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Submodel estimation of a structural vector error correction model
under cointegration
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Received 29 May 1997; accepted 4 February 1998

Abstract

In this paper we derive the concentrated likelihood function of a mutually independent subsystem (submodel) of equations
from a p-dimensional vector error component model under cointegration. The structural estimates of the subsystem
parameters are identified by exclusion restrictions. The maximum likelihood estimates may be useful for counterfactual
policy analysis.  1998 Elsevier Science S.A.

Keywords: Vector error correction model; Cointegration; Limited information maximum likelihood; Counterfactual policy
analysis

JEL classification: C32

1. Introduction

This paper is concerned with structural estimation of a subsystem (submodel) of equations from a
vector error components model under cointegration. Our purpose is twofold. First, we wish to
transform the entire system to ensure mutual independence of the submodel of interest and the
remaining equations. Second, we wish to estimate the submodel of interest using subset Limited
Information Maximum Likelihood (LIML) techniques incorporating restrictions on the submodel to
identify its structural parameters. The resulting likelihood function is the product of two least variance
ratios in the style of Johansen (Johansen, 1988, 1991) and can, in fact, be thought of as a
generalization of the Johansen result.

This submodel analysis has implications for ‘‘counterfactual policy analysis’’ or ‘‘VAR transplanta-
tion’’, in which one is interested in estimating the behavior of an economy (a submodel) under
alternative sets of policy rules. See for example McCallum (McCallum, 1988, 1990, 1993), and Judd
and Motley (Judd and Motley, 1992, 1993). Rasche (1995) points out problems in these types of
analyses and in a subsequent unpublished note identifies LIML as a potential solution. Also, submodel
analysis provides computational economy for any system of equations for which full information
maximum likelihood is cumbersome. See Dhrymes (Dhrymes, 1970, p. 329). However, this
parsimony comes at a cost; it is well known that LIML estimates are informationally inefficient.
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The paper is organized as follows. Section 2 details the model and derives the likelihood function.
Section 3 discusses numerical estimation and a two-step estimation technique. Section 4 concludes.

2. Estimation

2.1. Specification

Consider the following error-correction representation of a structural VAR model in p dimensions.

q

DY A 1ODY G 1 Y ba9 1 X Q 5 e , t 5 1, . . . ,T. (1)t t2i i t21 t t
i51

Assumptions:

A1. The e (t51, . . . ,T ) are independent p-dimensional Gaussian variables with mean zero andt

positive definite variance matrix S.
A2. The Y (13p) are integrated of order 1 with b, the matrix of cointegrating vectors, and a, thet

matrix of error correction coefficients, being p3r matrices of rank r.
A3. The first q data points Y , . . . ,Y are fixed.0 q21

A4. The parameters A, G , . . . ,G and S (all p3p matrices), vary without restriction.i q

A5. X (13s) are stationary s-dimensional instruments appearing only in the last n,p equations.t

This is, Q 5[0, C]; Q(s3p), C (s3n), where C varies without restriction.

Assumptions A1 –A4 are standard. Assumption A5 is necessary for identification of the structural
parameters. The first m5p2n equations, in which the X do not appear, are the submodel of interest,t

while the last n equations, in which the X do appear, are not. What is typically done is to estimate thet

reduced form of Eq. (1) and discard the last n equations. Here, we transform the system to ensure
mutual independence of the two subsystems then use limited information maximum likelihood
techniques to estimate the first m equations in structural form. This structural estimate is identified by
the restrictions on the parameter Q.

2.2. Transformation

Transformation is performed per the subset LIML technique described in Dhrymes (Dhrymes,
1970, Section 7.3). Subset LIML was first considered by Rubin (1948) and Hood and Koopmans
(1953). Partition S such that

S S11 12
S 5 ; S (m 3 m) positive definite, S (m 3 n), S (n 3 m), S (n 3 n).F G 11 12 21 22S S21 22

Define the transformation matrix H( p3p) such that
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21I 2 S S Hm 11 12 22H 5 ,F G0 H22

where H is chosen to satisfy22

219H (S 2 S S S )H 5 I .22 22 21 11 21 22 n

Post multiplying Eq. (1) by the matrix H leaves the first m equations of the system undisturbed and
yields independently distributed error terms (e H ), t51, . . . ,T, a multivariate Gaussian randomt

variable with mean 0 and block-diagonal variance matrix of the form

S 011V(e H ) 5 positive definite,F Gt 0 V

where the specific form of V is unimportant to the analysis since it corresponds to the n equations in
which we are not interested. This block-diagonalization of the variance matrix of the transformed
errors ensures the stochastic independence of the two subsystems without disturbing the variance, S ,11

of the equations of interest.

2.3. The likelihood function

9 9 9Let Y 5[DY , . . . ,DY ], G 5[G , . . . ,G ]. Collecting t vertically and post multiplying by H,*t t21 t2q * i q

Eq. (1) becomes,

DYAH 1 Y G H 1 Y ba9H 1 XQH 5 eH. (2)* * 21

We are interested in estimating the coefficients of the first m5p2n equations. To this end we
partition the remaining coefficient matrices as follows,

A 5 [A A ]; A ( p 3 m), A ( p 3 n),1 2 1 2

G 5 [G G ]; G (q 3 m), G (q 3 n)* *1 *2 *1 *2

9 9 9 9a9 5 [a a ]; a (r 3 m), a (r 3 n)1 2 1 2

Given the transformed and partitioned system, we would like to write down the likelihood function
and concentrate out the matrices: A , G , a, Q and S, leaving only b and A , the structural parameter2 * 1

of interest. To this end we introduce the following theorem.

Theorem 1. Let W5[Y X], F5[Y X Y b] and J5[Y Y b]. Then the concentrated* * 21 * 21

likelihood function of Eq. (2) is given by:

22
]

TL (A ,b )1

W W W 21 WF J J 21 J b9hS 2 S [S ] S jbU U9A hS 1 S [S ] S jAu u Y Y Y DY DYDY DYY1 DYDY DYX XX XDY 1 21 21 21 21W
]]]]]]]]]]] ]]]]]]]]]]]]]5 S ,u uDYDY F W9A S A b9S bu u U U1 DYDY 1 Y Y21 21
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rwhere the S are ( p3p) residual product matricesij

r 211
]S 5 i9[I 2 r(r9r) r9] j, r 5 W, J, F, i, j 5 DY, Y , X.ij T 21T

Proof. See Appendix A.

The inverse-likelihood function of Theorem 1, provides a convenient formulation for a numerical
minimization algorithm. For an iterative search an excellent candidate for a starting value for b would
be the Johansen (1991) estimate. This inverse-likelihood function is a generalization of the Johansen
(1991) result which produces super consistent estimates of the model’s parameters. The last ratio on
the right hand side is exactly the Johansen result except for the inclusion of the stationary instruments,
X. In fact, when X is excluded from the model, the likelihood reduces to the Johansen result. While the
asymptotic properties of the likelihood estimates are at this point unknown, it seems reasonable to
suspect that the addition of stationary instruments to the system will not adversely effect the estimates,
and they should remain super consistent. We now discuss an alternative to numerical optimization of
the inverse-likelihood.

3. A two step estimation procedure

Of course numerical minimization can be computationally cumbersome, and there always exists the
possibility that the procedure will return a local extremum and not a global one. Unfortunately, as
derived this likelihood function is not amenable to the usual partial canonical correlation analysis of

F J J 21 JAnderson (1951) and Tso (1981), because the matrices S and S [S ] S are notDYDY DYX XX XDY

independent of the parameters of the model. Specifically they are functions of b through F and J. One
alternative to numerical optimization or canonical analysis is a two-step procedure that exploits the
least variance ratio form of the inverse-likelihood.

In the first step, the space spanned by b is estimated using the reduced form procedure of Johansen
(1991). This involves performing a least-squares regression of Y on Y and X, and a least-squares21 *

W W Wregression of DY on Y and X. These yield residual product matrices, S , S and S .* DYDY Y Y Y DY21 21 21
ˆThen b is constructed from the r eigenvectors associated with the r smallest eigenvalues of

W W W 21 W WS 2 S [S ] S in the metric of S . Using the Johansen technique in the firstY Y Y DY DYDY DYY Y Y21 21 21 21 21 21

stage seems like a reasonable approach given that the inverse-likelihood actually contains the least
variance ratio derived by Johansen.

ˆ ˆ ˆIn the second step b is used in the three regressions of DY on Y , X and Y b; DY on Y and Y b;* 21 * 21
F J Jˆ ˆand X on Y and Y b. These yield residual product matrices S , S and S . Then A is* 21 DYDY DYX XX 1

similarly constructed from the m eigenvectors associated with the m smallest eigenvalues of
F J J 21 J FS 1 S [S ] S in the metric of S . So the two-step procedure amounts to twoDYDY DYX XX XDY DYDY

eigenvalue problems, both in the spirit of partial canonical correlations. The notion that this two-step
procedure produces a truly minimized inverse likelihood may seem dubious, however the Johansen
technique has gained in popularity, and there now exists software to easily perform the first stage of
the estimation procedure. Therefore, the two-step approach may provide much in the way of
computational economy. Additionally, this two-step procedure provides a useful algorithm for the
aforementioned numerical estimation procedure.
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4. Conclusions

In this paper we have derived the inverse-likelihood function of a submodel of cointegrated
equations. Perhaps remarkably, the resulting function is a generalization of the Johansen (1991)
reduced form inverse-likelihood function for the cointegration parameter b. The innovation here is
that the likelihood includes a structural parameter of the equations of interest, A , which is identified1

by exclusion restrictions on Q. This likelihood may be useful for counterfactual policy analysis and
for its computational parsimony.

As derived, the likelihood function does not lend itself to canonical correlation analysis because the
least variance ratio in the structural parameter, A , is a function of b. The function is, however,1

amenable to numerical optimization or a two-step estimation procedure outlined herein. Whether
restrictions can be found that permit the use of canonical techniques remains to be seen, however

rinitial research on the rank of the residual product matrices, S , indicates that such a restriction mayij

exist.
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Appendix A

Proof of Theorem 1. The log-likelihood function for Eq. (2) is:

ln L(b, A, G , a, Q, S ) 5 2 ( pT /2)ln(2p) 2 (T /2)lnuH9SH u 1 T lnuAH u*

21
2 (1 /2)trh(DYAH 1 Y G H 1 Y ba9H 1 XQH )(H9 SH ) (DYAH* * 21

1 Y G H 1 Y ba9H 1 XQH )9j,* * 21

Concentration of A , G , a , Q, S , S , and S proceeds per Dhrymes (1970, p. 332) and will not2 *2 2 12 21 22

9 9be detailed here. Define N5[DY Y X Y b] and M95[A G 09 a ]. Then the resulting* 21 1 *1 1

log-likelihood function is

Fln L(b, A , G , a , S ) 5 2 ( pT /2)[ln(2p) 1 1] 1 mT /2 2 (T /2)lnuS u 2 (T /2)lnuS u1 *1 1 11 DYDY 11

F 2191 (T /2)lnuA S A u 2 (T /2)tr(S M9(N9N /T )M). (A1)1 DYDY 1 11

9All that remains is concentration of G , a , S . Let d 95[G a ], then*1 1 11 *1 1

9 9M9(N9N /T )M 5 A (DY9DY /T )A 1 A (DY9J /T )d 1 d 9(J9DY /T )A 1 d 9(J9J /T )d.1 1 1 1

Substituting this into Eq. (A1) and taking derivatives:
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≠lnL 21
]] 5 2 (T /2)[2(J9DY /T )A 1 2(J9J /T )d ]S 5 0,1 11≠d

≠lnL 21 21 J 21
]] 95 2 (T /2)[2S 1 S A S A S ] 5 0,11 11 1 DYDY 1 11≠S11

21 J9implying d 52(J9J /T ) (J9DY /T )A and S 5A S A . Substituting d and S into the log-1 11 1 DYDY 1 11

likelihood function gives

F J9lnL(A , b ) 5 2 ( pT /2)[ln(2p) 1 1] 1 mT /2 2 (T /2)lnuS u 2 (T /2)lnuA S A u1 DYDY 1 DYDY 1

F91 (T /2)lnuA S A u.1 DYDY 1

Suppressing the constant terms and taking the anti-log, the likelihood function becomes:

J922 A S Au u
] 1 DYDY 1 FT ]]]]L (A , b ) 5 S . (A2)u u1 F DYDY9A S Au u1 DYDY 1

Write F as F5[W Y b], then using the rules of a partitioned inverse,21

21 21 21F(F9F /T ) F9 5 T hW(W9W ) W9

21 W 2191 [I 2 W(W9W ) W9]Y b[b9S b]b9Y [I 2 W(W9W ) W9]j.T 21 Y Y 21 T21 21

F 21 W W W 21 W1
]Then S 5 DY9[I 2 F9(F9F ) F]DY 5 S 2 S b[b9S b] b9S . Using theDYDY T DYDY Y Y Y Y Y YT 21 21 21 21 21 21

results for the determinant of a partitioned matrix,

W W W 21 W
b9hS 2 S [S ] S jbU UY Y Y DY DYDY DYY21 21 21 21F W

]]]]]]]]]]]]]S 5 S . (A3)u u u uDYDY DYDY W
b9S bU UY Y21 21

J F J J 21 JIt is also easily shown that S 5 S 1 S [S ] S . Substituting this result and Eq. (A3)DYDY DYDY DYX XX XDY

into Eq. (A2), the main result follows. QED
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