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Formal Analysis of a Secure Communication Channel:
Secure Core-Email Protocol

Dan Zhou and Shiu-Kai Chin

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, New York, 13244fdanzhou, ching@cat.syr.edu

Abstract. To construct a highly-assured implementation of secure communica-
tion channels we must have clear definitions of the security services, the chan-
nels, and under what assumptions these channels provide thedesired services.
We formally define secure channel services and develop a detailed example. The
example is a core protocol common to a family of secure email systems. We iden-
tify the necessary properties of cryptographic algorithmsto ensure that the email
protocol is secure, and we verify that the email protocol provides secure services
under these assumptions. We carry out the definitions and verifications in higher-
order logic using the HOL theorem-prover. All our definitions and theorems are
conservative extensions to the logic of HOL.

1 Introduction

Numerous security protocols are used for secure transactions in networkedsystems.
To construct high-confidence implementations of these protocols, we needto have pro-
tocols that provide security services and to implement them correctly. One way of es-
tablish the correctness of protocols is to model, specify and verify them in higher-order
logic. We demonstrate how this can be done in this paper.

Protocols such as Kerberos [14] and Needham-Schroeder [13] authentication pro-
tocols are based on message exchanges between two or more parties. In general, these
protocols and the logics (such as [3]) and tools (e.g., [10]) analyzing them have assumed
that a single message passing between two parties is secure if the message isappropri-
ately encrypted and signed and if the keys for decryption and signing are kept secret.
In this work, we explore the validity of this assumption by studying secure communi-
cation channels. We identify what it means for a channel to be secure and the required
properties of cryptographic functions to ensure channel security.

We have two goals. First, we want precise definitions of the services desired of
secure channels. Some applications require a channel with integrity wheremessages
cannot be modified without detection. Other applications require a channel that is con-
fidential, where only the intended recipient can read the message. We formalize these
secure protections in higher-order logic as properties that secure channelsshould sat-
isfy.

Second, we want clear definitions of the required properties of cryptographic al-
gorithms used in secure channels. As we use cryptographic algorithms in protocols to



provide secure communication, the properties of these algorithms are vital in reason-
ing about the security properties of the secure channels. The required properties vary,
depending on the particular services the channels provide and the components of the
channels themselves. As an example, we formally specify a secure core-email protocol
that provides confidentiality, integrity, source authentication, and non-repudiation. The
protocol uses a combination of secret-key encryption, public-key encryption and digital
signatures. It is common to a family of secure email systems such as Privacy Enhanced
Mail (PEM) [9] and Pretty Good Privacy (PGP) [16].

We identify and specify the properties required of cryptographic algorithms for the
channel to be secure. The secure core-email protocol is then verified formally toprovide
secure services under these assumptions. The list of required propertiescan serve as a
reference when specific algorithms are used in actual protocol implementations.

The purpose of our work is not to invent new protocols. Rather we want to add
enough formality to the protocol analysis so that we can account for security properties
in concrete implementations. As a practical demonstration, we have carried out the
formal development process down to the generation of C++ code of the securecore-
email protocol and Privacy Enhanced Email and have reported the result in [15] . This
paper concentrates on a formal analysis of the secure channel.

Our work attempts to fill the gap between previous abstract formal treatments such
as Lampson and others [8], and detailed implementation descriptions such as PEM,[9].
The focus of abstract analysis in [8] is how to make secure decisions based onuser
statements. The correct functionality of secure channels is assumed. The focus of de-
tailed implementation descriptions is on message structure and protocols. Definitions
of security properties are missing and no attempt is made to show the protocols and
operations on messages satisfy the intended security properties. This paper attempts to
relate concrete implementations to abstract security properties.

There are two types of methods of analyzing protocols. There are those based on
theorem proving and those based on model checking. In the category of theorem prov-
ing, specialized logics are developed to describe both protocols and their desired prop-
erties, inference rules are defined to reason about the correctness of protocols. For ex-
ample, BAN logic [3] and authentication logic by Lapmson and others [8] are used
for describe and reason about authentication protocols. Brackin has embedded anex-
tension of GNY logic (called BGNY logic) in higher-order logic theoremprover HOL
and has developed specialized tactic in HOL to prove theorems about protocols[2]. By
embedding BGNY logic in HOL as a conservative (definitional) extension, his analyzer
has advantage of the mechanized theorem proving environment and guarantees the cor-
rectness of the theorems. In comparison, our work uses general higher-order logic and
relies on the higher-order logic itself for specification and reasoning. Higher-order logic
has been used in constructing assured implementation of computer systems [4]. Those
specialized logics are more abstract than higher-order logic which our workemployed.
It is not clear how we can arrive at a correct implementation from protocols described
in these logic without translating the protocols descriptions to alanguage that is closer
to implementation.

In the category of model checking, protocols are described as state machines, prop-
erties are expressed either as invariants or as another state machine. NRL protocol ana-



lyzer uses first-order logic to express invariants and searches the state space (potentially
exhaustively) to find if the invariants hold for the protocol [11].Spi-calculus models
both protocols and desired properties as traces and uses equivalence of processesto
reason about the correctness of protocols [1]. NRL protocol analyzer provides the au-
tomation of analysis, spi-calculus is suitable for modeling concurrentsystems. However
they are all further away from constructing an assured implementation thanours.

For this study we use the higher-order logic theorem prover HOL [5]for formal
specification and verification. We use standard predicate calculus notation. The sym-
bols ^;_;:, and�, respectively, denote the logic operationsand, or, negation, and
implication, while 8 and9 denoteuniversalandexistential quantifications. Function
composition is denoted by the symbol�, and f a denotes the application of functionf
to a. The symbolI denotes the identity function. ExpressionΓ ` t denotes a theorem:
whenever the list of logical terms inΓ are alltrue, the conclusiont is guaranteed to be
true. Definitional extensions to the HOL system are denoted by`de f.

For the rest of the paper we start by describing rigorously the cryptographic algo-
rithms and their properties in Section 2. This is followed by the formal definitions of
services of secure communication channels in Section 3. In Section 4 we present an
example channel that is a secure core-email protocol common to a family of similar
secure-email systems. In Section 5 we show the development of a formal theory in
higher-order logic that describes the correctness of the email protocol: the theory states
that the email protocol provides secure services to messages passing through it. We
conclude in Section 6.

2 Overview of Cryptography

Network protocols rely on cryptographic algorithms to provide security services. For-
mal verification of these protocols requires formal definitions of not only the proto-
cols themselves, but also the properties of the cryptographic algorithms they implore.
Menezes and others have defined rigorously the terms related to cryptographyfunc-
tions such as the encryption scheme and the digital-signature scheme in [12]. Here we
formalize cryptographic functions and their properties in HOL.

Before we get into any formula, we briefly describe how we have handled types.

2.1 Types and Type Conversion

There are many sets of entities exist in a cryptographic system, such as plaintexts, ci-
phertexts, keys and signatures. We view them as different types. A system can reject
a value if it is not of a particular type. For example, if a system expects akey to be
128 bits long, then it will discard a value that is of 129 bits. We have modeled all the
types in our work. When an entity is used for different purpose as different types, we
use type converters which are constant functions to change types. For instance, a key
is of typekeywhen it is used to encrypted a message and it is of typeplaintextwhen
it is encrypted for transmission. We define a constant functionkeyToPlaintextto con-
vert variables from typekeyto plaintext. If a variablek is of typekey, then the type of
keyToPlaintext kis plaintext.

For the simplicity of presentation we have ignored all types in this paper.



2.2 Encryption Scheme

Encryptions are used to protect the confidentiality of information. Anencryption scheme
consists of a set of encryption functions and a corresponding set of decryption func-
tions. For each encryption functionE, there is a unique decryption functionD such that
any message encrypted byE can be retrieved byD. We definecipherPairas a pair of
uniquely associated encryption and decryption functions.

DEFINITION 1 (CIPHERPAIR) A pair of functions,E andD, is called acipherPairif D
is the unique left inverse ofE.`def 8E D. cipherPair E D= (D � E= I) ^(8D arb. (D arb � E= I) � (D arb= D))

One way of designing an encryption scheme is to design one algorithm forthe set of
encryption functions and a corresponding algorithm for the set of decryption functions.
Keys are used to pick out the particular encryption and decryption functions.

2.3 Digital-Signature Scheme

Signatures are used to identify principals. A digital-signature schemeconsists of a set
of signing functions and a corresponding set of signature verificationfunctions. For any
entityA, signing functionSA takes a message to a signature, while verification function
VA takes a message and a signature and returns a boolean value. FunctionSA is kept
secret by entityA, whileVA is made known to the public and is used by others to verifyA’s signatures.

For a pair of functions,SA andVA, to be consider secure,VA(m;s) should returntrue
if and only if s is a valid signature ofA on messagem and if there is no practical way
for any other entity to find a pair(m;s) such thatVA(m;s) is true.

We defineDSPairas a pair of uniquely associated signing and signature verification
functions.

DEFINITION 2 (DSPAIR) A DSpair is a pair of functions—a signing functionSign
and a verification functionV—such that, for every messagem, V(m;s) is true if and
only if s is a valid signature onm. The signing functionSignis a one-to-one function.`def 8Sign V.

DSPair Sign V=(8m s. V(m,s) = (s= Sign m)) ^(8m1 m2.(Sign m1= Sign m2) � (m1= m2))
A digital signature is uniquely associated with a signer and the information being

signed, while a signature on paper is uniquely associated with a signer.When we move
from paper signatures to digital signatures, we gain the ability to associate the infor-
mation with a signature and, we lose the ability to uniquely identify a signer from the
signature. With a digital signature, we can conclude that only entityA could have gen-
erated the signature on messagem. However, it is not practical for anyone to fake a
particular signature by a particular signer on chosen information.



Digital-signature schemes can be designed analogously for encryption schemes.
One algorithm is designed for the set of signing functions, and a corresponding al-
gorithm is designed for the set of verification functions. Keys are alsoused to pick out
the particular signing and verification functions.

2.4 Secret-Key Cryptography

Secret-key cryptography uses the same key to specify its encryption and decryption
transformations. We definesecKeyPairto name the encryption function, decryption
function, and the secret key used incipherPair.

DEFINITION 3 (SECKEYPAIR) FunctionsencryptS kanddecryptS kconstitute a
cipherPair.`def 8encryptS decryptS k.

secKeyPair encryptS decryptS k= cipherPair(encryptS k) (decryptS k)
2.5 Public-Key Cryptography

Public-key cryptography uses two keys to specify its transformations: a private key,dk,
known only to the owner and a corresponding public key,ek, accessible by the world.
When used for an encryption scheme, the public key is used for encryption and the
private key is used for decryption. When used for a signature scheme, theprivate key
is used for signing and the public key is used for verification. These two keys form a
unique key pair.

We definepubKeyPairto name the encryption function, the decryption function,
and the pair of keys used in public keycipherPair.

DEFINITION 4 (PUBKEYPAIR) FunctionsencryptS ekand decryptP dkconstitute a
cipherPair.`def 8encryptP decryptP ek dk.

pubKeyPair encryptP decryptP(ek, dk) =
cipherPair(encryptP ek) (decryptP dk)

We defineDSKeyPairto name the encryption function, the decryption function, and
the pair of keys used in public keyDSPair.

DEFINITION 5 (DSKEYPAIR) Functionssign skandveri f y vkconstitute aDSPair.`def 8sign verify vk sk.
DSKeyPair sign verify(vk,sk) = DSPair(sign sk) (verify vk)



3 Formal Definition of Security Services of Channels

A channel is a means of communication, a mechanism for entities to make statements
[8]. A secure channel provides security services to messages such as confidentiality and
source authentication, which are essential to network-system services such asestablish-
ing identities of entities and granting access to system resources.

To be able to formally analyze secure channels, we define the confidential channel
and the source-authentic channel in this section.

A channel between a senderA and a receiverB consists of a sender process, a re-
ceiver process, and a network that transmits information from the sender process to the
receiver process. SenderA makes astatement through apackage generated by the
sender process. ReceiverB receives thestatement recovered from thepackage by
the receiver process(Figure 1). A package has the necessary header information for the
particular services the channel provides.

sender
process

receiver
process

Network

statementstatement

packagepackage
sender A receiver B

Fig. 1. A communication channel between entitiesA andB
3.1 Confidential Channel

A typical informal definition of confidentiality is as follows. Confidentiality implies that
you know who the receiver is. A channel is confidential if the intended recipient can de-
rive the statement from a received package while nobody else can. For example,senderA makes a statementmsgAto receiverB through a communication channel consisting
of the sender processsendTo, the receiver processreceiveByB, and the network. SenderA’s processsendTogenerates a packageenvelopeAand transmits it toB’s receiver pro-
cess through the network. EntityB’s receiver process receives a packageenvelopeBand
recovers a statementmsgBusingreceiveByB. If the packageenvelopeAarrives intact atB’s process, thenB recovers the statementmsgA. Another entityC, which is also on the
network, can observe to the package. However, even if the packageenvelopeAarrives
intact atC’s process,C will not be able to recover the statementmsgA(Figure 2).

Formal definition based on the above description is as follows.



Network

msgA envelopeA
sender process:

sendTo

intended recipient
process:

receiveByB

random receiver
process:

receiveByCenvelopeC

msgB

msgC

sender A

receiver C

intended
recipient B

envelopeB

Fig. 2. A confidential channel

DEFINITION 6 (CONFCHANNEL) A confidential channel allows userA to send a state-
ment through a package, knowing that regardless of who gets the package, only intended
recipientB can read the statement in the package.`def 8sendTo receiveByB envelopeA msgA envelopeB msgB recipientB.

confChannel sendTo receiveByB envelopeA msgA envelopeB msgB recipi-
entB= (envelopeA= sendTo recipientB msgA) �(((envelopeB= envelopeA)�(msgB= receiveByB recipientB envelopeB)�(msgB= msgA)) ^(8receiveByC envelopeC msgC receiverC.(envelopeC= envelopeA)�(msgC= receiveByC receiverC envelopeC)�(msgC= msgA) �(receiverC= recipientB)))
3.2 Source Authentication Channel

Source authentication implies that you know who the real sender is. A channeladds
source authentication to statements if the receiver process can derive the source of a re-
ceived statement when the received package passes an authenticity check. For example,
senderA makes a statementmsgAto receiverB through a communication channel con-
sisting of the sender processsendFromA, the network, the receiver processreceive, and
authenticity checkauthChk. SenderA sends a packageenvelopeAthroughsendFromA
to B. ReceiverB receives a packageenvelopeBand recovers a statementmsgB. If the
packageenvelopeAarrives intact atB’s process, it will pass the authenticity check(authChksenderA) andB will recover the statementmsgA. Suppose another entityD,
which is also on the network and has full control of its processsendFromD, sends a
packageenvelopeDto B and claims that it is fromA. If the packageenvelopeDarrives



intact atB’s process, it will not pass the authenticity check(authChk senderA). This is
illustrated in Figure 3. The formal definition of authentic channel is asfollows.

random sender
process:
    senderFromD

Network

msgD

msgA

envelopeA

envelopeD

sendFromA
sender process:

envelopeB

authChk
authenticity check

receiver process:
receive

msgB

sender D

sender A

is Authentic?

receiver B

Fig. 3. A channel with source-authentication protection

DEFINITION 7 (AUTHCHANNEL) A channel provides source authentication service to
a statement sent betweenA andB if it provides a way to certify the originator of the
statement to the recipient.`def 8authChk sendFromA receive envelopeA msgA envelopeB msgB senderA.

authChannel authChk sendFromA receive envelopeA msgA envelopeB
msgB senderA=(msgB= receive envelopeB)�(((envelopeA= sendFromA senderA msgA) �(envelopeB= envelopeA)�(authChk senderA envelopeB̂(msgB= msgA))) ^(8sendFromD envelopeD msgD originatorD.(envelopeD= sendFromD originatorD msgD) �(envelopeB= envelopeD)�
authChk senderA envelopeB�((originatorD= senderA) ^ (msgB= msgD))))

A channel providing source-authentication service to statements also provides in-
tegrity service to the statements. If a statement in a package is corrupt, the source of
the statement is the source of the corruption, hence the package will notpass the source
authentication check.

4 Secure Core-Email Protocol

In the last section we studied the services of secure channels. In this and the next sec-
tions, we show one example channel—secure core-email protocol—that provides these



services. In this section we define the protocol rigorously. In the next section we verify
that the protocol is secure.

Our example of secure channels is a secure core-email protocol. We have studied
secure email systems PEM, PGP, and X.400. These systems differ from one another
in message structures and the certificate hierarchies, among other things [7]. However,
their cores that provide security services are the same. We extracted this coreand named
it “secure core-email protocol” (ScEP).

The secure core-email protocol provides confidentiality, message integrity, source
authentication, and source non-repudiation services. It protects messages through a
combination of secret-key encryption, public-key encryption, and digital-signature gen-
eration.

4.1 Sender Process

The sender process of ScEP is as follows. We refer to the content of an email asmessage. First, the process randomly generates a per-message data encryption key
(DEK) and uses it as a secret key to encrypt the message. Second, it computes the
message digest of the message using a hash function and computes the digital signa-
ture of the message by signing the message digest with the sender’s private key. It then
encrypts the digital signature with DEK. Last, the process encrypts DEK with the in-
tended recipient’s public key. The output of the sender process is a 4-tuple: (sender’s
public key, encrypted DEK, encrypted digital signature, encrypted message). Figure 4
illustrates the sender process.

encryption:
senderDEK

public key

sender’s
public key

intended
recipient’s
public key

signing hash

encryption:
secret key

senderMsg

encrypted DEK

DEK

encrypted
digital signature

DEK

message

encrypted
message

sender A

sender’s private key

encryption:
secret key

senderPackMIC

senderMIC

Fig. 4. Sender process of the secure core-email protocol:enMailSender



Table 1.Functions in the sender processenMailSender

Name Definition and Description

senderDEK
packs DEK by encrypt it with receiver’s public key:

senderDEK encryptP ekeyB DEK= encryptP ekeyB DEK

senderMsg
packs a message by encrypt it with DEK:

senderMsg encryptS DEK message= encryptS DEK message

senderGenMIC
generates a digital signature of a message by signing the message digest:

senderGenMIC sign hash skeyA message=
sign skeyA(hash message)

senderPackMIC
packs the digital signature of a message:

senderPackMIC encryptS DEK MIC= encryptS DEK MIC

senderMIC

generates and packs the digital signature of a message:
senderMIC encryptS sign hash skeyA DEK message=((senderPackMIC encryptS DEK) o(senderGenMIC sign hash skeyA))

message

We define the sender processenMailSenderin HOL as follows. The functions that
appear in Figure 4 and in the definition ofenMailSenderare also defined in HOL and
are listed in Table 1. The variables appeared in the definitions are described in Table 2.

DEFINITION 8 (ENMAIL SENDER) ProcessenMailSendergenerates an email by en-
crypting and signing a message.`def 8encryptP encryptS sign hash vkeyA ekeyB DEK skeyA message.

enMailSender encryptP encryptS sign hash vkeyA ekeyB DEK skeyA
message=(vkeyA,
senderDEK encryptP ekeyB DEK,
senderMIC encryptS sign hash skeyA DEK message,
senderMsg encryptS DEK message)

4.2 Receiver Process

The receiver process of ScEP reverses the sender process to recover the message. The
receiver process expects a 4-tuple as input, the same 4-tuple that is the output of the
sender process. To process a received email, the receiver process first accesses the fields
of the email to get the sender’s public key, encrypted DEK, encrypted digital signature,
and the encrypted message. The receiver process then recovers the per-message en-
cryption key DEK by decrypting the encrypted DEK using the receiver’s private key.
It then uses DEK to retrieve message and digital signature by decryptingthe encrypted
message and the encrypted digital signature respectively. Finally, it checksthe trust-
worthiness of the received message by checking the recovered digital signature against



Table 2.Variables in the sender and receiver processes

Name Description
DEK data encryption key
decryptP public key decryption function
decryptS secret key decryption function
ekeyB receiver’s public key (for encryption)
enDEK encrypted DEK
enMIC encrypted digital signature
enMsg encrypted message
encryptP public key encryption function
encryptS secret key encryption function
envelope email, 4-tuple with sender’s public key
f lag indication of the trustworthiness of a received email
hash hash function
message content of an email
privateKey constant function, naming the corresponding private key given a public key
rxEnvelopereceived email
rxMessage received message inrxEnvelope
skeyA sender’s private key (for message signing)
sign signing function
txEnvelopetransmitted email
txMessage transmitted message intxEnvelope
veri f y signature verification function
vkeyA sender’s public key (for signature verification)

the recovered message: it computes the message digest of the message using the hash
function and verifies the digital signature against the message digest using the sender’s
public key. The receiver process is illustrated in Figure 5.

We define the receiver processenMailReceiverin HOL as follows. The functions
that appear in Figure 5 and in the definition ofenMailReceiverare also defined in HOL
and are listed in Table 3. The variables appeared in the definitions are described in
Table 2.

DEFINITION 9 (ENMAIL RECEIVER) ProcessenMailReceiverretrievesmessagefrom
an encrypted-signed mail.`def 8decryptP decryptS verify hash dkeyB envelope.

enMailReceiver decryptP decryptS verify hash dkeyB envelope=(enMailVerMIC decryptP decryptS verify hash dkeyB envelope,

enMailRetMsg decryptP decryptS dkeyB envelope)
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secret key
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secret key
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private
key

DEK
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digital signatureencrypted DEK
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sender’s public key
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DEK

encrypted message
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Fig. 5. Receiver process of secure core-email protocol:enMailReceiver

4.3 Secure Email System

A system that follows ScEP consists of a sender process and a receiver process.The
cryptographic functions used by the sender and receiver processes must haveproper
properties. The required properties of these functions are:

– (encryptSDEK);(decryptSDEK) comprises acipherPair. DEK is a secret key.
– (encryptPekeyB);(decryptPdkeyB)comprises acipherPair. The pair(ekeyB;dkeyB)

is a public-key pair.
– (signskeyA);(veri f yvkeyA) comprises aDSpair. The pair(vkeyA;skeyA) is a public-

key pair.
– The received email contains a valid public key for signature verification,and the

public key has a corresponding private key for signing messages.

We define secure email system in HOL as follows. The functionprivateKeynames
the corresponding private key given a public key. It is defined as a constant in HOL.
The variables appeared in the definitions are described in Table 2.

DEFINITION 10 (ENMAIL SYSTEM) Encrypted-signed-messagemail systemenMailSystem
consists of the sender processenMailSenderand the receiver processenMailReceiver,
whose keys make up digital signature key pairs and cipher key pairs.`def 8encryptP encryptS decryptP decryptS sign verify hash vkeyA skeyA

ekeyB dkeyB DEK txEnvelope txMessage rxEnvelope rxMessage flag.



Table 3.Functions in the receiver processenMailReceiver

Name Definition and Description

receiverDEK
retrieves DEK from encrypted version:

receiverDEK decryptP dkeyB enDEK=
decryptP dkeyB enDEK

receiverMsg
retrieves message from encrypted version:

receiverMsg decryptS DEK enMsg= decryptS DEK enMsg

receiverRetMIC
retrieves digital signature from encrypted version:

receiverRetMIC decryptS DEK enMIC=
decryptS DEK enMIC

receiverVerMIC
verifies digital signature against the message:

receiverVerMIC verify hash vkeyA message MIC=
verify vkeyA(hash message, MIC)

receiverMIC

retrieves digital signature and verifies it:
receiverMIC decryptS verify hash vkeyA DEK message enMIC=((receiverVerMIC verify hash vkeyA message) o(receiverRetMIC decryptS DEK))

enMIC

enMailVerMIC

verifies the trustworthiness of a received mail:
enMailVerMIC decryptP decryptS verify hash dkeyB envelope=(let (vkeyA, enDEK, enMIC, enMsg) = envelope in

let DEK= receiverDEK decryptP dkeyB enDEK in
let message= receiverMsg decryptS DEK enMsg in
receiverMIC decryptS verify hash vkeyA DEK message enMIC)

enMailRetMsg

retrieves the message from a received mail:
enMailRetMsg decryptP decryptS dkeyB envelope=(let (vkeyA, enDEK, enMIC, enMsg) = envelope in

let DEK= receiverDEK decryptP dkeyB enDEK in
receiverMsg decryptS DEK enMsg)

enMailRetSender
retrieves the sender’s public key from a received mail:

enMailRetSender envelope=(let (vkeyA, enDEK, enMIC, enMsg) = envelope in vkeyA)
enMailSystem encryptP encryptS decryptP decryptS sign verify
hash vkeyA skeyA ekeyB dkeyB DEK txEnvelope txMessage
rxEnvelope rxMessage flag=(txEnvelope=
enMailSender encryptP encryptS sign hash vkeyA ekeyB DEK
skeyA txMessage) ^((flag,rxMessage) =

enMailReceiver decryptP decryptS verify hash dkeyB rxEnvelope) ^
secKeyPair encryptS decryptS DEK̂
pubKeyPair encryptP decryptP(ekeyB, dkeyB) ^
DSKeyPair sign verify(vkeyA, skeyA) ^
DSKeyPair sign verify



(enMailRetSender rxEnvelope,
privateKey(enMailRetSender rxEnvelope))

To simplify the protocol we have ignored the selection of cryptographic functions
used by the sender and receiver processes. However, in the HOL definitions ofthese
two processes the cryptographic functions are taken as parameters.

We have also ignored the necessary verification of certificates. A certificate is a
document issued by a certificate authority certifying an entity’s public key, much like
the entries in telephone directory. A certificate contains an entity’s name andpublic key
and is signed by the certification authority. Anyone with certificate authority’s public
key can verify a certificate, hence can establish a channel where a public key speaks for
the entity. In ScEP we identify as the source of an email the public key of an entity, not
the entities itself.

In ScEP, the sender’s public-key pair is used for signing and signature verification;
the receiver’s public-key pair is used for encryption and decryption. It is possible that
entities in the network use different public-key pairs for different purposes: one pair for
signing and signature verification, and one pair for encryption and decryption.

5 Formal Verification of Secure Communication Channels

In the last section we formally defined the ScEP system. A ScEP system can be regarded
as a channel between a sender and a receiver that provides confidentiality and source
authentications to the statements. In ScEP, a sender identifies an intended recipient of
a statement with the recipient’s public key and, a receiver identifies the source of a
statement with the sender’s public key contained in the received package. The channel
between a senderA and a receiverB is broken down into three sub-channels: a channel
CA betweenA and a keykA thatA holds, a channelCB betweenB and a keykB thatB
holds, and a channelCkAkB betweenkA andkB. The composition of these three channels
is channelCAB between entityA andB. (Figure 6.)

AC CB

kAkB
C

ABC

A B

kA kB
(A’s key) (B’s key)

ScEP

Fig. 6. Communication channels between entitiesA andB



In this work we concentrate on the analysis of ScEP, which is a channel between
two entities’ keys. In Section 3 we defined confidential and source authenticchannels
based on entities. To verify that this channel provides secure services, we redefine the
confidential and source authentic channels to be based on keys.

5.1 Confidential Channel

Because both public-key and secret-key encryption are used in ScEP and they use keys
differently, we redefine confidential channels for each case. With a public-key encryp-
tion a channel is confidential if, whenA sendsB a statement encrypted withB’s public
key, only the entity withB’s private key can recover the statement in the package. With a
secret-key encryption a channel is confidential if, whenA sendsB a statement encrypted
with a secret keyk, only the entity knows the secretk can recover the statement in the
package. The definitions of these two confidential channels in HOL are as follows.

DEFINITION 11 (CONFCHANNELPUB) A channel is confidential if only the entity with
knowledge of the intended recipient’s private key can read the statement in the pack-
age. ParametersekeyBanddkeyBrespectively denote the public and private keys of the
intended recipient. ParameterkeyCdenotes a quantity that an arbitrary entityC uses to
retrieves the statement.`def 8sendTo receiveByB envelopeA msgA envelopeB msgB(ekeyB, dkeyB).

confChannelPUB sendTo receiveByB envelopeA msgA
envelopeB msgB(ekeyB, dkeyB) =(envelopeA= sendTo ekeyB msgA) �(((envelopeB= envelopeA)�(msgB= receiveByB dkeyB envelopeB)�(msgB= msgA)) ^(8receiveByC envelopeC msgC keyC.(envelopeC= envelopeA)�(msgC= receiveByC keyC envelopeC) �(msgC= msgA) �(keyC= dkeyB)))

DEFINITION 12 (CONFCHANNELSEC) A channel is confidential if only the entity with
knowledge of a shared secret key can read the statement in the package. Parameter
secretABis the shared secret between the sender and the intended recipient. Parameter
keyCdenotes a quantity that an arbitrary entityC uses to retrieve the statement.`def 8sendTo receiveByB envelopeA msgA envelopeB msgB secretAB.

confChannelSec sendTo receiveByB envelopeA msgA envelopeB msgB sec-
retAB= (envelopeA= sendTo secretAB msgA) �(((envelopeB= envelopeA)�(msgB= receiveByB secretAB envelopeB)�(msgB= msgA)) ^



(8receiveByC envelopeC msgC keyC.(envelopeC= envelopeA)�(msgC= receiveByC keyC envelopeC) �(msgC= msgA) �(keyC= secretAB)))
However, with Definitions 11 and 12 of confidential channel, we are unable to prove

the ScEP provides the confidentiality services. There are two reasons:

1. There are several ways to identify entities [6]. The previous definitions used “what
an entity knows” (e.g.dkeyB) to identify the entity. This is not suitable for our
model. A better alternative is to use “what an entity can do” (e.g.receiveByB dkeyB)
to identify the entity. The definition ofcon fChannelPubis rewritten as an example:

DEFINITION 13 (CONFCHANNELPUB’) Definition of confidential channel where
an entity is identified by “what he can do”.`def 8sendTo receiveByB envelopeA msgA envelopeB msgB(ekeyB, dkeyB).

confChannelPub0 sendTo receiveByB envelopeA msgA envelopeB msgB(ekeyB,dkeyB) =8receiveByC envelopeC msgC keyC.(envelopeA= sendTo ekeyB msgA) �(envelopeC= envelopeA)�(msgC= receiveByC keyC envelopeC) �((msgC= msgA) = (receiveByC keyC= receiveByB dkeyB))
2. To prove the ScEP is a confidential channel, we need to assume that the encryption

and decryption functions used satisfy the following property:

DEFINITION 14 (CIPHERPROP) If E andD constitute acipherPair, thenD is the
only function that can decipher a message encrypted byE.`def 8E D.

cipherProp E D=
cipherPair E D�(8m D arb. (D arb (E m) = m) � (D arb= D))

However, any constant functionD arb is going to satisfy(D arb (E m) = m) for
some valuem. Therefore, there is no pair of functionsE andD that has the property
cipherProp.

5.2 Source Authentication Channel

We redefine a source-authentic channel based on public-key cryptography because only
the public-key digital signature is used in ScEP. A channel provides source-authentic
service to a statement if, only when A sends B a statement sealed with A’s signature
will the channel certifies the statement as coming from A. In Definition 7 we derive the
source of a statement according to how a package is generated from the statement.One
way of generating a package, usually adopted by a person of authority, is to check the
validity of a statement and signs it to indicate the source of the statement. We refine the
source-authentic channel based on this approach in HOL:



DEFINITION 15 (AUTHCHANNELDS) A channel provides source authentication ser-
vices to statements if it certifies the origins of the received statements. ParametersealA
denotes senderA’s action of validating a statement and signing it. ParametersealDde-
notes a function that an arbitrary entityD uses to sign a statement. The functionretSeal
retrieves the seal of the mail and the functionretSenderretrieves the public key of the
sender. FunctionauthChkis the authentication check of the mail.`def 8authChk sealA retSeal retSender envelopeA msgA envelopeB msgB

vkeyA skeyA.
authChannelDS authChk sealD retSeal retSender envelopeA msgA
envelopeB msgB(vkeyA,skeyA) =(8sealD envelopeD msgD keyD.(envelopeB= envelopeD)�(retSeal envelopeD= sealD keyD msgD) �(vkeyA= retSender envelopeB)�(authChk envelopeB=(sealD keyD msgD= sealA skeyA msgB)))

In this definition we equate two entities by their ability to generate a particular
signaturessuch thatveri f yvkeyA(msgB;s) is true. A stronger equivalence between two
entities would be by equating their signing ability such assignAskeyAandsignDkeyD.
This is necessary for the following theorem because, as discussed in Section 2.3, a
digital signature is uniquely associated with a signer and the information being signed,
rather than with a signer alone.

The following theorem shows that a ScEP system provides a source-authentic chan-
nel to statements.

THEOREM 16 (ENAUTHENTIC) A ScEP system provides a source authentication chan-
nel to statements.` enMailSystem encryptP encryptS decryptP decryptS sign verify hash

vkeyA skeyA ekeyB dkeyB txDEK envelopeA msgA
envelopeB msgB flag�

authChannelDS(enMailVerMIC decryptP decryptS verify hash dkeyB)(senderGenMIC sign hash)(enMailRetMIC decryptP decryptS dkeyB)
enMailRetSender envelopeA msgA envelopeB msgB(vkeyA,skeyA) ^(flag=
enMailVerMIC decryptP decryptS verify hash dkeyB envelopeB)

6 Conclusion

Our objectives were to specify security properties and their implementationmecha-
nisms, so we could prove the implementation mechanisms satisfied the desired proper-
ties. These mechanisms form the core of several secure email protocols such asPGP
and PEM. The services we looked at were confidentiality and source authenticity. At



this time we have proved the implementations satisfy the source-authenticity service.
We are currently working on verifying confidentiality service. This will likely require a
reformulation of confidentiality as it relates to implementation.
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