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A Monte Carlo study of ranked efficiency estimates from frontier 
models 

William C. Horrace, Syracuse University 
Seth Richards-Shubik, Carnegie Mellon University 

Keywords Truncated normal, Stochastic frontier, Efficiency, Multivariate probabilities 
Abstract 

Parametric stochastic frontier models yield firm-level conditional distributions of inefficiency that are truncated 
normal. Given these distributions, how should one assess and rank firm-level efficiency? This study compares the 
techniques of estimating (a) the conditional mean of inefficiency and (b) probabilities that firms are most or least 
efficient. Monte Carlo experiments suggest that the efficiency probabilities are easier to estimate (less noisy) in 
terms of mean absolute percent error when inefficiency has large variation across firms. Along the way we tackle 
some interesting problems associated with simulating and assessing estimator performance in the stochastic frontier 
model. 

1 Introduction 
A broad class of fully-parametric stochastic frontier models represent production or cost functions as composed-
error regressions and imply that firm-level production or cost efficiency can be characterized as a truncated (at zero) 
normal distribution. Whether cross-sectional or panel data, cost frontier or production frontier, time-invariant or 
time-varying efficiency, parametric stochastic frontier models yield inefficiency distributions that are truncated 
normal. See, for example, Jondrow et al. (1982), Battese and Coelli (1988, 1992), Kumbhakar (1990), Cuesta 
(2000), and Greene (2005). After estimating the cost or production function for a sample of firms, parametric 
assumptions on the composed error are typically used to calculate the mean and variance of normal distributions, 
which (when truncated at zero) represent the conditional distributions of technical inefficiency for each firm. Given 
these truncated normal, conditional distributions, a reasonable and commonly asked question is, ‘‘how does one 
assess the relative efficiency ranks of the firms in the sample?’’ There are currently two very different approaches 
used to assess the relative efficiency ranks of individual firms in the sample. 

The traditional approach is to estimate each firm’s technical efficiency by calculating the conditional mean 
of its truncated normal inefficiency distribution. See Jondrow et al. (1982) and Battese and Coelli (1988). The 
conditional means are rational point estimates of inefficiency that, when ranked, reveal information on relative 
magnitudes of realizations from the truncated normal distributions. However, interpretation of ranked conditional 
means is somewhat contentious, because the conditional mean is merely a point estimate and is not intended as a 
ranking device. This is the essence of the arguments in Horrace and Schmidt (1996), who find that the ranks of the 
conditional means may be unreliable once variability of the distributions is considered. There have been several 
solutions proposed to assess this reliability (or lack of reliability). Horrace and Schmidt recommend calculating 
confidence (prediction) intervals for the truncated normal distributions. Bera and Sharma (1999) provide formulae 
for the conditional variance of the truncated normal distribution. Both  of these methods may be used to assess the 
reliability of the ranked conditional means of technical inefficiency. Recently, Simar and Wilson (2009) show that 
the prediction intervals of Horrace and Schmidt have poor coverage probabilities and propose ‘‘bagging’’ and 
bootstrapping approaches to assess the variability of the conditional mean as a point estimate of technical efficiency. 

Horrace (2005) proposes an alternative (and valid) ranking device for technical efficiency. He calculates 
probabilities on relative efficiency (‘‘efficiency probabilities’’) that allow statements to be made on which firm (in 
the sample) is most or least efficient. That is, the approach yields statements like, ‘‘firm A is most (least) efficient 
relative to the rest with probability 0.3.’’ Unlike confidence intervals and conditional variances, this accounts for the 
multiplicity implied by the joint inferential statement that firm A is better than B, and better than C, and better than 
D, etc.1 The approach is applicable for cross sectional data, panel data or any case where firm-level efficiency is 
characterized by a conditional distribution that is truncated normal. The approach also controls for the multiplicity 
associated with inferential statements on the rank statistic that the traditional approach does not. 

The two measures are entirely different, as are their interpretations, so comparisons are hard to make. 
Nonetheless, these comparisons are the goal of this study, which makes recommendations as to when each measure 
will be more accurately estimated in terms of mean absolute percentage error (MAPE). This information may be 
                                                           
1 This has been accomplished in the semi-parametric, fixed-effect specification of the stochastic frontier, using the theory of multiple 
comparisons. See Horrace and Schmidt (2000). 



useful to empiricists interested in assessing relative ranks of technical efficiency. In empirical exercises where the 
conditional distributions of inefficiency prior to truncation have common variance, the firm rankings based on the 
conditional mean will be identical to those based on the efficiency probabilities of Horrace (2005). As such, 
calculating rank correlations with the true inefficiency rankings for each measure reveals nothing about the relative 
merits of the two approaches. 

This paper uses Monte Carlo simulations to compare the precision of the conditional mean estimates and 
efficiency probability estimates in terms of MAPE. That is, the simulations assess the ability of a firm’s conditional 
mean estimator to serve as an estimate of its (unknown) condition mean; they also assess the ability of a firm’s 
efficiency probability estimator to serve as an estimate of its (unknown) efficiency probability. In particular, the 
simulations are not concerned with assessing the ability of a firm’s conditional mean and efficiency probability 
estimators to serve as estimates of its unknown technical efficiency (a realization of the error component u in a 
typical stochastic frontier specification). The simulations also present several complications that underscore the 
difficulties of efficiency estimation, in general, and that provide insights into the inherent differences of the two 
estimation approaches. These are discussed in the sequel. We find that the efficiency probabilities are more reliable 
when the variance of technical inefficiency is large; this is the ‘‘usual’’ case in the sense that it is the only time when 
estimation of inefficiency is at all precise and when it may be even warranted. In addition to the MAPE results, we 
present mean squared error (MSE) and bias calculations to examine the effects of changes in the variance parameters 
and sample sizes on the performance of each estimator (in isolation). We also demonstrate that relative efficiency 
probabilities can be made for any subset of the firms in the sample, where the subset might be selected based on 
some additional criterion which does not enter into the frontier estimation. (In fact, we use this technique to simplify 
our Monte Carlo study when the number of firms is large.) 

The next section reviews the stochastic frontier model and defines the estimates to be studied, including the 
new subset probabilities. Section 3 contains the Monte Carlo study, and Sect. 4 provides a final discussion of the 
results and concludes. 

2. Efficiency Estimation 
The parametric stochastic frontier model was introduced simultaneously by Aigner et al. (1977) and Meeusen and 
van den Broeck (1977). Since then, there have been many re-formulations of the basic model. For example, consider 
the standard linear frontier specification for panel data with time-invariant efficiency:  

 
where  is productive output or cost for firm  in period   is a vector of production or cost inputs and  is an 
unknown parameter vector. The are random variables representing shocks to the frontier. Let  have an  
zero-mean normal distribution with variance . The  are random variables representing productive or cost 
inefficiency, added to the cost function representation or subtracted from the production function representation. Let 

 have a distribution that is the absolute value of an  zero-mean normal random variable with variance  (a half-
normal distribution). Additionally, let the  be independent across  and across  There are more flexible 
parameterizations of the linear model. For example, Kumbhakar (1990), Battese and Coelli (1992), and Cuesta 
(2000) considerforms of time-varying efficiency, 2 Greene (2005) considers an extremely flexible model that 
incorporates firm level heterogeneity in addition to the usual error components. Our selection of the more simple 
model in Eq. 1 is merely to parallel the model and discussions in Horrace (2005) and should not be construed as a 
limitation on the applicability of the results that follow. In fact, the inferential procedures detailed herein apply in 
timevarying efficiency models, in Greene (2005), or in any frontier model where the conditional distribution of 
efficiency is truncated normal (including the case where the unconditional distribution of efficiency is exponential). 
In this model per Jondrow et al. (1982), the distribution of  conditional on  is a  random variable 
truncated below zero. Per Battese and Coelli (1988), the  and  are: 

 
where  (The right-hand side of Eq. 2 is  for the cost frontier or ‘‘-’’ for the production frontier) 
Parametric estimation usually proceeds by corrected GLS or MLE (e.g. Horrace and Schmidt (1996) for details), 
                                                           
2 Since large n, small T is typical in panel datasets, perhaps timeinvariant technical inefficiency is the empirically relevant case. In what follows 
we only consider the time-invariant case. 



yielding estimates  Then, defining ;‘‘estimation’’ of  follows by substituting  
for  in Eqs. 2 and 3. Then, for a log-production function, the usual measure of technical 
efficiency based on a  assumption is the conditional mean: 

 
This is the sample equivalent of  assuming that substitution of  does not change the shape of 
the conditional distribution (or at least asymptotically). In the next section, we are interested in understanding how 

precisely  estimates  and not how precisely estimates 3 
Horrace (2005) argues that the point estimate in 4 is ‘‘misleading.’’ Granted the shape of the conditional 

distribution is truncated normal, but it is unrealistic to think that the first moment of an asymmetric, truncated 
distribution can summarize its entire probabilistic nature. Illustration of this point is the essence of the contributions 
of Horrace and Schmidt (1996) and Bera and Sharma (1999): the first moment does not adequately summarize 
efficiency, so one should also quantify the second moment by constructing confidence intervals (Horrace and 
Schmidt 1996) or calculating the variance of the truncated distributions (Bera and Sharma 1999). Ideally, one might 
calculate higher moments as well, particularly odd moments, which affect the probability of extreme realizations of 
inefficiency in clear ways.4 This suggests that the point estimate,  does not adequately account for (or inform our 
understanding of) the varying shape of the conditional distribution of  across firms. 

Horrace (2005) addresses these shortcomings in  by calculating multivariate probabilities conditional on 
 given that the distribution of  is truncated (at zero) normal. These probabilities are: 

 
Notice that there is room for confusion in the notation. The ‘‘max’’ notation in   is intended to represent the fact 
that  is ‘‘maximally efficient’’, which happens to coincide with  being minimal  in a probabilistic 
sense). The ‘‘max’’ notation should not be confused with ‘‘maximal ’’, which is synonymous with ‘‘minimal 
efficiency’’. Similarly, the ‘‘min’’ notation in  represents the fact that  is ‘‘minimally efficient’’  
in a probabilistic sense). Specifically, the probabilities are given by: 

 
where  are the probability function and the cumulative distribution function of a distribution 
truncated at zero, respectively. That is,  

 
 where  is the cumulative distribution function of the standard normal. The probabilities in Eqs. 5 and 6 

condense all the information on the relative differences of the distributions of efficiency into a single statement and 
also account for the multiplicity of the probability statement on maximal (minimal) efficiency, which the conditional 
mean and conditional variance cannot. In particular, they more adequately capture the effect of the shape of the 

                                                           
3 The question of ‘‘how precisely b hj estimates uj?’’ is interesting, but it not addressed here. 
4 For example, Feng and Horrace (forthcoming) consider the effects of the skewness of the technical inefficiency distribution on various technical 
efficiency estimates. 



distribution on the magnitude of a firm’s realization of  than the point estimates  Estimates of the probabilities, 
 follow by substituting estimates  into Eqs. 5 and 6. (In the next section, we are interested in 

understanding how precisely  estimate and not how precisely they estimate  
A useful feature of these probabilities is that they are statements of relative efficiency (efficiency relative to 

a within-sample standard), whereas the typical efficiency measure,  is a measure of absolute efficiency 
(efficiency relative to an unobserved population standard). Relative efficiency is often empirically relevant, as when 
the research question is about the most or least efficient firms within an industry. In addition, one may be interested 
in understanding relative performance among a subset of the sample of firms ; based on a certain 
information criteria or decision rule. For example, one may be interested in estimating a cost function for a sample 
of 500 firms, but then only calculating probabilities of maximal cost efficiency for a small subset of the firms with 
an observable characteristic that is empirically relevant.5 The probabilities will change as the cardinality 
of and the membership within this subset changes. Let  be the set of all firm indices in the sample, and 
let the subset of interest be  based on some external information or decision rule,  Then the probabilities in 
Eqs. 5 and 6 become: 

 

 
for all  These will be different, in general, than the probabilities  of Horrace (2005). In fact, the 
probabilities in Eqs. 5 and 6 are a special case of Eqs. 7 and 8 when  is empirically relevant, then 
probabilities like  may be more useful than  Also, experiments on the effects of different 

 on the probabilities in Eqs. 7 and 8 may be of particular interest to empiricists. These types of experiments 
flow more naturally from relative efficiency measures like the probabilities in Eqs. 7 and 8 than they do from 
absolute efficiency measures like  in Eq. 4. 

The next section examines the small and large sample performance of the estimates of  via 
Monte Carlo analysis. For each estimate we calculate MSE and bias for various sample sizes, , and various 
selections of  Reliability comparisons across the different measures are made using the unitless MAPE. 

3. Monte Carlo Experiment 
The specification used for the experiment is the production function: 

 
Following Olsen et al. (1980), we fix the variance of the composed error term to  Hence, the 

individual variances of  may be characterized by a single parameter—we use the ratio  However, 

unlike the estimates in Olsen et al. (1980), the and  are more complicated transformations of the data, 
so we cannot say immediately what the effect of changes in  would be.6 

While we estimate the production function in Eq. 9 for the entire sample, we only estimate the various 
efficiency measures for a subset of five randomly chosen firms. This is done primarily for ease of computation of 

 which involve integration over a product of functions, one for each firm in the comparison group, but it 
also demonstrates the usefulness of the probabilities in Eqs. 7 and 8. In essence, we calculate b 

 is the rule ‘‘randomly select five firms from ’’ Consequently, we only calculate five 
values of  in each simulation iteration for comparison. This randomization introduces an additional source of 
variability into the exercise, which may cause some instability in the convergence results, but the instability is the 
price we pay for computational ease. Fortunately, the additional variability is common to all estimators considered, 
so any instability will be globally manifest. 
                                                           
5 There is a price one pays when selecting a subsample based on some external rule. That is, the firms with a similar characteristic (e.g. large 
size) may have a different technology from those firms that do not have the characteristic. Empiricists may select or group the firms from the 
sample based on some rule, but different groups may have different technologies. 
6 This is particularly difficult to predict for the efficiency probabilities. 



3.1 Simulation procedure 
The experiment is designed to assess  (vis a vis ) over a range of common panel 
sizes  and variance ratios . We use eight panel configurations: T = 5 and n = 25, 100, 500; T = 10 and n = 
25, 100, 500; and T = 20 and n = 25,100.7 In all cases we are concerned with the usual panel setting of large  and 
fixed T, so asymptotic arguments are along the dimension . For each panel configuration we conduct simulation 
exercises for five variance ratios , so there are forty simulations in total. For reasons discussed 
above, we fix the number of firms for calculation of  to five (randomly selected from .8 

Each iteration within a simulation exercise (indexed by  goes through the following sampling 
and estimation procedure, which is repeated  times. First, the errors  are drawn from the 
appropriate half-normal and normal distributions (with respective variances ), and the regressors  are 
drawn from an independent uniform [0,1] distribution.9 Then  is generated for  (the only 
parameterization of the conditional mean function considered). Since each  is observed, we can calculate the true 
values of  for each draw, m. These map into the true values for  for each m, so the 
‘‘parameters’’ of interest are not constant across m. Estimation of  and  proceeds with corrected GLS (the 
‘‘random effects’’ estimator).10 After estimating  and  using  for  for  in Eqs. 2 and 3, 
five firms are randomly selected to produce the subset  From these results we calculate estimates 

 for the five firms  using Eqs. 4, 7, and 8. 
In what follows it is very important to remember that the  are not fixed 

across iterations,  (This should be clear, since all three of these measures are indexed by ) This produces 
nonstandard formulae for the MSE, bias, and MAPE, although their interpretations are, indeed, standard. It also 
underscores the difficulties in estimating efficiency in these models: we are trying to make inferences about the 
distribution of efficiency for each firm from what amounts to a single draw from the distribution, and that single 
draw uj is not even observed; it is merely ‘‘estimated’’ from the convolution,  

With the results from the 5,000 iterations for each simulation exercise, we calculate the mean square error 

of  Our nonstandard formula is (typically): 

 
and similarly for 11 Even though the MSE is nonstandard because it includes sampling 
variability across the true parameters (even asymptotically), it still seems theoretically sensible. As we shall see, it 
also produces results that are sensible. Again, this is an unavoidable feature of efficiency estimation from these 
models (in general). 

For the bias and MAPE, we separately use only the best or worst firms within each five-firm subsample. 
This is necessary as the probability statements within a comparison group automatically sum to one (e.g., 

 so there is no average bias for the whole group for these estimators. This is an artifact of their 
‘‘relative nature’’ and perhaps a nice feature. More specifically, using the population ranking of  among the five 

randomly selected firms,  we calculate the bias and MAPE of  and  for 
each iteration. Hence, the biases for each extremum measure are (typically): 

 
and similarly for  We could have selected any firms in the ranking for this purpose  

                                                           
7We omitted n = 500, T = 20 to save computing time for the entire exercise. 
8This also allowed us to indirectly examine the validity of the subset efficiency probabilities introduced in Eqs. 7 and 8. 
9 We could have allowed the xjtm to be correlated within firms but did not. 
10 When CGLS fails due to ^r2u \0; we set ^r2u ¼ 0; per Waldman (1982). 
11We also calculated mean absolute error for each measure, but the results were similar to those for MSE and are not reported. 



 

 
 
(i.e., [2], [3] or [4]), but the best and the worst seemed appropriate for evaluating the performance of ranked 
estimators. Also, the extreme firms map into efficiency probabilities from the population that tend to be large, 
precluding a ‘‘divide-by-zero’’ problem in the MAPE calculation, as we shall see.  quantifies the extent to 
which the estimate of technical efficiency for the most efficient firm in the randomly selected subsample is mis-

measured on average. Similarly, the  quantifies the extent to which the estimate of the probability of 
being most efficient for the most efficient firm in the randomly selected subsample is mis-measured on average. 
Finally, since the units of  are different, the MSE and Bias measures are only relevant for making 
comparisons for a single measure (in isolation). 

To make comparisons across measures we employ the unitless MAPE (typically):  

 
With the MAPE, we wish to avoid division by numbers close to zero, so we calculate it only for , the 
efficiency probability of the most efficient firm and the inefficiency probability of the least efficient firm, 

respectively, in the population. That is, efficiency probabilities like  may be very close to zero in the 

denominator of the MAPE formula, so it is only calculated for ; which should both be fairly large in 
each draw. The results of the simulations and their discussion follow. 

3.2 Results 
First, the experiment shows that failure of the CGLS procedure  is a problem only for extremely ‘‘noisy’’ 
variance ratios  and for small  in Tables 1, 2, 3. There are no failures with  and with  only a 
small number of failures (less that 1%) occur using the smallest sample n = 25, T = 5. 

As expected, the MSE of all measures decreases with increasing n and fixed T. Of course, Tables 1, 2, 3 do 
not allow us to make comparisons across measures, since the units are different across measures. Also, it is not 
surprising that as the signal-to-noise ratio  increases, the MSE of the estimates is usually non-increasing, but 
not always. In Tables 1, 2, 3 the ; the average MSE of the probability that  is most efficient over 

 is always non-increasing in . However, this is not true for the  the average MSE of the conditional 
mean of firm  and the ; the average MSE of the probability that j is least efficient over 

 For example, in Table 3 for  and moving from  equal 1 to 5 to 10, the  is increasing from 
0.0032 to 0.0048 to 0.0055. Similarly the  is increasing across these  in the same simulations. The 
non-monotonicities are highlighted with asterisks in Table 1, 2, 3. Why might these non-monotonicities in  arise? It 
is well-known that the random effects estimator of  is a weighted sum of the between estimator and the within (or 



fixed effects) estimator (e.g., see Hsiao 1986 p36). The between estimator ignores the within firm variation, 

 is large the random effects 
 

 
 
estimator places more weight on the within variation and the random effect estimator is close to the fixed effect 
estimator. It is also well-known that the random effects estimator is asymptotically efficient relative to the fixed 
effects estimator (e.g., see Baltagi 2005 p17), so when  is very large, the random effects estimator may have a 

larger variance than when  is small. This imprecision feeds into the estimates ; so non-
monotonicities in Tables 1, 2, 3 may reflect this lack of precision. Notice that they (highlighted with asterisks) occur 
primarily for the largest  (and hence for largest 12 Another factor that may induce the non-monotonicities is the 
size of  which appears as  in the formulae for the conditional mean and efficiency probabilities. For our 
simulations, the true value of  reaches a maximum between  depending on the value of  
Obviously, smaller values of  ceteris paribus inflate any error in the ratio  so the estimators may be less 
precise for large .13 

Why is the MSE of the  non-increasing in ? More accurately, why is the maximal efficiency 
probability immune to the variability of the random effects estimator when  is large? Consider  When  (and 

hence  ) is large, the probability of  is large, so that differences in  tend to be 
large. The efficiency probabilities are based on differences of these means  and their relative variability. 

                                                           
12 The imprecision may be worsen by the fact that the fixed effects estimator cannot exploit correlations between x and u, as they have not been 
built into the DGP. 
13 Of course there is no way to disentangle this phenomenon from the effect of the random effects estimator approaching the fixed effects 
estimator, but it is interesting to note. 



When the differences are large, the ability of the probabilities to distinguish the efficiency distributions is improved. 
It must 
 

 
 
be the case that this ability to distinguish outweighs the increased variability in the random effects estimator. Of 

course this phenomenon does not occur for  Why? It may be related to approximation error in  

caused by very large (in absolute value)  Since  follows from relatively small ; it is immune to 

approximation error. In fact, absent approximation error, we believe that  would exhibit the same monoto-
nicities as . 

The results for the MSE in Tables 1, 2, 3 are similar (for the most part) to the Bias results in Tables 4, 5, 6, 
which are tabulated for extreme-efficiency firms ([1] and [5]) from the ranked subsample of five. As expected, the 
biases of all measures are generally non-increasing in  (in absolute value), and they are generally decreasing in  
with a few exceptions that are similar in nature to those of Tables 1, 2, 3. While the imprecision of the random 
effects estimator for large  manifests itself in the variance of the efficiency estimates and, hence, the MSE of each 
estimator 
 



 
 
(Tables 1, 2, 3), it may also affect the bias of the estimates in this exercise. To see this, remember that the 
nonstandard bias formula is not based on a fixed parameter across all 5,000 draws. Our formulation does not 
‘‘average out’’ deviations around a fixed parameter, so the possibility for large deviations persists. These persistent 
deviations may appear as bias in our results. Notice also that the probability measures are almost always negatively 
biased, while the conditional mean measures are almost always positively biased. We suspect that this reversal 
comes from the fact that the probabilities are based on the distribution of  while the conditional means are based on 
the distribution of  Across Tables 4, 5, 6, only  is uniformly improving in both  (in the sense that 
the absolute value of the bias is non-increasing). However, comparisons of the bias across different measures is not 
possible due to inconsistency of the units of measure. 

To make comparisons across different measures, mean absolute percentage errors (MAPE) for the extreme 
ends of the population order statistic are presented in Tables 7, 8, 9. Across all three tables the results are clear: 

 is less than  for values of  and  is less than  for values of  
In other words, the probabilities are out-performing the conditional mean measures, when the variance of 
inefficiency,  is large. For example in Table 7,   are 0.0890, 
0.1633, 0.0688 and 0.0347, respectively. Our results are complicated by the fact that  had extremely 
large values in some simulations with large  These instances are indicated in the tables with double asterisks (**) 
and were due to a few draws where the true values of  were so large, that they generated 
 

 
 



 
 
approximation errors in the computer calculations of the probabilities. (This is the same approximation error 
discussed for the MSE, but made worse since we are now selecting ) This is an unfortunate feature of the 
probabilities, but it is purely computational in nature (i.e., it could be corrected with a more accurate algorithm for 

calculating ). As for monotonicities in the MAPE, all measures improve with n as expected. Both  and  

appear to have MAPE non-increasing in  as well, except in one case for  (and this may be due to 
approximation error in ). The MAPE of  usually reaches a minimum MAPE at or below  in all 
panel configurations. 

4. Conclusions 
This study provides evidence on the sampling performance of two very different technical efficiency estimators that 
are used to assess absolute and relative firm-level efficiency, based on parametric stochastic frontier models. We 
find that both the traditional conditional mean estimates and the efficiency probabilities appear to be monotonically 
more precise as  increases. However, the effect of the variance ratio  is more complicated. The efficiency 
probabilities out-perform the conditional mean when c is strictly greater than one. This is the empirically (and 
theoretically) important case for the frontier model. Our precision assessments are based on the unitless mean 
absolute percentage error, the only measure that could be used for comparison of these different estimators. 

We are aware that we have introduced two other sources of variability in our study. One follows from the 
quantities of interest varying over , and the other follows from our random sample of five firms for each  to 
calculate the measures of interest. The first source of variability could not be avoided and underscores the fact that 
efficiency ‘‘estimates’’ are not estimates of traditional population parameters. They are, in fact, proxies for an 
unobserved realization from inefficiency distributions. This is precisely the challenge that the frontier literature 
presents, and it is manifest in our study. The second source of variability was included by choice to relieve some 



computational burden. However, this variability is purely random and affects all efficiency estimators in similar 
ways. Finally, approximation error in calculating  may have invalidated (or precluded) some simulation results for 
the largest values of , but the results for moderate values of  are to be believed. 
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