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Bubble Raft Model for a Paraboloidal Crystal

Mark J. Bowick, Luca Giomi, Homin Shin, and Creighton K. Thomas
Department of Physics, Syracuse University, Syracuse New York, 13244-1130

We investigate crystalline order on a two-dimensional paraboloid of revolution by assembling a
single layer of millimeter-sized soap bubbles on the surface of a rotating liquid, thus extending the
classic work of Bragg and Nye on planar soap bubble rafts. Topological constraints require crystalline
configurations to contain a certain minimum number of topological defects such as disclinations or
grain boundary scars whose structure is analyzed as a function of the aspect ratio of the paraboloid.
We find the defect structure to agree with theoretical predictions and propose a mechanism for scar
nucleation in the presence of large Gaussian curvature.

Soft materials such as amphiphilic membranes, diblock
copolymers and colloidal emulsions can form ordered
structures with a wide range of complex geometries and
topologies. Macroscopic models of ordered systems of
this type are desirable for direct visualization and ta-
ble top demonstrations, and they can be used as control
checks of theoretical predictions. In this paper, we dis-
cuss the fabrication of a paraboloidal soap bubble raft
which realizes a two-dimensional crystalline monolayer
with both variable Gaussian curvature and a boundary.

Some 60 years ago Bragg and Nye used bubble rafts
to model metallic crystalline structures [1]. A carefully
made assemblage of bubbles, floating on the surface of a
soap solution and held together by capillary forces, forms
an excellent two-dimensional replica of a crystalline solid,
in which the regular triangular arrangement of bubbles
is analogous to the close packed structure of atoms in
a metal [2]. Feynman considered this technique to be
important enough that the famous Feynman lectures in
physics include a reproduction of the original Bragg-Nye
paper in its entirety [3]. Bubble rafts can be made easily
and inexpensively, equilibrate quickly, exhibit topologi-
cal defects such as disclinations, dislocations and grain
boundaries, and provide vivid images of the structure of
defects. Bubble raft models have been used to study two-
dimensional polycrystalline and amorphous arrays [4],
nanoindentation of an initially defect-free crystal [5], and
the dynamic behavior of crystals under shear [6]. Beyond
these advantages, rotating the soap solution with bubbles
on the surface provides a flexible playground for creating
crystalline order on a nearly perfect paraboloid.

The interplay between order and geometry has been in-
tensively studied in many systems, including large spher-
ical crystals [7], toroidal hexatics [8], both crystals and
hexatics draped over a Gaussian bump [9, 10], and
paraboloidal crystals [11]. Topological defects are essen-
tial in understanding the crystalline order in a curved
two-dimensional manifold. In some cases (e.g. the
sphere) the topology requires that a certain minimum
number of defects be present in the ground state. For a
two-dimensional Riemannian manifold M with boundary
∂M , a discrete version of the Gauss-Bonnet theorem for

any triangulation of M reads

Q =
∑

i∈M

(6 − ci) +
∑

i∈∂M

(4 − ci) = 6χ , (1)

where ci is the coordination number of vertex i and χ is
the Euler characteristic. The quantity qi, M = 6 − ci is
the disclination charge for a site i in the interior and mea-
sures the departure from perfect triangular order. The
analogous quantity on the boundary is qi, ∂M = 4 − ci.
Q thus represents the total disclination charge. For crys-
tals on the 2−sphere (χ = 2), Q = 12, while for crystals
on the 2−torus (χ = 0), Q = 0. For the disk topology
relevant for our experiment, χ = 1 and the total discli-
nation charge Q = 6. Provided we restrict ourselves to
the energetically preferred minimal q = ±1 disclinations,
we see that any paraboloidal crystal must have at least
six +1 disclinations [12].

In the regime of a sufficiently large number of parti-
cles, the isolated disclinations required by the topology
are unstable to grain boundary “scars”, consisting of ar-
rays of tightly bound 5 − 7 pairs radiating from an un-
paired +1 disclination. The existence of scars, first pre-
dicted in the context of spherical crystallography [7] and
later observed experimentally in colloidal suspensions on
spherical droplets [13, 14], has become one of the funda-
mental signatures of dense geometrically frustrated sys-
tems. The possibility of a coexistence of isolated defects
and scars was also pointed out [11] as a consequence of
a variable Gaussian curvature in both frustrated and un-
frustrated systems.

Calling z the height of the surface above the xy plane, a
paraboloid is straightforwardly parametrized by the func-
tion z(r) = h

R2 r
2, where r is the polar distance on the

xy plane, h the height of the paraboloid and R the max-
imum radius. In order to provide a position-independent
notion of curvature, it is convenient to introduce the pa-
rameter κ = 2h/R2 representing the normal curvature of
the paraboloid at the origin. For a rotating fluid in a
cylindrical vessel κ = ω2/g, where ω is the angular ve-
locity of the vessel and g the gravitational acceleration.

To make the bubble rafts, we pump air through a nee-
dle into soapy water. Because the larger bubble sizes
we prefer are most easily made when the vessel is still,
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FIG. 1: (color online) Lateral and top view of a computer reconstruction of two paraboloidal rafts with κ1 ≈ 0.15 cm−1 (left)
and κ2 ≈ 0.32 cm−1 (right). The number of bubbles is N1 = 3813 and N2 = 3299 respectively. The color scheme highlights
the 5−fold (red) and 7−fold (blue) disclinations over 6−fold coordinated bubbles (yellow).

we first make the bubbles and only later spin the ves-
sel to make the paraboloid (cf. Bragg and Nye [1], who
spun their system in order to generate smaller bubbles
but stopped the spinning to look at the bubbles on a flat
surface). To image the bubbles, we mount a CCD digital
camera on the top of the vessel, with lighting from a ring
around the (clear) vessel to eliminate glare. The camera
rotates along with the whole system so that the shutter
speed is unimportant in imaging the bubbles. We use a
second camera to find the aspect ratio of the paraboloid.
We equilibrate the system and eliminate stacking of bub-
bles by imposing small perturbations of the angular fre-
quency to mimic the role of thermal noise. The vessel has
radius R = 5 cm; the height of paraboloids varies from
h = 0–4 cm. The bubble diameter, extracted from the
Delaunay triangulation of our images, is a = 0.84(1) mm
with monodispersity ∆a/a ≈ 0.003. The normal curva-
ture κ of the paraboloid at the origin varies from 0–0.32
cm−1. In addition to the flat disk, we observe two differ-
ent curvature regimes: small curvature κ1 ≈ 0.15 cm−1

and high curvature κ2 ≈ 0.32 cm−1.

Figure 1 shows a computer reconstruction of two bub-
ble rafts with these κ = κ1, κ2. We extract two di-
mensional coordinates from the images with a brightness
based particle location algorithm [15]. Data sets are then
processed to correct possible imprecisions and finally De-
launay triangulated. We choose to exclude from the tri-
angulation the first 3–4 bubble rings formed along the
boundary of the cylindrical vessel, where the sharp con-

cave meniscus due to the surface tension combined with
the native curvature of the paraboloid was observed to
produce a stacking of bubbles in a narrow double layer
surrounding the perimeter of the vessel.

To characterize the order of the crystalline raft, we
measure the translational and orientational correlation
functions g(r) and g6(r). The former gives the prob-
ability of finding a particle at distance r from a sec-
ond particle located at the origin. The function is nor-
malized with the density of an equivalent homogeneous
system in order to ensure g(r) = 1 for a system with
no structure. Interactions between particles build up
correlations in their position and g(r) exhibits decay-
ing oscillations, asymptotically approaching one. For
a two-dimensional solid with a triangular lattice struc-
ture the radial correlation function is expected to ex-
hibit sharp peaks in correspondence with the sequence
r/a =

√
n2 + nm+m2 = 1,

√
3, 2, 2

√
3 . . . while the

amplitude of the peaks decays algebraically as r−η with
η = 1/3 [16] (dashed line in Fig. 2). Within the preci-
sion of our data, the positional order of the paraboloidal
crystals assembled with the bubble raft model reflects
this behavior, although more accurate measurements are
required in order to clarify a possible dependence of the
exponent η on the curvature.

The orientational correlation function g6(r) is calcu-
lated as the average of the product 〈ψ(0)ψ∗(r)〉 of the
hexatic order parameter over the whole sample. For
each bubble (labeled j) that has two or more neighbors,
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FIG. 2: (color online) Translational and orientational corre-
lation functions (g and g6, respectively) for rafts with (a,b)
κ ≈ 0.32 cm−1, a = (0.8410±0.0025) mm, and (c,d) κ ≈ 0.15
cm−1, a = (0.9071 ± 0.0037) mm. All the curves are plotted
as functions of r/a, where r is the planar distance from the
center and a is the bubble radius. The envelope for the crys-
talline solid decays algebraically (dashed line), while the ori-
entational correlation function approaches the constant value
0.8.

ψj(r) = (1/Zj)
∑Zj

k=1
exp(6iθjk), where Zj is the num-

ber neighbors of i and θjk is the angle between the j − k
bonds and a reference axis. One expects g6(r) to decay
exponentially in a disordered phase, algebraically in a
hexatic phase and to approach a non zero value in the
case of a crystalline solid. In the systems studied we find
that g6(r) to approaches value 0.8 in the distance of 5–6
lattice spacings.

Of particular interest is the structure of the grain
boundaries appearing in the paraboloidal lattice for dif-
ferent values of the curvature parameter κ. Grain bound-
aries form in the bubble array during the growing process
as a consequence of geometrical frustration. As noted,
any triangular lattice confined in a simply connected re-
gion with the topology of the disk is required to have a
net disclination charge Q = 6. Each disclination has an
energy associated with long-range elastic distortion of the
lattice and a short range core-energy. While the former
is responsible for the emergent symmetry of a geomet-
rically frustrated crystal, the latter plays the role of the
energy-penalty required for the creation of a single discli-
nation defect. Although dependent on the interparticle
interactions, and so different from system to system, the
disclination core-energy is generally much smaller than
the elastic energy, especially in the case of a bubble array
where the particle-particle interaction is dominated by
hard-core repulsion. Defects are then favored to prolifer-
ate throughout the crystal. In the flat plane, however, the
elastic stress due to an isolated disclination is extremely
high and defects are energetically favored to cluster in the

form of a grain boundary consisting of one-dimensional
arrays of tightly bound (5, 7)−fold disclinations pairs. In
a planar confined system, grain boundaries typically span
the entire length of the crystal, but if a non-zero Gaus-
sian curvature is added to the medium, they can appear
in the form of scars carrying a net +1 topological charge
and terminating in the bulk of the crystal.

Prominent examples of grain boundaries are visible in
the two lattices shown in Fig. 1. For a gently curved
paraboloid (with κ ≈ 0.15 cm−1), grain boundaries form
long (possibly branched) chains running from one side to
the other and passing through the center. As the cur-
vature of the paraboloid is increased, however, this long
grain boundary is observed to terminate in the center
(see Fig. 3). For R = 5 cm, the elastic theory of de-
fects predicts a structural transition at κc = 0.27 cm−1

in the limit of large core energies [11]. In this limit the
creation of defects is strongly penalized and the lattice
has the minimum number of disclinations required by the
topology of the embedding surface. In a low curvature
paraboloid (κ < κc) these disclinations are preferentially
located along the boundary to reduce the elastic energy
of the system. When the aspect ratio of the paraboloid
exceeds a critical value κc(R), however, the curvature
at the origin is enough to support the existence of a
5−fold disclination and the system undergoes a struc-
tural transition. In the limit of large core energies, when
only six disclinations are present, such a transition im-
plies a change from the C6v to the C5v rotational symme-
try group. Together with our experimental observations,
these considerations point to the following mechanism for
scar nucleation in a paraboloidal crystal. In the regime
in which the creation of defects is energetically inexpen-
sive, geometrical frustration due to the confinement of
the lattice in a simply connected region is responsible for
the formation of a long side-to-side grain boundary. But

FIG. 3: (color online) Example of terminating grain boundary
scar for a system with large Gaussian curvature. The scar
starts from the circular perimeter of the vessel and terminates
roughly in the center carrying a net +1 topological charge.
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FIG. 4: (color online) Delaunay triangulation of a portion of
the paraboloidal lattice with κ ≈ 0.32 cm−1 near the center
(left) and the boundary (right). Red and blue lines repre-
sent the geodesics directed toward first and second neighbors,
respectively.

when the curvature of the paraboloid exceeds a critical
value (dependent on the radius of the circular bound-
ary), the existence of a +1 disclination near the center
is energetically favored. Such a disclination serves as a
nucleation site for 5− 7 dislocations and the side-to-side
grain boundary is replaced by a terminating center-to-
side scar. For intermediate curvature the theory also
predicts a regime of coexistence of isolated disclinations
and scars due to the variable Gaussian curvature. For
dense systems (i.e. number of subunits larger than a few
hundred for our geometry), the coexistence is suppressed
because the embedding surface will appear nearly flat at
the length scale of a lattice spacing. The bulk of the
system is thus populated uniquely by scars. Our data
confirm this prediction.

Away from the center of the paraboloid, we have com-
pared the crystalline directions with the geodesics start-
ing from a given reference point (see Fig. 4). Near
the boundary, the directions of both first and second
neighbors (in red and blue respectively), are reason-
ably aligned with the geodesics. The alignment becomes
decorrelated after roughly five lattice spacings with the
decorrelation more pronounced in the radial direction
(maximal principal curvature) where the normal curva-
ture is largest. As one gets closer to the center, the
geodesic correlation becomes weaker and almost com-
pletely vanishes along the radial direction. Along the
angular direction (minimal principal curvature), on the
other hand, the crystalline axes appear aligned with the
geodesic directions.

In this paper we have demonstrated a visualizable ex-
ample of a non-Euclidean, non-spherical crystal. Despite
the simplicity of our technique we found good agreement
with the elastic theory of defects in curved space. Bub-
ble rafts are shown to be effective models for the study of
non-Euclidean crystallography. Bubble assemblages pro-
vide a large number of particles (order 103) with very
simple and inexpensive equipment. They give access to
details that are necessarily unavailable to continuous field

theories and provide system sizes that are prohibitive for
numerical simulations.

Future experiments might explore varying the shape
of the vessel to investigate the role of the boundary on
the bulk order. This setup is also suitable for studying
dynamical phenomena such as the glide of dislocations in
the relaxation process as well as the formation of vacan-
cies and interstitials (e.g., following Ritacco et al. [17],
looking at a cascade of bursting bubbles on a paraboloid).

We acknowledge David Nelson for stimulating dis-
cussions and Philip Arnold of the Syracuse University
Physics Department machine shop for assisting in the
construction of the experimental apparatus. The work
of MJB, LG and HS was supported by the NSF through
grants DMR-0219292 and DMR-0305407, and through
funds provided by Syracuse University. The work of CKT
was supported in part by NSF grant DMR 0606424.
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