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LOCAL SPECTRA OF OPERATOR WEIGHTED SHIFTS

A. BOURHIM

Abstract. In this note, we study the local spectral properties of uni-
lateral operator weighted shifts.

1. Introduction

Let L(H) denote the algebra of all bounded linear operators acting on a
complex Hilbert space H, and let A := (An)n≥0 be a sequence of uniformly
bounded invertible operators of L(H). Let

Ĥ =

+∞∑

n=0

⊕Hn,

where Hn = H for each n ≥ 0. It is a Hilbert space when equipped with the
inner product

〈(xn)n, (yn)n〉Ĥ =
+∞∑

n=0

〈xn, yn〉H.

Therefore, the corresponding norm is given by

‖(xn)n‖Ĥ =
( ∑

n

‖xn‖
2
H

) 1
2 .

The unilateral operator weighted shift, Su, with the weight sequence A =

(An)n≥0 is the operator on Ĥ defined by

Su(x0, x1, x2, ...) = (0, A0x0, A1x1, A2x2, ...), ((xn)n ∈ Ĥ).

Operator weighted shifts were first introduced by A. Lambert [9], and
have been studied by many authors (see for example [1], [6], [11], [7], and
[8]). In the case when dimH = 1, they are exactly the scalar weighted shifts
which have been widely studied. An excellent survey of the investigation
of the spectral theory of such operators was given by A. L. Shields [17].
Moreover, several known results for the scalar case have been generalized
and extended to the setting of operator weighted shifts. However, the ques-
tion of determining the local spectral properties for operator weighted shifts
is natural and has been initiated in [20]. While, the investigation of these
properties for scalar weighted shifts has been studied in [3] and [14]. The
main goal of the present note is to study and examine whether or not the re-
sults obtained in [3] remain valid for unilateral operator weighted shifts. We
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2 A. BOURHIM

give necessary and sufficient conditions for a unilateral operator weighted
shift to satisfy Dunford’s condition (C) or Bishop’s property (β). Unlike
the scalar weighted shift operators, we show that they are examples of uni-
lateral operator weighted shifts possessing Bishop’s property (β) with large
approximate point spectrum and without fat local spectra.

For an operator T ∈ L(H), let, as usual, T ∗, σ(T ), σap(T ), σp(T ), and
r(T ) denote the adjoint, the spectrum, the approximate point spectrum,
the point spectrum, and the spectral radius of T , respectively. Let m(T ) :=
inf{‖Tx‖ : ‖x‖ = 1} denote the lower bound of T , and note that the sequence(
m(T n)

1
n

)
n≥1

converges and its limit, denoted r1(T ), equals sup
n≥1

[m(T n)]
1
n

(see [12]). Let T ∈ L(H); for an element x ∈ H, let σ
T
(x), ρ

T
(x) := C\σ

T
(x),

and rT (x) := lim sup
n→+∞

‖T nx‖
1
n be the local spectrum, the local resolvent set

and the local spectral radius of T at x , respectively (see [4] and [10]). The
operator T is said to have the single–valued extension property at a complex
number λ0 ∈ C if for every open disc U centered at λ0, the only analytic
solution of the equation (T −λ)f(λ) = 0, (λ ∈ U) is the zero function f ≡ 0.
Denote by ℜ(T ) the set of all complex numbers on which T fails to have
the single–valued extension property and recall that T is said to have the
single–valued extension property provided that ℜ(T ) is empty. The reader
is reminded that in the case T has the single–valued extension property, the
local resolvent of x is the unique analytic H−valued function, x̃(.), satisfying
(T − λ)x̃(λ) = x, (λ ∈ ρ

T
(x)). Also, recall that an operator T ∈ H is said

to satisfy Dunford’s condition (C) provided that for every closed subset F

of C, the linear subspace,

H
T
(F ) := {x ∈ H : σ

T
(x) ⊂ F}

is closed. Moreover, T is said to have fat local spectra if σ
T
(x) = σ(T ) for all

non-zero x ∈ H. It is well known that every operator which satisfies Dun-
ford’s condition (C) has the single–valued extension property and it turns
out that Dunford’s condition (C) follows from fat local spectra property.

Throughout this note, let Su be a unilateral operator weighted shift with
weight sequence A := (An)n≥0, and let (Bn)n≥0 be the sequence given by

Bn =





An−1An−2...A1A0 if n > 0

1 if n = 0

Define

r2(Su) :=
1

lim sup
n→+∞

‖Bn
−1‖

1
n

, r3(Su) :=
1

lim inf
n→+∞

‖Bn
−1‖

1
n

,

R+
2 (Su) := sup

x∈H, x 6=0

{
1

lim sup
n→+∞

‖B∗
n
−1x‖

1
n

}
= sup

x∈H, ‖x‖=1

{
1

lim sup
n→+∞

‖B∗
n
−1x‖

1
n

}
,
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R−
2 (Su) := inf

x∈H, x 6=0

{
1

lim sup
n→+∞

‖B∗
n
−1x‖

1
n

}
= inf

x∈H, ‖x‖=1

{
1

lim sup
n→+∞

‖B∗
n
−1x‖

1
n

}
,

R+
3 (Su) := sup

x∈H, x 6=0

{
lim sup
n→+∞

‖Bnx‖
1
n

}
= sup

x∈H, ‖x‖=1

{
lim sup
n→+∞

‖Bnx‖
1
n

}
,

and

R−
3 (Su) := inf

x∈H, x 6=0

{
lim sup
n→+∞

‖Bnx‖
1
n

}
= inf

x∈H, ‖x‖=1

{
lim sup
n→+∞

‖Bnx‖
1
n

}
.

Note that

r1(Su) ≤ r2(Su) ≤ R−
2 (Su) ≤ R+

2 (Su),

and

r3(Su) ≤ R−
3 (Su) ≤ R+

3 (Su) ≤ r(Su).

Note also that for a scalar weighted shift Su, we have

r1(Su) ≤ r2(Su) = R−
2 (Su) = R+

2 (Su) ≤ r3(Su) = R−
3 (Su) = R+

3 (Su) ≤ r(Su).

Finally, we would like to record and without further mention a notation
that we will use repeatedly throughout this note. For every x ∈ H, we write

x(n) = (0, ..., 0, x, 0, ...), (n ≥ 0)

for the element of Ĥ for which all the coordinates are zero except the nth
coordinate which is equal x, and note that

(1.1) rSu
(x(k)) = lim sup

n→+∞
‖Bn+kB

−1
k x‖

1
n .

2. Preliminaries and elementary background

In this section, we assemble some elementary results that are very much
on the straightforward side and therefore the proofs will be omitted.

Proposition 2.1. Assume that T ∈ L(H) is an operator for which
⋂

n≥0
T nH =

{0}. The following statements hold.

(a) {λ ∈ C : |λ| ≤ r1(T )} ⊂ σ
T
(x) for every non-zero element x ∈ H.

(b) σp(T ) ⊂ {0}.
(c) Each σ

T
(x) is connected.

(d) σ(T ) is a connected set and satisfies {λ ∈ C : |λ| ≤ r1(T )} ⊂ σ(T ).
In particular, if σ(T ) is circularly symmetric about the origin, then

σ(T ) = {λ ∈ C : |λ| ≤ r(T )}.

Evidently, the unilateral operator weighted shift Su satisfies the condition

that
⋂

n≥0
Sn

uĤ = {0}, and its spectrum is rotationally symmetric. Therefore,

the next result is an immediate consequence of proposition 2.1.

Corollary 2.2. The following statements hold.
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(a) For every non-zero element x ∈ Ĥ, the local spectrum, σ
Su

(x), of Su

at x is connected and satisfies {λ ∈ C : |λ| ≤ r1(Su)} ⊂ σ
Su

(x).
(b) The spectrum of Su is the disc {λ ∈ C : |λ| ≤ r(Su)}.

Proposition 2.3. For every n ≥ 1, we have

‖Sn
u‖ = sup

k≥0
‖Bn+kB

−1
k ‖, and m(Sn

u ) = inf
k≥0

{ 1

‖BkB
−1
n+k‖

}
.

Thus,

r(Su) = lim
n→+∞

[
sup
k≥0

‖Bn+kB
−1
k ‖

] 1
n

, and r1(Su) = lim
n→+∞

[
inf
k≥0

{ 1

‖BkB
−1
n+k‖

}] 1
n

.

Proposition 2.4. The adjoint of Su is given by

S∗
ux = (A∗

0x1, A
∗
1x2, A

∗
2x3, ...), (x = (x0, x1, ...) ∈ Ĥ).

3. Local spectra of Su

We begin this section with the following result that gives a necessary and
sufficient condition for S∗

u to enjoy the single–valued extension property.

Lemma 3.1. The following statments hold.

(a) σp(Su) = ∅.
(b) {0} ∪ {λ ∈ C : |λ| < R+

2 (Su)} ⊂ σp(S
∗
u) ⊂ {λ ∈ C : |λ| ≤ R+

2 (Su)}.
(c) S∗

u has the single–valued extension property if and only if R+
2 (Su) =

0. Moreover, we always have

ℜ(S∗
u) = {λ ∈ C : |λ| < R+

2 (Su)}.

Proof. (a) By proposition 2.1-(b), we have σp(Su) ⊂ {0}. As Su is injective,
we note that σp(Su) = ∅.

(b) Suppose that λ ∈ C is an eigenvalue for S∗
u and that (xn)n is a corre-

sponding eigenvector. We have

(A∗
0x1, A

∗
1x2, A

∗
2x3, ...) = (λx0, λx1, λx2, ...).

This shows that

xn = λnB∗
n
−1x0, (n ≥ 0).

Therefore,

‖x‖2 =
∑

n≥0

|λ|2n‖B∗
n
−1x0‖

2.

By the Cauchy-Hadamard formula for the radius of convergence, we get that

|λ| ≤
1

lim sup
n→+∞

‖B∗
n
−1x0‖

1
n

.

Thus,

σp(S
∗
u) ⊂ {λ ∈ C : |λ| ≤ R+

2 (Su)}.
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Now, let us prove that

{0} ∪ {λ ∈ C : |λ| < R+
2 (Su)} ⊂ σp(S

∗
u).

It is clear that for every x ∈ H, we have S∗
ux(0) = 0; hence, 0 ∈ σp(S

∗
u).

If R+
2 (Su) = 0, then there is nothing to prove; thus, we may assume that

R+
2 (Su) > 0. Let λ ∈ C such that |λ| < R+

2 (Su). So, there is a non-zero
x0 ∈ H such that |λ| < 1

limsup
n→+∞

‖B∗
n
−1x0‖

1
n

. We have
(
S∗

u−λ
)
kx0(λ) = 0, where

kx0(λ) =
∑
n≥0

⊕λnB∗
n
−1x0. This shows that

{λ ∈ C : |λ| < R+
2 (Su)} ⊂ σp(S

∗
u),

and the desired statement holds.
(c) In view of the statement (b) and the fact that ℜ(S∗

u) ⊂ int
(
σp(S

∗
u)

)
,

we have ℜ(S∗
u) ⊂ {λ ∈ C : |λ| < R+

2 (Su)}.
Conversely, let x be a non-zero element of H and set

Ux :=
{
λ ∈ C : |λ| <

1

lim sup
n→+∞

‖B∗
n
−1x‖

1
n

}
,

and

kx(λ) :=
∑

n≥0

⊕λnB∗
n
−1x, (λ ∈ Ux).

Since
(
S∗

u − λ
)
kx(λ) = 0, for all λ ∈ Ux, and x is an arbitrary non-zero

element of H, we have

{λ ∈ C : |λ| < R+
2 (Su)} =

⋃

x∈H, x 6=0

Ux ⊂ ℜ(S∗
u).

The proof is therefore complete. �

The following result refine the local spectral inclusion given in corollary
2.2.

Proposition 3.2. For every non-zero y = (y0, y1, y2, ...) ∈ Ĥ, we have

{λ ∈ C : |λ| ≤ R−
2 (Su)} ⊂ σ

Su
(y).

In particular, if r(Su) = R−
2 (Su) then Su has fat local spectra.

Proof. As
⋂

n≥0
Sn

uĤ = {0}, we have 0 ∈ σ
Su

(y). Thus, we may assume that

R−
2 (Su) > 0. Let O := {λ ∈ C : |λ| < R−

2 (Su)}, and let x be a non-zero

element of H. Consider the following analytic Ĥ–valued function on O,

kx(λ) =
∑

n≥0

⊕λnB∗
n
−1x.
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We have (Su−λ)∗kx(λ) = 0 for every λ ∈ O. Now, let y = (y0, y1, y2, ...) ∈ Ĥ
such that O ∩ ρ

Su
(y) 6= ∅. So, for every λ ∈ O ∩ ρ

Su
(y), we have

∑

n≥0

〈yn, B∗
n
−1x〉Hλn = 〈y, kx(λ)〉

Ĥ

= 〈(Su − λ)ỹ(λ), kx(λ)〉Ĥ

= 〈ỹ(λ), (Su − λ)∗kx(λ)〉Ĥ
= 0.

Hence, for every n ≥ 0, we have

〈yn, B∗
n
−1x〉H = 0.

Since x is an arbitrary element of H, we have y = 0; and the proof is
complete. �

In view of proposition 3.2, we note that R−
2 (Su) ≤ rSu

(x), for all non-zero

x = (x0, x1, x2, ...) ∈ Ĥ. The following gives more information about local
spectral radii of Su.

Proposition 3.3. For every non-zero element x = (x0, x1, ...) ∈ Ĥ, we have

R−
3 (Su) ≤ rSu

(x) ≤ r(Su).

Moreover, if x = (x0, x1, ...) is a non-zero finitely supported element of Ĥ,

then

(3.2) R−
3 (Su) ≤ rSu

(x) = max
k≥0

(
rSu

(x
(k)
k

)
)
≤ R+

3 (Su).

Proof. Let x = (x0, x1, ...) be a non-zero element of Ĥ; so, there is an integer
k0 ≥ 0 such that xk0 6= 0. Since,

‖Sn
ux‖2 =

+∞∑

k=0

‖Bn+kB
−1
k xk‖

2, ∀n ≥ 0,

we have

‖Bn+k0B
−1
k0

xk0‖
1

n+k0 ≤ ‖Sn
ux‖

1
n+k0 , ∀n ≥ 0.

Now, taking lim sup as n → +∞, we get

R−
3 (Su) ≤ lim sup

n→+∞
‖Bn+k0B

−1
k0

xk0‖
1

n+k0 ≤ rSu
(x),

as desired.
(b) Assume that x = (x0, x1, ...) is a non-zero finitely supported element

of Ĥ. As above, we have

‖Bn+kB
−1
k xk‖

1
n ≤ ‖Sn

ux‖
1
n , ∀n, k ≥ 0.

By taking lim sup as n → +∞, we get rSu
(x

(k)
k ) ≤ rSu

(x), ∀k ≥ 0. Hence,

max
k≥0

(
rSu

(x
(k)
k

)
)
≤ rSu

(x).
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As σ
Su

(x) ⊂
⋃

k≥0

σ
Su

(x
(k)
k ), and rSu

(y) = max{|λ| : λ ∈ σ
Su

(y)} for every

non-zero y ∈ Ĥ, we obtain rSu
(x) ≤ max

k≥0

(
rSu

(x
(k)
k )

)
. Hence,

rSu
(x) = max

k≥0

(
rSu

(x
(k)
k )

)
.

On the other hand, we have rSu
(x

(k)
k ) = rSu

((B−1
k xk)

(0)), ∀k ≥ 0. This
shows that

rSu
(x) = max

k≥0

(
rSu

(x
(k)
k )

)
≤ R+

3 (Su).

Therefore, the desired result holds. �

For every x = (x0, x1, ...) ∈ Ĥ, we set

RA(x) :=
1

lim sup
n→+∞

‖B−1
n xn‖

1
n

.

Obviously, if x is a non-zero element of Ĥ, then r2(Su) ≤ RA(x) ≤ +∞.

Theorem 3.4. For every non-zero element x = (x0, x1, ...) ∈ Ĥ, we have

{λ ∈ C : |λ| ≤ min
(
RA(x), r3(Su)

)
} ⊂ σ

Su
(x).

Moreover, if x = (x0, x1, ...) is a non-zero finitely supported element of Ĥ,

then

{λ ∈ C : |λ| ≤ R−
3 (Su)} ⊂ σ

Su
(x).

Proof. Let x = (x0, x1, ...) be a non-zero element of Ĥ. If min
(
RA(x), r3(Su)

)
=

0, then there is nothing to prove since 0 ∈ σ
Su

(x). Thus we may suppose

that min
(
RA(x), r3(Su)

)
> 0. Now, for each n ≥ 0, let

Fn(λ) = −
Bnx0

λn+1
−

BnB−1
1 x1

λn
−

BnB−1
2 x2

λn−1
− ... −

xn

λ
, (λ ∈ C\{0}),

and

Gn(λ) = x0 + λB−1
1 x1 + λ2B−1

2 x2 + ... + λnB−1
n xn, (λ ∈ C).

We have,

(3.3) Fn(λ) =
−1

λn+1
BnGn(λ), (λ ∈ C\{0}).

By writing x̃(λ) := (f0(λ), f1(λ), f2(λ), ...), λ ∈ ρ
Su

(x), we get from the
equation,

(Su − λ)x̃(λ) = x, λ ∈ ρ
Su

(x),

that for every λ ∈ ρ
Su

(x), we have




−λf0(λ) = x0

Anfn(λ) − λfn+1(λ) = xn+1 for every n ≥ 0.
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Therefore, for every n ≥ 0 and for every λ ∈ ρ
Su

(x), we have

fn(λ) = −
Bnx0

λn+1
−

BnB−1
1 x1

λn
−

BnB−1
2 x2

λn−1
− ... −

xn

λ
= Fn(λ).

Since ‖x̃(λ)‖2 =
∑
n≥0

‖fn(λ)‖2 < +∞ for every λ ∈ ρ
Su

(x), it then follows

that

(3.4) lim
n→+∞

Fn(λ) = lim
n→+∞

fn(λ) = 0 for every λ ∈ ρ
Su

(x).

We shall show that (3.4) is not satisfied for most of the points in the open
disc V (x) := {λ ∈ C : |λ| < min

(
RA(x), r3(Su)

)
}. It is clear that the

sequence (Gn)n≥0 converges uniformly on compact subsets of V (x) to the
non-zero power series G(λ) =

∑
n≥0

λnB−1
n xn. Now, let λ0 ∈ V (x)\{0} such

that G(λ0) 6= 0; there is ǫ > 0 and an integer n0 such that ǫ < ‖Gn(λ0)‖ for
every n ≥ n0. On the other hand, |λ0| < r3(Su), then there is a subsequence
(nk)k≥0 of integers greater than n0 such that |λ0|

nk‖B−1
nk

‖ < 1. Thus, it
follows from (3.3) that for every k ≥ 0, we have

‖Fnk
(λ0)‖ = |

−1

λ
nk+1
0

|‖Bnk
Gnk

(λ0)‖

≥
1

|λnk+1
0 |‖B−1

nk
‖
‖Gnk

(λ0)‖

≥
ǫ

|λ0|
.

And so, by (3.4), λ0 6∈ ρ
Su

(x). Since the set of zeros of G is at most

countable, we have {λ ∈ C : |λ| ≤ min
(
RA(x), r3(Su)

)
} ⊂ σ

Su
(x).

Now, assume that x = (x0, x1, ...) is a non-zero finitely supported element

of Ĥ, and k0 is the largest integer n ≥ 0 for which xn 6= 0. Conserve the
same notations as above and note that, for every n ≥ k0, we have

Fn(λ) =
−1

λn+1
BnG(λ), (λ ∈ C\{0}),

where

G(λ) := x0 + λB−1
1 x1 + λ2B−1

2 x2 + ... + λk0B−1
k0

xk0, (λ ∈ C).

Let W (x) := {λ ∈ C : |λ| < R−
3 (Su)}, and let λ0 ∈ W (x)\{0} such that

G(λ0) 6= 0. As |λ0| < R−
3 (Su) ≤ lim sup

n→+∞
‖BnG(λ0)‖

1
n , we note that the

series
∑
n≥0

‖Fn(λ0)‖
2 diverges. Hence, λ0 ∈ σ

Su
(x), and therefore,

{λ ∈ C : |λ| ≤ R−
3 (Su)} ⊂ σ

Su
(x).

�
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For every x ∈ H, we write

Ĥ(x) :=
∨

{
(
Bnx

)(n)
: n ≥ 0},

where ”
∨

” denotes the closed linear span. It is shown in proposition 4.3.5
of [20] that for every non-zero x ∈ H, we have

σ
Su

(x(n)) = {λ ∈ C : |λ| ≤ rSu
(x(n))}, (n ≥ 0).

We refine this result as follows; our proof is inspired by an argument of [3].

Proposition 3.5. Let x be a non-zero element of H, and let y ∈ Ĥ(x). The

following statements hold.

(a) If RA(y) > rSu
(x(0)), then σ

Su
(y) = {λ ∈ C : |λ| ≤ rSu

(x(0))}.

(b) If RA(y) ≤ rSu
(x(0)), then {λ ∈ C : |λ| ≤ RA(y)} ⊂ σ

Su
(y).

Proof. Let x be a non-zero element of H, and let us first show that

σ
Su

(x(0)) = {λ ∈ C : |λ| ≤ rSu
(x(0))}.

To do this it suffices to prove that {λ ∈ C : |λ| ≤ rSu
(x(0))} ⊂ σ

Su
(x(0)).

Indeed, as in the proof of theorem 3.4, we trivially have

x̃(0)(λ) = (−
x

λ
,−

B1x

λ2
,−

B2x

λ3
, ...), (λ ∈ ρ

Su
(x(0))).

In particular, we have ‖x̃(0)(λ)‖2
Ĥ

=
+∞∑
k=0

‖Bkx‖2
H

|λ|2(k+1) , (λ ∈ ρ
Su

(x(0))). This im-

plies that ρ
Su

(x(0)) ⊂ {λ ∈ C : rSu
(x(0)) ≤ |λ|}. Or, equivalently,

{λ ∈ C : |λ| < rSu
(x(0))} ⊂ σ

Su
(x(0)).

As σ
Su

(x(0)) is a closed set, the desired identity holds.

(a) Assume that y =
+∞∑
n=0

an

(
Bnx

)(n)
is a non-zero element of Ĥ(x) for

which RA(y) > rSu
(x(0)). In this case the function f(λ) :=

∑
n≥0

anλn is

analytic on the open disc {λ ∈ C : |λ| < RA(y)} which is a neighborhood of

σ
Su

(x(0)). Let r be a real number such that rSu
(x(0)) < r < RA(y), we have

f(Su, x(0)) :=
−1

2πi

∮

|λ|=r

f(λ)x̃(0)(λ)dλ

=
−1

2πi

∮

|λ|=r

f(λ)

(
−

∑

n≥0

Sn
ux(0)

λn+1

)
dλ

= y.

And so, by theorem 2.12 of [19], we have

σ
Su

(y) = σ
Su

(f(Su, x(0))) = σ
Su

(x(0)) = {λ ∈ C : |λ| ≤ rSu
(x(0))}.
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(b) The proof of the second statement is similar to the one of theorem 3.4
if, for every integer n ≥ 0, we take

Fn(λ) := −
( an

λn+1
+

a1

λn
+

a2

λn−1
+ ... +

an

λ

)
Bnx, (λ ∈ C\{0}),

and

Gn(λ) := a0 + a1λ + a2λ
2 + ... + anλn, (λ ∈ C).

�

4. Dunford’s condition (C) and Bishop’s property (β) for Su

Before outlining the statement of the main results of this section, let us
recall a few more notions and properties from the local spectral theory which
will be needed in the sequel. An operator T ∈ L(H) is said to be hyponormal

if ‖T ∗x‖ ≤ ‖Tx‖ for all x ∈ H. It is said be subnormal if it has a normal
extension, this means that there is a normal operator N on a Hilbert space
K, containing H, such that H is a closed invariant subspace of N and the
restriction N|H coincides with T . Note that every subnormal operator is
hyponormal, but the converse is false (see [5]). For an open subset U of
C, let O(U,H) denote as usual the Fréchet space of all analytic H−valued
functions on U . An operator T ∈ L(H) is said to possess Bishop’s property
(β) if the continuous mapping

TU : O(U,H) −→ O(U,H)

f 7−→ (T − z)f

is injective with closed range for each open subset U of C. It is known
that hyponormal operators possess Bishop’s property (β) (see [15]) and it
turns out that Dunford’s condition (C) follows from Bishop’s property (β).
Let λ0 ∈ C; recall that an operator T ∈ L(H) is said to possess Bishop’s

property (β) at λ0 if there is an open neighbourhood V of λ0 such that for
every open subset U of V , the mapping T

U
is injective and has a closed

range. Note that if T possesses Bishop’s property (β) at any point λ ∈ C

then T possesses Bishop’s classical property (β). Finally, for any operator
T ∈ L(H), we shall denote

σβ(T ) :=
{
λ ∈ C : T fails to possess Bishop’s property (β) at λ

}
.

It is a closed subset of σap(T ) (see proposition 2.1 of [3]).
The following result gives necessary conditions for the operator weighted

shift, Su, to enjoy Dunford’s condition (C).

Theorem 4.1. If Su satisfies Dunford’s condition (C), then r(Su) = R+
3 (Su).

Moreover, for every non-zero x ∈ H, we have

(4.5) lim sup
n→+∞

‖Bnx‖
1
n = lim

n→+∞

[
sup
k≥0

‖Bn+kx‖

‖Bkx‖

] 1
n

.
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Proof. To prove R+
3 (Su) = r(Su), it suffices to show that r(Su) ≤ R+

3 (Su).
Since each Bk is an invertible operator, we note that

R+
3 (Su) = sup

x∈H, x 6=0

(
rSu

(x(k))
)
, ∀k ≥ 0.

Now, assume that Su satisfies Dunford’s condition (C), and let

F := {λ ∈ C : |λ| ≤ R+
3 (Su)}.

It follows from (3.2) that Ĥ
Su

(F ) contains a dense subspace of Ĥ. As the

subspace Ĥ
Su

(F ) is closed, we have Ĥ
Su

(F ) = H; therefore, σ
Su

(x) ⊂ F

for every x ∈ Ĥ. And so, σ(Su) =
⋃

x∈H
σ

Su
(x) ⊂ F (see proposition 1.3.2 of

[10]). Hence, r(Su) ≤ R+
3 (Su), as desired.

Let x be a non-zero element of H and let us now establish the identity
(4.5). Since Su satisfies Dunford’s condition (C), we note that Su restricted

to Ĥ(x) satisfies also Dunford’s condition (C) (see proposition 1.2.21 of [10]).

Now, note that (vn)n≥0 is an orthonormal basis of Ĥ(x), where

vn :=
(Bnx)(n)

‖Bnx‖
, (n ≥ 0).

We have

Suvn =
‖Bn+1x‖

‖Bnx‖
vn+1, (n ≥ 0).

This shows that Su|Ĥ(x) is an injective scalar unilateral weighted shift with

weight sequence
(‖Bn+1x‖

‖Bnx‖

)
n≥0

. Therefore, the identity, (4.5), follows from

theorem 3.7 of [3]. �

Unlike the scalar weighted shift operators, generally we do not have
r1(Su) = r(Su) if the unilateral operator weighted shift Su possesses Bishop’s
property (β) (see example 4.5). But, of course, if r1(Su) = r(Su), then ei-
ther Su possesses Bishop’s property (β), or σβ(Su) = {λ ∈ C : |λ| = r(Su)}.
In [20], H. Zguitti represented a unilateral operator weighted shift as op-
erator multiplication by z on a Hilbert space of formal power series whose
coefficients are in H. He therefore adapted T. L. Miller and V. G. Miller’s
arguments given in [13] to show that if Su possesses Bishop’s property (β),

then r2(Su) = R1(Su), where R1(Su) = lim inf
n→+∞

[
inf
k≥0

‖Bn+kB
−1
k

‖
] 1

n . Here,

we refine this result as follows and provide a direct proof.

Theorem 4.2. If Su possesses Bishop’s property (β), then r2(Su) = r1(Su),
and r(Su) = R+

3 (Su). Moreover, for every non-zero x ∈ H, we have

(4.6) lim
n→+∞

[
inf
k≥0

‖Bn+kx‖

‖Bkx‖

] 1
n

= lim
n→+∞

[
sup
k≥0

‖Bn+kx‖

‖Bkx‖

] 1
n

.
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Proof. Suppose that Su possesses Bishop’s property (β) and note that, since
Su satisfies Dunford’s condition (C), r(Su) = R+

3 (Su) (see theorem 4.1). If
r2(Su) = 0 then, since r1(Su) ≤ r2(Su), there is nothing to prove. Thus, we
may assume that 0 < r2(Su). Now, recall that it is shown in [12] that

r1(T ) = min{|λ| : λ ∈ σap(T )}

for any operator T ∈ L(H). And so, in order to show that r2(Su) = r1(Su),
it suffices to prove that U ∩σap(Su) = ∅, where U := {λ ∈ C : |λ| < r2(Su)}.
Assume for the sake of contradiction that there is λ0 ∈ U ∩ σap(Su). Since
σp(Su) = ∅, there is y = (y0, y1, y2, ...) ∈ cl

(
ran(Su −λ0)

)
\ran(Su −λ0). For

every x ∈ H, set kx(λ) :=
∑
i≥0

⊕λ
i
B∗

i
−1x, (λ ∈ U), and note that

(Su − λ)∗kx(λ) = 0, ∀λ ∈ U .

In particular, we have

(4.7) 〈y, kx(λ0)〉Ĥ = 0, for all x ∈ H.

And so, for every x ∈ H, we have

〈
∑

i≥0

λi
0Bi

−1yi, x〉H =
∑

i≥0

〈yi, λ0
i
B∗

i
−1x〉H

= 〈y, kx(λ0)〉Ĥ
= 0

This implies that

(4.8)
∑

i≥0

λi
0Bi

−1yi = 0.

Now, for every integer n ≥ 0, we define on U the following analytic Ĥ−valued
functions by

f(λ) := y −
( ∑

i≥0

λiBi
−1yi

)(0)
, and fn(λ) := yn −

( n∑

i=0

λiBi
−1yi

)(0)
,

where yn := (y0, ..., yn, 0, 0, ...). Note that for every integer n ≥ 0, we have

fn(λ) =

n∑

i=0

(
Si

u − λi
)(

B−1
i yi

)(0)
, (λ ∈ U).

This implies that each fn is in ran((Su)
U
). But f 6∈ ran((Su)

U
) since, in

view of (4.8), we have f(λ0) = y 6∈ ran(Su − λ0). On the other hand, for
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every compact subset K of U , we have

sup
λ∈K

‖fn(λ) − f(λ)‖Ĥ ≤ ‖y − yn‖Ĥ + sup
λ∈K

‖
( ∑

i>n

λiBi
−1yi

)(0)
‖Ĥ

= ‖y − yn‖Ĥ + sup
λ∈K

‖
∑

i>n

λiBi
−1yi‖H

≤ ‖y − yn‖Ĥ + sup
λ∈K

{ ∑

i>n

|λ|i‖Bi
−1‖‖yi‖H

}

≤

(
1 + sup

λ∈K

( ∑

i≥0

|λ|2i‖Bi
−1‖2

) 1
2

)
‖y − yn‖

Ĥ
.

Therefore, fn → f in O(U , Ĥ). As each fn ∈ ran((Su)
U
) and f 6∈ ran((Su)

U
),

we note that ran((Su)
U
) is not closed. We have a contradiction to the fact

that Su possesses Bishop’s property (β). And so, U∩σap(Su) = ∅, as desired.
Now, let x be a non-zero element of H. Since Su possesses Bishop’s

property (β), the injective scalar unilateral weighted shift Su|Ĥ(x) possesses

also Bishop’s property (β). Thus, applying theorem 3.8 of [3], gives the
identity (4.6). �

Remark 4.3. Let T ∈ L(H) be an invertible operator, and assume that
An = T for all n ≥ 0. The corresponding unilateral operator weighted shift,
Su, satisfies the following identities.

r(Su) = R+
3 (Su) = r(T ) and r1(Su) = r2(Su) = R−

2 (Su) = r1(T ) =
1

r(T−1)
.

Indeed, we clearly have r(Su) = r(T ) and r1(Su) = r2(Su) = r1(T ) = 1
r(T−1)

.

Since, R+
3 (Su) = sup

{
rT (x) : x ∈ H, x 6= 0

}
, it follows from proposition

3.3.14 of [10] that R+
3 (Su) = r(T ); therefore, the first identity holds. On the

other hand, we have

R−
2 (Su) = inf

{ 1

rT ∗−1(x)
: x ∈ H, x 6= 0

}

=
1

sup
{
rT ∗−1(x) : x ∈ H, x 6= 0

} .

Again, by proposition 3.3.14 of [10], we have R−
2 (Su) = 1

r(T−1) ; and the

second identity follows.

Assume that T ∈ L(H) is an invertible operator and that An = T for
all n ≥ 0. So, one may think that the corresponding unilateral operator
weighted shift, Su, satisfies Dunford’s condition (C). It turns out that this
is not true in general as the next example shows.

Example 4.4. Let (en)n∈Z be an orthonormal basis of H, and let (ωn)n∈Z

be a positive two-sided sequence for which

(a) 0 < inf
n∈Z

ωn ≤ sup
n∈Z

ωn < +∞.
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(b) lim sup
n→+∞

[
ω0ω1...ωn−1

] 1
n < lim

n→+∞

[
sup
k≥0

(ωkωk+1...ωn+k−1)
] 1

n .

Let T be the scalar invertible bilateral weighted shift on H, defined by

Ten = ωnen+1, (n ∈ Z).

If An = T for all n ≥ 0 then, in view of (b), neither the identity (4.5) nor the
identity (4.6) is satisfied for e0. Hence, Su is without Dunford’s condition
(C).

For the construction of a specific example of a positive two-sided sequence
satisfying the above conditions, we refer the reader to [16].

It is shown in theorem 2.5 of [18] that a nonnormal hyponormal scalar
(unilateral or bilateral) weighted shift has fat local spectra (see also theo-
rem 3.7 of [2]). The next example shows that this result is not valid for
hyponormal operator weighted shifts.

Example 4.5. Assume that (en)n≥0 is an orthonormal basis of H, and
let (αn)n≥0 be an increasing positive sequence such that lim

n→+∞
αn = 1.

The diagonal operator, T , with the diagonal sequence (αn)n≥0 (i.e., Ten =
αnen, ∀n ≥ 0) is invertible and satisfies r1(T ) = α0 < r(T ) = 1. If An = T

for all n ≥ 0, then the unilateral operator weighted shift Su is subnormal.
Indeed, let Hn = H for all n ∈ Z and let

H̃ =
∑

n∈Z

⊕Hn

be the Hilbert space of the two–sided sequences (xn)n∈Z such that

‖(xn)n∈Z‖H̃ :=
( ∑

n∈Z

‖xn‖
2
H

) 1
2 < +∞.

Let Sb be the bilateral operator weighted shift defined on H̃ by

Sb(..., x−2, x−1, [x0], x1, x2, ...) = (..., Tx−2, [Tx−1], Tx0, Tx1, ...),

where for an element x = (..., x−2, x−1, [x0], x1, x2, ...) ∈ H̃, [x0] denotes the
central (0th) term of x. Note that, since T is an hermitian operator, Sb is a
normal extension of Su. This shows that Su is a subnormal operator. Now,
we note that for every k ≥ 0, we have

rSu
(e

(0)
k ) = lim sup

n→+∞
‖T nek‖

1
n

= αk < r(Su) = 1.

This shows, on the one hand, that Su is without fat local spectra and, on
the other hand, that

r1(Su) = r2(Su) = R∓
2 (Su) = r3(Su) = R−

3 (Su) = α0 < R+
3 (Su) = r(Su) = 1.

Therefore, in view of the fact that σ(Su) = σap(Su) ∪ σp(S∗
u), corollary 2.2

and lemma 3.1, we have

σap(Su) = {λ ∈ C : α0 ≤ |λ| ≤ 1}.
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Remark 4.6. Let T ∈ L(H) be an invertible operator. If An = T for all n ≥
0, then Su is hyponormal if and only if T is also hyponormal. Therefore, to
construct a kind of example 4.5, it suffices to take T a hoponormal operator
for which there is a non-zero element x ∈ H with rT (x) < r(T ).

Finally, we would like to point out that
(a) proposition 3.9 of [3] remain valid for the general setting of operator

weighted shift. This is not the case for proposition 3.11 of [3] as it is shown
in example 4.4.

(b) after the present note was completed, we began to study the local
spectra of bilateral operator weighted shifts; this case is quite difficult. How-
ever, we provided some local spectral inclusions and obtained a necessary
and sufficient condition for a bilateral operator weighted shift to enjoy the
single–valued extension property. Furthermore, we gave necessary and suf-
ficient conditions for such operator to satisfy Dunford’s condition (C) or
Bishop’s property (β). These results are still on a preliminary level, and
will appear somewhere else once we get some interesting improvements.
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