
Syracuse University
SURFACE
Electrical Engineering and Computer Science
Technical Reports College of Engineering and Computer Science

11-1995

Using PASSION System on LU Factorization
Haluk Rahmi Topcuoglu
Syracuse University

Alok Choudhary
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

Part of the Computer Sciences Commons

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for
inclusion in Electrical Engineering and Computer Science Technical Reports by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

Recommended Citation
Topcuoglu, Haluk Rahmi and Choudhary, Alok, "Using PASSION System on LU Factorization" (1995). Electrical Engineering and
Computer Science Technical Reports. 143.
https://surface.syr.edu/eecs_techreports/143

https://surface.syr.edu?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/143?utm_source=surface.syr.edu%2Feecs_techreports%2F143&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-95-4

Using PASSION System on LU Factorization

Haluk Topcuoglu and Alok Chaudhary

November, 1995

School of Computer and Information Science
Syracuse University

Suite 2-120, Center for Science and Technology
Syracuse, New York 132.44-4100

Technical Report SU-CIS-95-4

Using PASSION System on LU Factorization

Abstract

Haluk Topcuoglu and Alok Choudhary

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244-4100

December 18, 1995

Parallel I/0 subsystems are added to massively parallel computers in order to lessen I/0 bottleneck to some

extent. Up to now, a few number of parallel software systems have been designed and implemented to assist

programmers in 1/0 intensive applications; PASSION is one of them. By providing parallel I/0 support at the

language, compiler and run-time level, PASSION system explores the large design space of parallel systems. The

target of this paper is to show the performance benefits of using PASSION I/0 libraries at runtime in comparison

with using conventional parallel 1/0 primitives for high performance parallel 1/0 in LU factorization kernel, a

very widely used scientific kernel.

1

1 Introduction

Many supercomputing applications, like Grand Challenge problems, are extremely complex and require significant

amount of processing time and data. Processing performance of multiprocessor systems has grown two or three

orders of magnitude over the past decade and while memory density doubles every two years. However, techno

logical advances on 1/0 can not catch the performance improvements of multiprocessor systems; therefore 1/0

system is a bottleneck in modern high performance systems and it limits the overall system performance.

Grand Challenge applications [1] require 500Mbytes to 500Gbytes of data storage. However, all the data

required by these programs can not fit in main memory and needs to be stored on disks. These applications

usually implemented in a way that at any time only a portion of it resides in memory (in-core) and the rest

resides on secondary storages (out-of-core). Checkpointing is another reason that parallel programs require 1/0.

Applications that run for long hours may be stopped several times because of system failures or user requests.

Storing the intermediate state at those points and restarting from the intermediate results require large volume of

1/0.

The performance of 1/0 systems highly depends on data distribution and data management policies. Up to

now a few number of systems have been designed and some of them have been implemented to assist programmers

for 1/0 intensive applications. PASSION [2] (Parallel and Scalable Software for Input-Output) is one of these scarce

systems that provides software support for 1/0 intensive out-of-core loosely synchronous problems. PASSION

system provides software support for parallel 1/0 at the compiler, run-time and file system levels. This system

also relieves the user from doing explicit low-level tedious work; user is only required to supply the portions of

the file to be read or written. In order to show the performance benefits of the PASSION system, we are in the

process of using PASSION run-time library for I/0 in several real parallel applications or their templates. LU

factorization, a widely used scientific kernel in the solutions of linear systems, is the application that was examined

and implemented both using PASSION and without using PASSION version, in order to show the performance

advantageous of PASSION system.

The rest of the paper is organized as follows. Out-of-core computation model in PASSION is explained in

2

Section 2. Section 3 describes LU factorization. Implementation issues are discussed in section 4. We discuss

performance results on Intel Paragon in Section 5, followed by the conclusions.

2 Out-of-core Computation Model in Passion

PASSION (Parallel and Scalable Software for Input-Output) is aimed to supply software support for parallel 1/0

on distributed memory parallel computers. Compiler, runtime and file system support is provided by the PASSION

runtime library. The interface uses collective 1/0, which increases 1/0 efficiency by cooperating the processors.

With the PASSION system, user is released from the burden of using explicit operations and tedious works.

Grand challenge applications require large data set that can not fit into memory for the entire duration

of a run. These applications are usually implemented in a way that large amount of data resides on secondary

storages, which is not in-core but out-of-core; and at any time only a portion of it resides in memory. Out-of-core

implementations of applications are not common since the implementations are tedious and the performance is very

poor. PASSION supports two placement models for storing and accessing data: Local Placement Model(LPM)

and Global Placement Model (GPM). Input-Output of data in these models are user-transparent and it is handled

automatically by the PASSION Library [2].

• Local Placement Model: Global data array of the application is divided into smaller local arrays. Each

local array belongs to a different processor and stored in a separate file called the Local Array File {LAF)

of that processor. Each processor explicitly reads from or writes into its own Local Array File. LAF of each

processor is stored on the logical disk of that processor. At any time only a portion of local array can be

stored in main memory. The portion of the local array which is in the main memory is called the In-Core

Local Array (ICLA). During a run, parts of the Local Array File are fetched into a ICLA where the in-core

computations are performed and ICLA is stored back to the appropriate locations in the Local Array File.

• Global Placement Model: In this model the global array is stored in a single file called the Global Array

File. No local arrays are created as in the Local Placement Model. There is a single global array on the disk.

3

PASSION runtime system automatically fetches the appropriate portion of each processor's local array from

the global array file.

Each model has both advantages and disadvantages onto the other one. The advantage of the Global

Placement Model is to save the cost of initial local array creation phase required in the Local Placement Model.

Its disadvantage Placement Model is that each processor's data may not be in a continuous manner; which results

in a higher I/0 latency time. However, this drawback can be overcome to a large extent by using collective I/0.

In this paper, Global Replacement Model was chosen as the data access and storage strategy for the given LU

factorization application.

3 L U Factorization

LU factorization [5] of a given n x n matrix is the matrix multiplication of unit lower triangular matrix L and

non unit upper triangular matrix U. If partial pivoting is performed then

PA=LU

where P is the permutation matrix which represents the accumulation of all pivots required for stability. If the

factorization phase is completed, Ax = b linear system can be solved by means of a forward followed by a backward

substitutions. phases:

Ly = Pb and U x = y

Substitution phase is trivial and do not require as much I/0 as in the factorization phase, therefore we concen

trated on only the LU factorization kernel in this paper.

In-core LU factorization can be implemented using two main methods: direct LU factorization [5] and block

LU factorization [6]. Direct LU factorization algorithm given in Figure 1 modifies all columns to the right after

scaling a column with its pivot element. In this algorithm, lower triangular part of matrix A (with unit diagonal)

gives the L matrix; and upper triangular part of matrix A gives the U matrix.

4

DO i = 1 ton -1

DO j = i + 1 ton

I* Update the pivot column *I
A(j, i) = A(j, i)IA(i, i)

END DO

DO j = i + 1 ton

k = i + 1 ton

/* Update the reduced part of the matrix *I
A(j,k) = A(j,k)- A(i,k).A(k,j)

END DO

END DO

END DO

Figure 1: Sequential Version of Direct LU factorization

It is also possible to organize the LU factorization so that matrix operations become the dominant part, as

in the Block LU factorization. In block LU , matrix is partitioned as follows

where Au is a r x r matrix, A12 is a r x (n-r) matrix, A21 is a (n-r) x r matrix, and A22 is a {n-r) x (n-r)

matrix, r is a blocking parameter, and n is the size of each dimension of the original matrix.

Block LU algorithm firstly computes the LU factorization for An, i.e, An = LnUu. Now we have both

£ 11 and U11 parts. The next step is to solve the following two triangular systems. Figure 2 shows all steps of the

recursive block LU factorization.

Both direct LU and block LUcan be used for out-of-core LU factorization. In the out-of-core version, when

the columns to the right are not in the memory, their modification is postponed until the slab containing them

is read into memory. One approach is to read and update all remaining slabs in every column factorization step.

Another alternative is that when the slab is in memory , each processor must read the columns on the left to

5

Compute LU factorization for Au, i.e Ln Uu = Au.

Solve triangular system LuU12 = A12-

Overwrite A12 with U12 matrix.

Solve triangular system L21Uu = A21-

Overwrite A21 with U21 matrix.

Update A22 = A22- L21U12 and recursively compute A22-

Figure 2: Recursive Version of Block LU factorization

obtain the data which is required to update the postponed operations. In this paper, Direct LU implementation

with the former update approach was used in the implementations.

4 Implementation

LU factorization has been implemented on Intel Paragon (L38) machine at Caltech JPL Lab. The Paragon L38

consists of 512 computing nodes, 6 source nodes, 21 MIO nodes and 3 HIPPI network nodes that are configured

as a two dimensional mesh with 16 rows and 36 columns. Intel i860 XP microprocessor was used in the computing

nodes, which has a peak performance of 75 MFlops. Disk subsystem consists of 21 MIO nodes and a RAID

controller.

In the factorization, the matrix entries were distributed to the processors using a row-cyclic decomposition

(as shown in Figure 3), in order to fully support load-balancing. I/0 distribution is a column-block distribution.

Figure 3b shows the distribution of a 16 x 16 matrix onto 4 processors. ICLA size is 4 x 4 and therefore total

matrix can be read in 4 I/0 operations by all processors. In the implementation, in order to decrease the total

number of bytes transferred per I/0 operation, number of rows in ICLA matrix is decreased by one in every 4

steps; since number of nodes equals to 4. In every 4 steps all nodes factor their current row as shown in Figure 3b.

LU factorization has been implemented both using PASSION runtime library and using conventional paral

lel I/0 calls, in which low-level operations have been implemented explicitly. In latter, direct file access strategy

was used. Access pattern of PASSION version was based on collective I/0 strategy, where requesting processors

6

0 ·-!~- _I_ J. _I_ _I_ .1-L _L.J_L

"'
I I I I I I I I I

fllooi:i -~- T -~- -~- T -r -r,-r
NODE 1 I _._ J. _I_ _I_ .L_L -L.l-L

12
I I I I I I I I I I I I

.J_L_I_ _I_J. _1_ _I_ .1 _I _ _ I_.J_L

5
I I I I I I I I I I I I

"""'1-t--.- -1--t--1- -1- ~ -t- -t--t-t-
NODE2 9 I I I I I I I I I I I I .-.-.- -~-·-~- -.-.-.- -~-·-· 13

2 _tct.A_ I I I I I I I I I
I I I -~-·-~- -~-·-~-

-~-I-~-

NODE
6 -4- -1- -1- ... -1- -1-4 -I- -1--l-1-

10 tfop~~ I I I I I I I I I

-~-·-~-
-~-I-~- -~-,-.

14

3 I I I I I I I I I I I I -,-r-.- -~-r-~- -~- T -~- -r-,-r
7 ..J-L-1- _,_ .L -•- -1- .J. -L- -~...1-L

II I I I I I I I I I I I I -,-r-,- -~- T -~- -~- T -r -r-,-r
15

SLAB 1 SLAB2 SLAB3 SLAB4

SLAB 1 SLAB 2 SLAB 3 SLAB 4

Figure 3: Distribution of a 4x4 matrix on 4 processors

cooperate in reading and writing data in an efficient manner.

Pseudocode for the Paragon implementation is shown in Figure 4. The communication primitives, csend (for

sending data to one or more nodes) and crecv (for receiving data), were used in the following parts of the code:

• Partial Pivoting. In that part, two subroutines are used for the implementation. LocaLPivot subroutine is

the subroutine for finding the pivot element of each processor; GlobaLPivot subroutine is a binary-exchange

routine which takes order O(log P) to find out the global pivot element. After the call to GlobaLPivot

routine, every node gets the pivot element and its owner.

• Exchange the pivot row and the current reduced row.

• Broadcast pivot row to all processors. Each slab requires its pivot row portion, in order to update the slab.

Storage type of the input matrix was considered both row-major and column-major. Therefore for each

matrix size there are four test cases:

• conventional version with row _major storage

• conventional version with column_major storage

• PASSION version with row _major storage

7

• PASSION version with columnJnajor storage

Passion_globaLread and Passion_globaLwrite routines handle the required 1/0 operations in the application;

whereas in the conventional versions these calls were implemented explicitly by read_from_file and write_into_file

routines. When the read_from_file routine is called, it sets the seek pointer to the given offset, with the lseek

command. The offset value is the beginning address of the ICLA in each processor. After the pointer is set to the

appropriate offset, ICLA data is read from the file with an synchronous read command, cread. Then the data is

copied into ICLA with an efficient memory copy command, memcpy. In write_toJile routine, seek pointer is set

in a similar manner and then ICLA is damped into file with a synchronous write command, cwrite.

For the 1/0 routines in conventional version using row-major storage, seek pointer is set in every row of ICLA;

i.e, for a 4 x 4 ICLA there are 4 lseeks in both read_fromJile and write_toJile routines. However in column-major

order there are two options: either seek pointer will be set for each item in the ICLA and then they will be copied

one by one; or seek pointer will be set for each column as in the row-major case, but they will be moved to their

places in ICLA, one-by-one. Since it is clear to see that both methods of conventional version for column-major

storage will give worse results than row-major storage, only conventional version with row-major storage was used

as part of the test case.

8

DO j=1 to n-1

/* Update column j *I
Calculate the cWTent slab number (in which column j exists)

Get the slab containing column j from GAF into ICLA. (CALL Passion_Global_Read).

I* Local pivot calculation *I
pivotm = max I I C LA(i, j) I where i : begin_[C LA..col-+endJ C LA_col

I* Global pivot calculation in log P steps using binary exchange approach *I
pivotglobal =max pivot; where i : 0-+ no.nf Jlodes- 1

IF (mynode is the owner of the pivot element) THEN

BROADCAST the pivot element to the other nodes

ELSE

RECEIVE pivot element from its owner.

DO currenLslab= iniLslab to no_of..slabs

I* Update all slabs of the node m (for column j) *I
Get the cWTent..slab from GAF into ICLA. (CALL Passion_Global_Read).

IF (cWTent..slab is the initial_slab) THEN

/* Update pivot column (in all nodes) and store results in a vector *I

ICLA(k,j) = ICLA(k,j)lpivot9 lobal

updatecolumn(k) = ICLA(k,j)

IF (mynode is the owner of the pivot element) THEN

BROADCAST the pivotrow to the other nodes

ELSE

RECEIVE receive pivotrow and store it in a vector called updaterow .

/* Update ICLA and restore it into GAF *I
DO k=begin_ICLA_row to end_ICLA_row

DO l=begin_ICLA..col to end_ICLA_col

ICLA(k, l) = ICLA(k, l)- updaterow(k) * updatecol(l)

END DO

END DO

Write the cWTent..slab from ICLA into GAF. (CALL Passion_Global_ Write).

END DO

END DO

Figure 4: Node Program for LU factorization

9

5 Results

We implemented the algorithms described above on Intel Paragon at Caltech, using C programming language with

Paragon's communication primitives. PASSION run-time library was loaded with the help of compiler switches.

In the experiments, matrix size varies from 128 x 128 to 512 x 512. For each input matrix, ICLA size is changed

from 16 x 16 to 64 x 64. In each test case, timings were recorded after 10 runs, deleting the best and the worst

ones and averaging the remaining.

Figure 5 shows how Collective I/0 is implemented in PASSION. Data matrix is distributed on three proces

sors. In collective 1/0 implementation, bounding box, i.e., current slab the of the matrix which will be read by

processors, is distributed equally among processors. Processors will read their assigned parts and then they will

collectively exchange data in order to get their actual part. Figure 5a is for column-major storage where the first

bounding box exactly fits the first slab from the file; therefore all read data is used, none is wasted. However in

row-major storage collective I/0 reads more unused data than used ones, in each step; which means PASSION

LU implementation for row-major storage will be worse than column major storage (Figure 7 and Figure 8). The

shaded regions in Figure 5 show the first part which will be read by each processor.

Figure 7, and Figure 8 compares the I/0 performance of Passion (for both row and column-major storage)

and Conventional implementation (for row major only) of LU algorithm on 128 x 128 and 256 x 256 matrices,

respectively. Row-major alternative of conventional version was not used as a comparison case because of the

reasons explained in page 8. We observe that LU factorization using PASSION runtime library (for a column

major stored file) performs much better than the conventional implementation. The difference becomes larger if

number of processors used is increased; since Collective I/0 (as in PASSION version) gives better results for large

processor grid than a small one.

10

1 2 3

1 1

2 2

3 3

SLAB 1 SLAB 2 SLAB 1 SLAB 2

Figure 5: Collective 1/0 portions for column-major storage on the left, row-major storage on the right.

Matrix ICLA Nodes 1/0 Conventional V. PASSION {row) PASSION (column)

Size Size Used Operations 1/0 Time Total Time 1/0 Time Total Time 1/0 Time Total Time

128x128 16x16 8 1150 2462.12 2516.45 3573.75 3588.98 743.15 763.16

128x128 32x32 4 638 1294.02 1314.74 1568.43 1574.60 794.9 800.51

128x128 64x64 2 382 724.64 731.21 1398.82 1406.4 891.4 896.96

256x256 16x16 16 4350 20670.01 21181.76 30011.11 30118.45 2801.09 2869.38

256x256 32x32 8 2302 10693.57 10812.22 14873.35 14854.12 3054.54 3094.05

256x256 64x64 4 1278 5579.87 5624.84 7882.23 7898.50 3423.97 3440.06

Figure 6: Timing of the LU Factorization

11

3500

3000

2500
I/0 Time

2000

1500

1000

Conventional (R) -
PASSION (R) · · · -
PASSION (C) -

.........................

500~--~--~--J---~--~--~--~--~--~--~

35000

30000

25000

20000
I/0 Time

15000

10000

5000

0

15 20 25 30 35 40 45 50 55 60 65
ICLA size

15

Figure 7: I/0 Timing for 128 x 128 matrix size

20 25

Conventional (R) -
PASSION (R) · · · -
PASSION (C) -

30 35 40 45 50 55 60 65
Number of Processors Used

Figure 8: I/0 Timing for 256 x 256 matrix size

12

References

[1] del Rosario M., Chaudhary A., High-Performance 1/0 for Massively Parallel Computers, IEEE Computer,

March 1994.

[2] Chaudhary A., Bordawekar R., Harry M., Krishnayer R., Ponnusamy R., Singh T., and Thakur R., PASSION:

Parallel and Scalable Software for Input-Output. Technical Report SCCS-636, NPAC, Syracuse University,

September 1994.

[3] Bordawekar R., Chaudhary A., Kennnedy K., Koelbel., Palenczny M., A Model and Compilation Strategy

for Out-of-Core Data Parallel Programs.

[4] Thakur R., Bordawekar R., Chaudhary A., Compiler and Runtime Support for Out-of-Core HPF Programs,

Proc. of gth ACM International Conference on Supercomputing, Manchaster, England, July 1994.

[5] Golub G., Loan C., Matrix Computations, Second Edition, The John Hopkins University Press, Baltimore

and London, 1993.

[6] Womble D., Greenberg D., Riesen R., Wheat S., Out of Core, Out of Mind: Practical Parallel 1/0.

13

	Syracuse University
	SURFACE
	11-1995

	Using PASSION System on LU Factorization
	Haluk Rahmi Topcuoglu
	Alok Choudhary
	Recommended Citation

	SU-CIS-95-04_001c
	SU-CIS-95-04_002c
	SU-CIS-95-04_003c
	SU-CIS-95-04_004c
	SU-CIS-95-04_005c
	SU-CIS-95-04_006c
	SU-CIS-95-04_007c
	SU-CIS-95-04_008c
	SU-CIS-95-04_009c
	SU-CIS-95-04_010c
	SU-CIS-95-04_011c
	SU-CIS-95-04_012c
	SU-CIS-95-04_013c
	SU-CIS-95-04_014c

