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Abstract 
 

My project focuses on the V2 cells of the zebrafish spinal cord. The V2 
cells are an unusual class of spinal cells because they all originate from 
molecularly indistinguishable p2 progenitor cells in the spinal cord. However, as 
these cells become post-mitotic and differentiate, they start to express different 
transcription factor genes that allow them to initially develop into two sets of 
molecularly distinct cells. As differentiation continues, at least one more class of 
molecularly distinct cells develops.  

Just as in other vertebrates, in zebrafish the V2 cells differentiate into at 
least two functionally distinct classes of cells, specifically, the vsx1 (also called 
chx10) and vsx2 expressing V2a cells and the gata2, gata3, and scl expressing 
V2b cells. The V2a and V2b cells in turn differentiate into excitatory 
Circumferential Descending interneurons (CiDs) and inhibitory Ventral Lateral 
Descending interneurons (VeLDs) respectively. Work on other model organisms 
also suggests that V2b cells may subdivide into V2b and V2c cells. Previous work 
by other authors suggests that two genes specifically expressed by V2c cells are 
sox1 and foxn4. 

My research has investigated whether transcription factor genes scl and/or 
gata3 are necessary for proper V2b cell development. I have used scl and gata3 
mutants and GFP transgenic lines, to start to determine if the loss of function of 
scl and gata3 affects: 

• The expression of genes downstream of scl and gata3 
• The morphology of VeLDs 
• The number of V2b cells in the spinal cord  

 
Additionally, I have investigated whether sox1a, sox1b and foxn4 are: 

• Expressed in the V2 domain 
• Affected by the loss of scl or gata3 function  
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Introduction 
 

The neuronal circuitry of the spinal cord is an integral component of the 

vertebrate central nervous system, because it coordinates sensory inputs as well as 

the movement of an organism. Proper formation and communication of the spinal 

cord neurons is vital because addition of new neurons or regeneration of existing 

neurons is almost impossible. However, little is known about the processes that 

regulate the formation and proper connections of spinal cord neuronal circuitry. 

Neurons are a fundamental unit of the nervous system. A neuron is an 

electrically excitable cell that processes and transmits information through 

electrical and chemical signaling. There are various types of neurons. However, in 

this study I focus primarily on interneurons. Interneurons are a special group of 

neurons that usually form connections between other neurons. Unlike motor or 

sensory neurons whose soma (cell body) or axon may be outside the spinal cord, 

the entire length of the interneuron is contained in the spinal cord. Studying spinal 

interneurons is important because they compose the majority of neurons in the 

spinal cord. By understanding the processes that allow interneurons to form and 

function properly, we can gain a better understanding of how the neuronal 

circuitry of the spinal cord works.  

 Previous studies have demonstrated that neuronal circuitry is highly 

conserved in vertebrates, especially among zebrafish, xenopus, and mouse 

(Goulding and Pfaff, 2005; Higashijima et al., 2004b; Lewis, 2006; Li et al., 2004; 

Roberts, 2000). This is significant because it argues that data collected from 

zebrafish will be applicable to other vertebrates, such as humans. For my 
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research, zebrafish embryos were used for their oviparous and transparent 

qualities. Unlike mouse, whose embryos must be extracted from the mother and 

the mother euthanized, zebrafish embryos are easily accessible because eggs are 

laid outside of the mother’s body. Additionally, the zebrafish has a functional 

spinal cord as early as 24 hours post fertilization. This fast development of the 

zebrafish spinal cord is another reason why zebrafish is an ideal model organism 

to study interneuron specification and function. 

 Within the 

developing spinal cord, 

different dorsal/ventral 

progenitor domains in 

the medial region of the 

spinal cord give rise to 

distinct classes of post-

mitotic cells (Fig.1).  As 

the progenitor cells 

become post-mitotic 

(stop dividing) and move 

towards the lateral edges 

of the spinal cord, they 

express different sets of 

transcription factors. 

Transcription factors are 
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Fig 1 A general vertebrate schematic of a cross-section of the 
spinal cord with all the progenitor domains but only the post-
mitotic V2 cells shown. Progenitor domains are medial. As 
cells stop dividing and start to differentiate they move lateral. 
dp1 to dp6 are different dorsal progenitor domains in the 
spinal cord. p0, p1, p2, and p3 are ventral progenitor 
domains. pMN is the progenitor domain for motor neurons. 
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proteins that bind to DNA and regulate the expression of other genes. Thus 

transcription factors are important players in spinal cord development and 

interneuron specification because they are thought to specify the neuronal 

characteristics that cells acquire as they differentiate (Lewis, 2006).  

Typically, within the aminote spinal cord, each progenitor domain 

differentiates into one type of post-mitotic cell. However, the V2 cells are unusual 

because they do not follow this pattern. The V2 cells originate from molecularly 

indistinguishable p2 progenitor cells in the spinal cord. As the p2 progenitor cells 

become post-mitotic and differentiate, they start to express different transcription 

factor genes that allow them to initially develop into two sets of molecularly 

distinct cells, V2a and V2b cells (Batista et al., 2008; Del Barrio et al., 2007). As 

differentiation 

continues, at least 

one more class of 

molecularly 

distinct cells 

develop, V2c cells 

(Fig. 2) (Hargrave 

et al., 2000; Li et 

al., 2005; Panayi et 

al., 2010).  

               

  

Fig. 2 Schematic of p2 cell differentiation 
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V2 cells have been shown to exist in mouse, chick and zebrafish (Batista 

et al., 2008; Del Barrio et al., 2007; Karunaratne et al., 2002; Muroyama et al., 

2005; Smith et al., 2002; Zhou et al., 2000). In zebrafish and mouse, V2 cells 

differentiate into at least two functionally distinct classes of cells, specifically, the 

vsx1 (used to be called chx10) and vsx2 expressing V2a cells and the gata2, gata3, 

and scl expressing V2b cells (Batista et al., 2008; Del Barrio et al., 2007; Kimura 

et al., 2006; Karunaratne et al., 2002; Muroyama et al., 2005; Smith et al., 2002; 

Zhou et al., 2000). In zebrafish, V2a and V2b cells differentiate into excitatory 

Circumferential Descending interneurons (CiDs) and inhibitory Ventral Lateral 

Descending interneurons (VeLD), respectively (Batista et al., 2008; Bernhardt et 

al. 1990; Kimura et al., 2006). Both CiDs and VeLDs have a teardrop-shaped 

soma with an axon that runs ipsilaterally (extends on the same side of the embryo 

as the cell body) (Fig. 3). However, the VeLDs are, at least initially, more 

ventrally located in the spinal cord.  

	  
	  
	  
	  
	  

 

 

Dorsal	  

Ventral	  

CiD	  

VeLD	  

KA	  

Fig. 3 Schematic of zebrafish embryonic spinal interneurons taken 
from Lewis & Eisen (2003). Solid lines show ipsilateral axons (axons 
that extend on the same side of the embryo as the cell body). Dashed 
lines show contralateral axons (axons that cross the midline and 
extend on the opposite side of the embryo to the cell body).  
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Within the zebrafish spinal cord, the excitatory CiDs contribute to escape 

movements whereas the exact role of VeLDs is unknown (Ritter et al., 2001; 

Kimura et al., 2006). The most fascinating aspect of the excitatory CiDs and 

inhibitory VeLDs is that they express different neurotransmitters even though 

they originated from molecularly identical p2 cells (Batista et al., 2008; Bernhardt 

et al. 1990; Kimura et al., 2006). By understanding how the p2 cell can 

differentiate into molecularly distinct interneurons with different functional 

characteristics, we can gain a better understanding of spinal cord development. 

It is already known that zebrafish and mouse V2b cells express gata2, 

gata3 and scl transcription factor genes (Batista et al., 2008; Karunaratne et al., 

2002; Muroyama et al., 2005; Smith et al., 2002). Additionally, previous findings 

in zebrafish and mouse data suggest that gata2 is expressed before scl and gata3 

(Batista et al., 2008; Peng et al., 2007). However in the zebrafish, gata2, gata3 

and scl are also expressed by another set of interneurons, Kolmer-Agduhr (KA) 

cells (Batista et al., 2008). KAs are a type of interneuron that is located in the 

most ventral part of the zebrafish spinal cord and derived from the p3 domain 

(Fig. 1). Consistent with work from Batista et al., 2008, work from Yang et al., 

2010 has suggested that gata2 is expressed upstream of scl and gata3, in the KA 

interneurons of zebrafish (Fig. 4). For this paper, it is important to note that V2bs 

and KAs express many of the same genes and genes that are expressed solely in 

V2bs were not known when I began my research. 
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Notch signaling is a necessary pathway for proper V2a and V2b cell 

generation (Batista et. al., 2010; Peng et al., 2007). In the absence of Notch 

signaling, inhibitory V2b cells do not form and excess excitatory V2a cells are 

produced (Batista et. al., 2010). In mouse, overexpression of Scl has been shown 

to be sufficient to bypass the loss of Notch signaling and specify the V2b 

interneuron cell fate (Peng et al., 2007). Essentially Peng et al., 2007 was able to 

overexpress Scl in Notch inhibited embryos (DN-MAML), which rescued the 

V2b cell-fate program (Peng et al., 2007). These data are fascinating because they 

suggest that Scl is sufficient, in this context, to drive the V2b cell fate. 

 In mouse, loss of function of Gata3 in gata3 mutants leads to the onset of 

severe deformities in spinal cord development (Moriguchi et al., 2006). Yet the 

exact role of gata3 in the mouse spinal cord is unclear. Even more uncertain is the 

role of scl and gata3 in the zebrafish spinal cord. While scl zebrafish mutants 

exist and have been analyzed to determine the role of scl in the hematopoietic and 

Fig. 4 Schematic outlining the regulatory interactions in zebrafish KA’’ cells. There are 
two types of KA interneurons, KA’ and KA’’. KA’ are more dorsal than KA’’ in the 
spinal cord. Genes are expressed in bold font. The arrows demonstrate the order of 
expression. shh is not expressed by KA’’ cells but plays a role in the induction of 
ventral cells in the spinal cord. Note that gata2 is expressed before tal1 (also called scl) 
and gata3. Scheme was taken from Yang et al., 2010.  
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endothelial development of the zebrafish, the role of scl in the spinal cord is 

unknown (Dooley et. al., 2005). Furthermore, zebrafish gata3 mutants were only 

recently isolated and they have yet to be used in the study of the spinal cord. In 

this project, I will use scl and gata3 mutants to determine the roles of scl or gata3 

in the differentiation and speciation of zebrafish V2b interneurons.   

 With the use of in situ hybridization, work from Panayi et al., 2010 not 

only showed that sox1 expressing cells were found in the V2 region, but that these 

cells do not co-express chx10 or gata3, arguing that sox1 expressing cells are a 

different type of V2 cell that they called V2c cells. Their results showed that in 

null sox1GFP/GFP embryos, there was a reduction of sox1 expressing cells (V2c 

cells). More importantly, they demonstrated that the remaining sox1 expressing 

cells moved closer to the p3 domain and expressed gata3. Thus, Panayi et al., 

2010’s data suggested that for at least some V2c cells, sox1 is necessary to 

maintain its cell fate. Using sox1 as a marker for V2c cells, Li et al., 2005 used 

Foxn4-Cre;R26R-YFP to determine that all foxn4 positive cells co-expressed 

sox1. Thus, Li et al., 2005 showed that foxn4 also labels V2c cells. Data from 

these studies support the hypothesis that p2 cells differentiate into multiple cell 

classes (Batista et al., 2008; Del Barrio et al., 2007; Li et al., 2005; Panayi et al., 

2010).   

 Although there have been studies that analyzed scl and gata3 roles in 

other model organisms, a study analyzing the roles of scl and gata3 in the 

zebrafish spinal cord is novel. In this thesis, I will determine if scl and/or gata3 

are necessary for proper V2b cell development. With the use of scl and gata3 
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mutants and GFP transgenic lines, I will determine if the loss of function of scl or 

gata3 effects the expression of genes co-expressed in V2b cells or in other cells, 

the morphology of VeLDs, and the number of V2b cells in the spinal cord. 

Additionally, I will determine if sox1a, sox1b or foxn4 are expressed in the V2 

domain and if they are affected by the loss of function of scl and/or gata3.  

 
 
 
 



10	  

Materials and Methods 
 
Zebrafish lines 
 

Zebrafish (Danio rerio) embryos were obtained from wild-type  (AB, TL, 

or AB/TL hybrids); identified heterozygous carriers for sclt21384 (also called tal1; 

Bussmann et al., 2007; kindly received from Marga Varga at UCL) or identified 

carriers heterozygous for gata3sa0234 (Stemple Lab, Sanger Institute). scl mutants 

have a nonsense mutation at amino acid position 183 (Bussmann et al., 2007). The 

gata3sa0234 allele was created with zinc finger nucleases (personal communication 

Steve Harvey and Derek Stemple). This resulted in an insertion that caused a 

frame shift mutation at amino acid 318. GFP-labeled embryos were obtained from 

Tg (vsx2:GFP) (Higashijima et al., 2004b) or Tg(gata1:GFP) (Kobayshi et al., 

2001) carriers or scl;Tg(vsx1:GFP) or scl;Tg(gata1:GFP) carriers created from a 

cross of identified heterozygous carriers of scl and Tg(vsx2:GFP) or 

Tg(gata1:GFP) fish. Embryos were staged according to Kimmel et al., 1995 by 

number of somites, or hours post-fertilization at 28.5 °C.  

scl mutants are lethal recessive and not viable after 4 days post 

fertilization, therefore all scl embryos were obtained from an in-cross of scl 

heterozygote fish. scl heterozygote fish were identified by random in-crosses. 

Two scl heterozygote fish produce embryos where 25% of the embryos are scl 

homozygous mutants (exhibit heart edema phenotype).  

Unfortunately, gata3 mutant embryos cannot be identified by their 

morphology; therefore PCR and DNA sequencing were used to identify 

heterozygous gata3 fish.  
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Fixation 

Embryos for in situ hybridization were fixed at 24 hours post fertilization 

(hpf), whereas embryos for antibody staining were fixed at 48 hpf. Embryos for 

fixation were placed in 1 mL of 4% paraformaldehyde (PFA) in phosphate-

buffered saline (PBS) overnight at 4°C. Embryos were then washed four times in 

PBS. They were washed twice for 5 minutes and twice for 10 minutes. Embryos 

for in situ hybridization were dehydrated with 1 mL of methanol, whereas 

embryos for antibody staining were left in 1 mL of PBS. Embryos for in situ 

hybridization were stored at -20°C and embryos for antibody staining were stored 

at +4°C. 

 
Preparation of RNA probes 
 

in situ hybridization probes were prepared using the following templates: 

gata2 (Read et al., 1998), gata3 (Neave et al, 1995); sox1b (Okadu et al., 2006); 

sox1a (Okadu et al., 2006); foxn4 (Li et al., 2010). A mixture of gad65, gad67a, 

gad67b was used to create the gad mixture (Higashijima et al., 2004a; 

Higashijima et al., 2004b). An equal mixture of islet1 and islet2 was used to 

create the islet 1/2 mixture (Appel et al., 1995).  

RNA in situ hybridization probes was made from DNA templates. 10µg of 

DNA was linearized by digestion using appropriate restriction enzymes. The 

restriction enzyme EcoRI was used for digestion of gata2, gata3, gad65, gad67a, 

gad67b, islet1 and islet 2, whereas XhoI was used for sox1a and sox1b and Hind 

III for foxn4. The linearization of the DNA was confirmed on 1% agarose gels. 

Linearized DNA was treated with proteinase K (0.05 µg/µl) for 30 minutes at 
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37°C. The treated DNA was extracted using equal volumes of phenol-chloroform 

and phenol-chloroform-isoamyl. The DNA was precipitated with 1/10 volume 4M 

sodium chloride and 2 volumes of ethanol, then placed at -20°C overnight. The 

next day, the DNA was spun at 13300 rpm for 30 minutes. The supernant was 

removed and replaced with 1mL of 80% ethanol: 20% distilled water (dH20) and 

spun for 10 minutes. The ethanol supernant was removed and the precipitant was 

air-dried. Once dried, the precipitant was resuspended in 14 µL of dH20.  

To make RNA probes, 40 units of appropriate RNA polymerase, 0.5 µL 

RNase inhibitor, 2 µL transcription buffer and 2 µL of digoxigenin (dig) NTP mix 

were added to 1µg of template DNA and water to make a final volume of 20 µL. 

RNA polymerase T3 was used for foxn4, gad65, gad67a, gad67b, islet1, islet 2, 

sox1a and sox1b, whereas T7 was used for gata2, gata3. This reaction was 

incubated for 2 hours at 37°C. The synthesized RNA was treated with 40 units 

DNase I inhibitor, and then precipitated with 2.5 µL of LiCl and 75 µL pre-chilled 

ethanol. RNA was resuspended in 100 µL RNase-free water with 40 units RNase 

Inhibitor. Confirmation of translation was made on 1% agarose gels. The RNA 

was then mixed with 400 µL of fish hybridization buffer (cheap hybridization 

buffer; 500 µg/ml yeast RNA; 50 µg/ml heparin; 200 µl of 1 M citric acid for pH 

of 6.0) and stored at -20°C.  

 
 
in situ hybridization and immunohistochemistry 
 

Embryos fixed for in situ hybridization were rehydrated through a series 

of 10 minutes 75% methanol: 25% distilled water (dH20), 50%, methanol: 50% 
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dH20 and 25% methanol: 75% dH20 washes then a phosphate buffered saline + 

0.1% tween (PBT) wash.  Embryos fixed at 24 hours were incubated with 

proteinase K at a concentration of 10µg/mL for 24 minutes, then refixed with 4% 

PFA for 30 minutes, and washed again with PBT. The embryos were then washed 

for 5 minutes in 50% chloroform: PBT, 100% cheap hybridization buffer (50% 

formamide; 5X SSC; 0.1% tween), and then fish hybridization buffer. Embryos 

were placed in a 70°C oven for 2 hours pre-hybridization before they were 

incubated overnight with 25 µL of RNA probes in 1 mL fish hybridization buffer. 

After incubation, embryos were washed twice for 5 minutes with cheap 

hybridization buffer, three times for 20 minutes with 2x SSC (3M NaCl and 

0.03M sodium citrate), twice for 20 minutes with 0.2x SSC, once for 20 minutes 

with 0.1X SSC, and three times with PBT at 70°C. Embryos were then washed 

one time with PBT at room temperature. 1 mL of block solution (1X PBT; 2 

mg/ml BSA; 5% sheep serum; 1% DMSO) was added to the embryos for one 

hour. RNA hybridization was detected using 1 mL of anti-dig  (Roche) antibody 

diluted in 1/2000 blocking solution. This block solution was removed and eight 

washes of PBT for 15 minutes each, were done. The embryos were then left in 

PBT overnight. Then three NTMT (0.1M NaCl, 0.05M MgCl, 0.1M Tris pH 9.5, 

0.1% tween) washes for 5 minutes washes were. 20 µL of NBT/BCIP (Roche) in 

1 mL of NTMT was used to stain the embryos. Staining was stopped with two 

quick and three 5 minute NTMT buffer washes. Following the NTMT washes 

three 15 minute washes of PBT were done. 

For immunohistochemistry, fixed embryos were permeabilized for 5 
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minutes in distilled water, 7 minutes in acetone at -20°C, 5 minutes in distilled 

water and then PBT. 1% BSA was added to PDT (1x PBS; 1% DMSO; 0.1% 

Triton) to make antibody blocking solution.  The antibody blocking solution was 

added to embryos and the embryos were left to rock on a shaker for one hour. The 

antibody blocking solution was replaced with 0.4 µL of Rabbit anti-GFP (1/1000) 

in 1 mL of blocking solution and left overnight at +4°C. Two quick washes and 

eight washes of 15 minutes with PDT followed. PDT was then replaced with 0.4 

µL of Goat anti-Rabbit Alexa Fluor 488 (1/500) in 1 mL of antibody blocking 

solution and left overnight at +4°C. After secondary incubation, two quick washes 

and eight washes of 15 minutes with PDT were performed.  

 
Preparation for photo analysis 
 

Once stained, in situ embryos were washed in 30% glycerol: 70% PBS, 

50% glycerol: 50% PBS, 70% glycerol: 30% dH20. Since there is no detectable 

scl or gata3 mutant morphological phenotype at 24hpf, embryos were sorted by 

their in situ hybridization staining pattern. Approximately 25% of the embryos 

had a distinct pattern with the exception of foxn4, islet1/2 and sox1a. The best 

representative embryos of the in situ hybridization staining were selected. The 

embryos were deyolked and placed on glass coverslips. 

Antibody stained embryos were placed in DABCO for preservation of 

antibody staining and stored at +4°C. 
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Cell counts and row numbers 
 

Cell counts were made in the region of the spinal cord between the 6th  and 

10th  somite. All results are an average of 5 different embryos unless otherwise 

stated. Error bars show standard deviation. Cell row numbers are assigned ventral 

to dorsal.  

 
Photographs 
 

Photographs were taken using Zeiss Axio Imager M1 microscope (DIC 

images) and processed using Adobe Photoshop CS.  
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Results 
 
gata3 may be downstream of scl 
 

Both scl and gata3 are known to be expressed by V2b cells (Batista et al., 

2008; Karunaratne et al., 2002; Kimura et al., 2006; Li et al., 2005; Muroyama et 

al., 2005; Smith et al., 2002). As mentioned in the introduction, in zebrafish, KA 

cells also express both of these genes.   Work from Batista et al., 2008 and Yeng 

et al., 2010, suggested that scl is expressed before gata3 in the V2b and KA cells. 

Additionally, preliminary findings from the Lewis Lab suggest that scl maybe 

required for gata3 expression (Jacobstein, 2008) (Fig. 6).  

 

Fig. 5 Depiction of a cross section of the zebrafish spinal cord (green box). Black 
box shows the lateral view of a zebrafish embryo at 18.5 hpf. Red dashes show the 
dorsal and ventral boundaries of the spinal cord. All in situ hybridization photos are 
a lateral view of the spinal cord. 

Fig. 6 Expression of gata3 in presumed scl siblings and mutants. Lateral views of 
trunk showing anterior to the left. Scale bar = 50 µm. White-dashed line marks 
the most ventral part of the spinal cord. Data was taken from Jeff Jacobstein’s 
thesis (Jacobstein, 2008). Expression of gata3 is severely reduced in presumed scl 
mutants when compared to scl sibs. Demonstrates that scl may be required for the 
expression of gata3.  

presumed scl sibs (WT + Het) presumed scl mutants  
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With the use of in situ hybridization in scl siblings (WT+ Het) and 

presumed mutants, my results also demonstrated a reduction in the number of 

gata3 expressing cells at 24 hours post fertilization (hpf) in presumed scl mutants 

(Fig. 7 and Chart 1). There appears to be a significant reduction of gata3 

expressing cells in the V2 region, but retention of gata3 expressing cells in the 

KA region (most ventral domain of spinal cord). This data supports the hypothesis 

that scl is required for proper gata3 expression in V2b cells. 

28 embryos were analyzed from the gata3 in situ hybridization 

experiment. Out of the 28 scl embryos, 6 were thought to be scl mutants based on 

their in situ hybridization cell staining. The presumed scl mutants made up 21% 

of the 28 embryos, which is close to the expected frequency of scl mutants to scl 

siblings (25%). The genotype of the scl embryos could not be confirmed 

phenotypically since scl mutants look identical to scl siblings at 24 hours post 

fertilization. To determine if the frequency of presumed scl mutants was accurate, 

I performed a Chi-square test. The null hypothesis was that there would be no 

significant difference between the observed and expected presumed scl siblings 

and observed and expected presumed scl mutants (Fig. 7). The p value was close 

to 0.70 (x2 =0.19048), which means that there is a 70% probability that the 

difference between the observed and the expected is just due to chance. Therefore, 

I accepted my null hypothesis and determined that the deviation between the 

observed and expected values is small enough that chance alone may account for 

it. 
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A Student t-test was performed to determine if the number of cells 

expressing gata3 was significantly different between presumed scl siblings and 

mutants. The null hypothesis was that there wouldn’t be a statistically significant 

difference between the number of gata3 expressing cells in presumed scl siblings 

and mutants. The p value of the Student t-test was 0.00497, which is less than 

0.05. This suggests that the number of cells expressing gata3 is statistically 

significant in presumed scl siblings and mutants. 

 

 

 

 

 

	  

	  
 

 

If there was more time, I would have extracted DNA from the embryos’ 

heads to PCR and DNA sequence. PCR and DNA sequencing would have 

allowed me to determine the genotype of each of the presumed scl siblings and 

mutants. By knowing the embryos’ genotype, I would have been able to compare 

the in situ hybridization phenotypes and embryos’ genotypes. I would have 

expected to see a strong and clear correlation between the phenotypes and 

genotypes of the presumed scl siblings and mutants.  

	  

 gata3 
 scl Sibs (WT + Het) scl Presumed Mutants 

40
0x

 

A. 
 

 

B. 
 

 

 

Fig 7. Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. 
Scale bar= 50 µm.  White-dashed line indicates the most ventral part of the 
spinal cord. Expression of gata3 in presumed scl sibs and mutants. There 
appears to be a reduction in the number of gata3 expressing cells in 
presumed scl mutants. 
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sox1a expression is unaffected by loss of function of scl or gata3  
 

Previous findings from Panayi et al., 2010 determined that in mouse sox1 

was expressed in the V2 domain and was not co-expressed by other V2 markers, 

such as chx10 and gata3. Furthermore, Panayi et al., 2010 discovered that in 

absence of sox1, V2c cells became V2b cells. This data suggests that sox1 is 

necessary for regulating the V2b versus V2c fate choice.  

The zebrafish orthologs for mouse sox1 are sox1a and sox1b. In this 

experiment, I wanted to determine if sox1a was expressed in the V2 domain. If 

sox1a was expressed in the V2 domain, I would test if the loss of function of scl 
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Chart 1. Cell count of gata3 in presumed scl sibs and mutants.  All cell counts are 
from a 5-somite length of spinal cord adjacent to somites 6–10. Values shown are the 
mean from 5 different embryos from one in situ hybridization experiment. Error bar 
represents the standard deviation. Standard deviation was ± 4.9699 for presumed scl 
sibs and ± 1.5811 for presumed scl mutants. Student t-test was performed to 
determine if the results were significantly different. The p value was 0.00497, which 
is less than 0.05. This shows that the number of cells expressing gata3 in presumed 
scl sibling and mutant embryos was significantly different. 	  
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n=5	  
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or gata3 affected the expression of sox1a. 

 in situ hybridization was used to determine the expression of sox1a in the 

spinal cord of 24 hpf wild-type, scl (sibling and mutant) or gata3 (sibling and 

mutant) embryos. sox1a expression was found in the V2b and KA region of the 

spinal cord (Fig 8). Although 25% of the scl or gata3 embryos were expected to 

be mutants, there was no phenotypic difference found. 12 embryos from scl or 

gata3 in situ hybridization experiments were analyzed. I wanted to confirm that 

sox1a expression was the same amongst these embryos. There was no phenotypic 

difference amongst these embryos, suggesting that neither scl nor gata3 is 

required for sox1a expression. These results were consistent with Panayi et al., 

2010 findings that sox1 GFP/+ expressing cells did not co-express gata3. 

The next logical step for this project would be PCR and DNA sequencing. 

PCR and DNA sequencing would determine the genotype of the scl or gata3 

sibling and mutant embryos. With the knowledge of embryos’ genotype, further 

analysis of sox1a expression in these mutant lines could be done.  

 

sox1a 
 Wild-type scl embryo gata3 embryo 

40
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A. 
 

 

B.  
 

 

C.  
 

 

 

Fig 8.  Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dashed line indicates the most ventral part of the spinal cord. Photos are representative 
of sox1a expression in the wild-type, scl and gata3 embryos. There was no apparent 
phenotypic difference amongst the scl or gata3 embryos. This suggests that neither scl nor 
gata3 is required for proper sox1a expression. Two wild-type, one scl and one gata3 in situ 
hybridization experiments were analyzed. 12 embryos from the scl or gata3 in situ 
hybridization experiments were analyzed.  
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sox1b expressing cells are reduced due by the loss of function of scl  
 

in situ hybridization and 24 hpf embryos from a cross of scl heterozygous 

carriers were used to determine the expression of sox1b in the spinal cord. As 

expected, sox1b was expressed in the V2 and KA region of the spinal cord (Fig 

9). However, there was a phenotypic difference found amongst the scl embryos. 

There appeared to be a reduction of sox1b expressing cells in rows 2 and 3 of the 

spinal cord (V2 domain) (Fig 9).  

Three in situ hybridization experiments were analyzed to determine the 

expression of sox1b in scl embryos. 5 out of 32, 7 out of 26, and 7 out of 34 

embryos were thought to be scl mutants. The ratio of presumed scl mutants to the 

total number of embryos were 16%, 27%, 21%, respectively. Therefore, two out 

of the three experiments approximately exhibited scl mutants at the appropriate 

frequency of 25%.  

sox1b 
scl sibs scl mutants 
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A. 
 
 

 

B. 
 
 

 
Fig 9. Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dasheed line indicates the most ventral part of the spinal cord. Expression of sox1b in 
presumed scl sib and mutant embryos. There appears to be a reduction in sox1b expressing cells in  
the presumed scl mutant embryos. In the presumed scl mutant embryo, expression is localized in 
the KA region. This suggests that scl is required for proper sox1b expression. Three in situ 
hybridization experiments were analyzed. 

Row	  1	  
Row 2 

Row 3	  
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A Chi-square test of the three in situ hybridization experiments was 

performed to determine if the frequency of presumed scl sibling and mutants was 

accurate. The null hypothesis was that there would be no significant difference 

between the observed and expected presumed scl siblings or presumed scl 

mutants (Fig. 9). The p value was close to 0.30 (x2= 0.92753), which is greater 

than the 0.05. Therefore, I accepted my null hypothesis and determined that the 

deviation between the observed and expected values is small enough that chance 

alone may account for it.  

A Student t-test was used to determine if there was significant difference 

in the total cell counts of the presumed scl sibling and mutant embryos. 15 

presumed scl siblings and 10 presumed scl mutants were counted from the three 

in situ hybridization experiments. My null hypothesis was that there wouldn’t be a 

significant difference between the combined cell counts of the presumed scl 

siblings and mutants. The p value for of the combined cell counts were 0.00055.  

This p value is less than 0.05, suggesting that there is a significant difference 

between the total number of sox1b expressing cells in the presumed scl sibling 

and mutant embryos (Chart 3).  

Additionally, a Student t-test of the three in situ hybridization experiments 

was performed. The Student t-test was used to determine if there was a significant 

difference in the number of sox1b expressing cells in scl sibling and mutant 

embryos by cell rows. My null hypothesis was that there wouldn’t be a significant 

difference between the number of sox1b expressing cells in the rows of presumed 

scl sibling and mutant embryos. The p value for row 1 and 3 was less than 0.05, 
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suggesting that there is a significant difference in the number of cells expressing 

sox1b in these cell rows (Table 1). However, the p value of row 2 was greater 

than 0.05, suggesting that there isn’t a significant difference in the number of cells 

expressing sox1b in row 2 of the presumed scl sibling and mutants.  

Chart 2 shows the cell count of the presumed scl sibling and mutant 

embryos by rows. Chart 3 shows the total cell counts of the presumed scl sibling 

and mutant embryos.  

Student t-test of the presumed scl mutants and siblings- Table 1 
Cell counts from Row 1-

3 
p value Significance/ No 

significance 
Cell counts from row 1 0.03131 Significance 
Cell counts from row 2 0.0602	   No Significance 
Cell counts from row 3 5.54954E-‐06	   Significance 
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Chart 2. Cell count of sox1b in presumed scl sibs and mutants.  All cell counts are 
from a 5-somite length of spinal cord adjacent to somites 6–10. Values shown for scl 
siblings are the mean from 5 embryos from each in situ hybridization experiment 
(n=15). Values shown for scl mutants are the mean of 3/4 embryos from three 
different in situ hybridization experiments (n=10). Error bar represents the standard 
deviation. Standard deviation for the scl sibs and mutants for rows 1: ± 2.58751 and 
4.06065 ±; row 2: ± 2.46306 and ±2.94392; row 3: ± 1.99523 and ± 1.813529. A 
Student t-test was performed for each in situ hybridization experiment to determine 
there was a significant difference in the number of sox1b expressing cells in the 
presumed scl siblings and mutants. The p values were 0.03131, 0.0602, 5.54954E-06. 
These p values for row 1 and 2 are less than 0.05, demonstrating significant 
difference between the number of sox1b expressing cells in scl sibling and mutant 
embryos. 
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To check the reproducibility of my results, I preformed two Student t-tests 

to show that there was no significant difference in the number of sox1b expressing 

cells in the presumed scl sibling or mutants. The p values from these tests were 

greater than 0.05, demonstrating that that the staining and the counting of cells 

was reproducible for each in situ hybridization experiment (Table 2 and Table 3).  

 

 

 

Chart 3. Average cell count of sox1b in presumed scl sibs and mutants.  All cell 
counts are from a 5-somite length of spinal cord adjacent to somites 6–10. Values 
shown for scl sibling and mutant embryos an average cell count from rows 1-3.  
Standard deviation was ± 3.067494712for presumed scl sibs and ± 2.726414006 for 
presumed scl mutants. A Student t-test was performed to determine if the number of 
sox1b expressing cells between the presumed scl siblings and mutants was 
significantly different. The p value was 0.00055, which was less than 0.05. This 
shows that the results were significantly different.  
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Student t-test of the presumed scl siblings-Table 2 
in situ hybridization 

experiments 
p value Significance/ No 

significance 
scl siblings from in situ 

experiments 1 and 2 
0.17939	  

 
No significance 

scl siblings from in situ 
experiments 1 and 3 

0.70306	  
	  

No significance 

scl siblings from in situ 
experiments 2 and 3 

0.413340	  
	  

No significance 

 

Student t-test of the presumed scl mutants siblings-Table 3 
in situ hybridization 

experiments 
p value Significance/ No 

significance 
scl mutants from in situ 

experiments 1 and 2 
0.13323	  

  
No significance 

scl mutants from in situ 
experiments 1 and 3 

0.32805	  
	  

No significance 

scl mutants from in situ 
experiments 2 and 3 

0.36986	  
	  

No significance 

Data from these results show that there is a reduction of sox1b expressing 

cells in presumed scl mutants. If there were more time, I would have extracted 

DNA from the embryos’ heads to PCR and DNA sequence. PCR and DNA 

sequencing would have allowed me to determine the genotype of the presumed scl 

siblings and mutants. By knowing the embryos’ genotype, I would have been able 

to compare the in situ hybridization phenotypes and embryos’ genotypes. 

Hopefully, I should have seen a correlation between the phenotypes and 

genotypes of the presumed scl siblings and mutants.  

 

sox1b expressing cells are reduced by the loss of function of gata3 

Since the expression of sox1b was reduced by the loss of function of scl in 

scl mutant embryos, I wanted to determine if the loss of function of gata3 would 

provide the same results. in situ hybridization and 24 hpf scl sibling and mutant 
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embryos were used to determine the expression of sox1b in gata3 embryos. As 

anticipated, sox1b was expressed in the V2b and KA region of the spinal cord in 

gata3 presumed siblings (Fig 10).  

 

Within the presumed gata3 mutants, there appeared to be a reduction of 

sox1b expressing cells in rows 2 and 3 (V2 domain) (Fig 10). Two in situ 

hybridization experiments were analyzed to determine the expression of sox1b in 

gata3 embryos. 34 embryos were analyzed from one of the in situ hybridization 

experiments, where 6 of the embryos were thought to be gata3 mutants. The 

presumed gata3 mutants made up 18% of the 34 embryos, which is not close to 

the expected frequency of gata3 mutants to gata3 siblings (25%). In the other in 

situ hybridization experiment, 2 out of 15 embryos were thought to be gata3 

mutants. The presumed gata3 mutants made up 13% of the 15 embryos, which is 

not close to the expected frequency of gata3 mutants to gata3 siblings (25%). The 

number of embryos in each in situ hybridization experiment may have contributed 

to the discrepancy between the real and expected frequency of presumed mutants. 

sox1b 
 gata3 Sibs (WT + Het) gata3 mutants 
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B. 
 

 
 

Fig 10. Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dotted line indicates the most ventral part of the spinal cord. Expression of sox1b in 
presumed gata3 sib and mutant embryos. There appears to be a reduction in sox1b expressing cells 
in presumed gata3 mutant embryos. In the presumed scl mutant embryo, expression is localized in 
the KA region. This suggests that scl is required for proper sox1b expression. Two in situ 
hybridization experiments were analyzed. 
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If there were more embryos from each in situ hybridization experiment, I may 

have seen frequencies closer to 25%.  

 A Chi-square test of the two in situ hybridization experiments was used to 

determine if the frequency of observed and expected presumed gata3 sibling and 

mutants was accurate. The null hypothesis was that there would be no significant 

difference between the observed and expected presumed scl siblings or presumed 

scl mutants. The p value of the Chi-square test was close to .20, which is greater 

than 0.05 (x2=1.96560). This result suggests that the deviation between the 

observed and expected values is small enough that chance alone may account for 

it.  

A Student t-test was performed to determine if there was a significant 

difference in the number of sox1b expressing cells in the 5 presumed gata3 

sibling and 5 presumed gata3 mutant embryos. My null hypothesis was that there 

wouldn’t be a significant difference between the number of sox1b expressing cells 

in the presumed gata3 sibling and mutant embryos. The p value was less than 

0.05 (0.00182), suggesting that there is a significant difference in the number of 

cells expressing gata3 between the presumed scl sibling and mutant embryos.  

Additionally, a student t-test was performed do determine if there was a 

significant difference in the number of sox1b expressing cells in gata3 sibling and 

mutants embryos by cell rows. My null hypothesis was that there wouldn’t be a 

significant difference between the number of gata3 expressing cells in the rows of 

presumed scl sibling and mutant embryos. The p values for row 1 and 2/3 were 
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less than 0.05 (0.01578 and 0.01511), suggesting that there is a significant 

difference in the number of cells expressing sox1b in these cell rows. 	  
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Chart 4. Cell counts of 5 sox1b presumed gata3 sibling and mutant embryos.  All cell 
counts are from a 5-somite length of spinal cord adjacent to somites 6–10. Values 
shown for scl siblings are the mean from 5 embryos from each in situ hybridization 
experiment. Values shown for scl mutants are the mean of 3-4 embryos from three 
different in situ hybridization experiments. Error bars represent the standard 
deviations. Standard deviations for the gata3 sibs and mutants for rows 1: were ± 
1.67332, ± 2.16795; row 2/3 were  ±4.02492	  and ± 0.70711. Student t-test was 
performed to determine if the results were significantly different. The p value for the 
average cell counts of row 1 and row 2/3 was 0. 001578 and 0.01511, respectively. 
These p values are less than 0.05, demonstrating significant difference between the 
gata3 sibling and mutant embryos.	  

Row 1 Row 2/3 
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The data from the results show that there is a reduction of gata3 

expressing cells in presumed scl mutants. The Student t-test of the presumed 

sox1b expressing scl siblings and mutants from Chart 4 & 5 confirmed that there 

was a significant difference. 

Like the other in situ hybridization experiments PCR and DNA 

sequencing is needed to, hopefully, confirm a correlation between the phenotypes 

and genotypes of the presumed gata3 sibling and mutant embryos. This would 

also allow us to determine if some gata3 mutants were considered to be gata3 

siblings because their expression pattern was less severe. This additional 

Chart 5. Average cell count of sox1b in presumed gata3 sibs and mutants.  All cell 
counts are from a 5-somite length of spinal cord adjacent to somites 6–10. Values 
shown are the mean from 5 different embryos from two in situ hybridization 
experiment. Three embryos were from one in situ hybridization and two were from 
another. Standard deviation was ± 4.96991 for presumed gata3 sibs and ± 1.58114 
for presumed scl mutants. The p value for the average cell counts was 0.00182, which 
is less than 0.05, demonstrating significant difference between the gata3 sibling and 
mutant embryos.	  
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information would allow us to determine the correct frequency of gata3 mutants 

in each in situ hybridization experiment.  

 

 foxn4 expression is localized solely in the V2 region 

Work in mouse has suggested that a distinct class of V2 cells may express 

foxn4, V2c cells (Li et al., 2010). In my experiment, I first determined if foxn4 is 

expressed in the spinal cord of the zebrafish. Secondly, I determined if the loss of 

function of scl or gata3 affected the expression of foxn4. 

 in situ hybridization was used to determine the expression of foxn4 in the 

spinal cord. Interestingly, foxn4 was expressed solely in the V2 region of the 

spinal cord of the wild-type, scl and gata3 embryos (Fig 11). Additionally, there 

was no apparent reduction of foxn4 expressing cells in scl or gata3 embryos. Lack 

of foxn4 phenotypic variance suggests that foxn4 is not affected the by the loss of 

function of scl or gata3. This suggests that neither scl nor gata3 is required for 

foxn4 expression.   

The wild-type expression pattern of foxn4 is exciting because this is the 

first gene we have found in zebrafish that specifically labels V2b cells. In the 

future, foxn4 can be used for studies that solely want to look at V2bs without 

labeling KAs. If I were to have more time, I would have PCR and DNA 

sequenced the embryo heads of the scl or gata3 embryos to determine their 

genotypes and see if there is a subtle variance in the number of foxn4 expressing 

cells.   
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Reduction of gad expressing cells in scl and gata3 mutant embryos 
 

gad65, gad67a, and gad67b are GABAergic (inhibitory) markers that 

label GABAergic cells in the  zebrafish spinal cord. Previous work has 

demonstrated that gads (gad65, gad67a, and gad67b) are expressed by V2b 

interneurons (Batista et al., 2008; Higashijima et al., 2004). Given that gads are 

expressed by V2b cells and V2b cells co-express scl and gata3, I wondered if 

there would be a reduction of gad expressing cells in scl or gata3 mutant 

embryos. To answer this question, I used in situ hybridization and a mixture of 

RNA probes gad65, gad67a, and gad67b to look for changes in the expression of 

these genes in scl or gata3 embryos.  

 

 

 

foxn4 
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40

0x
 

A. 
 

 

B. 
 

 

C. 
 

 
Fig 11.  Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dotted line is the most ventral part of the spinal cord. Photos are representative of foxn4 
expression in the wild-type, scl and gata3 embryos. There was no apparent phenotypic 
difference amongst the wild-type, scl or gata3 embryos. This suggests that neither scl nor gata3 
is required for proper foxn4 expression. Two wild-type, two scl and one gata3 in situ 
hybridization experiments were analyzed. 	  

Row 3 
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To determine if the loss of function of scl or gata3 affected the number of 

GABAergic cells, in situ hybridization experiments were used. Two scl and two 

gata3 in situ hybridization experiments were analyzed for this paper. As expected, 

cells expressing gads were found in the V2b and KA regions as both of these cell 

types are GABAergic (Fig 12 and Chart 7) (Batista et al., 2008; Bernhardt et al., 

1992; Higashijima et al., 2004a). However in the presumed scl or gata3 mutant 

embryos, gad expression was almost exclusive to the KA region. This data 

suggests that in the absence of scl or gata3, V2b cells expressing gads are lost, 

reduced or are no longer GABAergic. This data is consistent with the Yang et al., 

2006 order of expression schematic (Fig 3) that speculates that gads may be 

expressed downstream of scl and gata3. 

To confirm that there was a reduction of gad expressing cells in the 

presumed scl or gata3 mutant embryos cell counts of rows 1-3 were done (Chart 

6 and Chart 7). 5 presumed scl siblings and mutant embryos were counted from 

the two in situ hybridizations experiment. Two embryos were counted from one in 

situ hybridization experiment and three embryos were counted from the other. 5 

gads (gad65, gad67a and gad67b) 
 scl sibs (WT + Het) scl mutants 
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Fig 12. Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dotted line is the most ventral part of the spinal cord. Expression of gad in presumed scl sib 
and mutant embryos. There appears to be a reduction in gad expressing cells in scl mutant 
embryos. In the scl mutant embryo, expression is localized in the KA region. This suggests that scl 
is required for proper gad expression. Two in situ hybridization experiments were analyzed. 
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presumed gata3 siblings and mutant embryos were counted from the one in situ 

hybridization experiment. 

The frequency of presumed scl mutants was approximately 23% (8 out of 

36 and 6 out of 27 embryos were thought to be scl mutants). A Chi-square test of 

the total cell counts was performed to determine if the frequency of presumed scl 

mutant embryos was accurate. The null hypothesis was that there would be no 

significant difference in the number of observed and expected presumed scl 

sibling or mutant embryos and gata3 sibling or mutant embryos.  The p value for 

the scl embryos were close to 0.70, which is greater than 0.05 (x2= 0.22683). This 

data suggests that the deviation between the observed and expected values is 

small enough that chance may account for it (Chart 6).	  

The frequency of presumed gata3 mutants was approximately 20% for 

each in situ hybridization (3 out of 15 and 4 out of 22 embryos were thought to be 

gata3 mutants). This frequency was a bit low in comparison to the 25% of gata3 

mutants expected. A Chi-square test was performed to determine if the frequency 

of gata3 mutant embryos was accurate. The null hypothesis was that there would 

be no significant difference in the number of observed and expected presumed 

gata3 sibling or mutant embryos.  The p value for the gata3 embryos were close 

to 0.50, which is greater than 0.05 (x2= 0.72973). This data suggests that the 

deviation between the observed and expected values is small enough that chance 

may account for it (Chart 7).	  

A Student t-test was performed to determine if there was a significant 

difference between the total cell counts of the presumed scl or gata3 siblings and 
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mutants. My null hypothesis was that there wouldn’t be a significant difference in 

the number of gad expressing cells in the presumed scl or gata3 sibling and 

mutant embryos. The p values for comparing the scl or gata3 siblings and mutants 

were 2.9073E-05 and 0.00066, respectively. These p values were less than 0.05, 

suggesting that there is likely a significant difference between the total cell counts 

of the presumed scl siblings and mutants or presumed gata3 siblings and mutants 

(Chart 6 and Chart 7). 	  

	  

	  



36	  

 

 
 

gads 
 gata3 Sibs (WT + Het) gata3 mutants 

40
0x

 

A. 
 

 

B. 
 

 
Fig 13.  Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dotted line indicates the most ventral part of the spinal cord. Expression of gad in presumed 
gata3 sib and mutant embryos. There appears to be a reduction in gad expressing cells in gata3 
mutant embryos. In the gata3 mutant embryo, expression is localized in the KA region. This 
suggests that gata3 is required for proper gad expression in V2b cells. Two in situ hybridization 
experiments were analyzed. 

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

40	  

45	  

#	  
of
	  c
el
ls
	  e
xp
re
ss
in
g	  
ga
ds
	  

gads	  expression	  in	  	  scl	  embryos	  	  

gads-‐	  Scl	  Sibs	  

gads-‐	  SCL	  MU	  

Chart 6. Average cell count of gad in presumed gata3 sibs and mutants.  All cell 
counts are from a 5-somite length of spinal cord adjacent to somites 6–10. Values 
shown are the mean from 5 different embryos from two in situ hybridization 
experiment. Three embryos were from one in situ hybridization and two were from 
another. Standard deviation was ± 2.966479395 for presumed gata3 sibs and ± 
1.923538406 for presumed gata3 mutants. A Student t-test was performed to 
determine if the results were significantly different. The p value was 2.9073E-05, 
which was less than 0.05. This shows that the results were significantly different.	  
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Expression of islet 1/2 is unaffected by the loss of function of scl and gata3 
 

Due to the close proximity of V2 cells and motor neurons, I thought that it 

would be interesting to test if the loss of function of scl or gata3 led to an 

expansion of motor neurons. In this experiment, I used in situ hybridization and 

the RNA probes islet 1/2 (genes expressed by motor neurons) to test this question 

(Appel et al., 2005). The result of the experiment was that there were no 

phenotypic difference of cells expressing islet 1/2 in the zebrafish spinal cord of 

the scl or gata3 embryos. There were 38 embryos from the scl in situ 

Chart 7. Average cell count of gad in presumed gata3 sibs and mutants.  All cell 
counts are from a 5-somite length of spinal cord adjacent to somites 6–10. Values 
shown are the mean from 5 different embryos from two in situ hybridization 
experiment. Three embryos were analyzed from one in situ hybridization and two 
embryos were analyzed from the other. Standard deviation was ± 4.549725266 for 
presumed gata3 sibs and ± 2.701851217 for presumed gata3 mutants. A Student t-
test was performed to determine if the results were significantly different. The p 
value was 0.0006 , which was less than 0.05. This shows that the results were 
significantly different. 
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hybridization experiment and 27 from the gata3 in situ hybridization experiment. 

12 embryos were analyzed from each experiment. This data suggests that the loss 

of function of scl or gata3 does not affect motor neuron cell fate or cause V2 cells 

to transfate into motor neurons. To confirm these results, cell counts of islet 1/2 

cells are needed.  

islet 1/2 
 scl sibs  gata3 sibs 

40
0x

 

A. 
 

 

B. 
 

 
Fig 14. Lateral views of spinal cord at 24 hours. Anterior is left, dorsal is up. Scale bar= 50 µm.  
White-dotted line indicates the most ventral part of the spinal cord. There appeared to be no 
reduction of islet 1/2 expressing cells in the scl and gata3 embryos. Two in situ hybridization 
experiments were analyzed. 	  
 
 
scl loss of function affects the presence of V2b interneurons 

The gata3, sox1b and gad in situ hybridization experiments suggested that 

scl may be required for the expression of these genes. Specifically, the gata3 in 

situ hybridization experiment suggested that scl is required for gata3 expression 

in V2b cells. To determine if scl is required for the proper morphology of VeLDs 

(V2b interneurons), I used antibody staining and scl;Tg(gata1:GFP), to determine 

if the loss of function of scl affected the morphology of V2b interneurons in the 

spinal cord. Tg(gata1:GFP)  is a transgenic line that is driven by a gata1 promoter 

and  it has been shown to label gata3 expressing cells in the spinal cord (Batista et 

al., 2008). Instead of seeing a difference in axon morphology in scl -/-

;Tg(gata1:GFP) embryos, my results show a reduction or loss of GFP-labeled 
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V2b interneurons in the spinal cord. This suggests that scl is required for proper 

V2b development or maintenance. Alternatively, it could be the that scl is 

required for the proper expression of the transgene. Additionally, scl -/-

;Tg(vsx2:GFP) embryos were used to determine if the loss of function of scl may 

drive the V2b cell fate to V2a cells. Tg(vsx2:GFP) is a transgenic line that labels 

V2a cells. The data from my results showed that there was no obvious expansion 

in Tg(vsx2:GFP) expressing cells. This data suggests that loss of function of scl 

does not result in V2b cells becoming V2a cells.  

 

 

 

     

 

 

 

DIC	  picture	  of	  the	  zebrafish	  spinal	  cord	  at	  48	  hpf.	  Anterior is left, 
dorsal is up. Scale bar= 50 µm.  Red line indicates the most ventral 
part of the spinal cord. Bracket depicts the region of the spinal cord 
where the antibody staining photos were taken. Green dots are a 
depiction of where the GFP expressing interneurons would be. 	  
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Fig 15. Lateral views of spinal cord gene expression in wild-type, presumed scl+/+;Tg(gata1:GFP), 
scl-/-;Tg(gata1:GFP) and scl+/+;Tg(vsx2:GFP) embryos at 48 hours. Anterior is left, dorsal is up. 
Red line is an assumption of the most ventral position of the spinal cord. scl; Tg(gata1:GFP) 
photos are taken from two antibody staining experiments. Magnification of scl; Tg(gata1:GFP) is 
at 200x and 400x whereas scl; Tg(vsx2:GFP) is at 200x. Cells express either gata1:GFP or 
vsx2:GFP. There was no expansion or reduction of GFP transgene expressing cells in the 
scl+/+;Tg(vsx2:GFP)  embryos, whereas there was a reduction of gata1 GFP expressing cells in the 
presumed scl-/-;Tg(gata1:GFP) embryos. Better photos would have included scl;Tg(vsx2:GFP) at 
400x. 
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Discussion 
 
scl may be required for gata3 expression in V2b cells  
 

One of the objectives for this project was to determine if the loss of 

function of scl affected the expression of other genes. It is already known that scl 

and gata3 are co-expressed in the V2b cells and scl is expressed before gata3 

(Batista et al., 2008; Karunaratne et al., 2002; Kimura et al., 2006; Li et al., 2005; 

Muroyama et al., 2005; Smith et al., 2002). However, it was uncertain whether scl 

is required for the proper expression of gata3. In this study I was able to 

recapitulate preliminary data from the Lewis lab that suggested that scl is required 

for proper gata3 expression (Jacobstein, 2008). Approximately 25% of the 

presumed scl mutants had a severe reduction of gata3 expressing cells in the V2 

region. Yet, expression of gata3 in the KA region remained the same. The result 

of this experiment was not only consistent with preliminary data, but it expanded 

it. Not only was I able to suggest that there was a severe reduction of gata3 

expressing cells in the spinal cord, but I was able to obtain quantitative values.  

Unfortunately, there was not enough time to PCR and DNA sequence the 

heads of the presumed scl sibling and mutant embryos. This information would 

have allowed me to confirm that the gata3 phenotypic variance was a result of the 

embryo’s genotype.   

Future work for this experiment should include in situ hybridization using 

the RNA probe gata2, gata3 and scl.  Since gata2 is thought to be expressed 

before scl and gata3, it would be interesting to see the expression of gata2 in the 

scl or gata3 mutant embryos (Batista et al., 2008). Also, in situ hybridization 
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experiments using the RNA probe scl in scl mutants and the RNA probe gata3 in 

gata3 mutants should be done. This will help us to determine if these genes 

regulate their own expression. Lastly, an in situ hybridization of scl in gata3 

embryos will help us determine if gata3 is needed for the proper expression of scl.  

 

sox1a expression is unaffected the by the loss of scl or gata3  
 

The in situ hybridization result for sox1a in scl or gata3 embryos was 

consistent with the data from previous findings in mouse (Panayi et al., 2010).  In 

my work, the expression of sox1a seemed to be unaffected by the loss of function 

of scl or gata3. This data suggest that neither sox1b nor gata3 is required for the 

expression of sox1a. Since scl or gata3 mutant embryos could not be determined 

in this experiment, future work should include PCR and DNA sequencing. PCR 

and DNA sequencing would identify the genotypes of the scl or gata3 embryos. 

With this information, precise analysis of sox1a expression in scl or gata3 

embryos could be made. If this analysis is consistent with mine, future studies 

using, in situ hybridization, can test if sox1a labels a distinct class of V2 cells. 

Hopefully, this testing would confirm the presence of V2c cells in the zebrafish 

spinal cord.  

Loss of function of scl and gata3 reduced sox1b expressing cells  
 

The notion to test sox1b expression in the zebrafish spinal cord arose from the 

Li et al., 2010 paper, that referenced sox1as a marker for V2c cells in the mouse 

spinal cord.  Prior to my in situ hybridization experiment, there was only one 

paper that referenced sox1b expression in the zebrafish (Okadu, et al., 2006). 
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However, Okadu, et al., 2006 focused primarily on the expression of sox1b 

expression in the zebrafish’s forebrain. Based on the Panayi et al., 2010 data, I 

expected sox1a and sox1b expressing cells to be positioned in the V2 domain. 

However, I was unsure if the sox1a and sox1b would be affected by the loss of 

function of scl or gata3.  

The results of my in situ hybridization experiments showed sox1a and sox1b 

expression in the V2 domain of the zebrafish spinal cord. However, sox1a and 

sox1b expression differed because sox1b expressing cells were reduced by loss of 

function in presumed scl or gata3 mutant embryos. sox1a appeared to be 

expressed similarly to sox1 in mouse, in the sense that it was unaffected by the 

loss of function of scl or gata3. However, this cannot be determined definitely 

until double in situ hybridization experiments are performed. These in situ 

hybridization experiments should include vsx1, vsx2, gata2, gata3 and scl markers 

to determine if sox1a cells are V2a or V2b cells. If sox1a expressing cells do not 

co-express the V2a and V2b cell markers, it can be proposed that sox1a must 

label another class of V2 cells, V2c cells.  

 

scl and gata3  expressed before gads 

  The reduction of gad (gad65, gad67a, gad67b) expressing cells in the scl or 

gata3 mutants was consistent with the data from Peng et al., 2007. In Peng et al., 

2007, they showed that gad67 was downstream of scl and gata3. Since gad67 is 

in the family of gads and gad67 is downstream from scl and gata3, I expected gad 

expression to be affected by the loss of function of scl or gata3. My hypothesis 
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was proven correct by the reduction of gad expressing cells in the presumed scl 

and gata3 mutants. However, I noticed a reduction of gads mainly in the V2 

region as opposed to the KA region. One explanation for this result is that proper 

expression of scl or gata3 is not required in KAs in order for gads to be 

expressed.  

The reduction of gata1 GFP labeled cells in scl -/-;Tg(gata1:GFP), suggested 

that scl is required for proper V2b development or maintenance. Alternatively, it 

could be the that scl is required for the proper expression of the transgene.  

The in situ hybridization experiments of sox1b and gads, suggest that scl and 

gata3 are necessary for the expression of these genes. Additionally, antibody 

staining of scl -/-; Tg(gata1:GFP) suggest that scl is required for proper 

maintenance or development of VeLDs or expression of the transgene. Further 

analysis is needed to determine the role of scl in VeLD development or 

maintenance. However, it appears that proper scl function might be required for 

the presence of V2b interneurons in the zebrafish spinal cord.   

 
 
islet 1/2 is unaffected by the loss of function of  scl and gata3 
 

The study of scl or gata3’s effect on motor neurons was due to the close 

proximity of the V2 and the motor neuron domain. I wanted to test if the loss of 

function of scl or gata3 resulted in V2b cells expressing islet 1/2 (motor neuron 

markers). The result of this experiment was that there was no significant 

difference in islet 1/2 expression in scl or gata3 embryos. The lack of significant 

difference in the in situ hybridization experiments, suggests that the scl or gata3 
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siblings and mutants express islet 1/2 similarly. From these results it can be 

inferred that the loss of function of scl or gata3 does not increase the number of 

islet 1/2 expressing cells in the spinal cord.  Therefore, loss of function of scl or 

gata3 does not drive V2b cells to become motor neurons.   

 
foxn4 only labels V2 cells in the spinal cord 
 

The expression of foxn4 solely in the V2 domain was a very important 

discovery since we don’t know of any other genes that are specifically expressed 

in the V2 region and not KAs. This probe now gives us the opportunity to study 

V2 cells without the additional complications of KA interference. Future studies 

will determine what cell-type foxn4 expressing cells are. With the use of double in 

situ hybridization and the markers for V2a and V2b cells, this question can be 

answered. 
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Conclusion 

The purpose of this experiment was to analyze the roles of scl and gata3 in 

the zebrafish spinal cord interneuron specification and function. With the use of 

presumed scl and gata3 sibling and mutant embryos, I was able to determine that 

these genes do affect the gene expression of other genes. Additionally, I was able 

to propose the hypothesis that scl may affect the presence of V2b cells in the 

spinal cord. This experiment has allowed us to gain a better understanding of how 

interneurons are specified. Hopefully, future interneuron studies will help us to 

gain a better understanding of how the neural circuitry of the spinal cord specifies 

and functions. 
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Future work 
 
PCR and DNA Sequencing 

Throughout this project, the genotype of the embryos was hypothesized 

based on the staining pattern of the cells. However, we can determine the real 

genotypes of the embryos by PCR and DNA sequencing. Hopefully, a correlation 

can be made between the in situ hybridization staining pattern and the genotype of 

the embryos. Additionally, this experiment will allow us to determine the scl and 

gata3 mutants of the sox1a, foxn4 and islet 1/2 in situ hybridization experiments. 

With this knowledge, we can determine if there might be slight differences 

between the mutants and siblings and if my preliminary conclusions are 

supported. 

  
Future in situ hybridization experiments 

in situ hybridization experiments using markers for the V2a cells (vsx1 and 

vsx2) and excitatory markers (vglut1, vglut2a, and vglut2b), should also be 

another step. This experiment would help us determine if the loss of function of 

scl or gata3 causes V2b cells to become V2a cells or switch their neurotransmitter 

phenotype to Glutamatergic (excitatory).  

 

Future work with foxn4 and sox1a 

foxn4 and sox1a appeared to be unaffected by the loss of function of scl or 

gata3. Interestingly, I was able to discover that foxn4 was not expressed in the KA 

domain. Future work with these RNA probes would determine if foxn4 or sox1a 

expressing cells are V2c cells. A double in situ hybridization using V2a, V2b and 
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motor neurons markers should be used. Hopefully, there will be a lack of co-

expression with these markers, suggesting that foxn4 and sox1a label V2c cells in 

zebrafish. 

 

 Future Antibody Staining  

  The transgenic line scl+/-;gata3+/-;Tg(vsx2:GFP) was created from an in-

cross of scl+/-;Tg(vsx2:GFP) and gata3+/-.  With the use of antibody staining, this 

line could be used to determine how the loss of function of scl and gata3 affects 

the number of CiDs in the spinal cord. Hopefully, data collected from this 

antibody staining will be consistent with the scl+/-;Tg(vsx2:GFP) results, where 

there was no apparent expansion of V2a cells.  Therefore, it could be proposed 

that the loss of function of scl and gata3 does not drive V2b cells to become V2a 

cells. gata3+/-;Tg(gata1:GFP) and gata3+/-;Tg(vsx2:GFP) fish lines should also be 

created. These transgenic lines will help determine if the loss of function of gata3 

affects the morphology or presence of VeLDs.  

 

Analyzing the Swim Pattern of scl mutant embryos 

  Given that CiDs arise from V2a cells and assist in the escape movement of 

zebrafish, it would be plausible to hypothesize that VeLDs (V2b cells) may also 

assist in movement (Ritter et al., 2001). My preliminary observation of startled scl 

mutant embryos at 4 days post fertilization is that they move in a circle motion 

rather than in a straight line. This restriction of movement is most likely due to the 

weight of the heart edema or the lack of a swim bladder. However, this may also 



49	  

suggest that scl may play a role in altering VeLD’s morphology. Unfortunately 

adult scl mutants cannot be analyzed since they are lethal recessive. Only scl 

embryos younger than 5 days post fertilization can be analyzed. Differences in the 

swim pattern/movement of these embryos would suggest that VeLDs contribute to 

the movement of zebrafish. It would also suggest that scl severely alters the 

morphology of VeLDs or causes the reduction/loss of VeLDs in the spinal cord. 
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Appendix 
 
gata3 may be downstream of scl 
 

gata3	  expressed	  in	  presumed	  	  scl	  siblings	  
	   Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  

count	   20	   17	   15	   12	   25	  
avg	   17.8	   	   	   	   	  
std	   4.9699	   	   	   	   	  

 
gata3	  expressed	  in	  presumed	  	  scl	  mutants	  

	  
Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  

count	   12	   10	   13	   9	   11	  
avg	   11	  

	   	   	   	  std	   1.58114	  
	   	   	   	  Student	  t-‐

test	   0.00497	   	   	   	   	  
 

Embryos	  analyzed	  for	  gata3	  in	  situ	  hybridization	  experiments	  
	   exp	  1	   	   	  
	   scl	  sibs	   scl	  mu	   total	  number	  

real	   22	   6	   28	  
expected	   21	   7	   28	  

chi	  square	  total	   0.19048	   	   	  
 
 
sox1a expression is unaffected by the loss of function of scl or gata3 
 

sox1a	  	  

	   scl	  embryos	   gata3	  embryos	  

Analyzed	   12	   12	  
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sox1b expressing cells are reduced by the loss of function of scl  
 

sox1b expressed in presumed scl siblings 
  Row1 Row2 Row3 Total 

6-10 som      
Embryo 1  14 7 6 27 
Embryo 2  16 8 11 35 
Embryo 3  14 6 9 29 
Embryo 4  11 5 7 23 
Embryo 5  14 7 8 29 
Embryo 1  16 5 9 30 
Embryo 2  17 4 8 29 
Embryo 3  17 8 12 37 
Embryo 4  20 3 8 31 
Embryo 5  18 6 10 34 
Embryo 1  17 9 8 34 
Embryo 2  19 10 6 35 
Embryo 3  15 2 5 22 
Embryo 4  16 5 9 30 
Embryo 5  12 5 11 28 

      
average 15.73333333 6 8.466666667 30.2  

standard dev 2.46306 2.20389 1.99523   
 

 
sox1b expressed in presumed scl mutants 

  Row1 Row2 Row3 Total 
6-10 som      
Embryo 1  10 5 3 18 
Embryo 2  11 5 4 20 
Embryo 3  7 8 5 20 
Embryo 1  11 6 5 22 
Embryo 2  10 4 6 20 
Embryo 3  9 8 4 21 
Embryo 1  13 0 6 19 
Embryo 2  20 0 1 21 
Embryo 3  16 2 3 21 
Embyro 4  17 2 1 20 

      
average  12.4 4 3.8 20.2 

standard dev 4.06065 2.94392 1.813529 4.90845	  
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Embryos	  analyzed	  for	  sox1b	  in	  situ	  hybridization	  experiments	  

	   exp	  1	   	   	   exp	  2	   	   	   exp3	   	   	  

	   scl	  sibs	   scl	  
mu	  

tota
l	  

scl	  
sibs	  

scl	  
mu	  

tota
l	  

scl	  
sibs	  

scl	  
mu	  

tota
l	  

real	   27	   5	   32	   19	   7	   26	   27	   7	   34	  
expected	   24	   8	   32	   19.5	   6.5	   26	   25.5	   8.5	   34	  
Chi	  square	  

of	  t	  
0.9275

3	   	   	   	   	   	   	   	   	  

Student	  t-‐
test	   .00055 	   	   	   	   	   	   	   	  

 
 
 
 
sox1b expressing cells are reduced by the loss of function of gata3  
 

sox1b	  expressed	  in	  gata3	  siblings	  

	  
Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  

	   14	   14	   12	   13	   10	  
	   6	   11	   15	   5	   9	  
Total	   22	   25	   27	   18	   19	  
avg	   17.8	  

	   	   	   	  std	   4.96991	  
	   	   	   	   

sox1b	  expressed	  in	  gata3	  mutants	  

	  
Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  

	   10	   7	   12	   7	   8	  
	   2	   3	   1	   2	   4	  
Total	   12	   10	   13	   9	   12	  
avg	   11	  

	   	   	   	  std	   1.58114	  
	   	   	   	  Student	  t-‐

test	  for	  all	   .000182	   	   	   	   	  
Student	  t-‐
test	  for	  row	  
1	   0.01578	   	   	   	   	  
Student	  t-‐
test	  for	  2/3	   0.01511	   	   	   	   	  

 
 
Embryos	  analyzed	  for	  sox1b	  in	  situ	  hybridization	  experiments	  
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scl	  sibs	   scl	  mu	   total	  	   scl	  sibs	   scl	  mu	   total	  	  

real	   28	   6	   34	   13	   2	   15	  
expected	   25.5	   8.5	   34	   11.25	   3.75	   15	  
chi	  square	  total	   0.22683	  

	   	   	   	   	   
 
foxn4 expression is unaffected by the loss of function of scl or gata3 
 

foxn4	  
	   scl	  embryos	   gata3	  embryos	  
Analyzed	   12	   12	  

 
Reduction of gad expressing cells in scl and gata3 mutant embryos 
 
 

gads	  expressed	  in	  presumed	  	  scl	  siblings	  
	   Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  

count	   35	   37	   35	   42	   39	  
avg	  t	   37.6	   	   	   	   	  
std	   2.96648	   	   	   	   	  

Student	  t-‐test	   0.00003	   	   	   	   	  
 

scl	  embryos	  analyzed	  for	  gads	  in	  situ	  hybridization	  
experiments	  

	  
scl	  sibs	   scl	  mu	   total	  

real	   12	   3	   15	  
expected	   11.25	   3.75	   15	  
chi-‐square	   0.05	   0.15	  

	  chi	  square	  
total	   0.2	  

	   	   
 
 
 

gads	  expressed	  in	  	  presumed	  gata3	  mutants	  
	   Embryo	  1	   Embryo	  2	   Embryo	  3	   Embryo	  4	   Embryo	  5	  
count	   21	   18	   25	   20	   23	  
avg	   21.4	   	   	   	   	  
std	   2.70185	   	   	   	   	  
Student	  
t-‐test	   0.00066	   	   	   	   	  

 
 



54	  

gata3	  embryos	  analyzed	  for	  gads	  in	  situ	  hybridization	  
experiments	  

	  
gata3	  sibs	   gata3	  mu	   total	  

real	   18	   4	   22	  
expected	   16.5	   5.5	   22	  
chi-‐square	   0.13636	   0.40909	  

	  chi	  square	  
total	   0.72973	  

	   	   
 
Expression of islet 1/2 is unaffected by the loss of function of scl and gata3 
 

islet	  1/2	  	  
	   scl	  embryos	   gata3	  embryos	  
Analyzed	   12	   12	  
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Capstone Summary 

Introduction 

The neuronal circuitry of the spinal cord is an integral component of the 

vertebrate central nervous system, because it coordinates sensory inputs as well as 

the movement of an organism. Proper formation and communication of the spinal 

cord neurons is vital because regeneration of the neurons is almost impossible. 

However, little is known about the processes that regulate the formation and 

proper connections of spinal cord neuronal circuitry. 

My project specifically focuses on the V2 cells of the zebrafish spinal 

cord. The V2 cells originate from identical p2 progenitor cells in the spinal cord. 

As the p2 progenitor cells stop dividing and differentiate (specialize), subsets of 

these cells start to express different transcription factor genes. The expression of 

these genes allows the p2 progenitor cells to initially develop into at two sets of 

molecularly distinct cells, V2a and V2b cells. In zebrafish (Danio rerio), V2a and 

V2b cells differentiate into two functionally distinct classes of vertebrate spinal 

interneurons. These interneurons are excitatory Circumferential Descending 

interneurons (V2a) and inhibitory Ventral Lateral Descending interneurons (V2b) 

(Batista et al., 2008; Bernhardt et al. 1990; Kimura et al., 2006). 

Little is known about how the particular functional properties of V2a and 

V2b interneurons are specified. However, the transcription factors that these cells 

express as they start to differentiate are thought to specify at least some of the 

neuronal characteristics that they acquire as they differentiate into functional 

neurons (Batista et al, 2008). V2a cells are known to express chx10 and vsx2, 
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whereas V2bs express gata2, gata3, and scl (Batista et al., 2008; Kimura et al., 

2006; Neave et al.,1995; Passini et al., 1998). It is important to note that gata2, 

gata3, and scl are also expressed in Kolmer-Agduhr (KA) interneurons (Batista et 

al., 2008). KAs are a type of interneuron that is located in the most ventral 

(lowest) part of the zebrafish spinal cord and derive from the p3 domain. 

Additionally, work in mouse suggests that another class of cells may be present in 

the V2 region, V2c cells. In mouse, foxn4 and sox1 have been shown to mark V2c 

cells (Li et al., 2005; Panayi et al., 2010). 

 In this study, I determine if scl and/or gata3 are necessary for proper V2b 

cell development. With the use of scl and gata3 mutants and GFP transgenic 

lines, I determine that the loss of function of scl or gata3 effects: 

• The expression of genes co-expressed in V2b cells 

• The presence of V2b cells in the spinal  

 Furthermore, I use sox1a and sox1b (comparable to sox1 in mouse) or foxn4 

RNA probes to determine if sox1a, sox1b or foxn4 are: 

• Expressed in the V2 domain 

• Affected by the loss of function of scl and/or gata3  

For my research, zebrafish embryos were used for their unique qualities. 

Unlike mouse, whose embryos must be extracted from the mother and the mother 

euthanized, zebrafish embryos are easily accessible because eggs are laid outside 

of the mother’s body. Additionally, the zebrafish has a functional spinal cord as 

early as 24 hours post fertilization. This fast development of the zebrafish spinal 

cord is one of the main reasons why the zebrafish is an ideal model organism to 
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study interneuron specification and function. 

 

Methods and Materials 

Various materials were used for my experiment. The most important were the 

zebrafish lines, scl and gata3. With the use of these fish, I was able to determine 

how loss of function scl or gata3 affected gene expression or VeLD morphology. 

One method that I used was in situ hybridization. For this project, in situ 

hybridization is an experiment that labels specific cells with a RNA probe. Once 

these cells are labelled with the specific RNA probe, a staining solution is added. 

The staining solution allows the cells labelled by the RNA probe to be visualized. 

Below is a list of the different RNA probes used in this experiment and what 

zebrafish spinal cord cell they are expressed in.  

Spinal Cord Cell RNA Probe 

V2b gata3;scl 

V2c (unknown) foxn4;sox1a;sox1b 

Motor neurons islet 2; islet 2 

GABAergic 
(inhibitory neurotransmitter) gad65;gad67a;gad67b 

Another procedure used in this study was antibody staining. Antibody 

staining is an experiment that exploits the antibody-antigen relationship. A 

primary antibody detects a targeted antigen on the cell surface and binds to it. A 

secondary antibody, with a fluroscent tag, detects the first antibody. UV light is 

shown on the embryo and the cells that are bound by the antibodies flurosece. 

This experiment was used to determine if the loss of function of scl affected the 
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morphology of VeLDs. 

  

Results/Discussion 

My in situ hybridization experiments suggested a severe reduction of cells 

expressing gata3, or gads (gad65, gad67a, and gad67b) in presumed scl mutants 

(embryos were considered presumed scl or gata3 siblings or mutants because 

their genotype was unknown). This reduction demonstrates that proper scl 

function is required for the proper expression of these genes. Likewise, there was 

a severe reduction of sox1b and gad (gad65, gad67a, and gad67b) expressing 

cells in presumed gata3 mutants. This also suggests that gata3 may be required 

for the proper expression of sox1b and gad. The results of my experiment are 

consistent with previous findings from Yang et al., 2010 that suggested that scl 

and gata3 were upstream of gad67b. Ultimately, this experiment showed that loss 

of function scl or gata3 affects the expression of other genes.  

Future work should determine the genotype of the presumed scl and gata3 

siblings and mutants by PCR and DNA sequencing. Also, in situ hybridization 

experiments using markers for V2a, V2b, and motor neurons can give us a better 

understanding of the roles of scl and gata3 in the spinal cord.  

Interestingly, there appeared to be no reduction of sox1a, foxn4 or islet 1/2 

expressing cells in scl or gata3 embryos, whereas there there was a reduction of 

sox1b expressing cells in presumed scl or gata3 mutants. This suggests that 

neither scl or gata3 is required for sox1a, foxn4 or islet 1/2  expression but they 

are needed for sox1b expression. The results for sox1a were expected since 
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Panayi et al., 2010 suggest that the majority of sox1 expressing cells do not co-

express gata3 in mouse. However, the reduction of sox1b in presumed scl and 

gata3 mutants suggest that sox1a and sox1b differ in the zebrafish. 

  Additionally, foxn4 expressing cells were only found in the V2 region. This 

was fascinating, because before this we had yet to find a RNA probe that labels 

V2b cells and not KAs. My data is also conistent with Li et al., 2010 that suggests 

that foxn4 expressing cells co-express with sox1 in mouse (don’t co-express with 

gata3 or scl). Therefore if this translated to zebrafish,  foxn4 expressing cells 

shouldn’t have been affected by the loss of function of scl or gata3. 

 Future work in zebrafish would determine what cells foxn4 and sox1a are 

expressed in by double in situ hybridization (use two RNA probes). This 

procedure will allow us to determine if they are any other genes that are co-

express foxn4 or sox1a. If foxn4 or sox1a cells are shown to not be co-expressed 

by V2a, V2b or motor neuron markers, it can be propsed that these cells are V2 

cells.  

in situ hybridization experiments were done using the RNA probes islet 1 

and islet 2 because V2 cells are immediately dorsal to motor neurons. I wanted to 

test if the loss of function of scl or gata3 would increase the number of motor 

neurons (given that it looks like the number of V2b cells may be reduced). The 

result of this experiment was that there was no significant difference in islet 1/2 

expression in scl or gata3 embryos. This suggests that the loss of function of scl 

or gata3 does not push V2b cells to become motor neurons or affect the motor 

neuron cell fate.  
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Lastly, an antibody staining in scl;Tg(gata1:GFP) and scl;Tg(vsx2:GFP) was 

performed to determine if the loss of function of scl affected the morphology of 

VeLDs. Tg(gata1:GFP)  is a transgenic line that is driven by a gata1 promoter 

and  it has been shown to label gata3 expressing cells in the spinal cord (Batista et 

al., 2008). Whereas, Tg(vsx1:GFP) is a transgenic line that labels V2a cells.   

Instead of seeing a variance in axon morphology in scl -/-;Tg(gata1:GFP) 

embryos, my results showed a reduction or loss of gata1:GFP-labeled V2b 

interneurons in the spinal cord. This suggests that scl is required for proper V2b 

development or maintenance. Or this suggests that scl is required for the proper 

expression of the transgene. Additionally, my results from the scl -/-

;Tg(vsx1:GFP) embryos showed that there was no obvious expansion in vsx1:GFP 

expressing cells. This data suggests that scl must not play a role in allowing p2 

cells to become V2a or V2b cells. If scl did play a role, loss of function of scl 

should have resulted in the expansion of V2a cells. Future work will look at the 

loss of function of gata3 in Tg(gata1:GFP) and Tg(vsx:GFP) determine if it 

affects the morphology of VeLDS or increases the number of V2a cells in the 

spinal cord. 

Conclusion 

The purpose of this study was to analyze the roles of scl and gata3 in the 

zebrafish spinal cord interneuron specification and function. With the use of 

presumed scl and gata3 sibling and mutant embryos, I was able to determine that 

these genes do affect the gene expression of other several genes. Additionally, I 

was able to determine that scl affects the number of V2b cells in the spinal cord, 
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suggesting a role in specification and/or maintenance of these cell types. This 

experiment has allowed us to gain a better understanding of how interneurons are 

specified. Hopefully, future interneuron studies will help us to gain a better 

understanding of how the neural circuitry of the spinal cord works.  
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