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SUMMARY 

We develop a balanced, parallel quicksort algorithm for a hypercube and compare it 
with a similar algorithm for a binary tree machine. The performance of the hypercube 
algorithm is measured on a Computing Surface. 

KEY WORDS Parallel algorithms Quicksort Hypercube Tree machine 

INTRODUCTION 

Quicksort is probably the most widely used sequential method for sorting an array [1, 
2). On the average it sorts n items in O(nlogn) time. In the worst case the sorting 
time is O(n2). The unpredictable nature of the algorithm makes it difficult to write 
an efficient, parallel quicksort for a multicomputer [3, 4]. 

In this paper we develop a balanced, parallel quicksort for a hypercube and compare 
it with a similar algorithm for a binary tree machine [4]. The performance of the 
hypercube algorithm is measured on a Computing Surface. 

SEQUENTIAL QUICKSORT 

The standard quicksort splits an array of integers in two parts and sorts the left and 
right parts separately. The splitting is repeated recursively until we are sorting single 
elements only (Algorithm 1). 

1Copyright@1991 Per Brinch Hansen 
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type table = array [O .. n-1] of integer; 

procedure quicksort(var a: table; 
first, last: integer); 

var i, j: integer; 
begin 

if first < last then 
begin 

partition( a, i, j, first, last); 
quicksort( a, first, j); 
quicksort(a, i, last) 

end 
end 

Algorithm 1 

In general, the algorithm sorts a slice of an array a 

a[ first . .last] 

The familiar partition algorithm [2] splits the slice into two smaller slices 

a[first .. j] a[i . .last] 

where 
0 ::; first < j < i < last < n-1 

HYPERCUBE SORTING 

Initially we will discuss parallel sorting on a cube with 8 processor nodes only (Figure 
1). 

Each node can communicate with its three nearest neighbors through bidirectional 
channels. {The dotted channels are not used during parallel sorting). A fourth channel 
{shown for node 0 only) connects a node with the environment of the cube. 

Since partition generally produces subproblems of unpredictable lengths, it may 
cause severe imbalance on a multicomputer. Later we will show how to balance a 
parallel quicksort. In the following we just assume that the nodes somehow always 
split sorting problems into smaller problems of equal (or nearly equal) size. 
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Fig. 1. Data distribution in a cube. 

The cube sorts n numbers in three phases: 

Splitting 

1. Node 0 inputs n numbers, splits them into two halves, sends one half to node 
1, and keeps the other half. 

2. Node 0 splits half of the numbers into two fourths, sends one fourth to node 
2, and keeps the other fourth. Simultaneously, node 1 splits the other half, sends one 
fourth to node 3, and keeps the other fourth. 

3. Nodes 0, 1, 2, and 4 simultaneously send one eighth of the numbers to nodes 
4, 5, 6, and 7, respectively, and keep the remaining eighths. 

Sorting 

4. All nodes work in parallel while each of them sorts one eighth of the numbers. 

Combining 

5. Node 0 inputs n/8 sorted numbers from node 4 and combines them with its 
own numbers into a sorted sequence of size n/4. At the same time, nodes 1, 2, and 3 
communicate with nodes 5, 6, and 7, respectively, and form sorted sequences of size 
n/4. 

6. Nodes 0 and 1 simultaneously input n/4 sorted numbers from nodes 2 and 3, 
respectively, and form sorted sequences of size n/2. 

7. Finally, node 0 inputs n/2 sorted numbers from node 1, combines them with 
its own numbers and outputs a sorted sequence of size n to its environment. 

A larger hypercube follows the same general pattern of splitting a sorting problem 
into smaller problems, solving them in parallel, and combining the results. 
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In general, a hypercube has p processors, where p is a power of two 

The exponent d = log(p) is called the dimension of the hypercube. For a cube p = 8 
and d = 3. 

It is helpful to view a hypercube as a hierarchical system, where each level consists 
of a subset of the nodes. A cube has four levels of nodes 

level nodes 
0 0 .. 0 
1 1..1 
2 2 .. 3 
3 4 .. 7 

A sorting problem is distributed through the cube, one level at a time. First, 
the node at level 0 inputs a problem, then the node at level 1 inputs a subproblem, 
followed by the nodes at level 2, and finally the nodes at level 3. 

In general a hypercube has d + 1 node levels. 

function level(k: integer): integer; 
var j, kmax: integer; 
begin 

j := 0; kmax := 0; 
while kmax < k do 
begin 

j := j + 1; kmax := 2*kmax + 1 
end; 
level:= j 

end 

Algorithm 2 

Algorithm 2 defines the level number of node k, where 

0 < level( k) < d for 0 < k ~ p - 1 

We will program a hypercube node in Pascal extended with statements for message 
communication. The input and output of an array slice a(i .. j] through a channel c 
are denoted 

?(. . r· .1> c. ,, J, a '··J c!(i, j, a(i .. j]) 

The communications include the bounds i and j. 
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Each node is connected to its environment and nearest neighbors through a local 
array of channels 

type channels = array [O .. d] of channel 

A particular local channel is used to transmit a problem of a given size. For a 
cube we have 

channel problem 
number SIZe 

0 n 
1 n/2 
2 n/4 
3 n/8 

In general, channel number i carries a problem of size n/2i, where 0 5 i 5 d. 
The channel through which a node inputs a sorting problem is called its bottom 

channel. For the cube we have 

nodes problem bottom 
SIZe channel 

0 .. 0 n 0 
1..1 n/2 1 
2 .. 3 n/4 2 
4 .. 7 n/8 3 

In general, the index of the bottom channel is equal to the level of the corresponding 
node. 

Algorithm 3 defines the behavior of hypercube node k for n ~ p. This is a balanced, 
parallel quicksort. It maintains load balance by using the well-known find algorithm 
to split array slices in half [5]. However, since find takes twice as long as partition, 
we use it during the splitting phase only. For the sorting phase, we use the standard 
quicksort (Algorithm 1). 

If we use partition instead of find in Algorithm 3, we get an unbalanced, parallel 
quicksort. Measurements show that such an algorithm is slower than the balanced 
sort, and rather unpredictable. 
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procedure node(k: integer; c: channels); 
var bottom, first, last, middle, i: integer; 
begin 

bottom := level(k); 
c[bottom]?(first, last, a[first .. last]); 
for i := bottom + 1 to d do 
begin 

middle:= (first + last) div 2; 
find(a, first, last, middle); 
c[i]!(first, middle, a[first..middle]); 
first :=middle +1 

end; 
quicksort(a, first, last); 
for i := d downto bottom + 1 do 

c[i]?(first, middle, a[first..middle]); 
c[bottom]!(first, last, a[first..last]) 

end 

Algorithm 3 

COMPLEXITY 

The parallel run time T(p, n) is the average time required to sort n numbers on a 
hypercube with p processors, where n and pare powers of two, and n ~ p. 

An initial node inputs n numbers and splits them into two halves. Later the same 
node combines the two sorted halves and outputs n sorted numbers. The node inputs, 
splits, combines, and outputs then items in time (b + c)n, where band care system 
dependent constants for communication and balanced splitting. 

The initial node, which belongs to, say, the left half of the hypercube, sends n/2 
items to the right half of the hypercube (see Fig. 1). The two halves of the hypercube 
now run in parallel. Each half uses p/2 processors to sort n/2 numbers. So the parallel 
run time of the complete hypercube is 

T(p, n) = T(p/2, n/2) + (b + c)n 

This recurrence has the solution 

T(p, n) = T(l, njp) + 2(b + c)(n- njp) 

Eventually, each node inputs, sorts, and outputs njp numbers in time 

T(1, njp) = (njp)( a log(n/p) +b) 
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where a and bare system dependent constants for unbalanced splitting and commu­
nication. 

Using the abbreviation Tp = T(p, n) we have 

Tp = (n/p)(alog(n/p) +b)+ 2(b + c)(n- n/p) (1) 

The sequential run time T1 is the average time it takes to sort n numbers on a 
single processor. For p = 1 Eq. (1) reduces to 

T1 = n(alog(n) +b) (2) 

On a hypothetical hypercube of infinite size, the parallel run time of the split and 
combine phases is 

(b + c)(n + n/2 + n/4 + · · ·) = 2(b + c)n 

The time 
Tmin = 2(b + c)n 

is a lower bound on the parallel run time Tp. 
The parallel run time can now be expressed as 

Tp = T1/P + (1 -1/p)Tmin- anlog(p)/p 

For a large hypercube Tp approaches Tmin· 

(3) 

(4) 

The speedup Sp = T1/TP defines how much faster the sorting algorithm runs on p 
processors compared to a single processor. The speedup cannot exceed T1/Tmin, that 
IS 

S _ alog(n) + b 
max- 2(b+c) (5) 

If a = b, c = 2a, and n = 220 , the maximum speedup Smax = 3.5. For p = 32 the 
actual speedup Sp = 3.3 only. 

PERFORMANCE 

For the performance measurements we replaced Algorithm 1 by the iterative quick­
sort defined in [6]. We reprogrammed the parallel quicksort in occam and ran it on 
a Computing Surface with T800 transputers configured as a hypercube. The four 
channels of a transputer limits the hypercube to a maximum of 8 nodes. 

For balanced, parallel sorting of 32-bit random integers we found 

a = 3.8ps b = 5.6ps c = 2a 

Table I shows measured (and predicted) sorting times for n = 131072 integers (in 
seconds). 
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Table I 
Parallel, Balanced Quicksort 

p Tv Sv 
1 9.25 (9.20) 1.00 (1.00) 
2 6.10 (6.08) 1.52 (1.51) 
4 4.64 (4.65) 1.99 (1.98) 
8 3.96 (3.99) 2.34 (2.31) 

The performance limits are 

T:rnin = 3.46 S Smax = 2.66 

Table II shows measured run times for the unbalanced, parallel quicksort. b.Tv is 
the relative time difference between the unbalanced and balanced algorithms. The 
unbalanced sort is 20-36% slower and somewhat erratic. 

Table II. Parallel, 
Unbalanced Quicksort 
p Tv Sv b.Tv 
1 9.25 1.00 0% 
2 8.31 1.11 36% 
4 5.58 1.66 20% 
8 5.24 1.77 32% 

HYPERCUBES VERSUS TREE MACHINES 

In [4] we analyzed parallel sorting on a Computing Surface configured as a binary 
tree machine. The only difference between the performance models of a hypercube 
and a tree machine is that for the tree machine the number of nodes p is replaced by 
the number of leaf nodes 

q = (p + 1)/2 

This difference is easy to understand. On a hypercube every one of the p nodes sorts. 
On a tree machine, sorting is done by the q leaves only. 

However, the performance limitations T:rnin and Smax are the same for a hypercube 
and a tree machine. 

Since a tree machine with 2p - 1 processors has p leaves, it sorts as fast as a 
hypercube with p processors. In other words 

Tcube(P, n) = Ttree(2p- 1, n) (6) 

This relationship is confirmed by the measurements reported here and in [4]. 
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In the following we compare a hypercube with p processors and a tree machine 
with p- 1 processors when both machines sort n numbers. The time difference 
between these machines is 

b.T(p, n) = Ttree(P- 1, n)- Tcube(P, n) 

If we replace p by p/2 in Eq. (6) we get 

b.T(p, n) = Tcube(P/2, n)- Tcube(p, n) 

which can be rewritten as follows using Eq. ( 4) 

b.T(p, n) = (T1- Tmin- an(log(p)- 2))/p 

For p > 4 the following inequality holds 

b.T(p, n) ::; (Tt- Tmin)fp 

Since T cube(P, n) ~ T min, the relative time difference is bounded as follows 

In short 

b.T(p, n)/Tcube(P, n) < b.T(p, n)/Tmin 

< (T1/Tmin- 1)/p 

b.T(p, n)/Tcube(P, n) ::; (Smax- 1)/p 

Table III compares parallel sorting on medium-sized hypercubes and tree machines 
for a = b, c = 2a, and n = 220 , where Smax = 3.5. A hypercube with 32-64 nodes is 
only 3-6% faster than a tree machine with 31-63 nodes. 

Table III 

p b.T(p,n) 
16 12% 
32 6% 
64 3% 

CONCLUSION 

We have developed a balanced, parallel quicksort for a hypercube and compared it 
with a similar algorithm for a binary tree machine. The performance of the hypercube 
quicksort was measured on a Computing Surface. 

On a hypercube every node sorts a portion of the numbers. However, on a tree 
machine, sorting is done by the leaf nodes only. In spite of this we found that a 
hypercube with 32 or more nodes sorts only marginally faster than a tree machine of 
the same size. The reason is simple. On a large tree machine, the sorting time of the 
leaf nodes is smaller than the data distribution time of the root nodes. So there is 
not much to be gained by reducing the sorting time further. 
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