
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1991

Parallel Divide and Conquer Parallel Divide and Conquer

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch, "Parallel Divide and Conquer" (1991). Electrical Engineering and Computer Science -
Technical Reports. 131.
https://surface.syr.edu/eecs_techreports/131

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/131?utm_source=surface.syr.edu%2Feecs_techreports%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-45

Parallel Divide and Conquer

Per Brinch Hansen

December 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Parallel Divide and Conquer 1

PER BRINCH HANSEN

School of Computer and Information Science
Syracuse University, Syracuse, New York 13244, U.S.A.

December 1991

SUMMARY

We develop a generic divide and conquer algorithm for a parallel tree machine. From
the generic algorithm we derive balanced, parallel versions of quicksort and the fast
Fourier transform by substitution of data types, variables and statements. The per­
formance of these algorithms is analyzed and measured on a Computing Surface
configured as a tree machine with distributed memory.

KEY WORDS Parallel algorithms Programming paradigms Generic algorithms
Divide and conquer Quicksort Fast Fourier transform
Tree machine

INTRODUCTION

This is one of several papers that explore the benefits of developing generic algorithms
for parallel programming paradigms that can be adapted to different applications [1-
4}. In this paper we consider the divide and conquer paradigm for a parallel tree
machine with distributed memory.

Divide and conquer is an elegant method for solving a problem: You divide the
problem into smaller problems of the same kind, solve the smaller problems sepa­
rately, and combine the partial results into a complete solution. The method is used
recursively to split the problem into smaller and smaller problems until you reach a
point where each problem is easy to solve.

This beautiful concept has led to fast sequential algorithms for sorting [5], Fourier
transform [6], matrix multiplication [7], spatial proximity [8], convex hulls [9], and
n-body simulation [10].

Parallelism is also a mechanism for splitting larger computations into smaller
ones that can be performed simultaneously. For multicomputers, divide and conquer
algorithms already exist for sorting, fast Fourier transform, and matrix multiplication
[11].

1Copyright@1991 Per Brinch Hansen

PARALLEL DIVIDE AND CONQUER 2

We are more interested in the programming methodology of multicomputers than
in solving specific problems. With this emphasis in mind we develop a generic divide
and conquer algorithm for a tree machine. From the generic algorithm we derive
balanced, parallel versions of quicksort and the fast Fourier transform by substitution
of data types, variables, and statements. The performance of these algorithms is
analyzed and measured on a Computing Surface with 31 transputers configured as a
tree machine.

SEQUENTIAL PARADIGM

Since we are interested in principles rather than detail, we concentrate on divide and
conquer algorithms with four simple properties:

1. A problem of size n and its solution are both defined by an array of n elements
of the same type.

2. A problem of size 1 is its own solution.

3. A larger problem is solved by splitting it into two halves, which are solved
separately.

4. A problem is solved by an in-place computation that replaces the elements of
a single array by the corresponding solution without using additional arrays.

We begin by writing a sequential divide and conquer algorithm in the programming
language Pascal (Algorithm 1).

type table= array [O .. n-1) ofT;

procedure solve(var a: table;
first, last: integer);

var middle: integer;
begin

if first < last then
begin

split(a, first, last, middle);
solve(a, first, middle);
solve(a, middle+ 1, last);
combine(a, first, last, middle)

end
end

Algorithm 1

A complete problem and its solution are defined by an array of n elements of some
type T. The procedure generally solves a subproblem in a slice of the array

a[first . .last]

PARALLEL DIVIDE AND CONQUER

where
0 :5 first :5 last :5 n -1

A slice with one element only is left unchanged.
A larger slice is split into two smaller slices

a(first .. middle] a(middle+l..last]

where
0 :5 first :5 middle< last :5 n-1

3

The subproblems are solved by recursive activations of the solution procedure,
and the partial results are combined into a single solution to the original problem.

A complete problem is solved by transforming all the elements of an array a of
size n

solve(a, 0, n-1)

The class of divide and conquer algorithms that we are considering is defined by
Algorithm 1. The procedures for splitting problems and combining solutions depend
on the nature of a specific application, such as sorting or Fourier transformation. We
assume that split and combine define in-place transformations of a single array slice.

PARALLEL PARADIGM

The simplest parallel computer for di~ide and conquer computation is a binary tree
of processors connected by communication channels. In Fig. 1 the processors and
channels are shown as nodes and edges, respectively. The nodes at the top are the
leaves of the tree. The single node at the bottom is the main root. Each node in the
middle is the root of a subtree.

In the terminology of family trees, each root is called the parent of the two nodes
immediately above it. These two nodes, in turn, are called the children of that parent.

Each node is connected to its parent by a bottom channel. In addition, each root
is connected to its two children by a left and a right channel.

The main root inputs a complete problem from its bottom channel, splits it into
two parts, and sends one part to its left child and the other part to its right child. The
remaining roots repeat the splitting process. Eventually, each leaf inputs a problem
through its channel, solves it, and outputs the solution through the same channel.
Each root then inputs two partial solutions from its children and combines them into
a single solution, which is output to its parent. Finally, the main root outputs the
solution to the complete problem.

PARALLEL DIVIDE AND CONQUER 4

Fig. 1 A tree machine

The tree machine will be programmed in Pascal extended with statements for
parallel execution and message communication.

The execution of k statements 817 8 2, ••• , S1c as parallel processes is denoted

The parallel execution continues until every one of the k processes has terminated.
In this paper we assume that parallel processes run on separate processors without

shared memory. Parallel processes communicate through synchronous channels only.
The input and output of an array slice a[i .. j] through a channel care denoted

7 [' '] c.a ?. .. J I (. '] c.a z .. J

A communication may include the bounds i and j

7(. . [' ']) c. z, }, a z .. J '(. . [' ']) c. z, J, a z .. J

The tree machine activates a tree of processes that run in parallel on p processors
(Algorithm 2). Initially the main root executes this procedure as a sequential process.
A tree with more than one processor consists of a root and two subtrees running in
parallel. Each subtree has (p- 1)/2 processors. The tree processes continue to split
themselves recursively into parallel subtrees and roots until they reach the point where
each process is a leaf process.

PARALLEL DIVIDE AND CONQUER

procedure tree(p: integer; bottom: channel);
var left, right: channel;
begin

ifp > 1 then
parallel

root(bottom, left, right) I
tree((p - 1) div 2, left) I
tree((p - 1) div 2, right)

end
else leaf(bottom)

end

Algorithm 2

5

A root process inputs a problem, splits it into two problems, which are solved by
its children, and outputs the combined result (Algorithm 3).

procedure root(bottom, left, right: channel);
var a: table; first, last, middle: integer;
begin

bottom?(first, last, a[first..last]);
split(a, first, last, middle);
left!(first, middle, a[first .. middle]);
right!(middle + 1, last, a[middle + l..last];
left?a[first..middle];
right?a[middle + l..last];
combine(a, first, last, middle);
bottom!a[first . .last]

end

Algorithm 3

A leaf process inputs a problem, solves it by means of the sequential divide and
conquer algorithm, and outputs the solution (Algorithm 4).

procedure leaf(bottom: channel);
var a: table; first, last: integer;
begin

bottom?(first, last, a[first..last]);
solve(a, first, last);
bot tom! a[first . .last]

end

Algorithm 4

PARALLEL DIVIDE AND CONQUER 6

Algorithms 1-4 define the behavior of a tree machine with p processors solving
a divide and conquer problem in parallel. We have deliberately ignored the system­
dependent details of processor allocation.

PARALLEL QUICKSORT

Our first divide and conquer example is the quicksort algorithm, which splits an array
of integers into two parts and sorts the left and right parts separately. (Algorithm 5).
The splitting is repeated recursively until the algorithm sorts a single element only
(by an empty operation).

type table= array [O .. n-1) of integer;

procedure quicksort(var a: table;
first, last: integer);

var i, j: integer;
begin

if first < last then
begin

partition(a, i, j, first, last);
quicksort(a, first, j);
quicksort(a, i, last)

end
end

Algorithm 5

The partition algorithm selects an arbitrary key value from an array slice and splits
the slice into two pieces with the property that no element in the left piece is larger
than the key, and no element in the right piece is smaller than the key. Algorithm 6
uses the value of the middle element as the key.

PARALLEL DIVIDE AND CONQUER

procedure partition(var a: table; var i,
j: integer; first, last: integer);

var ai, key: integer;
begin

i := first; j := last;
key := a((i + j) div 2];
while i <= j do
begin

while a[i] < key do i := i + 1;
while key< a[j] do j := j - 1;
ifi <= j then
begin

ai := a[i]; a[i] := a[j];
a[j] := ai;
i := i + 1; j := j - 1

end
end

end

Algorithm 6

7

The run time of partition is 0(n). The average run time of quicksort is 0(n log n).
The worst case sorting time is 0(n2).

Quicksort can be derived from Algorithm 1 by making the following substitutions:

1. Type T is replaced by type integer.

2. Procedure solve is renamed quicksort.

3. Indices middle and middle+ 1 are replaced by j and i.

4. Split is replaced by

partition(a, i, j, first, last)

5. Combine is empty.

It follows immediately that a parallel quicksort is obtained by making the same
substitutions in Algorithms 3 and 4.

Unfortunately, the partition procedure produces array slices of unpredictable sizes.
In the best case two slices are of equal length. In the worst case the smallest size
has one element only. The unpredictable nature of quicksort causes load imbalance
on a multicomputer (11). If the two halves of a tree machine sort sequences of very
different lengths, half of the processors are doing most of the work, while the other
half are idle most of the time.

PARALLEL DIVIDE AND CONQUER 8

On a tree machine with 31 processors each leaf receives a problem of size n/16 =
0.06n, provided the splitting is balanced. However, if partition on the average splits
a problem of size m into two problems of size 0.6m and 0.4m, respectively, two of the
leaves receive problems of size 0.64 n = 0.13n and 0.44 n = 0.03n.

We will call this algorithm the unbalanced parallel quicksort.
Fortunately, quicksort can be balanced by using a different splitting algorithm

(Algorithm 7).

procedure quicksort(var a: table;
first, last: integer);

var middle: integer;
begin

if first < last then
begin

middle:= (first + last) div 2
find(a, first, last, middle);
quicksort(a, first, middle);
quicksort(a, middle+ 1, last)

end
end

Algorithm 7

The balanced quicksort can be derived from Algorithm 1 as follows:

1. Type T is replaced by type integer.

2. Procedure solve is renamed quicksort.

3. Split is replaced by

4. Combine is empty.

middle := (first + last) div 2;
find(a, first, last, middle)

The find algorithm repeatedly partitions an array slice into smaller and smaller
pieces of unpredictable sizes until it has formed two halves with given first, last, and
middle indices (Algorithm 8).

PARALLEL DIVIDE AND CONQUER

procedure find(var a: table; first,
last, middle: integer);

var left, right, i, j: integer;
begin

left := first; right := last;
while left < right do
begin

partition(a, i, j, left, right);
if middle<= j then right := j
else if i <= middle then left := i
else left := right

end
end

Algorithm 8

9

If a single partitioning of n elements takes n time units, the average time required
to find the middle element is

n + n/2 + n/4 + · · · + 1 = 2n- 1

For large n find is twice as slow as partition. That is why the balanced sequential
quicksort is of academic interest only. (We remark in passing_ that it is possible to
write an iterative version of the balanced quicksort without a stack!)

On a parallel tree machine, a sorting problem must be distributed evenly among
the leaves to obtain the best possible performance. As a compromise we will use
the find algorithm in the roots only and the partition algorithms in the leaves. The
resulting algorithm is called the balanced parallel quicksort. Measurements show that
it consistently runs faster than the unbalanced algorithm.

The previous arguments are valid only for the average behavior of parallel quick­
sorting. In the worst case both algorithms perform very poorly. The correctness of
the standard quicksort, partition, and find algorithms is proven in [12, 13].

PARALLEL FFT

Our second example is the fast Fourier transform (FFT), which computes the fre­
quency components of a signal that has been sampled n times [6]. The theory behind
the FFT is explained in (14], which includes an FFT procedure written in standard
Pascal. Here we omit details by extending Pascal with complex numbers and complex
arithmetic.

The FFT is an in-line transformation of an array of n complex numbers (Algorithm
9). This algorithm should be used only when n is a power of two, if necessary by

PARALLEL DIVIDE AND CONQUER 10

padding the data with zeros up to the next power of two [15]. The array elements
must be permuted in bit-reversed order before the FFT computation begins [14].

The transform of a single number is the number itself. The FFT splits a larger se­
quence into two halves, computes the transform of each half separately, and combines
the two transforms of size n/2 into a single transform of size n.

type table= array [O .. n-1] of complex;

procedure fft(var a: table; first,
last: integer);

var middle: integer;
begin

if first < last then
begin

middle := (first + last) div 2;
fft(a, first, middle);
fft(a, middle+ 1, last);
combine(a, first, last)

end
end

Algorithm 9

Algorithm 10 defines the combination of two transforms into one. Since n is a
power of two, this procedure does not require a middle parameter.

The run times of the combine and fft procedures are 0(n) and 0(n log n), respec-
tively.

The FFT can be obtained by making the following changes to Algorithm 1:

1. Type T is replaced by type complex.

2. Procedure solve is renamed fft.

3. Split is replaced by

middle:= (first + last) div 2

4. Combine is replaced by

combine (a, first, last)

A parallel fft is obtained by making the same substitutions in Algorithms 3 and 4.

PARALLEL DIVIDE AND CONQUER

procedure combine(var a: table; first,
last: integer);

const pi = 3.14159265358979;
var even, half, odd, j: integer;

w, wj, x: complex;
begin

half := (last - first + 1) div 2;
w := (cos(pi/half), sin(pi/half));
wj := (1.0, 0.0);
for j := 0 to half - 1 do
begin

even := first + j;
odd:= even+ half;
x := wj*a[odd];
a[odd] := a[even] - x;
a[even] := a[even] + x;
wj := wj*w

end
end

Algorithm 10

COMPLEXITY

11

We will analyze the average performance of a parallel divide and conquer algorithm
under the assumption that every problem is split into two subproblems of equal size.

The sequential run time T(1, n) is the average time required to solve a divide and
conquer problem of size non a single processor. The processor inputs and outputs n
data items in 0(n) time and transforms them in 0(n log n) time. So

T(1, n) = n(a log(n) +b) (1)

where a and b are system dependent constants for computation and communication
in a leaf processor.

The parallel run time T(p, n) is the average time it takes to solve a problem of
size non a binary tree machine with p processors, where p + 1 and n are powers of
two.

The tree consists of a root and two subtrees. The root transforms n items in O(n)
time units. The communication between the root and its parent also takes 0(n) units.
The communication between the root and a subtree will be included in the run time
of the subtree. Each subtree uses (p -1)/2 processors to solve a problem of size n/2.

PARALLEL DIVIDE AND CONQUER 12

The root does not terminate until the subtrees have terminated. Since the subtrees
solve problems of the same size in parallel, the parallel run time of the tree is

(p -1 n) T(p,n)=T - 2-, 2 + (b+c)n

where b and c are constants for communication and computation in a root processor.
This recurrence has the solution

T(p, n) = T(1, nfq) + 2(b + c)(n- nfq)

where
q = (p + 1)/2

is the number of leaf processors.
So the parallel run time is

T(p, n) = (nfq)(alog(nfq) +b)+ 2(b + c)(n- nfq) (2)

For p = q = 1 this formula reduces to Eq. (1).
We will use the abbreviations

Tt = T(1, n) Tp = T(p,n)

The speedup Sp defines how much faster a parallel divide and conquer algorithm
runs on p processors compared to a single processor.

On a hypothetical tree machine of infinite size the parallel run times of the roots
would be

(b + c)(n + n/2 + n/4 + · · ·) = 2(b + c)n

This is a lower bound on the parallel run time of a finite tree machine

Tmin = 2(b + c)n (3)

It is also an upper bound on the cost of distributing a problem in a tree machine and
collecting the results.

We can now rewrite Eq. (2) as follows

Tp = Ttfq + (1- 1/q)Trnin- anlog(q)fq (4)

The parallel run time Tp is the sum of three terms:

1. The first term T1 / q is the sequential run time T1 divided by the number of leaf
nodes q.

2. The second term (1- 1/q)Trnin is the parallel run time of the roots.

3. The last term anlog(q)fq is small compared to Tp. It reaches its maximum
value an/2 for q = 2 (p = 3). So

anlog(q)fq < an/2 _ a
Tp Tmin 4(b +c)

PARALLEL DIVIDE AND CONQUER

For a = b and c = 2a the last term accounts for less than 8% of the run time.
For large q, the parallel run time Tp approaches Tmin·
The speedup cannot exceed TifT min, that is

S _ alog(n) + b
max- 2(b +c)

13

(5)

Suppose we wish to achieve a speedup that is close to the maximum speedup in
the following sense

where f is a given fraction. This inequality can be also expressed as follows

Tp ~ (1 + J)Tmin

Using Eq. (4) we can extend the inequality further

From the second part of the inequality we derive the condition

q ~ (Tt/Tmin- 1)/(1 +f)

In other words

Sp ~ Smax/(1 +f) for q ~ {Smax- 1)/ J

Since Smax is O(log n) this result shows that the tree machine achieves O(log n)
speedup with O{log n) processors. Since the sequential run time is 0(n log n), an
O(logn) speedup reduces the parallel run time to O(n).

For a = b, c = 2a, and n = 220 , the maximum speedup Smax = 3.5. For p = 31
the actual speedup Sp = 3.1 corresponding to f = 0.16. The last term in Eq. (4) is
4% of Tp only.

PERFORMANCE

For the performance measurements we replaced Algorithms 5 and 9 by the iterative
quicksort and fft defined in [16, 14). We reprogrammed the parallel algorithms in
occam and ran them on a Computing Surface with T800 transputers configured as a
binary tree machine. The input data were produced by a random number generator
[17).

For balanced parallel sorting of 32-bit random integers we measured

a= 3.8ps b = 5.6 JLS c= 2a

Table I shows measured (and predicted) sorting times for n = 131072 integers (in
seconds).

PARALLEL DIVIDE AND CONQUER

Table I
Parallel Balanced Quicksort
p Tp Sp
1 9.25 (9.20) 1.00 (1.00)
3 6.02 (6.08) 1.54 (1.51)
7 4.56 (4.65) 2.03 (1.98)

15 3.96 (3.99) 2.34 (2.31)
31 3.63 (3.63) 2.55 (2.53)

The performance limits are

Tmin = 3.46 S Smax = 2.66

14

Table II shows measured run times for the unbalanced parallel quicksort. ~Tp is
the relative time difference between the unbalanced and balanced algorithms. The
unbalanced sort is 20-37% slower and is rather erratic.

Table II. Parallel
Unbalanced Quicksort
p Tp Sp ~Tp

1 9.25 1.00 0%
3 8.20 1.13 36%
7 5.46 1.69 20%

15 5.41 1.71 37%
31 4.85 1.91 34%

For parallel FFT of 128-bit random complex numbers we found

a = 25 J.LS b = 22 J.LS c = a

Table III shows measured (and predicted) FFT times for n = 32768 complex
numbers (in seconds).

Table III. Parallel FFT
p
1
3
7

15
31

The performance limits are

Tp
13.23 (13.01)
7.74 (7.64)
5.12 (5.15)
3.99 (4.01)
3.47 (3.50)

1.00 (1.00)
1.71 (1.70)
2.58 (2.53)
3.32 (3.24)
3.81 (3.72)

Tmin = 3.08 S Smax = 4.22

The run times for the parallel FFT do not include the sequential permutation
time of the array

8.5n J.LS = 0.28 s for n = 32768

PARALLEL DIVIDE AND CONQUER 15

CONCLUSION

We have presented a generic divide and conquer algorithm for a binary tree machine.
From this algorithm we have derived balanced, parallel algodthms for quicksort and
fast Fourier transform.

For problems of size n a tree machine achieves O(log n) speedup using O(log n)
processors. The modest speedup makes divide and conquer algorithms unsatisfactory
for multicomputers with hundreds or thousands of processors.

The disappointing performance of parallel divide and conquer cannot be attributed
solely to the overhead of processor communication. Even if communication was in­
stant (b = 0), the maximum speedup of a balanced quicksort would still be 0.25log n
only. No matter how many processors you use to sort a million numbers, they can do
it only five times faster than a single processor.

Although the degree of parallelism grows exponentially as a tree machine repeat­
edly divides a problem, the wave of computation still spreads sequentially through
the levels of the tree. In a large tree machine, the main root alone accounts for almost
half of the parallel run time.

The parallel algorithms presented have two obvious limitations:

1. When a tree machine with p processors solves a problem of size n, every node
holds an array of size n. Consequently, the problem size is limited by the memory of
a single node. This limitation can be removed by having a large memory of O(n) size
in the main root and halving the memory size of each processor at each level in the
tree. This limits the total size of the distributed memory to O(n log p).

2. After dividing a sorting problem into smaller parts, a tree machine uses only
half of its processors (the leaves) to reduce the sorting time. If we had used a hypercube
instead of a tree machine, we could have written an algorithm that divides a sorting
problem evenly among all nodes.

This is a valid criticism of small tree machines, but not of larger ones. If you
use a multicomputer for large scientific computations, you probably already have at
least 32 or 64 processors. So, if you have to sort numbers you may as well use all the
processors you have.

A hypercube with p processors can solve a divide and conquer problem in the
same time as a tree machine with 2p- 1 processors [18]. A tree machine with 31
transputers can sort a million numbers in 31 s. And a hypercube with 32 transputers
solves the same problem in 29 s, which is only 7% faster.

On multicomputers with 32-64 processors, parallel tree algorithms are practically
as fast as hypercube algorithms and are simpler to program.

ACKNOWLEDGEMENTS

The helpful remarks of Jonathan Greenfield are gratefully acknowledged.

PARALLEL DIVIDE AND CONQUER 16

REFERENCES

1. P. Brinch Hansen, 'The all-pairs pipeline', School of Computer and Information
Science, Syracuse University, Syracuse, NY, 1990.

2. P. Brinch Hansen, 'Balancing a pipeline by folding', School of Computer and
Information Science, Syracuse University, Syracuse, NY, 1990.

3. P. Brinch Hansen, 'Then-body pipeline', School of Computer and Information
Science, Syracuse University, Syracuse, NY, 1991.

4. P. Brinch Hansen, 'A generic multiplication pipeline', School of Computer and
Information Science, Syracuse University, Syracuse, NY, 1991.

5. C. A. R. Hoare, 'Algorithm 64: Quicksort', Communications of the ACM, 4,
321 (1961).

6. J. W. Cooley and J. W. Tukey, 'An algorithm for the machine calculation of
complex Fourier series', Mathematics of Computation, 19, 297-301 (1965).

7. V. Strassen, 'Gaussian elimination is not optimal', Numerische Mathematik, 13,
354-356 (1969.).

8. J. L. Bentley and M. I. Shamos, 'Divide-and-conquer in multidimensional space',
ACM Symposium on Theory of Computation, 220-230 (1976).

9. W. Eddy, 'A new convex hull algorithm for planar sets', ACM Transactions on
Mathematical Software, 3, 398-403, (1977).

10. J. Barnes and P. Hut, 'A hierarchical O(NlogN) force-calculation algorithm',
Nature, 324, 446-449 (1986).

11. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D.
W. Walker, Solving Problems on Concurrent Processors. Vol. I. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

12. M. Foley and C. A. R. Hoare, 'Proof of a recursive program: Quicksort. Com­
puter Journal, 14, 391-395 (1971).

13. C. A. R. Hoare, 'Proof of a program: Find', Communications of the ACM, 14,
39-45 (1971).

14. P. Brinch Hansen, 'The fast Fourier transform', School of Computer and Infor­
mation Science, Syracuse University, Syracuse, NY, 1991.

15. vV. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes in Pascal: The Art of Scientific Computing. Cambridge University
Press, New York, 1989.

PARALLEL DIVIDE AND CONQUER 17

16. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms. Computer
Science Press, Rockville, MD, 1978.

17. S. K. Park and K. W. Miller, 'Random number generators: good ones are hard
to find', Communications of the ACM, 31, 1192-1201 (1988).

18. P. Brinch Hansen, 'Do hypercubes sort faster than tree machines?, School of
Computer and Information Science, Syracuse University, Syracuse, NY, 1991.

	Parallel Divide and Conquer
	Recommended Citation

	SU-CIS-91-45_001c
	SU-CIS-91-45_002c
	SU-CIS-91-45_003c
	SU-CIS-91-45_004c
	SU-CIS-91-45_005c
	SU-CIS-91-45_006c
	SU-CIS-91-45_007c
	SU-CIS-91-45_008c
	SU-CIS-91-45_009c
	SU-CIS-91-45_010c
	SU-CIS-91-45_011c
	SU-CIS-91-45_012c
	SU-CIS-91-45_013c
	SU-CIS-91-45_014c
	SU-CIS-91-45_015c
	SU-CIS-91-45_016c
	SU-CIS-91-45_017c
	SU-CIS-91-45_018c

