appear small compared to the average value of  which is 
approximately 0.012 (based on an average value of Ti of approximately 19), and so we might suspect that general 
MCB would be called for. As explained in the previous section, we could have checked how close the correlation 
matrix, R, was to possessing a product structure. This would have involved finding a matrix, say  which possessed 
a product structure or a one-way structure and minimized some Euclidean norm criterion such as  or 
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 Given  we could have compared it to R, to determine if general MCB was indeed called for.  
Table V gives the results for general MCB (i.e. not assuming the one-way structure). They are not very 

different from the results in Table IV, so in this case general MCB does not make much difference, despite the fact 
that the one-way structure did not appear to hold very well. 
 

5.3 Estimation of Labour Market Wage Gaps 
To illustrate another potential application of MCB in economics, consider the following example given in more 
detail in Horrace (1997, unpublished manuscript). The labour market wage discrimination literature is concerned 
with explaining differences in wages across gender, race or ethnicity. The idea is to decompose an individual's wage 
into a human capital component and a discriminatory component using some form of regression analysis. The 
discriminatory component is called the `wage gap' or `wage differential'. Empirical studies are often concerned with 
estimating these wage gaps for different employment classifications and ranking them to determine which 
employment classifications are the most or least discriminatory. For example, Fields and Wol (1995) estimate wage 
gaps across 284 industry classifications such as public utilities, retail trade and agriculture. They then rank these 
industry wage gaps to show which ones possess the largest wage gaps and are, hence, the most discriminatory. 
However, they do so without performing any inference on the ranking. 

Horrace (1997, unpublished manuscript) performs an analysis similar to the Fields and Wol study, but 
includes MCB inference on the wage gaps. More specifically, let  represent the male-female wage gap in industry 

 Order these in the usual way:  so that  represents the smallest male-female wage 
gap. Then MCB confidence intervals can be constructed for all , a measure of relative non-discrimination. 
The analysis provides not only the MCB confidence intervals themselves, but the set S of industries that are `least 
non-discriminatory' at a prespecified confidence level. The latter result has obvious policy implications for 
monitoring discriminatory industries for equal opportunity compliance, if the wage gaps are indeed interpretable as 
reflecting discrimination. 

The basis of the empirical exercise is a sample from the March 1988 Current Population Survey. There are 
 14 industries selected, and a total of 53,669 individuals. The number of individuals per industry differs across 

industries, so this is essentially an unbalanced panel. A regression equation is estimated for which the dependent 
variable is log wage, while the explanatory variables are a large number of demographic variables (including 
variables representing educational and employment backgrounds), plus 13 dummy variables for industries and 14 
interactions between the industry dummies and a dummy variable for gender. We view this basically as a data-
descriptive model; Fields and Wol used a similar specification. The wage gap  is defined as the coefficient of the 
interaction between the dummy for gender and the dummy for industry j. Because of the logarithmic specification, 
the measure of relative non-discrimination is actually  
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Table VI gives the MCB results, for the 95% confidence level. These are the results from general MCB, 
since the covariance structure of the  did not support standard MCB. The set S of potentially best industries 
contained six members: Personal services; Transportation, communication and public utilities; Professional and 
related services; Business and repair service; Mining; and Agriculture, forestry and fisheries. While the point 
estimates of relative non-discrimination  ranged from 0.838 to one, the MCB intervals for all industries had an 
upper bound of one. That is, at the 95% confidence level, the possible range of the value of the relative non-
discrimination parameter may be one for every industry. Even with an extremely large sample 
 

 
 
size there is much uncertainty in the ranking of the wage gaps, and differences in the measured discrimination levels 
across different industries may be nothing more than statistical noise. 
 

6. CONCLUSIONS 
This paper has provided an introduction to multiple comparisons with the best (MCB) for an audience of economists 
and econometricians, and has given some examples of its use. Our examples deal with the frontier production 
function (or efficiency measurement) problem, where MCB is very naturally applicable, and with the estimation of 
labour market wage gaps. However, we believe that MCB has other uses in economics. One potential application 
that comes to mind is the cross-country comparison of growth rates. Arie Kapteyn reports (personal communi-
cation) using MCB to construct confidence intervals for differences in intercepts in welfare expenditure functions, 
with municipalities in the Netherlands as the cross-sectional unit of observation. We expect that numerous similar 
applications may exist. 

It is interesting to speculate about the possible connections between construction of confidence intervals 
and the point estimation problem. In the frontier production function literature, the point estimate of 

 It is clear that this estimate is biased upward, since  is biased upward as an estimate of 
 How to correct this bias is a challenging question. An intriguing fact is that the MCB confidence 

interval for  is not centred on the above point estimate, and in that sense implicitly recognizes the bias 
inherent in the max operation. Edwards and Hsu (1983) suggest the midpoint of the MCB confidence interval as a 
point estimate, and argue but do not prove that it should be less biased than the usual point estimate. This idea bears 
further investigation. 

The MCB literature also includes so-called non-parametric intervals, based on Wilcoxon statistics. These 
avoid the normality assumption, and may be useful when we do not wish to assume the normality of the errors and 
when T is small enough that asymptotic normality is not relevant for  Some empirical experience with these 
procedures would also be useful. 
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