
Syracuse University Syracuse University 

SURFACE SURFACE 

Mathematics - Faculty Scholarship Mathematics 

3-6-2006 

Influence of Surface Tension on the Conical Miniscus of a Influence of Surface Tension on the Conical Miniscus of a 

Magnetic Fluid in the Field of a Current-Carrying Wire Magnetic Fluid in the Field of a Current-Carrying Wire 

Thomas John 
Carl von Ossietzky Universtitat 

Dirk Rannacher 
Carl von Ossietzky Universitat 

Adreas Engel 
Carl von Ossietzky Universitat 

Follow this and additional works at: https://surface.syr.edu/mat 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
John, Thomas; Rannacher, Dirk; and Engel, Adreas, "Influence of Surface Tension on the Conical Miniscus 
of a Magnetic Fluid in the Field of a Current-Carrying Wire" (2006). Mathematics - Faculty Scholarship. 90. 
https://surface.syr.edu/mat/90 

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for 
inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, 
please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/mat
https://surface.syr.edu/math
https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/mat/90?utm_source=surface.syr.edu%2Fmat%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ar
X

iv
:c

on
d-

m
at

/0
60

31
36

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  6

 M
ar

 2
00

6

Influence of surface tension on the conical miniscus of a magnetic fluid in the field of a

current-carrying wire

Thomas John, Dirk Rannacher, and Andreas Engel
Institut für Physik, Carl von Ossietzky Universtität, 26111 Oldenburg, Germany

We study the influence of surface tension on the shape of the conical miniscus built up by a
magnetic fluid surrounding a current-carrying wire. Minimization of the total energy of the system
leads to a singular second order boundary value problem for the function ζ(r) describing the axially
symmetric shape of the free surface. An appropriate transformation regularizes the problem and
allows a straightforward numerical solution. We also study the effects a superimposed second liquid,
a nonlinear magnetization law of the magnetic fluid, and the influence of the diameter of the wire
on the free surface profile.

PACS numbers: 75.50.Mm, 68.03.Cd, 02.60.Lj,

I. INTRODUCTION

The shape of the free surface of a ferrofluid in a static
magnetic field is one of the prominent examples for a non-
trivial interplay between magnetic and hydrodynamic de-
grees of freedom in ferrohydrodynamics: On the one hand
the magnetic stresses contribute to the force balance de-
termining the surface profile whereas on the other hand
the local magnetic field depends on this profile due to the
magnetic boundary conditions at the surface of the mag-
netically permeable material [1]. A particularily popular
setup is the conical meniscus of a ferrofluid surrounding a
vertical current-conducting wire [1], see Fig. 1. Neglect-
ing surface tension the conical shape can be determined
analytically from the balance between gravitational and
magnetic force [1].

In the present note we investigate theoretically the in-
fluence of surface tension on the shape of the conical
meniscus. Although surface tension is known to mod-
ify free surface profiles in ferrohydrodynamics and its in-
fluence has been studied, e.g., for small gaps [2, 3] and
capillaries [4, 5] to our knowledge no systematic inves-
tigation has been done so far for the conical meniscus
problem. Clearly, surface tension is present in all exper-
iments in ferrohydrodynamics and a full understanding
of its impact on a basic experiment in the field is hence
desirable.

As expected no analytical expression for the free sur-
face profile can be derived when surface tension is in-
cluded. The numerical determination can be reduced to a
singular boundary value problem for an ordinary differen-
tial equation which is, however, not completely straight-
forward to solve. Still, using an appropriate transforma-
tion, accurate solutions can be obtained. The numeri-
cal effort is much smaller than in alternative procedures
such as finite difference, Galerkin, or collocation methods
which is for example used from commercial software like
ANSYS or COMSOL Multiphysics [6, 7]

The paper is organized as follows. In section II we col-
lect the basic equations describing the system. Section III
contains the analysis of a somewhat idealized situation.
In section IV we discuss the modification of the results

if the idealizations of section III are removed. Finally
section V provides some conclusions.

II. BASIC EQUATIONS

The setup to be investigated is sketched in Fig. 1. An
infinitely long, straight wire of radius R oriented along
the z-axis of a cylindrical coordinate system (r, φ, z) car-
ries an electric current I. The wire is surrounded by two
superimposed liquids. The lower one with density ̺1 is

a ferrofluid with a given magnetization law ~M = ~M( ~H).
The upper one has density ̺2 < ̺1 and is a non-magnetic
fluid. The interface between the two fluids is character-
ized by an interface tension σ1,2. For I = 0 there is no
magnetic field and the flat interface between the two flu-
ids is taken as the z = 0–plane of the coordinate system.
For I 6= 0 a magnetic field

~H(r) =
I

2πr
~eφ (1)

builds up which induces a force density in the lower
fluid. This gives rise to an axis-symmetric conical inter-
face parametrized by a function ζ(r) the determination of
which is the central aim. Note that the magnetic field (1)
is everywhere tangential to the surface and is therefore
independent of the detailed shape of the surface which
makes the analysis of this case particularily transparent.

One way to determine ζ(r) is by minimizing the to-
tal energy Etot of the system. It is convenient then
to use the energy of the flat interface configuration as
reference state and hence to minimize the energy differ-
ence between states with a non-trivial ζ(r) and ζ ≡ 0.
Equivalently one may start with the ferrohydrodynamic
Bernoulli equation [1, 8].

The total energy difference Etot is the sum of three
parts, the gravitational, the surface, and the magnetic
energy,

Etot = Eg + Es + Em. (2)

http://arXiv.org/abs/cond-mat/0603136v1
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FIG. 1: Sketch of the setup and definition of the main vari-
ables. The free surface ζ(r) of the ferrofluid is axis-symmetric.

The different parts are given, respectively, by

Eg =

∫

V

d3r (̺1 − ̺2)gz = π(̺1 − ̺2)g

∫

∞

R

dr r ζ(r)2 (3)

Es =

∫

∂V

d2r σ1,2 = 2πσ1,2

∫

∞

R

dr r
(

√

1 + ζ′(r)2 − 1
)

(4)

and [1, 9]

Em = −

∫

V

d3r µ0

∫ H(~r)

0

d ~H · ~M( ~H)

= −2πµ0

∫

∞

R

dr r ζ(r)

∫ H(r)

0

dHM(H) (5)

Here V denotes that part of the volume occupied by the
ferrofluid for which z > 0, ∂V is the area of the interface
between the two fluids and µ0 is the permeability of free
space. Note that in the last equality of (5) we have as-

sumed that the magnetization ~M and the magnetic field
~H are parallel as is the case in ferrofluids. Note also that
H(r) is given by (1).

The Euler-Lagrange equation

δEtot

δζ(r)
= 0 (6)

corresponding to the minimization of Etot[ζ(r)] is a non-
linear ordinary differential equation for the desired inter-
face profile ζ(r). For a unique solution this equation has
to be complemented by appropriate boundary conditions.
These are

lim
r→∞

ζ(r) = 0 (7)

and

ζ′(R) =
σ1,3 − σ2,3

√

σ2
1,2 − (σ1,3 − σ2,3)2

, (8)

where the prime denotes differentiation with respect to r.
The second boundary condition results from the Young
equation [10]

σ2,3 = σ1,3 + σ1,2 cos θ, (9)

for the contact angle θ of the fluids at the wire and the
fact that ζ′(R) = − tan(π/2 − θ) (cf. Fig. 1).

III. SIMPLIFIED MODEL

We first analyse a somewhat simplified version of the
boundary value problem derived in the last section. The
simplifications are the following. We assume that the
non-magnetic fluid is absent, ̺2 = 0, that the magneti-

zation law of the ferrofluid is linear, ~M(H) = χ ~H where
χ denotes the magnetic susceptibility, and that the di-
ameter of the wire is negligible, R = 0.

Since the magnetic field H(r) diverges for r → 0 so
does the magnetic force density. In order to get a stable
interface profile the magnetic force has to be counterbal-
anced by gravitation and surface tension which is possible
only if

lim
r→0

ζ(r) = ∞. (10)

This equation replaces the boundary condition (8) in the
present case. Consequently σ1,3 and σ2,3 are irrelevant
and only σ1,2 remains which will be denoted simply by σ
in the present section.

Using the simplifying assumptions we find for the mag-
netic energy (5) the expression

Em = −
µ0 χ I2

4π

∫

∞

0

dr
ζ(r)

r
, (11)

which allows to explicitly perform the variation in eq.(6).
As a result we get the following differential equation for
ζ(r)

g̺1ζ −
µ0χI2

8π2

1

r2
− σ

ζ′ + ζ′3 + rζ′′

(1 + ζ′2)3/2

1

r
= 0. (12)

It is convenient to introduce dimensionless quantities by
measuring both r and ζ in units of

a = 3

√

µ0χI2

8π2g̺1
(13)

and σ in units of ̺1ga2. Eq. (12) then acquires the form

ζ −
1

r2
− σ

ζ′ + ζ′3 + rζ′′

(1 + ζ′2)3/2

1

r
= 0. (14)

This equation is easily solved for σ = 0 yielding the well-
known hyperbola ζ(r) = 1/r2 [1]. A perturbative solu-
tion for σ 6= 0 by expanding ζ(r) in powers of σ was
found to yield satisfactory results only for values of σ



3

much smaller than those relevant in experiments. We
therefore turned to a numerical solution.

Eq. (14) together with the boundary conditions (7) and
(10) represents a singular boundary value problem of sec-
ond kind (see, e.g., [11]). The main problem that makes
a straightforward numerical solution inexpedient are the
infinite intervals for r and ζ. We therefore transform
both quantities according to (cf. also Fig. 1)

ζ(ρ, ϕ) =
sin ϕ

ρ
, r(ρ, ϕ) =

cosϕ

ρ
(15)

and describe the interface profile by ρ = ρ(ϕ). The
boundary conditions (7) and (10) then transform into

ρ(ϕ = 0) = 0 and ρ
(

ϕ =
π

2

)

= 0 (16)

respectively which are much more convenient for the sub-
sequent numerical solution. Substituting the derivatives
in (14) according to

ζ′ =
dζ

dr
=

ρ′ sin ϕ − ρ cosϕ

ρ sin ϕ + ρ′ cosϕ
, (17)

ζ′′ =
d2ζ

dr2
= −

ρ3(ρ + ρ′′)

(ρ sin ϕ + ρ′ cosϕ)3
, (18)

we find as differential equation for ρ(ϕ)

(

sin ϕ − ρ3 sec2 ϕ
) (

ρ2 + ρ′2
)3/2

+ σρ2
(

ρρ′2 − ρ′3 tanϕ − ρ2ρ′ tan ϕ + ρ2 (2ρ + ρ′′)
)

= 0. (19)

Rewriting this equation in the form ρ′′(ϕ) =
f(ϕ, ρ(ϕ), ρ′(ϕ)) the boundary value problem (19), (16)
can now easily be solved numerically using, e. g., the
nonlinear finite-difference method described in [12]. As
initial guess for the solution which is needed in this
procedure the transformation of the analytical solution
ζ0(r) = 1/r2 for σ = 0 given by ρ0(ϕ) = cos(ϕ) 3

√

tan(ϕ)
may be used.

Fig.2 shows the resulting interface profile for param-
eter values corresponding to the ferrofluid EMG909 of
Ferrotec [13]. For comparison the shape for σ = 0 is also
shown. It is clearly seen that the free surface profile is
markedly modified by the influence of the surface ten-
sion. As expected the inclusion of surface tension makes
the profile narrower since an additional force pointing
radially inward builds up.

IV. MORE REALISTIC SITUATIONS

The above solution of the idealized problem forms a
convenient starting point for the discussion of the in-
fluence of those feature in the original setup that were
neglected in the previous section.

A simple modification is the case in which the ferrofluid
is superimposed by a non-magnetic liquid. Then the den-
sity ̺1 has to substituted by the density difference ̺1−̺2

and the surface tension σ is to be replaced by the interface
tension σ1,2. The gravitational contribution to the to-
tal energy gets reduced and consequently larger displace-
ments from the flat interface are to be expected. The
situation can be analyzed quantitatively without further
effort by mapping it to the case analyzed in the previous
section. In fact the interface profile is again determined
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FIG. 2: (a) Free surface profile ζ(r) as determined numerically
for R = 0 and I = 30 A for the ferrofluid EMG909 with
parameters ̺1 = 1120 kgm−3, σ = 0.0259 Nm−1, and χ = 0.8
(full line). Also shown is the result for σ = 0 and otherwise
identical parameters (dashed line). (b) Same profiles as in (a)
in terms of the transformed function ρ(ϕ).

by eq. (14) with only the dimensionless units and the
value of σ being modified. As an explicit example we
show in Fig. 3(a) how the interface profile of Fig. 2 gets
modified for ̺2 = 103 kgm−3 and σ1,2 = σ.

Deviations form the linear magnetization law which
become relevant in particular for small values of r where
the magnetic field gets strong can also be dealt with.
An improved approximation is provided by the Langevin
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relation [1],

M(H) = Ms

(

coth(α) −
1

α

)

, α =
mH

kBT
, (20)

with the saturation magnetization of the fluid MS, the
magnetic moment m of a single ferromagnetic parti-
cle, the Boltzmann-constant kB and the temperature
T . The zero-field susceptibility is then given by χ =
mMS/(3kBT ). The density of the magnetic energy can
again be determined analytically

∫ H(~r)

0

d ~H · ~M( ~H) =
MSkBT

m
ln

sinhα

α
. (21)

This expression gives rise to a somewhat more compli-
cated equation for ζ(r), however, the overall procedure
of section III remains valid. As shown in Fig. 3(a) the
modification of the result for linear magnetization law is
usually small in accordance with the fact that the frac-
tion of the ferrofluid volume for which the field is large
is rather small.

Finally, to elucidate the influence of a non-zero radius
of the wire we consider the problem for R > 0 but with
̺2 = 0 and a linear magnetization law. The main qual-
itative difference is that instead of (10) we have to use
(8) as boundary condition for small r. This implies that
ζ(r) is not singular at the lower boundary. Hence al-
ready the simple transformation r = 1/u is sufficient to
get a numerically tractable boundary value problem for
the function ζ(u). As initial guess a linear dependence
ζ0(u) = λu may be used.

Note that λ fixes the value of ζ(r) at r = R whereas
the boundary condition (8) involves the derivative ζ′(r)
at r = R. Therefore λ or equivalently ζ(R) has to be
modified until the required value for ζ′(R) is obtained.
This procedure leads to a monotonic relation between
the prescribed contact angle θ and ζ(R), cf. Fig. 3(c).
With the help this value for ζ(R) the complete surface
profile ζ(r) can then be determined. Fig. 3(b) shows
a collection of surface profiles with different ζ(R) and
corresoponding contact angles θ. In the limiting case
R → 0, the surface profile is independent of the contact
angle θ as demonstrated in Fig. 3(d) for a sequence of
profiles with different values of R and a fixed contact
angle θ = 45°.

V. CONCLUSIONS

In the present investigation we have determined the
free surface profile of a magnetic fluid surrounding a ver-
tical current carrying wire with special emphasis on the
effects of interface and surface tension respectively. We
have found that for experimentally relevant parameter
values there is a strong influence of the surface tension
giving rise to a more slender profile as compared to the
well-studied case without surface tension [1]. A more gen-
eral magnetization law including saturation as well as the
prescription of the contact angle at the wire changes the
profile only in the vicinity of the wire. A superimposed
non-magnetic liquid changes the overall scale of the pro-
file due to the reduction of the gravitational energy.
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FIG. 3: Modifications of the idealized results of section 3. If not explicitly stated otherwise the parameters are the same as in
Fig. 2. The dashed line shows always the same interface profile as the full line in Fig. 2. (a) The dotted line shows the interface
profile if a non-magnetic fluid with density ̺2 = 103 kgm−3 is superimposed to the ferrofluid. Also in (a), the solid line shows
the interface profile for a ferrofluid with magnetization law of Langevin type with Ms = 16 kAm−1 and the same zero-field
susceptibility χ as in Fig. 2. (b) Dependence of the interface profile on the contact angle θ for non-zero radius R = 0.5 mm.
(c) Relation between the contact angle θ and the height of the interface at the wire ζ(R). Marked points correspond to the
profiles shown in (b). (d) Sequence of surface profiles with fixed contact angle θ = 45° for decreasing diameter of the wire,
R = 2; 1.5; 1; 0.5; 0.2 mm. For R→ 0 the profile of Fig. 2 is almost reproduced.
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