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a b s t r a c t

Bootstrap confidence intervals on fixed-effects efficiency estimates in micro panels exhibit low coverage
probabilities. We propose an alternative efficiency measure involving the mean of the firm effects. With
the same estimated efficiency ranks as the traditional measure, its corresponding bootstrap confidence
intervals have better coverage probabilities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the panel stochastic frontier literature, fixed-effects esti-
mation (Schmidt and Sickles, 1984) has the advantage of not
requiring distributional assumptions on the error components.
Consequently, the model is often employed in empirical research
(e.g., Kumbhakar, 1987 and Bauer and Hancock, 1993). Confidence
intervals for technical efficiency may be based on asymptotic nor-
mality, when the sample size is large (Horrace and Schmidt, 1996).
However, in micro panels with small time dimensions, the pre-
ferred method of constructing confidence intervals without dis-
tributional assumptions is to perform the bootstrap. Simar (1992),
Simar andWilson (1998), Hall et al. (1993), andKimet al. (2007) in-
vestigate confidence interval coverage rates for various bootstrap
techniques based on the fixed-effects estimation, and find that the
coverage is generally poor when the time dimension of the data is
small. As discussed in Kim et al. (2007), the coverage erosion is due
to the bias induced by the estimated maximum of the firm effects
involved in the traditional efficiency estimate (Schmidt and Sickles,
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E-mail addresses: qfeng@ntu.edu.sg, alf.qufeng@gmail.com (Q. Feng),
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1984). The received literature encourages techniques that improve
coverage rates by accounting for this bias. However, the improved
coverage of bootstrap confidence intervals is still not satisfactory
in micro panels with small time dimensions and large numbers
of firms. Even worse, when ‘‘ties’’ among firms occur (i.e., several
firms are equally best) no bootstrap confidence intervals are re-
liable (Kim et al., 2007). Recently, Satchachai and Schmidt (2010)
show that removing the ‘‘max’’ operator bias is possible using the
generalized panel jackknife, but the resulting estimate has a large
variance.

We approach this inference problem from a different perspec-
tive. The traditional efficiency measure defined in Schmidt and
Sickles (1984) shifts the firm-specific effects by their maximum.
We propose an alternative measure which shifts the firm effects
by their mean. This efficiency measure yields the same efficiency
rank of firms as the traditional measure. However, unlike the esti-
mated maximum of firm effects, the estimated mean is unbiased,
so the corresponding bootstrap confidence intervals for the new
measures have better coverage probabilities. Thus, when the in-
ference based on the traditional efficiency measure is inaccurate
in micro panels or in the case that the identity of the best firm is
uncertain, the proposedmeasure can be used as an alternative and
reliable way to estimate firms’ technical efficiencies. It should be
made clear at the outset that the proposed measure is not a sub-
stitute for the traditional measure; it is an additional metric that
should be a part of the empiricist’s toolbox.

0165-1765/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.econlet.2012.08.031
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2. Fixed-effects efficiency measures

In a stochastic frontier model for panel data,

yit = α + x′

itβ − ui + vit , i = 1, . . . ,N, t = 1, . . . , T . (1)

The technical inefficiency of firm i is characterized by the time-
invariant ui ≥ 0.2 The idiosyncratic disturbance vit is assumed
i.i.d.(0, σ 2

v ). Usually, technical efficiency is defined as ri =

exp(−ui) under a logarithmic specification of the Cobb–Douglas
production function. The slope parameter β can be estimated
consistently using fixed-effects estimation. Call this estimate β .
The firm-specific production level (or firm effect) αi = α − ui
can be estimated by αi = yi − x′

i
β , where yi and xi are within-

group averages. Since ui cannot be identified without additional
assumptions, Schmidt and Sickles (1984) suggest the relative
efficiency measures,

u∗

i = ui − min
j

uj = max
j

αj − αi, r∗

i = exp(−u∗

i ),

with fixed-effects estimates,α = max
j
αj,u∗

i =α −αi,r∗

i ≡ exp(−u∗

i ).

Per Schmidt and Sickles (1984), β converges to β for large N or
T , while αi converges to αi for large T only. Therefore, in micro
panels with small T , asymptotic approximations for confidence
intervals on functions of αi are inappropriate, and a bootstrap
method should be employed.

Kim et al. (2007) provide a detailed discussion of methods
for bootstrap confidence intervals for technical efficiency r∗

i =

exp(αi − maxj αj), including percentile intervals, bias-corrected
with acceleration (BCa) intervals, bias-corrected (BC) percentile in-
tervals and a parametric method. Overall, BCa and BC percentile
seem preferred considering the coverage and width of the inter-
vals. However, in their simulation study (Kim et al., 2007, Table 3),
even the BCa intervals and BC percentile intervals have low cover-
age rates in the usual panel case. For example, the coverage rate of
the BCa intervals with nominal 90% significance is only 68.7%when
N = 100, T = 10, γ = 0.1.3 The corresponding BC percentile in-
tervals have slightly higher coverage than BCa intervals, but with
bigger width. As we will see, the coverage rate is even lower when
T < 10 andN > 100. The problemarises from the ‘‘max’’ operators
in u∗

i andr∗

i . Per Kim et al. (2007), the ‘‘max’’ operator induces
an upward bias in α and u∗

i , and hence a downward bias inr∗

i .
The ‘‘max’’ operator favors positive noise. When T is large,αj →

αj,maxjαj → maxj αj, and the ‘‘max’’ operator bias is mitigated.
However, this bias cannot be ignored in micro panels with small T
and large N , which is the focus of this paper.

Since the ‘‘max’’ operator bias is the main source of the
inaccurate inference for technical efficiency in micro panels,
removing the bias could be a solution. A successful attempt of
bias correction is made by Satchachai and Schmidt (2010) using
the generalized panel jackknife, but the resulting estimate has
a large variance. Alternatively, Feng and Horrace (2012) propose
two efficiency measures involving minj αj, whose corresponding
fixed-effects estimates preserve the same ranking asr∗

i . Although
the bias issue persists for the fixed-effects estimates of their two
measures, they show that bias is mitigated in certain situations
related to the skew of the efficiency distribution.

2 The relationship between inefficiency and unobserved heterogeneity is not
considered here. For a detailed discussion of this issue, see Greene (2004, 2005).
3 γ is defined as the variance ratio Var(u)/(σ 2

v + Var(u)). A small γ means
that the main source of variation of the composite error −ui + vi comes from the
noise vi .

This paper approaches this inference problem from a different
perspective. Since the sample ranking of estimatorsr∗

i = exp(α̂i −

maxj α̂j) is the same as the ranking of unbiased estimators αi
withr∗

i /r∗

j = exp(αi − αj), it seems possible to construct an
alternative efficiency measure containing the same information
as r∗

i but without the ‘‘max’’ operator bias and its related issues.
The traditional measure r∗

i is a monotonic transformation of αi −

maxj αj, a shift of αi by maxj αj. Using the maximum can be
regarded as a normalization to produce efficiency 1 for the firm
with the largest αi in the sample. Similar in spirit to r∗

i , we propose
an efficiency measure,

Ei = h


αi −

1
N


j

αj


,

where h is a monotonically increasing transformation. Ei has the
same efficiency rank of firms as r∗

i in the sample. Unlike r∗

i , our
measure Ei shifts αi by the mean 1

N


j αj.Ei = h(αi −

1
N


j α̂j) is

the estimate of Ei.
In general, Ei can be arbitrarily restricted to (0, 1), so that

efficiency can be expressed as a percentage.4 There are an
unlimited number of functions one might use. For example,
we consider the function form of standard normal cumulative
distribution function Φ ,

Ei = Φ


αi −

1
N


j

αj


, (2)

with estimate

Ei = Φ

αi −
1
N


j

αj


. (3)

The advantage of using a symmetric and smooth cumulative
distribution function is that Ei = 0.5 is a meaningful reference
point corresponding to a firmwith themean value ofαi. Alternative
distributions (e.g., Cauchy, student, logistic) can be used for this
purpose.

As discussed above, the estimatedmaximum,maxj α̂j, is biased.
This is the main source of the coverage erosion of r∗

i ’s bootstrap
confidence intervals. By contrast, the estimated mean 1

N


j α̂j

is unbiased as the estimated firm effects αi are unbiased. Sinceαi −
1
N


j α̂j is unbiased, the percentile bootstrap confidence

intervals for αi −
1
N


j αj have no coverage erosion and thus

have high coverage even in micro panels. According to Efron and
Tibshirani (1993), the percentile bootstrap confidence intervals are
transformation respecting, implying that the percentile intervals for
Ei will have the same coverage rate as those for αi −

1
N


j αj.

Therefore, we can always construct percentile intervals for Ei
by transforming the intervals for αi −

1
N


j αj. Hence, simple

bootstrap confidence intervals like the percentile bootstrap are
enough for accurate inference. For empiricists, inference on Ei
will be considerably easier to implement than inference on r∗

i .
Moreover, the bootstrap confidence intervals for Ei are more
reliable than those for the traditional measure r∗

i , no matter how
many firms there are, and whether or not the identity of the best
firm is in serious doubt.

Ei = 0.5 for the firm with mean value of αi in (2), so we call
the firm with Ei = 0.5 the mean firm. The efficiencies of all firms

4 The usual measure of technical efficiency, ri = exp(−ui), implies that the
production function is Cobb–Douglas. However, if the true data-generating process
is not Cobb–Douglas, then ri = exp(−ui) is not technical efficiency, per se, but
merely an indicator of technical efficiency. The proposedmeasure is simply another
such indicator.
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are distributed around themean firm. The efficiency measures are
above 0.5 for the firms with αi > 1

N


j αj and below 0.5 for αi <

1
N


j αj. Rather than using the maximum as the reference point,

themeasure Ei uses themean firm as the reference point, providing
an interesting view for the firms’ efficiencies. The reference pointEi = 0.5 divides firms into two groupings: ‘‘efficient’’ firms withEi
above 0.5 and ‘‘inefficient’’ firms withEi below 0.5. If the price of
products is related to the cost of the mean firm in a relatively new
industry, then themean firmmayhave zero profit. Accordingly, the
‘‘efficient’’ firms may have positive profit, while the ‘‘inefficient’’
firms may earn negative profits and be inclined to leave the
market.

3. Simulations and empirical example

To better understand the accuracy of inference for the tradi-
tional measure r∗

i = exp(αi − maxj αj) and our proposed mea-
sure Ei = Φ(αi −

1
N


j αj), we conduct Monte Carlo experiments

to compare the coverage rate of bootstrap confidence intervals
in micro panels. The data-generating process used here follows
the procedure in Kim et al. (2007): yit = α − ui + vit , with
vit ∼ i.i.d.N(0, σ 2

v ) and ui = |µi|, where µi ∼ i.i.d.N(0, σ 2
µ). We

set α = 1 and define γ = Var(u)/(σ 2
v +Var(u)). Small γ indicates

a particularly noisy experiment. A large γ (close to 1) means there
is little variation in the idiosyncratic error vit . The Monte Carlo pa-
rameters are (γ ,N, T ). When T is large, the bias issue of traditional
efficiency estimate is mitigated. Here, we consider the interesting
case when the inference of the traditional measure r∗

i is inaccurate
inmicro panelswith T = 4, 6, 10. Experiments are conductedwith
N = 20, 50, 100 and150, andγ = 0.1, 0.3 and0.5,with 1000boot-
strap replications. We repeat the Monte Carlo experiments 1000
times.

Kim et al. (2007) show that the BCa bootstrap confidence
intervals and BC percentile intervals for r∗

i are better than other
intervals, so we report these two intervals. The percentile intervals
are also presented for comparison. Sinceαi −

1
N


jαj is unbiased,

only percentile intervals for Ei are presented. Simulated 90%
nominal coverage rates for intervals for r∗

i and Ei are in Table 1.
The coverage of percentile intervals for r∗

i declines dramatically in
N and is, therefore, unreliable for panels with small T and large N .
For example, the coverage of the 90% nominal percentile interval
(column 4) is 24.6% for T = 6,N = 150 and γ = 0.5. As expected,
the coverage rates for both BCa (column 6) and the bias-correct
percentile (column 8) intervals improve, but are still far from
satisfactory. The coverage rates of BCa and the BC percentile
intervals for r∗

i are 41.0% and 68.5% respectively for T = 6,N =

150 and γ = 0.5. Since α̂i −
1
N


j α̂j is unbiased, the percentile

bootstrap confidence intervals for αi −
1
N


j αj have no coverage

erosion. Since Ei is a monotonic function of αi −
1
N


j αj, its

percentile bootstrap confidence intervals have the same coverage
as those for αi−

1
N


j αj. Unlike the bootstrap confidence intervals

for r∗

i , the coverage rates of percentile intervals for Ei (column 9)
are effectively constant across N and γ . They are only related to
T . The coverage rates of percentile intervals for Ei are about 75%,
81% and 85% for T = 4, 6 and 10, respectively. Therefore, based
on coverage rates, the confidence intervals for Ei are much more
informative and robust than those for r∗

i .
A quintessential example of a micro panel in the stochastic

frontier literature is the Indonesian rice farm data set with N =

171 and T = 6. SeeHorrace and Schmidt (1996, 2000) for a detailed
description. Table 2 contains the point estimates and bootstrap
intervals for r∗

i and Ei. We report results for the best farm, the 99th,
75th, median, 25th, 1th quantile, and the worst farm in rank order.
The first column is the farm number. The third column contains
the estimates of the firm effects αi = α − ui. It is interesting to

Table 1
Coverage of 90% bootstrap confidence intervals for r∗ and E.

T γ N r∗ E
Percentile BCa BCpercentile Percentile

4 0.1 20 37.2 42.7 68.0 74.3
4 0.1 50 21.6 27.1 61.3 74.7
4 0.1 100 13.4 17.6 55.3 74.8
4 0.1 150 9.9 13.4 51.6 74.8

4 0.3 20 47.4 51.4 71.7 74.4
4 0.3 50 29.8 35.0 65.5 74.8
4 0.3 100 20.1 24.9 61.9 75.0
4 0.3 150 15.0 19.2 57.5 74.8

4 0.5 20 55.6 58.0 74.0 75.0
4 0.5 50 37.7 42.0 68.5 74.7
4 0.5 100 25.1 29.6 63.4 74.8
4 0.5 150 19.7 24.1 59.9 74.9

6 0.1 20 44.7 59.9 75.1 80.6
6 0.1 50 26.4 43.6 70.0 80.6
6 0.1 100 16.2 32.0 63.4 80.6
6 0.1 150 11.8 25.8 60.5 80.5

6 0.3 20 55.6 67.0 77.8 81.0
6 0.3 50 36.6 52.6 72.7 80.7
6 0.3 100 24.3 40.9 68.3 80.7
6 0.3 150 18.5 34.6 66.2 80.7

6 0.5 20 62.8 70.8 78.6 80.7
6 0.5 50 45.8 59.6 76.2 80.5
6 0.5 100 30.6 47.5 71.1 80.6
6 0.5 150 24.6 41.0 68.5 80.6

10 0.1 20 52.6 73.3 81.0 84.4
10 0.1 50 31.0 59.5 75.0 84.4
10 0.1 100 19.9 49.2 71.7 84.5
10 0.1 150 14.6 42.6 68.7 84.4

10 0.3 20 64.1 77.8 82.7 84.3
10 0.3 50 44.4 67.8 78.9 84.7
10 0.3 100 29.9 58.1 75.1 84.7
10 0.3 150 23.2 51.8 73.0 84.5

10 0.5 20 72.5 80.8 83.8 84.8
10 0.5 50 53.3 73.1 81.4 84.6
10 0.5 100 38.6 64.5 77.9 84.4
10 0.5 150 30.6 59.1 76.3 84.6

Note: r∗ ’s BCa and BC percentile bootstrap confidence intervals are obtained using
the indirect method in Kim et al. (2007).

Table 2
Estimates and 90% bootstrap intervals for efficiency in rice farms.

Farm # Percentile αi r∗ E

164 Best 5.556 1.000 0.668
[0.912, 1.000] [0.633, 0.694]

118 99th 5.486 0.932 0.651
[0.837, 1.000] [0.618, 0.689]

31 75th 5.072 0.616 0.531
[0.423, 0.890] [0.412, 0.623]

15 50th 4.966 0.554 0.498
[0.448, 0.738] [0.437, 0.560]

16 25th 4.859 0.498 0.464
[0.439, 0.608] [0.410, 0.520]

117 1st 4.586 0.379 0.382
[0.306, 0.476] [0.328, 0.436]

45 Worst 4.550 0.366 0.373
[0.275, 0.531] [0.303, 0.466]

Note: Bracketed values are 90% bias-corrected percentile intervals for r∗ , using the
indirect method in Kim et al. (2007), and 90% percentile bootstrap intervals for E.
The bootstrap resampling number is 1000.

note that the point estimatorEi (column 5) is similar in magnitude
tor∗

i (column 4) at the bottom end of the order statistic. Compare
0.336–0.366 for farm 45 and 0.349–0.379 for farm 117. If one is
interested in inference on the least efficient farms in the sample,
then Êi gives point estimates similar tor∗

i but with higher coverage
rates (but for different measures). Fig. 1 contains the graphs ofr∗

i
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Fig. 1. Comparison of two efficiency estimates in the rice farm example.

(dashed line) and Êi (solid line) for various values of αi over the
sample values of αi ∈ [4.550, 5.556]. Comparingr∗

i and Êi, we
see that over the range of sample values ofαi, Êi is approximately
linear with smaller slope. Also, if we regard efficiency estimate
Êi = 0.5 as an efficiency threshold, the firms above 0.5 efficiency
are deemed ‘‘efficient’’, while those below are ‘‘inefficient ’’. In this
example, the median firm 15 has efficiency Êi = 0.497, implying
that the efficiency distribution among firms is nearly symmetric, as
noted in Feng and Horrace (2012). Table 2 also reports the 90% BC
percentile interval for r∗

i and 90% percentile interval for Ei in the
brackets below their point estimates. Differences in these intervals
reflect differences in efficiency measures as illustrated in Fig. 1.5

4. Conclusions

Simulated evidence suggests that, in micro panels with small T
and large N , development of new efficiency measures may be as
important as developing improved bootstrap interval techniques
for the traditional measure r∗

i to ensure reliable inference on
efficiency. We have investigated one rank-preserving efficiency
measure and its fixed-effects estimate that avoids the ‘‘max’’
operator, whose bootstrap intervals are transformation respecting,

5 If we construct an efficiency measure without normalization at the mean,
e.g., Φ(αi), the estimated efficiencies of firms could fall either around 0 or 1. This
depends on the magnitude of estimated αi in a sample. For example, using this
empirical sample, all estimated efficiencies based on measure Φ(αi) are nearly 1.
In this case, without normalization it seems inconvenient to use these efficiencies
directly in practice.

and that produces good coverage rates. Unlike the traditional
measure r∗

i , the new measure, Ei, uses a reference point based
on the mean, which can be unbiasedly estimated. Consequently,
the new efficiency estimate Ei has no bias issue as does r∗

i .
Monte Carlo simulations show that the simple percentile bootstrap
confidence intervals for Ei exhibit high coverage rates in micro
panels.Wemight conclude that the new efficiencymeasure Ei (and
similar measures) are the only way to ensure accurate inference
in micro panels. However, empiricists face a trade-off between
the statistical accuracy of inference and the empirical relevance
of the estimated measure. It may be the case that Ei is not a
reasonable substitute forr∗

i in any particular empirical exercise. As
such, Ei should be regarded as a complement tor∗

i and a potentially
important addition to the empiricist’s toolbox.
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