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Abstract

This paper surveys recent developments and provides Monte Carlo comparison on various tests pro-
posed for cointegration in panel data. In particular, tests for two panel models, varying intercepts and
varying slopes and varying intercepts and common slopes, are presented from the literature with a total
of seven tests being simulated. In all cases, results on empirical size and size-adjusted power are given.

Key Words and Phrases: Panel Cointegration.

JEL classifications: C23, C22.

1 Introduction

Evaluating the statistical properties of data along the time dimension has proven to be very different from
analysis in the cross-section dimension. As economists have gained access to better data with more observa-
tions across time, understanding these properties has grown increasingly important. An area of particular
concern in time series econometrics is the use of non-stationary data. With the desire to study the behavior
of a cross-section of observations over time and the increased use of panel data, one new research area is
examining the properties of non-stationary time series data in panel form. It is an intriguing question to
ask: how exactly does this hybrid style of data combine the statistical elements of traditional cross-sectional
analysis and time series analysis? In particular, what is the correct way to analyze non-stationarity, the
spurious regression problem, and cointegration in panel data?

Two comprehensive overviews of the econometrics of panel data have been published, Hsiao (1986) and
Baltagi (1995), yet neither of these books deal with the issues of non-stationarity and cointegration within

panel data. Adding the cross-section dimension to the time dynamics offers a real advantage in the testing

*We thank participants of the Eighth International Conference on Panel Data, Goteborg 1998, for helpful comments. An
electronic version of the paper in postscript format can be retrieved from http://web.syr.edu/~cdkao. Address correspon-
dence to: Chihwa Kao, Center for Policy Research, 426 Eggers, Syracuse University, Syracuse, NY 13244-1020; e-mail: cd-
kao@maxwell.syr.edu.



for non-stationarity and cointegration. The hope of the econometrics of non-stationary panel data is to
combine the best of both worlds: the method of dealing with non-stationary data from the time series and
the increased data and power from the cross-section. The addition of the cross-section dimension, under
certain assumptions, can act as repeated draws from the same distribution. Thus as the time and cross-
section dimension increase, e.g., using the sequential limit theory or the joint limit theory of Phillips and
Moon (1997), panel test statistics can be derived which converge in distribution to normally distributed
random variables. Also within the testing framework, the addition of the cross-section dimension seemingly
adds power to the tests.

The challenge in taking advantage of these properties is the difficulty in deriving the moments of the
complex combinations of Brownian bridges and functionals of Brownian motion which often arise from the
asymptotics in the time series literature. Several of the tests discussed in this paper use Monte Carlo sim-
ulations, as in the pure time series literature, to pin down these moments. Another difficulty which does
not disappear in the panel setting is the difficulty in obtaining good estimates of long-run autocovariances.
Finally, the panel setting offers a variety of models: common intercepts, common slopes, common intercepts
and common slopes, differing intercepts and differing slopes; which have strong consequences for the esti-
mation. In particular, asymptotics and estimation of common slopes is difficult. Also, the homogeneity or
heterogeneity of the deterministic time structure of the cross-sectional observations needs to be considered.

Unit root tests in the literature test the stationarity of a given series. These tests can be adapted for
residual-based cointegration tests by testing the series of estimated residuals for stationarity. There are unit
root tests for panel data already in the literature such as Levin and Lin (1993), Im, Pesaran and Shin (1995)
and Maddala and Wu (1996). Once again, as in the time series case, moving from the unit root tests to
cointegration tests is complicated by the estimation. The cointegration tests which test the null hypothesis
of no cointegration must take into consideration the so-called “spurious regression” problem. Tests based
on the null hypothesis of cointegration must take into consideration efficient estimation of a cointegrated
relationship. Further, the concept of “pooled” estimation is different from pooling the cross-section testing
results. In the case of unit root testing, most tests treat each individual cross-section independently. In
the case of cointegration, treating each cross-section independently may translate into allowing for varying
slopes and varying intercepts. This has strong implications for the model.

This paper outlines and compares three recent studies which present panel data tests for cointegration:
Kao (1997), Pedroni (1997) and McCoskey and Kao (1998). The first two articles present tests of the null
of no cointegration and the last a test of the null of cointegration.

At least a brief mention should be given to the dynamics of the relationship between time series econo-



metrics and economic theory. Most developments within the time series literature have been criticized as
having more to do with a particular data set than economic theory in general. To be sure, there is no
economic theory behind the techniques used to estimate lag orders for autoregressive representations, for
example. Yet the cointegration literature offers a promising cross-over between economic theory and econo-
metric techniques. The error-correction form, for example, captures short run deviations from the long run
relationship between non-stationary variables. While this theory has not been totally resolved, it at least
gives a practical motivation for theorists in all fields to familiarize themselves with applied time series tech-
niques. The Economic Journal (Jan 1997) includes a discussion of the philosophy of modelling the long
run using time series and cointegration results. Included in the journal are articles by Taylor and Dixon,
Granger, Pesaran, and Harvey. The major issue mentioned for panel data in this discussion is the issue of
how similar are the cross-sections in the panel and the difficulties of pooling heterogeneous cross-sections.

The paper is outlined as follows: Section 2 introduces tests of the null hypothesis of no cointegration in
panel data with varying intercepts and common slopes. One test is currently in the literature and the other
proposed for the first time here. Section 3 summarizes tests of the null hypothesis of no cointegration in
panel data with varying intercepts and varying slopes. A total of four tests are presented. Section 4 presents
a test of the null hypothesis of cointegration in panel data. This test assumes varying intercepts and varying
slopes. Section 5 explains the Monte Carlo design for the comparison of the tests. Section 6 summarizes the
results of the Monte Carlo experiment and Section 7 provides some concluding thoughts.

A word on notation used throughout the paper: integrals like fol W (s)ds as [ W are used when there is
no ambiguity over limits, /2 is defined as any matrix such that Q = (Q/2) (QV/ 2)/ , 2 is used to denote
convergence in probability, = to denote weak convergence, (1) to signify a time series that is integrated of
order one, and BM (2) to denote Brownian motion with covariance matrix Q. All limits in this paper are
taken as T' — oo and followed by N — oo sequentially of Phillips and Moon (1997), except where otherwise

noted.

2 Testing for Cointegration in Panels with the Null Hypothesis of
No Cointegration: Varying Intercepts and Common Slopes

The first residual-based tests of cointegration in both the times series and panel data literature were based
on the null hypothesis of no cointegration. These tests are based on the principle of deciding whether or not
the error process of the regression equation is stationary. This section presents tests of the null hypothesis

of no cointegration for panel data assuming common slopes. Because the tests are residual-based tests,



obtaining good estimates of the residuals is the first necessary step in obtaining a good residual-based test.
The asymptotic properties of the residual-based tests will depend on the asymptotics of the estimators. The

tests are derived under the assumption of a spurious regression and are based on OLS estimation.

2.1 Kao (1997)

A well known result from the time series literature is that regressing a non-stationary variable on a vector
of non-stationary variables may lead to spurious regression results. In Kao (1997) results are offered for the
asymptotics of spurious regression within a panel data setting. The specification of the panel model allows
for differing intercepts across cross-sections and common slopes. Further, the long-run variance covariance
matrix is assumed the same for all cross-section observations.

Within the time series literature (e.g., Phillips, 1986) it has been shown that with a spurious regression:
(a) the OLS estimator converges to a random variable; which implies (b) the OLS estimator is not consistent;
and (c) the t-statistic diverges. The consequence of these properties is that a spurious regression would tend
to show an apparently significant relationship even if the variables are generated independently. The results
for least square dummy variable (LSDV) estimation of panel data are somewhat more encouraging. Kao
showed that (a) the addition of the cross-section dimension allows that an appropriate normalization of the
estimated parameter converges in distribution to a normal, mean zero, random variable; (b) even though the
model is misspecified the LSDV estimator is consistent; and (c) the t-statistic still diverges.

These asymptotics on the spurious regression are crucial for testing the null of no cointegration. Under the
null hypothesis of no cointegration the residuals required for the test need to be estimated, by construction,
from a spurious regression. The residual based test is equivalent to testing for a unit root in the LSDV
estimated residuals. Using the panel model, the Dickey-Fuller (DF) and augmented Dickey Fuller (ADF)
test statistics, after appropriate normalizations will converge in distribution to random variables with normal
distributions.

Kao presents two sets of specifications for the DF test statistics. The first set of test statistics depends
directly on consistent estimation of long run parameters. The second set of test statistics does not.

The DF type test from Kao follows the following model:

Yit :ai+6$it+eita 1= 17'-'7N7 t= a"'?T (1)

Yit = Yit—1 + Ust (2)



Tit = Tit—1 T Eit- (3)

As both y;; and xi are random walks, it follows that under the null hypothesis of no cointegration,
the residual series, e;; should be non-stationary. The model has varying intercepts across the cross-section
observations, the fixed effects specification, and common slopes across 7. With this model, the DF test can

be calculated from the estimated residuals as:

it = peit—1 + Vi, (4)
where é;; is the estimated residual of (1).

To test the null hypothesis of a non-stationarity, the null can be written as Hgy : p = 1. The OLS estimate
of p is given by:

Zi]\;l Z?:Q éitéit—l
N T
PR P elzt

Kao provides the following asymptotic results:

ﬁ:

) L 7.20%
/NT(p_]_)_\/N—:>N(O,3+ 1 )7
Her Tov
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JN 2 ;
t, — YT N, ”"g 303 )
s iiar 208 1003,
where
1 . A
Usp = E[fE;:F:Qeit_meit—l]a
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The limiting distributions have two very nice features: they are both asymptotically, normally distributed
at mean zero. However, they also contain nuisance parameters in the distributions which are present because
of possible long run weak exogeneity and serial correlation in the errors. As in most of the time series
literature, good estimates of these long run parameters are necessary. If w; = (ug,e5)’, estimates of these

nuisance parameters would be based on the long-run variance covariance matrix of w;;. Note that in the



special case with one regressor, Q2 will be a 2 x 2 matrix, with X;; as a T x k matrix, {2 would be a (k4 1) x

(k 4+ 1) dimension matrix with w; = (usg, i)’

Define
1 & X , 02, Ooue
Q= lim —E(Zwﬂt)(szt) =Y4T+I'= o , (6)
T—oo T t=1 t=1 Ooue 0%5
| T
. u ue
D= jim > D) Blwwh) = | ! @)
k=1 t=k+1 ue le
and
T 2
) oL Ou
P=fim 7 3 Ewal) = | T ®
=1 Oue Ue

In this framework, ¥, can be thought of as the contemporaneous correlation and T as the correlation

across time. A special case of this long run relationship is when there is strong exogeneity and no serial

correlation. In that case, I' = 0, and 02 = 02, = 02 = 02,. This definition of the long run variance
covariance matrix is used throughout the time series literature and is assumed for the entirety of the paper.

The second test from Kao is the ADF type of the regression:

p
€t = peiy—1 + ZﬁjAéitﬂ' + Vitp. 9)
j=1
The lags are added in the ADF specification to take care of possible autocorrelation and the number of

lags, p, should be chosen such that the residual series, v;p, is not serially correlated with past errors. In this

case, the test statistic for the null hypothesis of no cointegration should be based on the t-statistic for p = 1.

=

tapp = (p—1) M’ (10)
and
Qi =1 — Xip( X Xip) 7' X,
where X, is the matrix of observations on p regressors (Aé;—1, Aéi—2 , .., DNéiy_p),
sz Z\/}TEN 1Et 1vztp,

and e; is a vector of &;;_1.



Kao gives the asymptotic results for the ADF type test:

N 72 72
o \/_M7T = N(0 Tov 30v

o s\/Her ( " 202 lO(rgU)’
where
prp = E[e;Qiv;]
and

1
HsT = E[ﬁe;’Qiei]-
The corrected t-statistic has the same asymptotic distribution as the DF type test. Again, the limiting

distribution is based on nuisance parameters. To summarize, Kao compares the following five tests through

Monte Carlo simulation:

VNT(p—1)+3v3
V10.2 ’
DF; = V/1.25t, + V1.875N,

VTG -1)+ e

DF, =

DF} — :
3+

and

We expect that DF;, DFy and ADF will converge to N(0,1) in distribution. DF, and DF; are based
on the results of assuming strong exogeneity of the regressor and error and no autocorrelation. These tests
do not require estimates of the long-run variance-covariance matrix as the others do.

These statistics are derived from the asymptotic results of the paper and are based on convergence as T'

— X1

por = %, ngr %t

The important empirical size results of the Monte Carlo tests for these residual based tests using one-sided
standard normal critical values are the following: all of the tests show size distortions when T is small; the DF
test statistics which utilize consistent estimation of long-run parameters outperform the other tests in terms
of size distortion. The results for unadjusted power are: all tests have small power with small T and N; with

T increased to at least 25, the DF statistics which use the long run estimates dominate even the ADF. When



looking at the robustness of the tests across specifications for a moving average component, variance and
cross-correlations, the distributions for the ADF and DF statistics with appropriate long run normalizations
can be far from the standard normal distributions predicted by theory. Therefore an important conclusion
of the paper is that the DF statistics which do not depend on the estimation of long-run parameters are
much more robust to different specifications in the data. This result is due to the difficulty of obtaining
good results for these long run estimates under different specifications in the sample sizes feasible for applied
research work.

The residual-based tests presented in Kao depend on estimates of the long run variance-covariance matrix
to correct for nuisance parameters once the limiting distributions have been found. Another approach to
testing has been to adapt an approach where the variables are corrected for the long-run effects before the
test statistics are calculated. These test statistics have the advantage that their limiting distributions are free
of nuisance parameters." In the next section we propose non-parametric corrections to the ADF t-statistic

test proposed by Kao which will allow the limiting distribution to be free of nuisance parameters.

2.2 Corrected Panel ADF Estimator

The common slopes ADF test has been shown in Kao (1997) to have nuisance parameters in the limiting
distribution. It is an unfortunate consequence of the additional cross section dimension that although it has
a very desirable property of “smoothing” the limiting distribution into a normal distribution, the additional
dimension adds the problem of nuisance parameters. In this section we propose corrections which can take
advantage of the normal distribution, but also cleanse the limiting distribution.

Recall the Kao’s panel ADF statistic has the following limiting distribution:

VN p o2 302
t _ N ov v
ApE Svy/H8T =N, 207 10(’%1;)’

which contains nuisance parameters. Using the similar approach from Kao (1997), some adjustments to the
test statistic can be made to remove these nuisance parameters in the limiting distribution.

In Kao (1997) topr can be written as

tADF = VN
su\/&sr

where &, and gy are defined in Kao (1997). The following adjustments can be made

! Pedroni (1997) proposes two types of tests of common slopes with these types of non-parametric corrections but with
stronger restrictions than the tests in Kao. The first test restricts the intercept to be equal to zero for all the cross-sections.

The second set of statistics is derived under the additional assumption that all regressors are strictly exogenous.
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which is free of nuisance parameters, where
A\ = (O%v - (712))

The rationale is as follows. Define {1, = ﬁ(fﬁ — A). Whereas

031} * 2 0121 2 * 1 *
Sor = —d() =2 V()7 = -]+ d()og, Vi (1) [V (r)dr,

It is clear that

o2 o2 o2

_ov 4* 1 2 _ v — ov '* 1 2 _ 1 .

2 [‘/7,() U%v] 2 [‘/1,() ]+)\7

thus subtracting A and normalizing by 02, results in E[¢F;] = —d(1)4 = pd7 and Var[éF;] = —d(1) & = 037,
Similarly, define {3 = 5% such that E[¢d;] = = pdy and Var[¢d;] = & = ogf. Finally, as s2 5 d?(1)0?,

the last step is to normahze 5y by dividing it by Oy
The term d(1) is introduced with possible autocorrelation allowed for in the ADF test. From Phillips
and Ouliaris (1990) this concept is explained with the following assumptions. Suppose w;;, an error process,

d;w;_; with the condition that 237 ' lldjll < oo, then d(1) = $7=%°_d;.

J=
can be represented w;; = 3 oo

j=—0o0

Using the logic from Appendix E in Kao (1997), the adjustments have the following effects:
2 24 42
VNET, \/_N7T N(O, U;T + 1 pirp 087
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Co VN V6N N 4
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which becomes

3 Testing for Cointegration in Panels with the Null Hypothesis of
No Cointegration: Varying Intercepts and Varying Slopes

In the last section, we discussed tests of the null hypothesis of no cointegration which assumes common slopes
across the cross section. The links between the cointegrating vector and economic theory are immediate.
Therefore, such an assumption of common slopes assumes a form of homogeneity in the relationship of the
variables (allowing for heterogeneity only in the intercepts.) In this section we relax that assumption and
allow intercepts and slopes to vary across the cross-sectional observations. Thus under the H, each cross

section can have a unique cointegrating vector.



3.1 Average Augmented Dickey-Fuller Test for Varying Slopes

Kao (1997) proposes an ADF test for common slopes and varying intercepts. Here we propose an ADF test

for varying slopes and varying intercepts.

Yie = ozi—i—ac;-tﬁi + ey, t=1,.,N, t=1,..T. (11)

Each cross-section regression is estimated individually and the pooling from the panel is done in the
final step where the panel test statistic is based on some average of the individual cross-section statistics.
FEach cross-section is allowed its individual cointegrating vector. Each test is constructed such that the
cross-sections are assumed independent of each other and heteroskedasticity across the cross-sections is
allowed. Im, Pesaran and Shin (1995) present a panel data unit root test based on the average of the ADF
2

statistic of the cross-sections. Using an analogous approach this style of test statistic can be used to test

for cointegration. Recall that the ADF test can be constructed as:

P
€it = pi€it—1 + ZﬁijAéit—j + Vitp, (12)
j=1
where é;; are OLS residuals from (11). An equivalent way to write equation (12) is given in Phillips and
Ouliaris (1990):
P

Aéy = pi€i—1 + ZﬁijAéit—j + Vitp.
=

The null hypothesis is written as Hy : p; = 0 and the t-statistic for each ¢ constructed:

PN ~ 1.
(ul—lQmpu—l) 205
tiADF = )
Sy

where X, is the matrix of observations on the p regressors (Adz_1, ..., Ati;_p,), _q is the vector of observations
of i1, Qx, =1 — Xp(X[X,) "1 X] and s3 = %E?Zlﬁfp.

Phillips and Ouliaris show that the ADF converges to a functional of Brownian motion.

tiADF = J QidQ: = / RdS

V(S QD)

2In his paper, Pedroni (1997) also identifies the possibility of extending the logic of Im, Pesaran and Shin from panel unit

where

root tests to panel cointegration tests. Although he does not present the ADF-t statistic in the body of his paper, he does

examine some of the properties of the test in his Monte Carlo simulations.

10
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Finally,

|
tApF = N ztiADF-
i

Define E[[ RdS] = ju144p and Var[[ RdS] = 0% 4. It can be shown using the logic from Phillips and Moon
(1997) that:

\/N(EADF — Haqr) = N(0, U?Adf)'

As Phillips and Ouliaris note, the limiting distribution of the ADF test statistic is free of nuisance
parameters and depends only in the number of regressors. They provide cut-off tail values for the test in
the time series case. It is a mere extension of the logic to then simulate the moments p 4, and O’idf .
Using RDNS procedure in Gauss with 50,000 replications the moments were found to be p1 44 = —2.026 and
o 44 = -8200 in the case of one regressor. Appropriate values for the mean and standard deviation for 1 to
5 regressors is provided in the Appendix. Tail values are also provided for comparison with the Phillips and

Quliaris results.

3.2 Average Phillips Z; Statistic for Varying Slopes

As Phillips and Ouliaris (1990) show, corrections for autocorrelation and contemporaneous correlation can
either be performed through differencing and the ADF-t statistic method or through non-parametric cor-

rections. In accordance with this idea, another test can be considered which is based on the average, across

11



the cross-sections, of the Phillips Z; statistics. This statistic is by definition, for the varying intercepts and
varying slopes model.

Phillips and Ouliaris (1990) provide exact details on how to calculate the Phillips Z; test. The first step,
as in the ADF test, is to calculate the estimated residuals from the original regression equation using OLS.

Then using the estimated residuals, é;;, perform the following regression:
€it = Qi1 + vy

Note that this is similar to the ADF test, although here without the lagged terms, the v;; may have some

effects from then cross-correlation and autocorrelation.

Define:
T
1
2 ~2
Siv = T E Vit
t=1
and
T l T
9 1 g 2 ~
STl = T § Vit + T E Wsl E Vit Vit—s
1=1at s=1 t=s+1

These terms are used to calculate the final statistic:

5 (a—1) l(S%Tl - S%U)
Zit = SiT1 - 21 T A 1 (13)
(N7, e2_ )7 Sir1(72 D t—n €51—1)*

Phillips and Ouliaris (1990) show that this t-statistic converges in distribution to the same functional of
Brownian motion as the ADF t-statistic. Thus, for the purposes here, it is convenient to note that a test
based on the Z; test uses the same simulated moments as the ADF test-statistic given above.

The average of the cross-section Zit statistics can be defined as Z;

and it can be shown that:

VN(Z, - fagp) = N(0,0%q). (14)

In his paper, Pedroni (1997) also considers a version of the average of the Zu statistic. His test is

constructed as follows:
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-2 D 1
=1 L11ie€io1)2

N T S é‘z‘ _ Ai
Z %t_;(eztlA 1t A ) (15)

where
5\% = §(S?T1 — i)
and
£1_12ie = O-(Q)ui - @
Oct

in the scalar case based on the estimates for Qi similarly to the one outlined in the previous section.

The two tests are conceptually quite similar® with the exception that the form from Phillips and Ouliaris
only uses the kernel estimate of 9 for the non-parametric corrections while Pedroni (1997) also uses QZ
Intuitively, the form by Phillips and Ouliaris (1990) is clear, a t-statistic on & is adjusted with a non-
parametric component. To be consistent with the original article, we follow the format from Phillips and
Ouliaris (1990). Although it should be noted that Pedroni’s simulated moments for the case with an intercept
are 2.03 for the mean and 1/0.66 for the standard deviation-values very close to our own. Pedroni (1997)

also provides moments for a model without intercept and one including a time trend.

3.3 Pedroni (1997)

As shown in the previous section, Pedroni (1997) also proposes several tests for the null hypothesis of
cointegration in panel data. His tests for heterogeneous slopes and intercepts fall into two categories. The
first set, as discussed above, involves averaging test statistics for cointegration in the time series across cross-
sections. The second set groups the statistics such that instead of averaging across statistics, the averaging is
done in pieces so that the limiting distributions are based on limits of piecewise numerator and denominator
terms.

The first set of statistics as discussed includes a form of the average of the Phillips and Ouliaris (1990)

Z,; statistic. Pedroni also proposes averaging the Z5_ statistic. His form for this statistic is

N T /4 o N

~ _1(€5¢— Aei - >\z

a1 = Z Zt71( ; 1A2 t ) (16)
i=1 (i1 €51)

31n fact Z¢ can be written as T
(C &% _)Zsir

. Under the null hypothesis, v;; is equivalent to Aé;s.
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This form directly corresponds to the statistic proposed by Phillips and Ouliaris.
Pedroni shows that

VN(TZ4_1 4 9.05) = N(0,35.98)
For his second set of statistics®, Pedroni defines the following as panel variance ratio statistics:

Zony = L

NT N T 7252 9
(Tl X Lyi8d )

N s §7-2(4 . N
T8 oL (Gi—18i =)

ZA , = -
PN [OIANDIAPS Syl A ’
and
Zt — E'ﬁvzlzg;zﬁflzi(é'itflAé'it—j‘i)
p 5 [=2¢:
PNT \/Uf\l'l'(EgilEz:ZLllieft—l) ’
where
N N
1 0i \9
ONT = N (=),
i=1 Lllz
N 1
N -2
A= =(67 — &),
2
and
T
o 1 2
S; = T €it
t=1

Using consistent estimates of €2;, the long-run variance-covariance matrix given in the previous section,
define L; to be the lower triangular Cholesky composition of Q); such that in the scalar case Log; = G2 and

)
Tuei

2 ~2 .. .
Ly, =065, — S5t the long-run conditional variance.
€1

Let ¢ and ¢ signify the mean and variance for 7 = ([ Q?, J QdQ, 52)7 a vector of functionals of Brownian

motion.
Define
B _ f VW
Jw2’
Q=V-pW,

and ¥ ;y, i = 1,2, 3 refers to ¢ x ¢ upper sub-matrix of .

72
X345

1The format for this statistic from Phillips and Ouliaris is given as Zo = T(& — 1) — (%)(s%l —s2)( 3 )~ 1, the panel

VN (Z+9.05)
> \/35.98
2 Again with these statistics, Pedroni (1997) uses corrections which do not follow directly from Phillips and Ouliaris (1990).

version can be written as

. . . .. . £_9 . .
In the simulations, therefore we adapt Pedroni’s Z; by eliminating the L];; terms. With these corrections the performance
PNT

of the test improves dramtically.
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Pedroni suggested the following results:

- 1
TNZ Z,
1 EN QQ’

UNT

=

_EN fQZdQl
TVN(Z; 12;1”2 ,

PNT

-1)=

and

_1 vwN . .
Zt - \/ﬁzizl szsz
e J@EEN fe+ AEN )

as T — oo. Hence Pedroni shows that:

(17)

TN Zsy, == = N, Py ¥yda)),
VNo
T\/N(me, -1) - 9—12 = N(0, €/>/(2)1/1(2)</)(2)),
and Nici
Oov N /
R ———=N 07 (/) 1/} d) ’
tyn 511+ 03) ( 3)¥(3) (3))
where
oo 1
(1) 9%’
1 0,
d)/(g) - (9_1’ 0_%)7
and
1 1 ) 1 02

C/’I(3) = ( )

0(1+0s) 27 /170, 2V0i(1+0s)3

Pedroni thus bases his test on the average on the numerator and denominator respectively, rather than
the average for the statistic as a whole and this allows him to decompose the limiting ratio into the separate
Os.

Because the model is based on varying slopes and intercepts, each cross-section is estimated individually.
It is clear that the asymptotic distributions, then, are based on the means of functionals of Brownian motion
accounting for the independence across the cross-sectional observations. The limiting distributions are free of
nuisance parameters as the moments of the functionals of Brownian motion are independent of the data and
can be found by Monte Carlo simulation. Thus, with the Monte Carlo results the asymptotic distributions
can be written as:

TN?Zy,, —8.62VN = N(0,60.75),
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TVN(Z,,,, —1)+6.02 = N(0,31.27),

NT

and

Zy, + 1.73V/N = N(0,0.93).

Note that these distributions apply to the model including an intercept and not including a time trend.
Asymptotic results for other model specifications can be found in Pedroni (1997). The intuition on these tests
with varying slopes is not straightforward. The convergence in distribution is based on individual convergence
of the numerator and denominator terms. What is the intuition of rejection of the null hypothesis? Using
the average of the overall test statistic allows more ease in interpretation: rejection of the null hypothesis
means that enough of the individual cross-sections have statistics “far away” from the means predicted by

theory were they to be generated under the null.

3.4 Comments

The articles by Kao and Pedroni present important methods for testing cointegration in panel data under
the null of no cointegration. They mirror the development in the time series literature in that they present
a parametric approach, such as the ADF approach, and a non-parametric approach, such as the Phillips and
Ouliaris test statistics, which correct the data non-parametrically as the test statistics are calculated thus
arriving at distributions free of nuisance parameters. The tests as they appear in the original articles can
be improved upon. Most of the tests proposed necessarily depend on consistent estimates of the long-run
variance covariance matrix of the residuals of the random walk processes. The question becomes when is the
best time to correct for the possible presence of autocorrelation and weak exogeneity of the error terms.

The estimation of €2; is a complicated affair and the estimation procedure relies on non-parametric kernel
methods.

Q; can be estimated by
o 1 T o 1 l T o Iy J
Q= {T ;fifi + T ; Wl t;1 <5¢5¢t7 + fitffit> } 5 (18)

where w,; is a weight function or a kernel. Usual kernels are truncated by the bandwidth parameter [ so

that w,; =0 for 7 > [.
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4 Testing for Cointegration in Panels with the Null Hypothesis of

Cointegration

4.1 McCoskey and Kao (1998)

In this section, a panel test of the null hypothesis of cointegration is presented. Tests of this null hypothesis
were first introduced in the times series literature as a response to some critiques of the null hypothesis of no
cointegration. For example, testing the null of cointegration rather than the null of no cointegration could
be very appealing in applications where cointegration is predicted a priori by economic theory. Also, failure
to reject the null of no cointegration could be caused, in many cases, by the low power of the test and not
by the true underlying nature of the data.

The residual-based test for null of cointegration in panel data proposed by McCoskey and Kao (1998)
is an extension of the Lagrange multiplier (LM) test and locally best invariant (LBI) test for an MA unit
root in the time series literature. This test is also discussed in McCoskey and Kao (1998). Cointegration
tests of the null of cointegration in the time series case have been proposed by Harris and Inder (1994) and
Shin (1994). Under the null, the asymptotics no longer depend on the asymptotic properties of estimating
spurious regression, rather the asymptotics of the estimation of a cointegrated relationship are needed. For
models which allow the cointegrating vector to change across the cross-sectional observations, the asymptotics
depend merely on the time series results as each cross-section is estimated independently. For models with
common slopes, the estimation is done jointly and therefore the asymptotic theory is based on the joint
estimation of a cointegrated relationship in panel data.

For the residual based test of the null of cointegration, it is necessary to use an efficient estimation
technique of cointegrated variables. In the time series literature a variety of methods have been shown to
be efficient asymptotically. These include the fully modified (FM) estimator of Phillips and Hansen (1990)
and the dynamic least squares (DOLS) estimator as proposed by Saikkonen (1991) and Stock and Watson
(1993). For panel data, Kao and Chiang (1997) show that both the FM and DOLS methods can produce
estimators which are asymptotically normally distributed with zero means.

The model presented allows for varying slopes and intercepts:

yi = ai+x,8 + ey, i=1,..,N,t=1_.T, (19)
Tit = Tjp—1 + Eqt (20)
it = Vit T Wit, (21)
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and
Vit = Vit—1 T Oz (22)

The null of hypothesis of cointegration is equivalent to 8 = 0.

The test statistic proposed by McCoskey and Kao is the following:

1 N 1 T +2
N D177 Si=19

LM = = , (23)
where S;; is partial sum process of the residuals,
t
S = ;5
j=1
with
1 42
st = — »ZlEtT:le;; .

- NT™
(7%%2 is defined as a consistent estimator of 02, the long-run conditional variance under the Hy and is used
in place of s+ if the residuals are estimated using the FM estimator.) The FM estimator non-parametrically
corrects for the possible serial correlation and weakly exogenous regressors in a cointegrated regression. The
DOLS estimator uses lagged and future differences of x;; to correct for these effects.

The asymptotic result for the test is:
\/N(W - M’U) = N(Ov 012))’ (24)

where p, = .1162 and 02 = .0109 and are defined in McCoskey and Kao (1998). The constants y, and o2
are moments of a complex functional of Brownian motion, which depend only on the number of regressors
and can be found through Monte Carlo simulation.

The limiting distribution of LM is then free of nuisance parameters and robust to heteroskedasticity. For

the Monte Carlo results, the fully modified estimation method is used.

4.2 Comments

The asymptotics of the panel tests take advantage of the sequential limit theory which allows for indices
across the two dimensions of T and N. For the panel LM test an additional dimension is added to create
the partial sums of the residuals. The fact that the model here allows for varying intercepts means that
each cross-section is actually estimated individually, thus the additional dimension is manageable in the

asymptotics.
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5 The Monte Carlo Design

The ultimate goal of this Monte Carlo study is to compare the size and power of different residual based
tests for cointegration for two models: varying slopes and varying intercepts and common slopes and varying
intercepts. For the common slopes model, the two tests to be considered are both derived under the null of
no cointegration, so the comparison is quite straightforward. The ADF; from Kao and the corrected ADF,
are compared. However, for the varying slopes model a total of five tests are considered: ADF™*, PO}, PO},
APG* and LM*. The first four statistics are constructed under the null of no cointegration and the last
under the null of cointegration. We first compare the four tests of the null of no cointegration for size and
power and then select two of these tests to compare with LM™*. To compare these three tests, the study
follows Harris and Inder (1994) who suggest testing the ability of the tests to properly identify the underlying
nature of the data using two different Data Generating Processes. Thus, each null hypothesis is represented
in the final experiment. This entails a two-step procedure outlined below. The simulations were performed

in GAUSS using the package COINT 2.0.

5.1 Experimental Design
5.1.1 Varying Slopes and Varying Intercepts
Yie = ozi—i—x;tﬁi + ey, t=1,..,N, t=1,..T. (25)

As discussed in Section 6.1, after the preliminary comparisons of size and power of all four tests of the
null hypothesis of cointegration, three tests, ADF*, APG*, and LM*, are selected for comparison across
both the null of cointegration and null of no cointegration. To compare the tests with varying intercepts,
the study considers the two different data generating processes (DGP):

DGP-A, null of no cointegration:

Yit = 0y + ;%4 + e,
and
€it = Peit—1 + Vit.

Under the null hypothesis of no cointegration, p = 1. The study includes the following possible values
for p:

p € {1,0.95,0.85,0.75}.
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DGP-B, null of cointegration:

Yit = 0 + B2 + ey,
and
t
e =0 E Uik + Vi
k=1

Under the null hypothesis of cointegration § = 0, i.e., under the null the error term does not remember

past errors and collapses to a standard normal random variable. The study includes the following values for

0 :
6 € {0,0.05,0.15,0.25}
Notes for both DGP-A and DGP-B we assume that v;; is distributed N(0,1) and
Tit = Tig—1 + Eits

where g is distributed N(0,02).

In the study, other parameters are also considered to test the flexibility across DGPs. In particular and
in accordance with Phillips and Loretan (1991), the study looks at parameters allowing for a moving average
component in the error term and weak exogeneity. Only the special cases where p = 0.75 or § = .25 and
N =T =50 are considered.

Define 7, the moving average component (autocorrelation) in v, 7 € {—0.8,0,0.8}

Vi = vy + TV
and 8, cross-correlation in v} and &;, 6 €{-0.5, 0, 0.5}, with

IU’Zkt 0 1 bo;
~N 7
Eit 0 bo;, O
Unless otherwise specified, the study considers the following dimensions for N and T: N € {1, 15,25, 50, 100}
and T € {15,25,50,100} and the number of replications for each dimension is 10,000. The choice of N and T
for this experiment underlines an important point: this test is not really appropriate with severely unbalanced

data sets, for example extremely large N and small T'.

a;, B; and o; are generated using the default uniform random number generator in GAUSS, i.e., a; ~

Ul0,10], 8, ~ U[0,2], and o; ~ U[0.5,1.5].
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5.1.2 Two Stages of the Experiment

Because the tests are not all derived under the same null hypothesis, it is difficult to compare their perfor-
mance directly. A two stage procedure is used here to make sure the results are comparable. The first stage
is to compute 5% and 95% critical values under the null of each DGP, A and B. These critical values are
used to set the probability of rejecting the null of the particular DGP to 0.05 for all three tests. For the tests
of the null hypothesis of no cointegration, with DGP-A, this 5% is simply the value which leads to size equal
to 0.05. For the third test of the null of cointegration, this 5% critical value with DGP-A does not, strictly
speaking, relate to the size of the test but rather is simply a probability of rejection. With DGP-B the logic
is just the reverse. The 5% critical value of the test of the null hypothesis is the value which leads to a size
of 0.05 whereas for the other two tests it does not have this exact interpretation. The size is directly related
to the null hypothesis of the test not the DGP of the experiment. To summarize:

DGP-A (generated under the null of no cointegration), choose critical values such that

Test 1 Test 2 Test 3
Pr (reject null) = Pr(reject null) = Pr(reject null) = 0.05 -

Size Size

DGP-B (generated under the null of cointegration), choose critical values such that

Test 1 Test 2 Test 3
Pr (reject null) = Pr(reject null) = Pr(reject null) = 0.05 -
Size

The critical values are given Tables 1 and 2. The empirical rejection rates, using a one-sided N(0,1)
distribution are given in Table 3. These critical values are constructed to insure the tails of all three tests
have equivalent density.

The second stage is to calculate rejection rates for the alternative values of the parameters for DGPs A
and B. In other words, the second step is used to calculate the ability of the tests to properly reject the null
hypothesis of the DGP based on critical values found in the first stage. The intuition behind these two steps
is analogous to finding the power of a test after adjusting the critical values for the size of the test. Again,
the strict concepts of size and power must be used with caution in this experiment as the null hypothesis
used in the DGP is not necessarily the null hypothesis used to construct the test.

Let c;”.”(N, T') be the critical value calculated in Stage 1 for test j = 1,2,3 and DGP-k, k = A or B for a
given N and T.

DGP-A given a specific p < 1 (data generated under the alternative of cointegration):
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Test 1 Test 2 Test 3
Pr(testl < cf(N,T)) Pr(test2 < cs(N,T)) Pr(testd < c5'(N,T))
Power (Size=0.05) Power (Size=0.05)

In all cases this is the probability of correctly rejecting the null hypothesis of no cointegration.

DGP-B given a specific § > 0 (data generated under the alternative of no cointegration):

Test 1 Test 2 Test 3
Pr(testl > cB(N,T)) Pr(test2 > cZ(N,T)) Pr(test3 > cB(N,T))
Power (Size=0.05)

These probabilities represent the probability of the test correctly rejecting the null hypothesis of cointe-
gration. These comparisons of the tests’ ability to properly reject the null hypothesis of DGPs A and B are
given in Tables 4 and 5.

5.1.3 Common Slopes and Varying Intercepts

In this case, both tests are derived under the null of no cointegration so the following specification is used:

Yir = a; + Bxir + e

€jt = Peit—1 1+ Vit

Under the null hypothesis of no cointegration, p = 1. The study includes the following possible values
for p :

p€{1,0.95,0.85,0.75}.
a; and o; are generated using the default uniform random number generator in GAUSS:
a; ~ U[0,10]
and
o, ~ U[0.5,1.5]

Unlike in the previous section, 8 is assumed constant across the cross-sections and is set equal to 2. The

other assumptions are the same as in the previous model.
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5.2 Test Statistics

Results from the following forms of the tests are reported. Define the following standardized statistics for

varying slopes and varying intercepts:

\/N({ADF +2.026)

ADF* =
82 ’
PO} — VN (Z; +2.026) |
82
PO* — VN(Zo +9.05)

@ V/35.98 ’

N T (5. 5. — \s
APG* = (Ei:12t22(%_m6” o) | 1.73V/N) /.93,
VIR (O T, )

and
A - VN(LM — .1162),
/0109
where
1 N
— ~\2
ONT = N ;(01)

Define Kao’s standardized ADF, ADFk, and a biased corrected ADF, ADFg),, for common slopes and

varying intercepts as:

and

5 0, VN Vv1.5Né6,
ADFgy = \/j(?_(tADF— )+ 7 ).
4 Oov Sv\/ng Su

5.3 Interpreting the results

Ultimately the goal of simulations with varying slopes is to see how well these three tests can distinguish
between the true character of the DGP and its alternative. For each of these tests under the two different

DGPs, the following probability is desired:

DGIIZEHA(ReJectmg the DGP|Hy),
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i.e., the probability of rejecting the null of the DGP when the alternative is true.
Call this probability rejj’-“ , the rejection rate of test j under DGP k :

rejft =reji (N, T, p)
and
rejJB = rejf(N, T,6).

Each of these individual experiments can be considered as the sum of Bernoulli random variables where

1 if reject
X, =
0 otherwise
and the pdf is given:
p*(1—p)=2 x=0,1,...
px(X) =

0 otherwise

with E(X) =p and Var(X) = p(1 — p).

In this experiment, each pj‘ and pf is estimated by finding the mean of these Bernoulli random variables:

10,000 v~ A
rejd = Yo X
10,000
Given that each experiment is iid we obtain:
E(rejJA) = m x 10,000 E(Xﬁ) = pj‘
and
Ay _ 1 Ay pl-p)
Var(rejj )= 10,0007 * 10, 000 = Var(in) = 5o

Thus the standard error for each rejection rate is equal to

The standard error reaches a maximum at the rejection rate of 0.5 with a standard deviation of 0.005.

For a rejection rate of 0.99, the standard deviation would be 0.000995.
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How about comparing reji* and rejs'? Comparing the rejection rates across two tests for the same
DGP (i.e., to answer the question: which is better at correctly rejecting?) is equivalent to evaluating the

significance of the difference of two random variables:
Var(reji —rejst) = Var(reji') + Var(rejs) — 2Cov(reji, rejs)

where the covariance is given by

Z (X{ = reji) (Vsh — rejs)
10,000 '

i=1
The intuition here is that the covariance is measuring whether the tests will reject for the same data or

not. The standard error of comparison is given by:

\/Var(rejf‘) + Var(rejs') — 2Cou(rejit, rejs').

This reaches a maximum when the tests are assumed independent and each have a rejection rate of 0.5.
In that case the standard deviation for comparison would be .007071. In the results, a test is considered
“significantly better” if the difference between the two rejection rates is at least as large as two times the
standard deviation of comparison.

The above discussion also applies to the simulations with common slopes although the performance with

only one DGP is compared.

6 Results

6.1 Varying Slopes and Varying Intercepts

In Table 1 we show a preliminary comparison of the four tests of the null hypothesis of no cointegration in
terms of empirical size. Of the four tests, ADF™ seemingly performs the best. Theory would predict that
size should converge to .05 for all tests. In fact ADF™* has a small range across all N and T. The maximum
rejections rate reported is .0782 and the minimum .0229. Both of these occur when T' = 15. When T' = 100,
the range narrows considerably with a size of .0470 when N =1 to .0518 when N = 15. POy has a strong
tendency to over-reject when T' < 25 and tendency to under-reject for T> 50. This is especially true for
large N. For example, when T' = 15 and N = 100, PO; will reject the null hypothesis almost 28% of the
time. When T' = 100 and N = 100, PO; will only reject the null .19% of the time. PO, to the contrary,

underrejects the null in all cases expect when 7' = 100 and N = 1. This is especially severe for small T. For
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example, when 7" = 15 and N > 15, PO}, never rejects the null hypothesis. APG*, like PO}, has a tendency
to overreject for small T and underreject for large T, although in neither cases is the problem as severe.
The range of size values for POj is [.0019,.2789] while for APG* the range is [.0035,.1371]. For APG*,
under-rejection is especially a problem when T° > 25 and N > 25. These results underline the intuition of
panel data that relative sizes of the T and N dimension can significantly impact the characteristics of the
test.

In Table 2 we compare results for the power of the test to correctly reject the null hypothesis of no
cointegration. In this preliminary comparison, only results for p = 0.95 or p = 0.75 are reported. A “*’
is used to indicate when a test performs significantly better than any of the other three when compared
pairwise. At first glance it is clear the APG™* performs well with regard to power. In all cases when a most
powerful test can be determined, it is APG*. All tests show that decreasing the value of p increases the
power of the test. It is also clear that increasing the T dimension increases the power of the test more than
increasing the cross-section dimension. This result is especially important in applications where researchers
may have more ability to increase the cross-sections in their data rather than find more time series data. For
example, holding T constant at 25, increasing N from 15 to 100 has the following impact when p = 0.95, the
power of ADF™* increases from .1040 to .3153; the power of POy increases from .1572 to .5621; the power of
PO} increases from .1445 to .5036; and the power of APG* increases from .1709 to .7289. However, when
N is held constant at 25 and T increases from 15 to 100 (p = 0.95), the power of ADF* increases from .0934
to .8019; the power of POy increases from .1291 to .9636; the power of PO}, increases from .1218 to .9314;
and the power of APG* from .1510 to .9826. Another strong result is how using a panel rather than strict
time series can increase power dramatically. In the strict time series case (N = 1), when p = 0.95 (i.e. data
is almost non-stationary) the power of the four tests ranges from .0918 to .1251. However, increasing N from
1 to 15 shifts the range to a minimum at .5695 and maximum at .8610. Thus, the difficulty in correctly
rejecting the null for “near non-stationary data” is alleviated.

Given the results from Tables 1 and 2, we choose ADF* and APG* as the tests to compare with LM*
for the second phase of the Monte Carlo experiments. ADF™* performed the best with regard to empirical
size and APG* with regard to power.

As the results on empirical size for ADF* and APG™* have already been discussed, we now turn our
attention to size results for LM™. From Table 5 we observe that, in general, holding T fixed and increasing
N decreases the size of the test. In the case of T' < 50, this causes the test to under-reject the null hypothesis
for large N. For T > 50, in all cases the test underrejects the null with a range in size of [.0533,.0917], the

minimum being reached when T' = 50 and N = 100 and the maximum when 7" = 100 and N = 15. Again
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we see the importance of the relative size of the dimensions of the panel.

Turning our attention to the ability of the three tests to correctly reject the null hypothesis of DGP-A
shown in Table 6, we see some surprising results. Intuition seems to suggest that ADFEF™* and APG* should
outperform LM™ as they are tests derived under this null. However, LM ™ clearly outperforms the other two
tests for the cases where p = 0.95 and p = 0.85. APG* outperforms the other two when p = 0.75 for all the
cases when N = 1, the strict time series case, and when T' < 25 and N = 15.

The dominance of LM™ in the cases of p close to 1 is significant as these errors which show cointegration
are very close to being non-stationary, and it is these “nearly non-stationary” errors which can give researchers
the most difficulty. In some cases the power of LM* is very far away from the other two tests. For example,
when p = 0.95, T = 50 and N = 25, LM* correctly rejects the null hypothesis 91.57% of the time, APG*
properly rejects the null only 57.20% of the time and ADF* only 27.92% of the time. All of the tests show
the nicely behave properties that power increases as p decreases, and N and T increase.

Considering Table 7 and the tests’ ability to correctly reject the null hypothesis of DGP-B, we see that
again LM™ dominates. In fact in all cases when a most powerful test could be determined, LM™* was the
most powerful test. However, this results is not quite so surprising as LM* is the only test of the three
derived under the null hypothesis of cointegration. For both Tables 6 and 7 we see the benefits of using
panel data rather than the simple time series. In Table 7, when T' = 15 and 6 = 0.15, increasing N from 1
to 15 increases the power from .1066 to .2872; when T = 25 an identical increase changes power from .1705
to .6375; when T = 50 power increases from .3943 to .9937; and for T = 100 power increases from .7224 to
.9999

6.2 Common Slopes and Varying Intercepts

Results for the 5% percent critical tails and empirical size for the two tests with common slopes is given
in Table 9. Again, theory for these two one-sided tests would predict values close to -1.645 for a rejection
rate of 5%. For T' < 25, in almost all cases (with the one exception of T' = 25 and N = 15) the size of the
ADZFg, test is closer to 0.05 than the size of the ADFk test. For T' > 25, the results are not so clear. When
N =15 or 25, the size of the ADFk test is closer to 0.05 than the size for the ADFgj. It is interesting to
note that the ADFy test seems more sensitive to questions of balance in the dimensions of T and N. For
both T' = 50 and T' = 100, increasing the N dimension from 50 to 100 results in an increase in empirical
size away from the 5% level. For the ADFgy; test, in all cases increasing the N dimension results in smaller
empirical sizes-moving closer to 0.05.

The size-adjusted powers for both tests are given in Table 10. Theory once again predicts that power
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should increase as T and N increase and increase as p decreases. In this case the results are encouraging
in which the adjustments made by the ADFg)s increase the power dramatically, particularly for small T.
In fact, when possible to determine the more powerful test, the ADF test outperformed the ADFgy, test
only when the cross-section dimension is limited to 1. Both tests have powers which increase toward 1 as T
and N increase and for T' > 15, decreases in p away from the null value of 1, causes the power to increase.
The difference in the power between the two tests is most dramatic for small T. For example when T' = 25
and N = 25 the power of the ADF§ test is .1774, .3009 and .3804 for p = 0.95,0.85 and 0.75 respectively
while the power for the ADFg,; test is .5180, .9896. and .9999.

The performance of the two tests with different values for 7 and ¢ is interesting. Once again, theory
shows that, asymptotically, these affects should have no impact on the distribution. Results are given in
Table 11. As in the Monte Carlo experiment for varying intercepts, the results are quite different for the two
tests. The effect of the moving average, m, seems again to dominate. For the ADF test, a positive moving
average has a greater impact on the size of the test. Consider the case for § = 0, for 7 = —0.8 the empirical
size decreases from .0954 to .0084 in contrast to when m = 0.8 which results in a jump to an empirical size
of .4073. The sign on ¢, the weak exogeneity parameter has little effect. For § = —0.5 and 7 = 0.8, the
empirical size is .6417 while the size for 6 = 0.5 and 7 = 0.8 is .6399. For the ADFsys test, a negative moving
average increases the empirical size to .9999 for all values of §. A positive moving average value causes the
empirical size to decrease dramatically to values of .0001 or .0000. It is interesting to note that the ADFx
test seems to work better in the presence of a negative moving average while the AD Fgy; test seems to work
better in the presence of a positive moving average. The size adjusted power of both tests is equal to .9999

for all cases.

7 Conclusion

The development of non-stationary econometrics in the time series literature allowed for a deeper under-
standing of the statistics of “long-run steady state” relationships. These relationships were identified as
cointegrated relationships among non-stationary variables. Extending these results to panel data offers the
new challenge of how to combine results on cross-sectional data combined with the time series. This chapter
evaluates tests for cointegration in panel data. Which test among these is best?

The first step in selecting a test is to understand clearly the nature of the long run relationship to
be tested. In many applications, theory determines how homogeneous the long run relationships should be

across the cross sections. The most important factor is whether or not there exists a common slope coefficient
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across the cross sections. There is also the empirical consideration of how appropriate it is to pool the data.
Ideally, a test would exist which could test this property of the data.

If the theory suggests that the cross sections need not have a common slope, then this chapter has
presented three final tests from which to choose. Two of the tests are constructed under the null hypothesis
of no cointegration, ADF* and APG*. These tests are based on the ADF test and Pedroni’s pooled tests.
The third test is based on the null hypothesis of cointegration which is based on the LM test from the time
series literature, LM™*. Of these three tests for varying slopes, which is best?

The test of the null hypothesis was originally proposed in response to the low power of the tests of the
null of no cointegration, especially in the time series case. Further, in those cases where economic theory
predicted a long run steady state relationship, it seemed that a test of the null of cointegration rather than
the null of no cointegration would be appropriate. The results from the Monte Carlo study here shows
that LM™* does outperform the other two tests. In both experiments, LM* was seen to be more powerful,
especially for cases when the parameters generated were very close to values under the null.

Of the two reasons for the introduction of the test of the null hypothesis of cointegration, low power and
attractiveness of the null, the introduction of the cross-section dimension of the panel solves one: all of the
tests show decent power when used with panel data. For those applications where the null of cointegration
is more logical than the null of no cointegration, this study, at a minimum, concludes that using LM* does
not compromise the ability of the researcher of determining the underlying nature of the data.

If the theory suggests that the cross sections should be restricted to a common slope, this chapter presents
two tests from which to choose, an ADF-type test and a test based on non-parametric adjustment of the
ADF-type test. Both of these tests are constructed under the null hypothesis of no cointegration. In this
case, unless specific information is known about the presence of a negative moving average in the errors,

then the test based on the non-parametric adjustment should be used, the ADFgj test.
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Appendix

The following are critical values, including mean and standard deviation, for ADF and Z; which are used for

t_ADF and Zt.

mean std  10% 5% 1%

—2.0261 .8200 —-3.0383 —3.3329 —-3.9197
—2.4687 .8000 —3.4695 —3.7576 —4.3290
—2.8535 .7800 —3.8319 —4.1212 —4.6750
—3.1758 7668 —4.1500 —4.4344 —4.9978
—3.4816 .7583 —4.4584 —4.7451 —5.2998

UL = W N =

The values were calculated in GAUSS using 50,000 replications. Since asymptotic theory tells us that

the ADF test should asymptotically be identical in distribution to a Dickey-Fuller test with iid errors, a

Dickey-Fuller test on non-stationary residuals was simulated.

Values for the individual 10%, 5%, and 1% levels are provided as a comparison to the values given in

Phillips and Ouliaris (1990).
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Table 1: Preliminary Comparison of Empirical Size-DGP A

ADF* PO} PO APG*
T=15
N=1 0782 .0887 .0063 .1045
N=15 0577 1339 .0000 .1014
N=25 .0456 1557 .0000 .1054
N=50 .0349 1945 .0000 1149
N=100 .0229 2789 .0000 1371
T=25
N=1 .0656 .0690 .0301 .0784
N=15 .0493 .0587 .0039 .0524
N=25 .0430 .0593 .0017 .0467
N=50 .0392 .0563 .0004 .0379
N=100 .0271 .0559 .0003 .0311
T=50
N=1 .0520 .0431 .0444 .0487
N=15 .0492 .0257 .0198 .0278
N=25 .0457 .0204 .0171 .0208
N=50 .0420 .0147 .0105 .0150
N=100 .0379 .0083 .0055 .0079
T=100
N=1 .0470 .0353 .0593 .0404
N=15 .0518 .0156 .0356 .0222
N=25 .0505 .0106 .0338 .0148
N=50 .0486 .0049 .0266 .0077
N=100 .0499 .0019 .0224 .0035
Notes:

(a) Size based on one-sided test with critical value equal to -1.645.
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Table 2: Preliminary Comparison of Power-DGP A

ADF* PO; PO; APG*
p 0.95 0.75 0.95 0.75 0.95 0.75 0.95 0.75
T=15
N=1 0506 0631 0574 1025 0556 0984 0573 1036
N=15 0738 2412 0993 .5631 1016 5678 .1196* 6904
N=25 0934 3804 1291 7782 1218 7648 .1510% 8896*
N=50 1164 6141 1818 9682 1698 9649 .2379* 9953
N=100 1746 8859 2910 .9995 2566 9992 .3981* 9999
T=25
N=1 0541 1013 .0600  .1566 0597 1548 0611 1620
N=15 1040 6736 1572 .9549 1445 9408 .1709 9813*
N=25 1367 8666 2086 .9962 1955 9939 2527 9997
N=50 1897 9913 3469 .9999 3068 9999 4365 9999
N=100 3153 9999 5621 9999 5036 9999 .7289* 9999
T=50
N=1 0607 2671 0780 4342 0780 4292 0778 4333
N=15 1970 9998 3443 .9999 3118 9999 .3786* 9999
N=25 2797 9999 5184 9999 4547 9999 .5720% 9999
N=50 4882 9999 7849 9999 7087 9999 8653 9999
N=100 7567 9999 9963 .9999 9282 9999 9903 9999
T=100
N=1 0918 7898 1237 9398 1251 9420 1231 9391
N=15 5695 9999 8287 .9999 7612 9999 .8610% 9999
N=25 8019 9999 9636 .9999 9314 9999 .9826* 9999
N=50 9782 9999 9996 .9999 9977 9999 9999 9999
N=100 9999 9999 9999 .9999 9999 9999 9999 9999

Notes:
(a) * indicates the power is "significantly greater" when compared with any of the other three tests.
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Table 3: Critical Tail Values for DGP-A

ADF* APG* LM*
.05 95 .05 .95 .05 .95
T=15
N=1 -1.9994 1.9921 -2.1033 1.1027 -1.0357 280.4795
N=15 -1.7377 2.3097 -2.0477 1.4099 32.0205 846.2267
N=25 -1.5913 2.3799 -2.0931 1.4207 67.8861 .986.4166
N=50 -1.4249 2.5299 -2.1508 1.3783 154.9916 1176.9469
N=100 -1.1850 2.8383 -2.2683 1.2876 (c)
T=25
N=1 -1.8039 1.8774 -1.878 1.1559 -0.2937 2344.6887
N=15 -1.6362 1.9783 -1.6736 1.6555 303.8285 6359.1715
N=25 -1.5702 2.0768 -1.6179 1.6926 618.700 7273.6785
N=50 -1.4993 2.1560 -1.5287 1.7606 1337.6544 8528.3492
N=100 -1.3563 2.3019 -1.4160 1.8755 2612.4676 10215.484
T=50
N=1 -1.6623 1.8015 -1.6371 1.1605 16.6210 29780.201
N=15 -1.6320 1.8054 -1.3997 1.7719 4144.7633 73931.707
N=25 -1.5972 1.8449 -1.2919 1.8912 8079.4509 83643.576
N=50 -1.5437 1.8678 -1.1139 2.0745 17270.721 117259.26
N=100 -1.5321 1.9239 -0.9029 2.3417 32972.924 117259.26
T=100
N=1 -1.6165 1.7408 -1.5679 1.1806 212.8913 293334.36
N=15 -1.6710 1.6960 -1.2801 1.8369 43127.502 732973.87
N=25 -1.6511 17177 -1.1576 1.9878 83414.588 819136.24
N=50 -1.6326 1.7131 -0.9082 2.2406 176527.25 961931.94
N=100 -1.6427 1.7243 -0.5960 2.5427 329494.67 1167615.0

Notes:

(a) ADF* and APG* are derived under the null of no cointegration.

(b) Theory predicts that ADF™* and APG* should be asymptotically standard normal.

(¢) The results for T=15 and N=100 were unobtainable using the fm procedure in COINT 2.0.
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Table 4: Critical Tail Values for DGP-B

ADF* APG* LM*
.05 .95 .05 .95 .05 .95
T=15
N=1 -3.4193 0.4025 -5.1601 -1.0647 -1.0861 1.5511
N=15 -6.8738 -2.8324 -12.9827 -8.8675 -3.2473 1.2969
N=25 -8.2807 -4.2391 -16.0953 -12.0475 -3.8934 0.6806
N=50 -10.7820 -6.7398 -21.9040 -17.7879 -4.9465 -0.0879
N=100 (c)
T=25
N=1 -4.1307 -0.5586 -5.9456 -2.1471 -1.0595 2.1618
N=15 -10.1258 -6.4900 -16.7929 -12.9665 -2.7912 2.0879
N=25 -12.5117 -8.9496 -21.1169 -17.2411 -3.2033 1.7417
N=50 -16.9732 -13.3324 -28.9876 -25.1793 -3.9026 1.2486
N=100 -23.2049 -19.5680 -40.2533 -36.3506 -4.7454 0.5269
T=50
N=1 -5.6605 -2.2999 -7.7609 -4.2157 -1.0129 2.2434
N=15 -16.6418 -13.2351 -24.4750 -20.8528 -2.1795 2.3093
N=25 -20.9452 -17.5617 -31.0713 -27.4119 -2.4221 2.2149
N=50 -28.9441 -25.5184 -43.1480 -39.4899 -2,7129 1.9091
N=100 -40.1773 -36.8097 -60.2685 -56.5836 -3.1108 1.7284
T=100
N=1 -8.0143 -4.7625 -10.5901 -7.1763 -0.9541 2.2391
N=15 -26.0655 -22.8093 -35.7923 -32.2859 -1.8140 2.2426
N=25 -33.2090 -29.9421 -45.7346 -42.2381 -1.9298 2.1714
N=50 -46.2659 -43.0329 -63.9175 -60.3727 -2.0677 2.1417
N=100 -64.7422 -61.5001 -89.6306 -86.1329 -2.2664 1.9821
Notes:

(a) LM* is derived under the null of cointegration.
(b) Theory predicts that LM* should be asymptotically standard normal.
(¢) The results for T=15 and N=100 were unobtainable using the fm procedure in COINT 2.0.
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Table 5: Empirical Rejection Rates

ADF* APG* LM~
DGP-A DGP-A DGP-B
T=15
N=1 0782 1045 .0475
N=15 0577 1014 .0405
N=25 .0456 1054 .0266
N=50 .0349 1149 .0147
N=100 .0229 1371 (b)
T=25
N=1 .0656 0784 .0638
N=15 .0493 .0524 .0666
N=25 .0430 .0467 .0544
N=50 .0392 .0379 0371
N=100 0271 0311 0183
T=50
N=1 .0520 .0487 0735
N=15 .0492 .0278 .0883
N=25 .0457 .0208 .0816
N=50 .0420 .0150 .0655
N=100 0379 .0079 .0533
T=100
N=1 .0470 .0404 0736
N=15 0518 .0222 0917
N=25 .0505 .0148 .0868
N=50 .0486 0077 .0880
N=100 .0499 .0035 0734

Notes:
(a) Empirical critical value for DGP-A is -1.645 and for DGP-B, 1.645.
(b) Results for N=100 and T=15 were unobtainable for the fm routine of COINT 2.0.
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Table 6: Power to Reject: DGP-A

ADF* APG* LM*
p 0.95 0.85 0.75 0.95 0.85 0.75 0.95 0.85 0.75
T=15
N=1 .0506 .0565 .0631 0573 .0781 .1036* 0573 .0665 0771
N=15 0738 1337 2412 .1196 3571 .6904* .1403* 3647 .6030
N=25 .0934 .2048 .3804 .1510 5303 .8896* 1910%  .5454*% 8089
N=50 1164 3149 .6141 2379 .8255% 9953 .2088* 7962 9961
N=100 1746 5310 .8859 .3981 9795 9999 (b)
T=25
N=1 0541 .0746 1013 .0611 .0987 .1620%* .0652 0921 1357
N=15 .1040 .3089 6736 1709 .6706 .9813* 2397%  .7170% 9566
N=25 1367 4525 .8666 2527 8769 9997 B757% .9062* 9973
N=50 1897 71268 9913 4395 9941 .9999 .5978* 9929 9999
N=100 3153 9483 9999 .7280 9999 9999 .8605* .9998 9999
T=50
N=1 .0607 1277 2671 0778 .1980 4333* 1081* 2047 .3923
N=15 1970 .8945 9998 4084 9980 9999 6652* 9969 9999
N=25 2797 9881 9999 5720 9999 9999 9157% 9999 9999
N=50 4882 9999 9999 .8653 9999 9999 .9999*% 9999 9999
N=100 71567 9999 9999 9903 9999 9999 9999 9999 9999
T=100
N=1 0918 3857 7898 1231 .5484 .9391* .2533* 5382 8817
N=15 .5695 9999 9999 .8610 9999 9999 .9999*% 9999 9999
N=25 .8019 9999 9999 .9826 9999 .9999 .9999* 9999 .9999
N=50 9782 9999 9999 9999 9999 9999 9999 9999 9999
N=100 9999 9999 9999 9999 9999 9999 9999 9999 9999

Notes:
(a) * indicates the rejection rate is "significantly greater" when compared with either of the other two tests.
(b) Results for N=100 and T=15 were unobtainable for the fm routine in COINT 2.0.
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Table 7: Power to Reject: DGP-B

ADF* APG* LM*
0 0.05 0.15 0.25 0.05 0.15 0.25 0.05 0.15 0.25
T=15
N=1 .0516 .0638 .0854 .0562 .0646 .0897 .0619 .1066*  .1797*
N=15 .0539 .0933 1787 .0558 1111 .2504 .0815*%  .2872*  .6460*
N=25 .0560 1126 2383 .0587 1368 .3459 .0951*  .3989*  .8290*
N=50 .0573 .1368 .3510 .0597 1789 5181 1141*%  5798*  .971T7*
N=100 (b)
T=25
N=1 .0553 .0960 1550 .0537 .0886 .1555 .0680 1705*%  .3219*
N=15 .0619 .2168 .5436 .0637 .2325 .6364 .1146*  .6375*  .9676*
N=25 .0704 .3053 7349 .0660 3157 .7980 .1423*  8158*  .9970*
N=50 .0781 4598 .9270 .0790 .4993 9665 .1868*  .9659*  .9999*
N=100 .0886 .6780 .9964 .0902 7220 .9996 2639% .9995*% 9999
T=50
N=1 .0676 .2150 4152 .0654 1947 .3941 .1083*  .3943*  .6566*
N=15 .1081 7904 .9959 .1005 7653 .9964 3163* 9937 .9999
N=25 1315 19291 .9999 1201 .9027 .9999 4190*  .9999* 9999
N=50 .1863 .9948 .9999 .1614 .9941 .9999 .6462* 9999 .9999
N=100 .2801 .9999 .9999 2325 .9999 .9999 .8564* .9999 .9999
T=100
N=1 .1042 .5100 .8032 .0962 .4692 7796 2254%  7224*%  .9262*
N=15 .3280 .9999 .9999 .2613 .9999 .9999 .8635*%  .9999 .9999
N=25 4592 .9999 .9999 3814 .9999 .9999 9674*% 9999 .9999
N=50 .7100 .9999 .9999 .9999 .9999 .5686 .9998*  .9999 .9999
N=100 9141 .9999 .9999 .8141 .9999 .9999 .9999 .9999 .9999
Note:

(a) * indicates the rejection rate is "significantly greater" when compared with either of the other two tests.
(b) Results for T=15 and N=100 were unobtainable for the fm routine in COINT 2.0.
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Table 8: 5 Percent Tail and Empirical Size for Common Slopes Model

ADFy ADFgns
Tail Size Tail Size
T=15
N=1 -2.2251 .1249 -1.8561 .0720
N=15 -2.2924 .1605 -2.2872 .1192
N=25 -2.4511 1967 -2.2230 1152
N=50 -2.7184 .2866 -2.1832 .1059
N=100 -3.1045 .4386 -2.0541 .0931
T=25
N=1 -2.1751 1363 -1.9857 .0986
N=15 -2.0853 177 -2.2041 1184
N=25 -2.1239 .1200 -2.0696 1011
N=50 -2.2963 1532 -2.0278 .0907
N=100 -2.4573 .2095 -2.0278 .0838
T=50
N=1 -2.2422 .1660 -2.2358 1557
N=15 -1.9666 .0971 -2.0935 .1058
N=25 -1.9879 .0975 -2.0023 .0905
N=50 -1.9721 .0958 -1.8866 .0760
N=100 -2.1021 1159 -1.8393 .0734
T=100
N=1 -2.3050 .1863 -2.3723 2051
N=15 -1.8988 .0840 -1.9824 .0970
N=25 -1.8973 .0808 -1.9344 .0843
N=50 -1.8872 0797 -1.8594 .0733
N=100 -1.8849 .0811 -1.7826 .0685
Notes:

(a) Size based on one-sided test with critical value equal to -1.645.
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Table 9: Size Adjusted Power for Common Slopes Model

ADFy ADFgpy
p 0.95 0.85 0.75 0.95 0.85 0.75
T=15
N=1 .0508* .0439* .0361* .0353 .0204 .0124
N=15 .0941 .0796 0418 .2479* 71204* .9400*
N=25 1116 0947 .0436 3768* .9169* .9965*
N=50 1477 1278 0415 6137* .9963* .9999*
N=100 2117 1913 .0508 .8874* .9999* .9999*
T=25
N=1 .0497* .0459* .0424%* .0383 .0239 0135
N=15 1387 2067 2477 .3319* .8928* .9982%*
N=25 1774 .3009 .3804 .5180* .9896* .9999*
N=50 2780 5129 .6363 .71995% .9999* .9999*
N=100 4824 .8068 9142 .9795% .9999* .9999*
T=50
N=1 .0518* 0797* .1016* .0314 .0266 .0185
N=15 .2988 8879 9929 .5582* .9999* .9999*
N=25 4484 9844 9999 ST971* .9999* 9999
N=50 7588 9998 9999 .9999* 9999 9999
N=100 .9540 9999 9999 .9999* 9999 9999
T=100
N=1 .0841* .2480%* 4285%* .0427 .0637 .0467
N=15 8373 9999 9999 .9594* 9999 9999
N=25 9697 9999 9999 .9978* 9999 9999
N=50 9999 9999 9999 9999 9999 9999
N=100 9999 9999 9999 9999 9999 9999

Notes:
(a) * indicates the power is "significantly greater" when compared with either of the other two tests.
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Table 10: Empirical Size and Power with Different Parameter Values

ADFy ADFg),
Size Power Size Power
6=-0.5
T=-0.8 1921 .9999 .9999 .9999
7 =0.0 .0976 .9999 .0817 .9999
™ =0.8 6417 .9999 .0001 .9999
6=0.0
T=-0.8 .0084 .9999 .9999 .9999
7 =0.0 .0954 .9999 .0763 .9999
T =0.8 4073 .9999 .0000 .9999
6=0.5
T=-0.8 .1852 .9999 .9999 .9999
7 =0.0 .1010 .9999 .0794 .9999
=028 .6399 .9999 .0000 .9999
Notes:
(a) N=T=50.
(b) p=.75.
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