
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1991

Do Hypercubes Sort Faster Than Tree Machines? Do Hypercubes Sort Faster Than Tree Machines?

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch, "Do Hypercubes Sort Faster Than Tree Machines?" (1991). Electrical Engineering and
Computer Science - Technical Reports. 132.
https://surface.syr.edu/eecs_techreports/132

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/132?utm_source=surface.syr.edu%2Feecs_techreports%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-44

Do Hypercubes Sort Faster
Than Tree Machines?

Per Brinch Hansen

December 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Do Hypercubes Sort Faster than Tree Machines? 1

PER BRINCH HANSEN

School of Computer and Information Science
Syracuse University, Syracuse, New York 13244, U.S.A.

December 1991

SUMMARY

We develop a balanced, parallel quicksort algorithm for a hypercube and compare it
with a similar algorithm for a binary tree machine. The performance of the hypercube
algorithm is measured on a Computing Surface.

KEY WORDS Parallel algorithms Quicksort Hypercube Tree machine

INTRODUCTION

Quicksort is probably the most widely used sequential method for sorting an array [1,
2). On the average it sorts n items in O(nlogn) time. In the worst case the sorting
time is O(n2). The unpredictable nature of the algorithm makes it difficult to write
an efficient, parallel quicksort for a multicomputer [3, 4].

In this paper we develop a balanced, parallel quicksort for a hypercube and compare
it with a similar algorithm for a binary tree machine [4]. The performance of the
hypercube algorithm is measured on a Computing Surface.

SEQUENTIAL QUICKSORT

The standard quicksort splits an array of integers in two parts and sorts the left and
right parts separately. The splitting is repeated recursively until we are sorting single
elements only (Algorithm 1).

1Copyright@1991 Per Brinch Hansen

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 2

type table = array [O .. n-1] of integer;

procedure quicksort(var a: table;
first, last: integer);

var i, j: integer;
begin

if first < last then
begin

partition(a, i, j, first, last);
quicksort(a, first, j);
quicksort(a, i, last)

end
end

Algorithm 1

In general, the algorithm sorts a slice of an array a

a[first . .last]

The familiar partition algorithm [2] splits the slice into two smaller slices

a[first .. j] a[i . .last]

where
0 ::; first < j < i < last < n-1

HYPERCUBE SORTING

Initially we will discuss parallel sorting on a cube with 8 processor nodes only (Figure
1).

Each node can communicate with its three nearest neighbors through bidirectional
channels. {The dotted channels are not used during parallel sorting). A fourth channel
{shown for node 0 only) connects a node with the environment of the cube.

Since partition generally produces subproblems of unpredictable lengths, it may
cause severe imbalance on a multicomputer. Later we will show how to balance a
parallel quicksort. In the following we just assume that the nodes somehow always
split sorting problems into smaller problems of equal (or nearly equal) size.

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 3

0---------- 7 , ,
,' ,' n/8 , ,

,' n/8 ,' , , , ,

0------- -- 5 ,

n

Fig. 1. Data distribution in a cube.

The cube sorts n numbers in three phases:

Splitting

1. Node 0 inputs n numbers, splits them into two halves, sends one half to node
1, and keeps the other half.

2. Node 0 splits half of the numbers into two fourths, sends one fourth to node
2, and keeps the other fourth. Simultaneously, node 1 splits the other half, sends one
fourth to node 3, and keeps the other fourth.

3. Nodes 0, 1, 2, and 4 simultaneously send one eighth of the numbers to nodes
4, 5, 6, and 7, respectively, and keep the remaining eighths.

Sorting

4. All nodes work in parallel while each of them sorts one eighth of the numbers.

Combining

5. Node 0 inputs n/8 sorted numbers from node 4 and combines them with its
own numbers into a sorted sequence of size n/4. At the same time, nodes 1, 2, and 3
communicate with nodes 5, 6, and 7, respectively, and form sorted sequences of size
n/4.

6. Nodes 0 and 1 simultaneously input n/4 sorted numbers from nodes 2 and 3,
respectively, and form sorted sequences of size n/2.

7. Finally, node 0 inputs n/2 sorted numbers from node 1, combines them with
its own numbers and outputs a sorted sequence of size n to its environment.

A larger hypercube follows the same general pattern of splitting a sorting problem
into smaller problems, solving them in parallel, and combining the results.

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 4

In general, a hypercube has p processors, where p is a power of two

The exponent d = log(p) is called the dimension of the hypercube. For a cube p = 8
and d = 3.

It is helpful to view a hypercube as a hierarchical system, where each level consists
of a subset of the nodes. A cube has four levels of nodes

level nodes
0 0 .. 0
1 1..1
2 2 .. 3
3 4 .. 7

A sorting problem is distributed through the cube, one level at a time. First,
the node at level 0 inputs a problem, then the node at level 1 inputs a subproblem,
followed by the nodes at level 2, and finally the nodes at level 3.

In general a hypercube has d + 1 node levels.

function level(k: integer): integer;
var j, kmax: integer;
begin

j := 0; kmax := 0;
while kmax < k do
begin

j := j + 1; kmax := 2*kmax + 1
end;
level:= j

end

Algorithm 2

Algorithm 2 defines the level number of node k, where

0 < level(k) < d for 0 < k ~ p - 1

We will program a hypercube node in Pascal extended with statements for message
communication. The input and output of an array slice a(i .. j] through a channel c
are denoted

?(. . r· .1> c. ,, J, a '··J c!(i, j, a(i .. j])

The communications include the bounds i and j.

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 5

Each node is connected to its environment and nearest neighbors through a local
array of channels

type channels = array [O .. d] of channel

A particular local channel is used to transmit a problem of a given size. For a
cube we have

channel problem
number SIZe

0 n
1 n/2
2 n/4
3 n/8

In general, channel number i carries a problem of size n/2i, where 0 5 i 5 d.
The channel through which a node inputs a sorting problem is called its bottom

channel. For the cube we have

nodes problem bottom
SIZe channel

0 .. 0 n 0
1..1 n/2 1
2 .. 3 n/4 2
4 .. 7 n/8 3

In general, the index of the bottom channel is equal to the level of the corresponding
node.

Algorithm 3 defines the behavior of hypercube node k for n ~ p. This is a balanced,
parallel quicksort. It maintains load balance by using the well-known find algorithm
to split array slices in half [5]. However, since find takes twice as long as partition,
we use it during the splitting phase only. For the sorting phase, we use the standard
quicksort (Algorithm 1).

If we use partition instead of find in Algorithm 3, we get an unbalanced, parallel
quicksort. Measurements show that such an algorithm is slower than the balanced
sort, and rather unpredictable.

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 6

procedure node(k: integer; c: channels);
var bottom, first, last, middle, i: integer;
begin

bottom := level(k);
c[bottom]?(first, last, a[first .. last]);
for i := bottom + 1 to d do
begin

middle:= (first + last) div 2;
find(a, first, last, middle);
c[i]!(first, middle, a[first..middle]);
first :=middle +1

end;
quicksort(a, first, last);
for i := d downto bottom + 1 do

c[i]?(first, middle, a[first..middle]);
c[bottom]!(first, last, a[first..last])

end

Algorithm 3

COMPLEXITY

The parallel run time T(p, n) is the average time required to sort n numbers on a
hypercube with p processors, where n and pare powers of two, and n ~ p.

An initial node inputs n numbers and splits them into two halves. Later the same
node combines the two sorted halves and outputs n sorted numbers. The node inputs,
splits, combines, and outputs then items in time (b + c)n, where band care system
dependent constants for communication and balanced splitting.

The initial node, which belongs to, say, the left half of the hypercube, sends n/2
items to the right half of the hypercube (see Fig. 1). The two halves of the hypercube
now run in parallel. Each half uses p/2 processors to sort n/2 numbers. So the parallel
run time of the complete hypercube is

T(p, n) = T(p/2, n/2) + (b + c)n

This recurrence has the solution

T(p, n) = T(l, njp) + 2(b + c)(n- njp)

Eventually, each node inputs, sorts, and outputs njp numbers in time

T(1, njp) = (njp)(a log(n/p) +b)

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 7

where a and bare system dependent constants for unbalanced splitting and commu­
nication.

Using the abbreviation Tp = T(p, n) we have

Tp = (n/p)(alog(n/p) +b)+ 2(b + c)(n- n/p) (1)

The sequential run time T1 is the average time it takes to sort n numbers on a
single processor. For p = 1 Eq. (1) reduces to

T1 = n(alog(n) +b) (2)

On a hypothetical hypercube of infinite size, the parallel run time of the split and
combine phases is

(b + c)(n + n/2 + n/4 + · · ·) = 2(b + c)n

The time
Tmin = 2(b + c)n

is a lower bound on the parallel run time Tp.
The parallel run time can now be expressed as

Tp = T1/P + (1 -1/p)Tmin- anlog(p)/p

For a large hypercube Tp approaches Tmin·

(3)

(4)

The speedup Sp = T1/TP defines how much faster the sorting algorithm runs on p
processors compared to a single processor. The speedup cannot exceed T1/Tmin, that
IS

S _ alog(n) + b
max- 2(b+c) (5)

If a = b, c = 2a, and n = 220 , the maximum speedup Smax = 3.5. For p = 32 the
actual speedup Sp = 3.3 only.

PERFORMANCE

For the performance measurements we replaced Algorithm 1 by the iterative quick­
sort defined in [6]. We reprogrammed the parallel quicksort in occam and ran it on
a Computing Surface with T800 transputers configured as a hypercube. The four
channels of a transputer limits the hypercube to a maximum of 8 nodes.

For balanced, parallel sorting of 32-bit random integers we found

a = 3.8ps b = 5.6ps c = 2a

Table I shows measured (and predicted) sorting times for n = 131072 integers (in
seconds).

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 8

Table I
Parallel, Balanced Quicksort

p Tv Sv
1 9.25 (9.20) 1.00 (1.00)
2 6.10 (6.08) 1.52 (1.51)
4 4.64 (4.65) 1.99 (1.98)
8 3.96 (3.99) 2.34 (2.31)

The performance limits are

T:rnin = 3.46 S Smax = 2.66

Table II shows measured run times for the unbalanced, parallel quicksort. b.Tv is
the relative time difference between the unbalanced and balanced algorithms. The
unbalanced sort is 20-36% slower and somewhat erratic.

Table II. Parallel,
Unbalanced Quicksort
p Tv Sv b.Tv
1 9.25 1.00 0%
2 8.31 1.11 36%
4 5.58 1.66 20%
8 5.24 1.77 32%

HYPERCUBES VERSUS TREE MACHINES

In [4] we analyzed parallel sorting on a Computing Surface configured as a binary
tree machine. The only difference between the performance models of a hypercube
and a tree machine is that for the tree machine the number of nodes p is replaced by
the number of leaf nodes

q = (p + 1)/2

This difference is easy to understand. On a hypercube every one of the p nodes sorts.
On a tree machine, sorting is done by the q leaves only.

However, the performance limitations T:rnin and Smax are the same for a hypercube
and a tree machine.

Since a tree machine with 2p - 1 processors has p leaves, it sorts as fast as a
hypercube with p processors. In other words

Tcube(P, n) = Ttree(2p- 1, n) (6)

This relationship is confirmed by the measurements reported here and in [4].

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 9

In the following we compare a hypercube with p processors and a tree machine
with p- 1 processors when both machines sort n numbers. The time difference
between these machines is

b.T(p, n) = Ttree(P- 1, n)- Tcube(P, n)

If we replace p by p/2 in Eq. (6) we get

b.T(p, n) = Tcube(P/2, n)- Tcube(p, n)

which can be rewritten as follows using Eq. (4)

b.T(p, n) = (T1- Tmin- an(log(p)- 2))/p

For p > 4 the following inequality holds

b.T(p, n) ::; (Tt- Tmin)fp

Since T cube(P, n) ~ T min, the relative time difference is bounded as follows

In short

b.T(p, n)/Tcube(P, n) < b.T(p, n)/Tmin

< (T1/Tmin- 1)/p

b.T(p, n)/Tcube(P, n) ::; (Smax- 1)/p

Table III compares parallel sorting on medium-sized hypercubes and tree machines
for a = b, c = 2a, and n = 220 , where Smax = 3.5. A hypercube with 32-64 nodes is
only 3-6% faster than a tree machine with 31-63 nodes.

Table III

p b.T(p,n)
16 12%
32 6%
64 3%

CONCLUSION

We have developed a balanced, parallel quicksort for a hypercube and compared it
with a similar algorithm for a binary tree machine. The performance of the hypercube
quicksort was measured on a Computing Surface.

On a hypercube every node sorts a portion of the numbers. However, on a tree
machine, sorting is done by the leaf nodes only. In spite of this we found that a
hypercube with 32 or more nodes sorts only marginally faster than a tree machine of
the same size. The reason is simple. On a large tree machine, the sorting time of the
leaf nodes is smaller than the data distribution time of the root nodes. So there is
not much to be gained by reducing the sorting time further.

DO HYPERCUBES SORT FASTER THAN TREE MACHINES? 10

ACKNOWLEDGEMENT

The author thanks Jonathan Greenfield for helpful suggestions.

REFERENCES

1. C. A. R. Hoare, 'Algorithm 64: Quicksort', Communications of the ACM, 4,
321 (1961).

2. M. Foley and C. A. R. Hoare, 'Proof of a recursive program: Quicksort. Com­
puter Journal, 14, 391-395 (1971).

3. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D.
W. Walker, Solving Problems on Concurrent Processors. Vol. I. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

4. P. Brinch Hansen, 'Parallel divide and conquer', School of Computer and Infor­
mation Science, Syracuse University, Syracuse, NY, 1991.

5. C. A. R. Hoare, 'Proof of a program: Find.' Communications of the ACM, 14,
39-45 (1971).

6. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms.Computer
Science Press, Rockville, MD, 1978.

	Do Hypercubes Sort Faster Than Tree Machines?
	Recommended Citation

	SU-CIS-91-44_001c
	SU-CIS-91-44_003c
	SU-CIS-91-44_004c
	SU-CIS-91-44_005c
	SU-CIS-91-44_006c
	SU-CIS-91-44_007c
	SU-CIS-91-44_008c
	SU-CIS-91-44_009c
	SU-CIS-91-44_010c
	SU-CIS-91-44_011c
	SU-CIS-91-44_012c

