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Abstract

During the past 100 years experimental particle physicists have collected

an impressive amount of data. Theorists have also come to understand

this data extremely well. It was in the first half of the 20th century the

efforts of the early pioneers of quantum mechanics laid the ground work

for this understanding: quantum field theory. Through the tireless efforts

of researchers during the later half of the 20th century many ideas came

together to form what we now call the Standard Model (SM) of particle

physics. Finally, it was through the ideas of the renormalization group

and effective field theory that the understanding of how the SM fits into

a larger framework of particle physics was crystallized.

In the past four years the Large Hadron Collider (LHC) has made more

precise measurements than ever before. Currently the SM of particle

physics is known to have excellent agreement with these measurements.

As a result of this agreement with data, the SM continues to play such

a central role in modern particle physics that many other theories are

simply known as ‘Beyond the Standard Model’ (BSM) as we know any

new models will simply be an extension of the SM.

Despite agreement with experiment, the SM does suffer from several short-

comings that raise deeper questions. In this dissertation we study models

that address the two of the outstanding theoretical problems of the SM -

the Strong CP Problem and the fine tuning of the Higgs mass. We study

models that solve or ameliorate these problems, and their implications for

collider physics and astrophysics.
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Chapter 1

Introduction

In physics we are trying to answer a deceptively simple question, ‘what are the fun-

damental laws of nature?’ The deception is twofold. On one level, it is deceptive in

that this appears to be a simple-minded question that does not do justice to the wide

range of phenomena it is seeking to inquire about. On a deeper level, it is deceptive

in that it turns out we actually can describe nature in an extremely concise frame-

work. Over 300 hundred years ago Newton began this consolidation when he unified

two previously distinct arenas, the heavens and the earth, with his law of universal

gravitation. With this conceptual breakthrough Newton swept in a new era of sci-

ence in which new phenomena are not just named and catalogued, but progressively

incorporated into more and more concise models. No one could have guessed how far

it can go and that now much of nature can be summarized on one side of a cocktail

napkin.

Given the plethora of phenomena we are trying to describe, it is unclear where to

even start building the next generation of particle physics models. An analogy due to

Feynman [1] will help elucidate an algorithm. Trying to figure out the laws of nature

is like not knowing the rules of chess and trying to figure them out only by watching

a game unfold. We might watch in bewilderment of the players as everything seems

random and chaotic at first. It seems like anything is possible and players make up

the rules as they go along. Slowly we might be able to start to surmise that the game

is constrained in some fashion, and that not just anything is possible. At some point
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we will want to go beyond just noticing that stuff is happening, and when something

seems like it happens with reasonable frequency, we posit it as a rule. In other

words, we stick our neck out and make a prediction. Sometimes these predictions

withstand the test of time, other times they are overturned, and we are unsettled

when something we were fairly certain of turns out to be wrong. For example, we

might try to deduce how a particular piece is allowed to move, then we could propose

this as a ‘rule’ and see if future moves are consistent with this. Over time, if more

moves are shown to be consistent with the proposed rule, we feel more confident in

it.

On occasion our confidence can be completely dashed just when we think we have

everything figured out. Such would be the case if one witnessed castling, in which a

rook and a king are simultaneously moved. First of all, the move is rare so we will

have to collect a large amount of data to ever see it once. Furthermore, there are a

strict set of circumstances that govern castling, so we will have to collect an extremely

large amount of data to understand the circumstances under which it is a legal move.

One might be tempted to abandon everything when confronted with such confidence

shattering discoveries.

Alas, the analogy is a rough one, and it does not pay to press it too far. It turns

out that the situation in physics is both better and worse than the chess game. It

is worse in that we do not know all the outcomes yet and there is always the chance

that some particle may decay in a way that we have not yet seen. We could continue

to enumerate all the possible ways that we have it worse off, however it is not all

bad, and there is one way we are much better off than the case of the chess game.

It turns out there is quantitative meaning to being partially correct in the answer to

our original question when it comes to physics. We do not need to know the most

concise set of rules and only those. We can get an ‘effective’ set of rules and work

with these. These rules will not be as concise and beautiful as the ‘master’ rules, but

they do just fine from an experimental perspective in that we can make a finite set of

measurements and predict things beyond what we had to measure in the first place.

The reason that the effective rules are good enough is decoupling. Decoupling is



3

the statement that physics at different length scales do not affect one another. As we

gradually uncover new layers of physics, we can analyze them in an orderly fashion

and then systematically incorporate them. Decoupling is the reason we do not need

a detailed understanding of planetary geography and composition to understand how

the sun and planets interact with one another. It is also the reason why we can treat

protons and neutrons as point particles when we study chemistry.

In particle physics, the formal process of analyzing relevant length scales and ne-

glecting irrelevant scales is known as effective field theory (EFT)[2]. As we resolve

smaller and smaller sizes, and equivalently larger and larger energy scales, we resolve

new structure. In particle physics, this means we need to incorporate new degrees of

freedom (DOF), that is new particles, in order to properly account for new phenom-

ena. We will see that even though we start with a low energy effective theory, there

are always clues in the low energy theory as to the correct high energy theory, and

we can use these to bootstrap our way up to better models.

In this dissertation, decoupling enables us to implement a ground up approach by

starting with the bare minimum of a model. We will then implement a utilitarian

approach of pushing this model to its breaking point, and then incorporating the

necessary new physics in order to go beyond this threshold. We will begin developing

the tools by first building up to the Standard Model (SM) and using this as a spring-

board into beyond the Standard Model (BSM). During this exploration we will weave

in the development of one of our most powerful tools in physics - dimensional analysis.

In section 2.1 we outline the basic machinery of quantum field theory, in particular

EFT. Beginning in 2.2 we implement a ground up approach using the minimal EFT

we need in order to have a working description of particle physics. By deliberately

analyzing one energy scale at a time, using minimal amount of inputs and some basic

reasoning, we are able to build up to the SM. Using the lessons and tools we learned

in exploring the SM, we then move on to use these to explore BSM in section 2.3.

In section 2.4 we touch on one of the more radical proposals of the past 20 years of

physics- the AdS/CFT correspondence. In chapters 3 and 4 we explore two specific

models of BSM physics that address the limitations of the SM.
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Appendix 1.A List of Conventions

Throughout this dissertation, we have adopted the following conventions:

• Greek indices µ, ν, λ, ... label the components of four-vectors and take values

0, 1, 2, 3.

• Repeated indices are summed over.

• The metric has a (+,−,−,−) signature.

• We work in units such that ~ = c = 1. This results in units where

[Mass] = [Energy] = [Momentum] = [Length−1] = [Time−1].

• The σi are the Pauli matrices:

σ1 =

 0 1

1 0

 σ2 =

 0 −i
i 0

 σ3 =

 1 0

0 −1


• We further define σµ ≡ (1, σ) and σ̄µ ≡ (1,−σ).

• The Dirac matrices are

γµ =

 0 σµ

σ̄µ 0


• We employ the Feynman slash notation /p ≡ γµpµ.

• We can use the Dirac matrices as a basis for 4×4 matrices ΓA which consist of:

1 one of these

γµ four of these

γµν = γ[µγν] ≡ −iσµν six of these

γµνρ = γ[µγνγρ] four of these

γµνρσ = γ[µγνγργσ] one of these
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Appendix 1.B List of Abbreviations

Throughout this dissertation, we have used the following abbreviations:

• BSM: Beyond the Standard Model

• DOF: Degrees of Freedom

• EFT: Effective Field Theory

• GR: General Relativity

• NDA: Naive Dimensional Analysis

• QED: Quantum Electrodynamics

• QCD: Quantum Chromodynamics

• RG: Renormalization Group

• RS: Randall Sundrum

• SM: Standard Model

• SUSY: Supersymmetry

• vev: vacuum expectation value



Chapter 2

Effective Field Theory and the

Standard Model

2.1 A Crash Course in Model Building

2.1.1 The Path Integral

We began with a rather general philosophical inquiry of the fundamental laws of

nature. In particle physics our basic probe of nature is the particle collider. From a

collider perspective we ask a much more utilitarian question, ‘What is the minimal

amount of measurements that we need to make before we can predict all the other

possible outcomes in our particle collider?’ More precisely, we are interested in the

probability of an outcome in our particle collider.

From a practical standpoint we first calculate the amplitude for a set of asymptot-

ically free particles in the infinite past with momenta {ki} to evolve in time (scatter)

by the S-matrix, and then find the overlap with some final state of free particles in

the infinite future with momenta {pj} which we will denote as

〈f |i〉 = 〈p1...pn|S|k1...km〉. (2.1)

The amplitude is related to the probability of this outcome by

P (i→ f) ∝ |〈f |i〉|2. (2.2)
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The matrix elements can be written as the Fourier transform of n + m point

correlation functions of the fields φ(xi)

〈p1...pn|S|k1...km〉 ∝
n∏
i=1

∫
d4xi e

ipi·xi
m∏
j=1

∫
d4yj e

−ikj ·yj〈T [φ(x1)....φ(xn)φ(y1)....φ(ym)]〉

(2.3)

where T is the time ordering operator. And the correlation functions can be in turn

calculated by taking functional derivatives with respect to the sources Ji

〈T [φ1....φn]〉 =

∫
Dφi φ1....φn e

iS∫
Dφi eiS

=

(
−i δ
δJ1

)
...

(
−i δ
δJn

)
logZ[Ji] (2.4)

where we have used the condensed notation φi ≡ φ(xi). Z[Ji] is the vacuum-to-

vacuum transition in the presence of sources Ji

Z[J ] =

∫
Dφi eiS (2.5)

where S is the action S =
∫
ddx (L(φi) + φiJi), L is the Lagrangian, φi are fields

(bosonic or fermionic), and the integration is over field configurations. Equation 2.5

is also known as the path integral.

2.1.2 The Lagrangian

With the machinery we have outlined above, we have further reduced the problem

outlined at the beginning of the dissertation of ‘What are the fundamental laws of

nature?’ to that of

L =?1 (2.6)

This may not seem like progress since we have just replaced one question with another

one, but actually we have managed to strip away a huge amount of bookkeeping

with some known formalism in order to reduce our original question with the much

simpler question. The Lagrangian is a highly constrained object, and using these

1Recent developments indicate that perhaps not all of physics can be phrased in this way, or

perhaps this is not the most fundamental way to phrase things. See [3] for an example. From the

bottom-up approach of defining a low energy effective field theory we will be following, this is a good

starting point.
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constraints we can outline a concise algorithm for model building. In fact the action,

S =
∫
d4x L, is such a constrained object it is totally boring and completely trivial,

it is a singlet (does not transform) under all symmetries. The trick will be to specify

these symmetries and then write the Lagrangian in terms of the objects (the fields)

that do transform under these symmetries. Thus the first step towards model building

is to specify the symmetries and their associated groups, and find representations of

the groups.

A large portion of constraints results just from enumerating the representations

under the Lorentz group SO(3, 1). A standard method of dealing with any group

more complicated than SU(2) is to label its representations in terms of its SU(2)

subgroups. In this case representations of the Lorentz group are labeled by represen-

tations under two SU(2) subgroups which we label as two half integers (j1, j2). 2 The

most frequently encountered fields and their corresponding representations are:

Common name Also known as3 (j1, j2) Index

scalar ‘spin 0’ (0, 0) none

left handed spinor ‘spin 1/2’ ( 1
2
, 0) latin (a, b, ...)

right handed spinor ‘spin 1/2’ (0, 1
2
) dotted latin (ȧ, ḃ, ...)

Dirac spinor ‘spin 1/2’ (0, 1
2
)⊕ ( 1

2
, 0) latin ⊕ dotted latin

vector ‘spin 1’ (1, 1) greek (µ, ν, ...)

An immediate question that arises is, ‘What about the other representations be-

yond spin one?’ It turns out that while the mathematical objects, the representations,

are constructed easily enough, physics poses a severe constraint on the fields in a La-

grangian. Any massless fields with spin greater than or equal to one have unphysical

degrees of freedom that must cancel out of calculations precisely.4

2Technically we find representations of the universal covering group of the Lorentz group,

SL(2,C), which is isomorphic to the complexification of SU(2) ⊗ SU(2). See [27] for a concise

review.
3These names are informal at best and belie the subtle nature of the DOF associated with the

fields. In particular, we follow the time honored tradition of confusing left-handed, right-handed,

and Dirac spinors with the single name ‘spin 1/2’.
4We will consider massive gauge fields and their relation to massless gauge fields in section 2.2.2.
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For example, take a spin one particle. The expectation value of a spin one creation

and annihilation operator is proportional to the metric tensor by Lorentz invariance

〈0|aµ(k)a†ν(k)|0〉 ∼ ηµν . (2.7)

If we set µ = ν (no sum) this is the norm of a single particle state,

|a†ν(k)|0〉|2 ∼ ηνν . (2.8)

But we can see that since that ηµν = diag(+1,−1,−1,−1) some of the norms will be

positive and others negative. If we are to successfully give a theory a probabilistic

interpretation, we can not have states of negative norm as they have no physical

meaning.

This issue is resolved by always coupling a field that has unphysical polarizations

to a conserved current so that the unphysical degrees of freedom always cancel, such

that they will never be observed, and measurable probabilities are always positive

definite. For spin one particles like the photon, we couple it to the electromagnetic

four-current Jµem, which is conserved, ∂µJ
µ
em = 0 (which is just a Lorentz invariant

way of saying that electric charge is conserved).

From a practical model building standpoint, it usually ends up being easier to sim-

ply enforce that our Lagrangian obeys a (space-time dependent) ‘gauge symmetry’ in

which we ‘gauge’ a (space-time independent) global symmetry.5 This is accomplished

by replacing any derivatives in a Lagrangian with gauge-covariant derivatives

∂µ → ∂µ − igAµ (2.9)

where g is the gauge coupling (charge), and Aµ is referred to as a ‘gauge field’, which

lives in the adjoint representation of the gauge group.

In principle, we could have gone on to include spin 3/2. The conserved current

that these fields will be coupled to is the super-current of supersymmetry (SUSY).

This makes adding spin 3/2 particles to the SM a highly nontrivial extension. If

5One must always ensure that the global symmetry is a genuine symmetry, that is, that the

globally symmetry is still present once quantum corrections are accounted for.
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SUSY is indeed a symmetry of nature, it is at least broken at high energies giving

these spin 3/2 particles and the SM super-partners a mass outside our current reach

[19].

Likewise we could have also added spin two particles. Now the only conserved

current around in this case is the second rank stress energy tensor, T µν . But we

already know what this model is, a theory of massless spin 2 gauge bosons is a theory

of gravity [5]. As we will see in section 2.3.1 the effects of gravity are well beyond the

reach of current colliders.

The process of finding conserved currents of successively higher rank to couple

gauge fields to terminates at this point. Although we can easily find the representa-

tions of spin greater than two, there is no known way of consistently coupling fields

that live in these representations to matter fields so as to eliminate unphysical DOF,

since there are no remaining nontrivial conserved currents of rank greater than two.

One final clarification is worth making. Global symmetries of a phenomenological

model are either ultimately broken by small corrections, or in the case they are exact,

they are likely the remnant of a gauge symmetry. An example of the former case

would be baryon number conservation. We know the global symmetry associated

with baryon number conservation to be conserved to an excellent degree, however, it

will likely end up being violated by some very small corrections. An example of the

latter is the case with Lorentz symmetry being the global remnant of the exact local

symmetry of General Relativity.

With the fields in hand, we combine these with the objects ∂µ and the matrices

σµaȧ, εab and εȧḃ to create the singlets. For example,

εabψ
aψb, σµaȧψ

a∂µψ̄
ȧ, ∂µφ∂

µφ, σµaȧψ
aAµψ̄

ȧ, . . . (2.10)

Any singlet is a candidate term in the Lagrangian. Finally, to construct a general

Lagrangian we take all possible singlets with arbitrary coefficients.
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2.1.3 Beginner Dimensional Analysis

At this point we can write down a formal expression for a desired quantity. For

example, the amplitude for a φφ→ φφ scattering

Mφφ→φφ = 〈T [φ1φ2φ3φ4]〉 =

∫
Dφ φ1φ2φ3φ4 e

i
∫
d4xL∫

Dφ ei
∫
d4xL (2.11)

in a scalar field theory with the Lagrangian

L = m2φ2 + a4φ
4 +

a6

Λ2
φ6 + ...

+ ∂µφ∂
µφ+

b2

Λ2
φ2∂µφ∂

µφ+
b4

Λ4
φ4∂µφ∂

µφ

+
c0

Λ4
(∂µφ∂

µφ)2 +
c2

Λ6
φ2(∂µφ∂

µφ)2 +
c4

Λ8
φ4(∂µφ∂

µφ)2

+ ... (2.12)

where we have assumed φ is a pseudo-scalar for simplicity (which forbids odd terms in

the Lagrangian) and added all possible terms consistent with Lorentz symmetry for a

scalar field. A dimensionful scale Λ has been extracted so all the coefficients {ai, bi, ...}
are dimensionless. The coefficient of ∂µφ∂

µφ is normalized to one. We have identified

the coefficient of φ2 as the mass since the simple Lagrangian L = ∂µφ∂
µφ − m2φ2

corresponds to the classical equation of motion (∂2 −m2)φ = 0, which means plane

wave solutions have the dispersion relation E2 = p2 + m2, which is the dispersion

relation for a relativistic particle of mass m. We have further identified the dimension

of all the other operators as follows. Since [S]= [
∫
d4xL] = 1, [L] = mass4, thus

[∂µφ∂
µφ] = mass4 and since [∂µ] = mass, then [φ] = mass.

Unfortunately there is little hope of performing the integrals in equation 2.11 for

this Lagrangian. Moreover there is a more devious aspect to the Lagrangian 2.12 - it

has infinitely many parameters, hence it has no predictive power. Given this, we will

have to make some utilitarian assumptions in order to move forward.

Note that if we assume all operators beyond the quadratic portion of the La-

grangian are small, and expand in these, we will be left with Gaussian integrals to

perform, the solutions to which are well known. For example, naively expanding in

the coefficient a8
1

Λ4 of the operator φ8 will contribute to lowest order a term of the
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form a8
E4

Λ4 to a scattering amplitude, where E is the energy of the particles. That

is, our expansion is retroactively justified if we assume that E � Λ. Additionally

we need to assume a dimensionless coefficient like a4 is small since there will be no

energy suppression for operators of this form.

In terms of our Lagrangian 2.12 this means if we restrict ourselves to low energies,

we really only need to keep the minimal number of operators so that our model is

nontrivial. In this case that means we will keep the operators with coefficient a2 and

a4.6 With this assumption our Lagrangian takes a much more simple form,

L = ∂µφ∂
µφ−m2φ2 − a4φ

4. (2.13)

From here on out we will supplement our prescription for constructing quantum

field theories with the assumption we are working at sufficiently low energy to ne-

glect higher dimensional operators, and only keep the minimal number of nontrivial

operators to describe scattering. There still remains the concern of what happens at

energies on the order of the scale Λ, but we will postpone this issue until we have a

concrete model and Λ in hand to analyze.

2.2 The Standard Model from the ground up in 3

segues

Now that we have some model building principles in place, we can start building

realistic models. We follow the steps outlined in the previous section, which we now

formalize:

1. List the fields (particles) we want to describe, and their representation under

the Lorentz group and any gauge group.

2. Write down all possible terms that are singlets under these symmetries.

6In other words, if for some reason a4=0, we would then need to keep the a6 term around to

describe nontrivial scattering processes.
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3. Assume the low energy and keep only the minimum number of nontrivial oper-

ators in order to describe scattering processes.

4. The sum of these operators with coefficients is the Lagrangian.

2.2.1 A sub-Standard Model Part I

With this algorithm we can write down a model of the stuff we know, that is, the

particles that we have direct evidence for. First of all, we see ourselves - we are

made of matter particles - electrons, protons and neutrons. We also know that light

(photons) interacts with any particles carrying electric charge.

We also assume we know that a proton, neutron and an electron interact in pro-

cesses which a neutron will decay into a proton and an electron (beta decay). If we

want to model this interaction, there is no Lorentz invariant term that we can write

down that involves just 3 fermions (there will always be a un-contracted Lorentz in-

dex). To solve this problem we will follow Fermi [6] and take the first in a series of

radical steps of postulating new particles in order to patch up our model. In this case

we will postulate a new neutral fermion, the neutrino, so that charge is still conserved

in the interaction and we have something to contract the remaining Lorentz index

with.

Following the algorithm outlined at the beginning of this section yields:

L =− 1

4
F µνFµν +

∑
i

(
iψ̄i/∂ψi −miψ̄iψi

)
+ eAµJµ

+
1

Λ

∑
i

ciFµνψ̄iσ
µνψi +

1

Λ2

∑
ij

ciAB ψ̄i1ΓAψi2ψ̄i3ΓBψi4 (2.14)

where Fµν = ∂µAν − ∂νAµ, Jµ =
∑

i qiψ̄iγµψi, i is a sum over fermions, qi are the

electric charges of those fermions in units of the electron charge, the ψis are Dirac

spinors,

γµ =

 0 σµaȧ

σ̄µaȧ 0

 , (2.15)

σµν = i
2
[γµ, γν ], and the ΓA are a basis for 4× 4 matrices constructed out of the γµs.
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The sum over all fermions in the four-fermion operator is a sum over all fermions that

conserve charge. Terms of the form Fµνψ̄σ
µνψ are informally known as ‘Pauli’ terms.

It turns out experimentally that only a much smaller subset of the coefficients ci

and ciAB are nonzero to a high degree of precision. That is, in order to account for

experimental data, we only need

L = −1

4
F µνFµν +

∑
i

(
iψ̄i/∂ψi −miψ̄iψi

)
+ eAµJ

µ
em

+
cp
Λ
Fµν p̄σ

µνp+
cn
Λ
Fµνn̄σ

µνn+ 23/2GF (J+µJ−µ + Jµz Jzµ) (2.16)

where

J+µ = cBn̄γ
µ1

2

(
1− gAγ5

)
p+ ēγµ

1

2

(
1− γ5

)
ν

J−µ = cB p̄γ
µ1

2

(
1− gAγ5

)
n+ ν̄γµ

1

2

(
1− γ5

)
e

Jz
µ = Jµ3 − s2

wJ
µ
em

Jµ3 = p̄γµ
1

2

(
1− γ5

)
p− n̄γµ1

2

(
1− γ5

)
n+ ν̄γµ

1

2

(
1− γ5

)
ν − ēγµ1

2

(
1− γ5

)
e

Jµem = p̄γµp− ēγµe (2.17)

and where e is the magnitude of the electron charge, c{B,p,n}, sw are arbitrary coeffi-

cients, and

γ5 =

 −12×2 0

0 12×2

 (2.18)

so that PL,R = 1
2
(1 ± γ5) project out the left and right handed states of the Dirac

fermion.

First of all, 2.16 is a significantly simpler result than we started with in equation

2.14. Secondly, it appears as though the proton and neutron (nucleons) are affected

by physics that the electron and neutrino (leptons) are not as there are Pauli terms

only for the nucleons. Given this, let us concentrate on the leptons for the time being

and come back to the nucleons later.

With a concrete model in place, we can get back to the question we have postponed

so far. We had to assume that any higher dimensional operators were suppressed by

mass scales much greater than the energy of particles we are scattering in order to
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make progress. If now we push our model up to an energy E ∼ 1/
√
GF terms of

the form E
√
GF in our scattering amplitude, that we previously assumed were small,

will no longer be small. Perturbation theory will break down and the model will no

longer be predictive.7 Experimentally we have

GF = 1.2× 10−5GeV−2 (2.19)

and so this scale places a threshold on the utility of this model

G
− 1

2
F ≈ 300 GeV. (2.20)

Before going any further it is worth noting the fact that perturbation theory

breaking down is a good thing. There is an automatic governor built in where the

theory is telling us exactly where it fails. There is no need to speculate as to which

regime it holds.

Now how can we go on to improve on this theory in order to go beyond this energy

scale? We need to identify the new physics, namely the new DOF that need to come

in near E ∼ √GF . Concentrating on the leptons, the interactions have dramatically

simplified in 2 ways. First, there is a single scale G
−1/2
F associated with all the 4

fermion operators. This implies that the same physics is at work in all the four

fermion interactions. Moreover, the interactions take a very simple form (suggested

by the notation in 2.16) of a current-current interaction. This interaction is similar

to what we get when a photon mediates a force between 2 electromagnetic currents.

What we need is a photon-like particle that is negligible at low energies, that is, we

need a vector boson with mass.

The correct solution ends up being a set of 3 massive vector bosons - the W± and

7Technically something much worse is going on than perturbation theory failing. In fact, unitarity

bounds are being violated at the scale E ∼ √GF which is a fancy way of saying that the total

probability of anything happening is greater than 100 % which implies the theory is fundamentally

sick.
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the Z. Taking these into account we write our improved model as

L = iĒ /∂E −mEĒE + iν̄ /∂ν + eAµJ
µ
em + gW+

µ J
µ
− + gW−

µ J
µ
+ +

gZ√
2
ZµJ

µ
Z

− 1

2
W+
µνW

−µν +m2
WW

+
µ W

−µ − 1

4
ZµνZ

µν +
1

2
m2
ZZµZ

µ 8 (2.21)

where the new parameters g, mw and mz related to the old GF , by

GF√
2

=
g2

8m2
W

=
g2
Z

16m2
Z

. (2.22)

If we treat the W and Z as very heavy, they essentially act as auxiliary fields (i.e.

constraints) that should be integrated out. Integrating them out returns us back to

our original Lagrangian 2.16. With this model we have to assume the dimensionless

couplings e, g and gz are small.

2.2.2 A sub-Standard Model Part II

Taken at face value, it would appear that the Lagrangian we have constructed in

equation 2.21 exceeds our expectations. Not only have we accommodated the known

interactions (the four-fermion interactions) in a way that holds to higher energies

than the model we started with, this model does not contain any operators of inverse

mass dimension at all. That means that this model appears to hold up to arbitrarily

high energies since there are no terms at risk for diverging in an amplitude.

It turns out that this conclusion ends up being too naive. In order to see this,

we should think more carefully about taking the high energy limit of our Lagrangian.

Let us consider the simpler model below for now of a single massive vector field Xµ,

L = −1

4
XµνX

µν +
1

2
m2XµX

µ (2.23)

where Xµν = ∂µXν−∂νXµ. We know intuitively the mass term will become irrelevant

at high energies, since if we expand in the mass operator it will contribute terms of

8If you are worried that the above Lagrangian violates gauge invariance then you are getting

ahead of the story. Keeping in mind the goal of writing down a succession of theories that hold

at higher and higher energies we are doing just fine. Gauge invariance is a redundancy in our

coordinates anyway, not a physical symmetry of the system.
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the form
(
m
E

)n
to an amplitude. So at high energies we expect

L ≈ −1

4
XµνX

µν . (2.24)

This is fine from the naive dimensional analysis of looking at mass dimension of

operators, but we have unwittingly done something very wrong.

For the sake of simplicity, let us consider the particles on on-shell for the time

being. We start with four independent DOF Xµ = (X0, X1, X1, X3). The equation

of motion for the massive field Xµ is

∂ν∂
νXµ − ∂µ∂νXν +m2Xµ = 0. (2.25)

Acting on the above equation with ∂ρ and setting µ = ρ we get:

m2∂µX
µ = 0. (2.26)

Hence the original equation 2.25 is equivalent to the two equations

∂ν∂
νXµ +m2Xµ = 0, (2.27)

m2∂µX
µ = 0. (2.28)

Thus we have one constraint on four DOF, knocking it down to only three DOF

on-shell for a massive vector boson.

For m = 0, quite a different situation arises. Now we notice from the outset the

EOM is invariant under Xµ → Xµ +∂µα(x). The freedom in this redefinition reflects

a redundancy in our field variables Xµ. Moreover, this is a redundancy we are free

to do without if we wish. As an example we are free to make a redefinition such that

X0 = 0 and ∂iX i = 0 demonstrating that there are only two DOF in actuality.

If massless vector bosons have two DOF, and massive vector bosons have three

DOF, this presents an unanticipated issue for the massless limit since DOF are physi-

cal and can be measured. For example, in thermal equilibrium each DOF contributes

kT/2 to the energy of a system so there is a distinct difference between a system

with two or three DOF. That is, there is a discontinuous difference between the La-

grangians 2.23 and 2.24, and something unanticipated is happening in the naively

continuous limit m→ 0.
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To see what is happening we can perform a change of variables in order to rear-

range the DOF more appropriately in the massless limit. Once again beginning with

the massive vector boson Lagrangian,

L = −1

4
XµνX

µν +
1

2
m2XµX

µ, (2.29)

we make the field redefinition Xµ → Xµ + 1
m
∂µπ and separate out the spin zero DOF

which we denote π, giving us

L = −1

4
XµνX

µν + ∂µπ∂
µπ + 2m∂µπX

µ +m2XµX
µ. (2.30)

Now the Xµ only has two DOF on-shell and we can safely take the m→ 0 limit. In

this limit the coefficient of the mixing term goes to zero and we get

L ≈ −1

4
XµνX

µν + ∂µπ∂
µπ. (2.31)

Hence at high energies the two spin one DOF and the one spin zero DOF decouple into

three free massless DOF, and the massless limit makes sense. For future reference,

we could have also written Lagrangian 2.30 as a ‘linear sigma model’

L = −1

4
XµνX

µν + v2|(∂µ − igXµ)ei
π
v |2 (2.32)

where m = gv.

The non-abelian version of this story is dramatically different. Now we start with

a multiplet V a
µ where a = 1, 2, 3. The Lagrangian is

L = −1

4
V a
µνV

aµν +
1

2
m2V a

µ V
aµ. (2.33)

We now have three vector bosons, each with three DOF, and each vector boson has

one spin zero DOF. Similar field redefinitions and manipulations to expose the three

spin zero components πa yield the ‘nonlinear sigma model’

L = −1

4
V a
µνV

aµν + v2Tr |(∂µ − igV a
µ t

a)ei
πata

v |2 (2.34)

where ta = σa

2
and σa are the Pauli matrices. Again this seems innocent enough, but

there is a disaster lurking in the above Lagrangian. Expanding the above in powers
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of the spin zero fields πa we get successively higher powers of the inverse mass scale

v,

L =
1

2
∂µπ

a∂µπa +
1

6v2

(
πaπa∂µπ

b∂µπb − πaπb∂µπa∂µπb
)

+O
(

1

v4

)
. (2.35)

Our naive dimensional analysis has unwittingly led us astray. The massless, high

energy limit exists, but it comes with a price - once again we are confronted with a

model that contains operators with coefficients of inverse mass dimension, and so the

model will fail above a particular cutoff.

In practical calculations the new model of 2.21 holds up to ∼ 1000 GeV[7] so

we have bought about a factor of three over the old model 2.16. So we have made

progress, but the situation is not as good as we had led ourselves to believe.

This means we need to repeat the earlier process and add new DOF in order

to hopefully render this model consistent to higher energies. One reasonable guess

is to note the following, if the scale m is generated spontaneously by the vacuum

expectation value (vev) of a scalar field, we could write the 2.34 as

L = −1

4
V a
µνV

aµν + Tr |(∂µ − igV a
µ t

a)〈φ〉ei θ
ata

v |2, (2.36)

where 〈φ〉 is the vet of a scalar field. We could go further and rewrite φ as a two

component spinor as φ→ (0, φ)T so that we can also rewrite ei
θata

m φ→ H as a general

two component scalar: H ≡ (φ1 + iφ2, φ3 + iφ4)T and we have

L = −1

4
V a
µνV

aµν + |(∂µ − igV a
µ t

a)H|2 +
λ

4!

(
|H|2 − v2

)2

= −1

4
V a
µνV

aµν + (DµH)†DµH +
λ

4!

(
|H|2 − v2

)2
. (2.37)

where we have added a potential for the scalar to ensure it gets a vev v. Now this

model definitely has a well defined massless limit for the V a
µ since there is no vector

boson mass to even worry about anymore. Moreover we still have only operators with

at most dimensionless coefficients.9

9We will address how the Higgs couples to fermions when we discuss the SM in full.
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One might argue that we have pulled a fast one - we have just rewritten the

Lagrangian such that it is ‘primed’ and ready to give the V a
µ their masses. However,

the crucial point is that we can write the model so there are no operators of dimension

higher than four.

So far this was just a toy model. The scalar particle we would add in order to

patch up the model 2.21 is known as the Higgs. Keep in mind this is not proof of

what nature chooses, it is just a guess for a model that holds up to higher energies.

It turns out that this guess is a good one and as of March 2013, we have seen a boson

that is consistent with the SM Higgs [8].

2.2.3 A sub-Standard Model Part III

We need to tidy up some loose ends. First of all, we neglected the proton and

neutron in section 2.2.1 since we were not sure how to handle the Pauli terms for

them at that point. These terms contribute to the magnetic moment of the particles,

which experimentally deviate substantially from the values we would expect from a

point particle [19].10This implies that the proton and neutron are not fundamental

particles, and in fact have substructure. While we are putting everything on the table,

we totally ignored one aspect entirely in section 2.2.1 when we failed to mention the

pions for the sake of the story.

The complete low energy model involving the nucleons and pions is the Chiral

Lagrangian

Lchiral = −1

4
f 2
πTr DµU †DµU + v3Tr

(
MU +M †U †

)
+ iN̄ /∂N

−mNN̄
(
U †PL + UPR

)
N − 1

2
(ga − 1)iN̄γµ(UDµU

†PL + U †DµUPR)N + . . .

(2.38)

where U(x) = exp[2iπa(x)Ta

fπ
], πa(x) is the pion field, N is the nucleon field (a doublet

consisting of the proton and neutron), fπ is the pion decay constant, M is the quark

mass matrix, v3 is the value of the quark condensate, mN is the nucleon mass, gA

10Being neutral, naively the neutron should not have a magnetic moment at all!



21

is the axial vector coupling, Dµ is the covariant derivative and the dots represent

subleading terms in the quark masses [9].

For all its complexity, the important point to notice is this is just another nonlinear

sigma model. We know the story already - a nonlinear sigma model will break down,

in this case at the scale fπ. Our first guess might be to add a scalar condensate as

we did in section 2.2.2. Although this might formally fix the model to hold to higher

energies, it is not going to yield a theory in which the pions and nucleons reveal their

composite DOF; it would still just be a model of pions and nucleons and the new

scalar DOF.

What we need is a model where the elementary ultraviolet DOF are locked in

bound states at low energies. However, these bound states must be very different

than say, the bound state of a electron and proton in a hydrogen nucleus, as no one

has ever actually seen the constituent DOF of a nucleon. That is, we do not just want

something that is attractive at low energies, we want something that is ‘confining’.

Roughly speaking, we need an interaction associated with a scale Λ that gives

contributions to an amplitude that go like negative powers of the energy (contributions

like
(

Λ
E

)n
) so when E → 0 this becomes the dominating term. Formally speaking,

we would say we need an operator in our Lagrangian that is relevant at low energies

that creates a confining potential between fermions, and irrelevant at high energies

where it reveals the composite DOF. One candidate interaction is mψ̄ψ, however this

interaction will not do the trick, since a Lagrangian consisting of this term and a

kinetic term is just a theory of free fermions. Any operator with more fermions, like

the four fermion operator we have already explored, will be irrelevant at low energies

and lead to a weak interaction at large distances.

Let us start from scratch then. We need something that not only has good high

energy behavior, but in some sense has worse low energy behavior. In other words,

we want an interaction that totally blows up at low energies. In order to do this, we

need to develop our arguments a little bit more then we have up until this point.
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2.2.4 Intermediate Dimensional Analysis

Previously we used dimensional analysis to probe the structure of the theory to see

how it scaled with energy, and in particular, to find out when the model fails. Let us

formalize the naive dimensional analysis arguments we have been making so far.

Let us analyze one of the simplest possible models we can, a free, real, scalar field

with mass m. The starting point is the Lagrangian

L = ∂µφ∂
µφ−m2φ2. (2.39)

At high energies we know we can ignore the mass so that we just have

LE�m ≈ ∂µφ∂
µφ (2.40)

and at very low energies the fluctuations in the φ field freeze out completely (that is,

φ should be integrated out) and we are left with

LE�m ≈ 0 . (2.41)

In order to interpolate between these three cases properly, we should remember

the basic tenant of physics, that one should only perturb in dimensionless parameters.

That is, if we really want to keep track of how the mass affects our model, we should

define a new parameter to keep track of

ν ≡ m

E
(2.42)

where E is the energy scale at which we work. It makes sense to define this parameter

because when we say we work with ‘small mass’ we really mean small mass with

respect to energy and when we perform a perturbative expansion, ν is the parameter

in which we will be expanding.

We want to track how a parameter for perturbation theory changes with energy,

so we define the ‘beta function’

βν ≡
∂ν

∂ logE
= E

∂m
E

∂E
= E(−1)

m

E2
= (−1)

m

E
= −(1)ν.11 (2.43)

11If you find the logE offensive dimensionally, just think of it as shorthand for E ∂
∂E .
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The 1 reflects the fact that mass term has mass dimension 1 and the − reflects the

fact that the importance of ν as a parameter decreases as we increase energy. That

is, the mass is relevant at low energies and irrelevant at high energies. Thus equation

2.43 formalizes the dimensional analysis arguments we have been making up until

this point. It seems silly that we write down such a simple relation since it captures

something we already knew before, however the power of the beta function is that we

can calculate quantum corrections to it, and thus capture non trivial behavior in the

quantum domain that is not so clear or intuitive.

Up until now, we have only been taking the naive or classical scaling dimension

into account. If we take quantum corrections into account, the beta function will look

like

βλ =
∂ν

∂ logE
= −(1 + γν)ν. (2.44)

where we have defined the ‘anomalous dimension’, γν . The ‘anomalous’ does not

refer to a deviation from the correct behavior, but rather it reflects a deviation from

the naive classical behavior. Now by including quantum corrections we can more

completely investigate how a model behaves throughout a range of energies. This is

the same thing we have been doing up until now, but we have been analyzing models

‘classically’.

As an example we can calculate the beta function for charge of the electron, e, in

QED, where

LQED = −1

4
F µνFµν + ψ̄(i/∂ − e /A−m)ψ. (2.45)

Classically e is dimensionless (in ‘natural’ units) and we have

β =
∂e

∂ logE
= 0. (2.46)

This is referred to as a ‘marginal’ coupling as it does not scale with energy at all. We

can compute quantum corrections to this and obtain

β =
∂e

∂ logE
= +~

e3

12π2
+O(~2). 12 (2.47)

12Some comments are in order. First of all, because we can always simultaneously rescale fields
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This is a highly nontrivial result. The + sign implies that quantum mechanical

corrections alter the naive scaling dimension of the electric charge, making it grow

at high energies and nudging it from a marginal coupling to a relevant coupling. At

high energies the electric charge will continue to grow and QED will become strongly

coupled. This result is almost what we want, we just want a coupling between fermions

that becomes relevant, and then continually grows until the model becomes strongly

coupled at low energies. That is, we want a minus sign instead of a plus sign in

equation 2.47.

Let us push on and consider a SU(N) non-abelian gauge theory with nf fermions

transforming under the representation r

L = −1

4
Ga
µνG

aµν + ψ̄i( /D −mi)ψi. (2.48)

The one-loop quantum corrected beta function for this model is

β(g) = − g3

(4π)2

(
11

3
C2(G)− 4

3
nfC(r)

)
(2.49)

where C2(G) and C(r) are invariants of the SU(N) group. For a particular choice of

fermions the quantity inside the round brackets will be positive and the beta function

will be negative. A negative beta function means the coupling in a non abelian gauge

theory is pushed from being marginal to relevant at low energies. It fact, it keeps

growing without bound at low energies. This sort of behavior is exactly what we need

if we want a model of strongly coupled fermions at low energies.13

This argument is rough so far and we can do a bit better. We would like to see

what happens when we take two fermions charged under a non-abelian gauge group

and coupling constants, the beta function will in general depend on the normalization we choose for

our fields. For further discussion see [10]. Furthermore, the presence of the ~s seem to invalidate

the argument that we should only work with dimensionless quantities. At any rate, expansions in ~

should always be taken with a grain of salt as their presence here is only to roughly illustrate the

departure from the lowest order results. The ~s in this equation is only to formally illustrate that

the correction to the beta function is quantum in its origin. All other equations have ~ = 1.
13“I admit this is blatant hand-waving. However this is not some new hand-waving...but the same

old hand-waiving that accompanies any discussion of the large-scale behavior of non-abelian gauge

field theories.” - Sidney Coleman [11]
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and try to separate them. This corresponds to taking the expectation value of the

Wilson loop,

WC = Tr

(
P exp i

∮
C

Aµdx
µ

)
, (2.50)

where P is the path ordering operator, and C is a closed curve.
∮
C
Aµdx

µ corresponds

to moving a charge along the closed curve C in the presence of a gauge field Aµ. For

simplicity we choose a closed path of size R in the space direction for a duration

time T which has area A = RT where T � R so that the perimeter P ≈ T . The

expectation value of the Wilson loop should yield the effective potential between the

particles,

e−V (R)effT = 〈0|WC |0〉 =

∫
DAµ WC eiS∫
DAµ eiS . (2.51)

As a warm up let us perform the calculation for QED. The result is

e−V (R)effT = 〈0|WC |0〉 ∼ e−(− αR)T . (2.52)

Solving for the effective potential we obtain

V (R)eff = −α
R

+ c (2.53)

where c is a constant. This is exactly what we expect for a theory like QED - a

Coulomb potential.

Let us continue with the non-abelian calculation for which we obtain

e−V (R)effT = 〈0|WC |0〉 ∼ e−τA (2.54)

where τ is the ‘string tension’ ∼ log g2

a2
, g is the gauge coupling, and a is a lattice

cutoff. Hence,

e−V (R)effT ∼ e−τRT (2.55)

thus,

V (R)eff = τR + c (2.56)

where c is a constant. Thus, for a non-abelian gauge theory, charges experience

a linear potential. This gives credibility to the notion that particles charged in a

non-abelian gauge theory will remain confined in bound states at low energies (large
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distances). The particular gauge group nature chooses is SU(3) and the model is

known as Quantum Chromodynamics (QCD). This by no means constitutes a proof

that QCD confines and yields the pions and nucleons of the Chiral Lagrangian at

low energies. In fact, no proof exists [12], but detailed numerical studies back up our

naive arguments [13].

2.2.5 The Standard Model

All the pieces are now in place. Putting them all together, in compact notation, the

SM is

LSM = −1

4
BµνBµν −

1

4
AaµνAaµν −

1

4
GaµνGa

µν

+ iQ̄Li /DQLi + id̄Ri /DdRi + iūRi /DuRi − (λijd Q̄
i
L ·HdjR + λiju ε

abQ̄i
LaH

†
bu

j
R + h.c.)

+ iĒLi /DELi + iēRi /DeRi + iν̄Li /DνLi − (λijl Ē
i
L ·HejR + h.c.)

+DµH
†DµH + µ2H†H − λ(H†H)2 (2.57)

where λij are 3 × 3 matrices and the · in the Yukawa term is an SU(2) contraction.

The gauge group of the model is SU(3)c × SU(2)L ×U(1)Y . The covariant derivative

is Dµ = ∂µ − igAaµτ
a − iY g′Bµ − igsG

a
µt
a where τa = 1

2
σa, where σa are the Pauli

matrices, and ta are the Gell-Mann matrices. The SM is anomaly free - that is, the

global symmetries that have been ‘gauged’ really are honest symmetries, which we

need in order to cancel the unphysical polarizations we have mentioned. All quarks

(leptons) are charged (neutral) under SU(3)c. The left handed fermions organize

themselves into SU(2)L doublets

EL =

 νL

eL

 and QL =

 uL

dL

 (2.58)

and then every left handed fermion gets a right handed partner that is an SU(2)L

singlet.

The lone scalar of the SM, the Higgs, is also an SU(2) doublet, is charged under the

U(1)Y , and is a SU(3)c singlet. A critical component of the SM is that the minimum
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of the Higgs potential is not at zero so that the Higgs gets a vev

〈H〉 =

 0

v√
2

 (2.59)

where v = 246 GeV.

This vev ‘breaks’ electroweak symmetry, dramatically altering the features of the

model and yielding the world we see. The Lagrangian is much uglier after electroweak

symmetry breaking so we will just summarize the qualitative features in the broken

phase. The SU(2)L × U(1)Y is broken to its U(1) subgroup of electromagnetism by

the vev of the Higgs. Three of the Higgs DOF are eaten to make the W± and the Z

massive. This makes the forces associated with these gauge bosons short ranged. The

fourth DOF from the Higgs is the particle we typically refer to as the Higgs. Finally,

SU(3)c remains unbroken and it confines by the process described in section 2.2.4.

Each fermion, except for the neutrinos, get a mass through the Higgs, albeit in a

slightly different mechanism than the gauge bosons. For example, looking just at the

left and right handed electron’s coupling to the Higgs in the unbroken phase,

L = −λĒL ·HeR + h.c. (2.60)

which after the Higgs gets a vev looks like

L = −λ 1√
2
ēLeR + h.c. (2.61)

which is typically written as a Dirac spinor mass term

L = −me(ēLeR + h.c.) = −meψ̄eψe. (2.62)

So the fermions do not get mass by eating any DOF from the Higgs, they get an

effective mass as a Dirac electron swaps right and left handed helicity components as

it bounces off a Higgs condensate.

It is nice to come full circle to one of the magical simplifications we noticed early

on in 2.2.3 when we noted that the Pauli terms for the leptons were vanishingly small.

The reason is the Pauli terms were not there for the leptons in the first place, as they

broke SU(2)L. The operator that would give a Pauli term would have been

1

Λ2
BµνH · ĒLσµνeR + h.c. (2.63)
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which after the Higgs gets a vev, contains a term

v

Λ

1

Λ
Fµν ēσ

µνe. (2.64)

This has an additional power of suppression of v/Λ instead of what we naively wrote

down at first which was
1

Λ
Fµν ēσ

µνe. (2.65)

2.3 Beyond the Standard Model

Many tools are on the table and now we can explore how we can use them to go

beyond the SM.

2.3.1 Cracks in the Standard Model

It is important to note that there are no more surprises lurking like there was in section

2.2.2. There really are only dimension four operators in the Lagrangian above. But

the lack of higher dimensional operators in the SM is just a feature of the model, not

necessarily a feature of nature. It could easily turn out that we have been neglecting

some other operators that we should take into account once we probe high enough

energy. Let us try to extend this algorithm of adding higher dimensional operators,

finding when perturbation theory fails, and then adding the necessary DOF in order

to patch up the model.

We know for sure there is an outstanding issue looming over us, and that is gravity.

The Einstein Hilbert action for General Relativity (GR) is

S =

∫ √
g d4x

(
1

16πG
R + LM

)
(2.66)

where gµν is the metric tensor, g = det gµν , R is the Ricci Scalar and L is the matter

content (which is just the SM Lagragian with ηµν → gµν for the time being). Note

that Newtons constant G has dimensions of mass−2 so it is standard to define the

Planck mass MP ≡ 1/
√

16πG. Expanding out in terms of fluctuations about a flat
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space background metric gµν ≈ ηµν + hµν and canonically normalizing the hµν field

we obtain

S =

∫
d4x

(
(∂h)2 +

1

MP

h(∂h)2 +
1

M2
P

h2(∂h)2 + . . .

)
(2.67)

where we have just written the operators schematically and neglected careful index

contractions. We can see that there are a whole slew of higher dimensional operators

suppressed by inverse powers of the Planck mass signaling the breakdown of pertur-

bation for E ∼ MP . While this problem is present, it is not of immediate concern

since the Planck mass MP ∼ G−1/2 ∼ 1015 TeV and this will have negligible impact

at our colliders operating at O(TeV). Thus, while gravity is a long way off from being

a concern for collider phenomenology, it is always there reminding us that at the very

least the SM is not the last word. This is a nice verification of why effective field

theory works so well - we simply do not have to bother with gravity at the relatively

meager energy scales of our colliders.

What we really want is higher dimensional operators that have effects at energy

scales we can actually probe. For example, two candidate operators that we could

write down and investigate are

OS =
1

Λ2
|H†DµH|2, (2.68)

and

OT =
1

Λ2
H†σiHAiµνB

µν (2.69)

where H is the Higgs field, σi are the Pauli matrices, Bµν is the U(1)Y field strength,

Aiµν is the SU(2)L field strength, and Λ is the unknown scale of new physics. Then

we can have the full Lagrangian

Ltot = LSM + aSOS + aTOT . (2.70)

It is standard to define

S ≡ 4 sin θw cos θwv
2

α
aS and T ≡ − v

2

2α
aT (2.71)

where v is the Higgs vev, θw is the weak mixing angle, and α is the fine structure

constant. This definition of S and T is so that new physics at the weak scale would
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have O(1) contributions to S and T. The plot S and T in figure 2.1 shows that these

parameters are extremely small, and are consistent with S = T = 0. The fact that

S and T are so small suggests that the scale of new physics contributing to these

operators is well above the TeV scale.10. Electroweak model and constraints on new physics 43

Figure 10.7: 1 σ constraints (39.35%) on S and T from various inputs
combined with MZ . S and T represent the contributions of new physics
only. (Uncertainties from mt are included in the errors.) The contours assume
115.5 GeV < MH < 127 GeV except for the larger (violet) one for all data which
is for 600 GeV < MH < 1 TeV. Data sets not involving MW are insensitive
to U . Due to higher order effects, however, U = 0 has to be assumed in all
fits. αs is constrained using the τ lifetime as additional input in all fits. The
long-dashed (magenta) contour from ν scattering is now consistent with the global
average (see Sec. 10.3). The long-dash-dotted (orange) contour from polarized e
scattering [129,131] is the upper tip of an elongated ellipse centered at around
S = −14 and T = −20. At first sight it looks as if it is deviating strongly but it is
off by only 1.8 σ. This illusion arises because ∆χ2 > 0.77 everywhere on the visible
part of the contour.

exotic) multiplets, which are predicted in many grand unified theories [253] and other
extensions of the SM, do not contribute to S, T , and U (or to ρ0), and do not require
large coupling constants. Such exotic multiplets may occur in partial families, as in E6

models, or as complete vector-like families [254].

There is no simple parametrization to describe the effects of every type of new
physics on every possible observable. The S, T , and U formalism describes many types
of heavy physics which affect only the gauge self-energies, and it can be applied to all
precision observables. However, new physics which couples directly to ordinary fermions,
such as heavy Z ′ bosons [229], mixing with exotic fermions [255], or leptoquark
exchange [172,256] cannot be fully parametrized in the S, T , and U framework. It is
convenient to treat these types of new physics by parameterizations that are specialized

June 18, 2012 16:19

Figure 2.1: 1 σ constraints (39.35%) on S and T from the various inputs combined with MZ . S and

T represent the contributions of new physics only. The contours assume 115.5 GeV < MH < 127 GeV

except for the larger (violet) one, for which the data is for 600 GeV < MH < 1 TeV. The relevant

portion of the data for this discussion is the red ellipse centered near S = T = 0 [19].

At this point, we could enumerate all other higher dimensional operators (see

[14] for a complete list), but the story is the same. There does not seem to be new

physics beyond the SM that we can detect with any significance. On one hand it is

wonderful that we have a model that holds well to O(TeV) and likely well beyond

this, but we expect some small corrections in the form of higher dimensional operators

which will eventually invalidate the model much above this scale. This makes the SM

unreasonably effective.

We could continue to enumerate all the possible motivations for new physics,

but before moving on there is one thing worth mentioning. Getting back to our
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original question, we want concise, beautiful laws of physics. The SM has lots of

parameters, and lacks a deep explanation of the mass hierarchies that appear and so

is not beautiful by this criteria. We would much rather have a more concise description

of nature, and for this reason alone it is worth pursuing BSM physics even though the

SM works very well in the meantime. That is, from an experimental point of view,

the SM is quite satisfactory but it is our desire and intuition for something simpler

that makes us look for a more fundamental model.

2.3.2 Advanced Dimensional Analysis

Given that our naive dimensional analysis is not yielding any indications for new

physics, let us again turn to the (quantum-corrected) beta functions to see if there are

any clues for new physics. For starters, let us return to one of our earlier calculations

for the QED beta function,

β =
∂e

∂ logE
=

e3

12π2
. (2.72)

Recall that the + sign in the beta function means that the electron’s charge grows

with energy.

We can go further than just noting the qualitative features of this equation and

solve it as a differential equation to obtain

e2(µ) =
e2(M)

1− e2(M)
6π2 log

(
µ
M

) . (2.73)

The meaning of this solution is that we can relate the electric charge at one energy µ

to the electric charge at another energy M . Since the charge grows with energy this

means at some point perturbation theory will break down, namely when e is O(1). If

we take µ < M and e(µ) to be the charge we see at typical energies, then M will be

the scale at which perturbation theory breaks down. Solving for M we obtain

M = µe
6π2

(
1

e(µ)2
− 1
e(M)2

)
. (2.74)

For e(M) = 1, e(µ)2 = 4πα ≈ 4π
137

, and µ = 1 GeV we obtain

M ≈ e60π2

GeV ∼ 10255 GeV. (2.75)
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This result means that quantum corrections do indeed push the electron charge

outside the perturbative regime and perturbation theory will fail at this high scale.14

New physics will have to come in to render the theory perturbative, as it did with the

W and Z, and the Higgs, but the consequences of this new physics are far removed

as this is many orders of magnitude larger than the Planck scale we already said

we would not worry about. While this example did not yield any consequences at

terrestrial energies, the result was intriguing. Using this new technology we can probe

the consistency of the SM up to higher energies in other ways.

Let us consider another simple model

L = iψ̄ /∂ψ −mψψ̄ψ +
1

2
∂µφ∂

µφ− 1

2
mφ

2φ2 − λ

4!
φ4 + igφψ̄γ5ψ. 15 (2.76)

Performing a one-loop calculation we obtain the one-loop corrected beta functions

and anomalous dimensions,

βg =
∂g

∂ logE
=

5g3

16π2
(2.77)

βλ =
∂λ

∂ logE
=

1

16π2

(
3λ2 + 8λg2 − 48g4

)
(2.78)

γmψ =
∂mψ

∂ logE
=

g2

16π2
(2.79)

γmφ =
∂mφ

∂ logE
=

g2

8π2

(
1− 2

m2
ψ

m2
φ

)
+

λ

32π2
(2.80)

For g we can solve and obtain

g(E)2 =
g(M)2

1 + 5g(M)2

8π2 log
(
M
E

) , (2.81)

and for the fermion mass

mψ(E)2 =
mψ(µ)2[

1 + 5g(M)2

8π2 log
(
M
E

)]5/2
. (2.82)

14Given that we assumed perturbation theory in order to perform this calculation in the first place

casts doubt on this precise energy, but the conclusion is the same - at some energy we will still lose

perturbative control.
15In the Yukawa coupling there is a factor of γ5 since we have made φ a pseudo-scalar. It is not

critical to the discussion that φ is a pseudo scalar, but it makes the calculation much easier since

we do not have to introduce counter terms for odd powers of φ.
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Both these equations have a similar form to that of the electron charge in QED in

that the coupling constants grow at high energies, but very slowly.

The γmφ equation has a much more complicated expression. Since g and the

fermion mass run slowly we can neglect their energy dependance in the γmφ equation

and assume them to be constant. Additionally, assuming λ is small we neglect it, and

solve the γmφ equation for the physical Higgs mass

mφ(E)2 = mφ(M)2 +
g2

4π2
log

M

E

(
2m2

ψ −mφ(M)2
)
. (2.83)

This equation has a subtly different form than the other solutions to the renormal-

ization group equations. For very large fermion mass mψ we have the simple relation

mφ(E)2 ∼ m2
ψ. (2.84)

This equation reflects the fact that the scalar mass is getting dragged all the way up

to the scale of the heavy fermion. That is, if the fermion is heavy, it is unavoidable

that the scalar is too. Taken at face value, this is not a concern. It is actually a good

thing, it is a prediction and the model is telling us that scalars are naturally heavy.

16

2.3.3 Fine-Tuning of the Higgs Mass

The case we just considered in equation 2.83 is a simple model. The SM is much more

complicated than this and the RG equations are hideously coupled. Nonetheless, it

turns out this feature persists and in general, scalars are naturally as heavy as the

heaviest mass scale around. Being a scalar, the Higgs displays this feature - no matter

what we set the Higgs mass to at a high scale, as we run it down to low energies,

quantum corrections will drag it up to the highest mass scale around. A priori this is

not a huge concern as experiment tells us that the Higgs is around 126 GeV, which is

16Fermions do not suffer this fine-tuning as can be seen for example in 2.82 - if we set the boundary

condition mψ(M) = 0 then no fermion mass is generated perturbatively. However fermion masses

can be generated when chiral symmetry is broken spontaneously by non-perturbative effects such as

in QCD or as we do in chapter 4.
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not too far from the heaviest mass scale in the SM, the top quark mass at 173 GeV.

So there is not a huge fine-tuning problem if we consider the SM in isolation.

But recall what we explored in section 2.3.1- there is always gravity lurking so

naively the Higgs mass should be O(Mp).
17 Furthermore we expect there to be new

physics, and thus new mass scales that arise between the Top mass and the Planck

mass which only compound the problem. The only way the SM plus gravity would

produce such a light Higgs is if there was an incredibly delicate cancelation of the

mass terms on the right hand side of 2.83. This delicate cancelation is known as

a fine-tuning. The conclusion is that, by any reasonable metric, the Higgs mass is

incredibly fine-tuned. This fine-tuning of the Higgs mass in particular is also known

as the hierarchy problem.

Given the staggering degree of fine-tuning of the Higgs mass, we should explore

options that assuage this tuning at least to some degree. In general, the Higgs mass

equation will be much more complicated, with many mass scales Mi coming in at

every order of perturbation theory in the dimensionless couplings gi which we express

as

mφ(E)2 = mφ(M)2 − g2
1

4π2
log

M

E

(
mφ(M)2 ±M2

1 ±M2
2 + . . .

)
± g2

2 + . . . (2.85)

where the +(−) are for boson (fermion) masses.

First of all, if the masses Mi were all the same for some reason then a cancelation

would be believable. From a physics perspective, that means the masses must be

related in some fashion, that is, there must be some sort of symmetry amongst them.

The oldest idea along these lines is supersymmetry (SUSY). Since fermion’s masses

and boson’s masses appear with opposite signs in the equation 2.85 for the Higgs

mass, the natural thing to do is have a symmetry that relates bosons and fermions -

this is SUSY. Unfortunately if SUSY is a symmetry of nature, it is broken at a scale

higher than the weak scale [19] leaving at least some fine-tuning remaining for the

Higgs. While SUSY has many other effects and properties that make it interesting to

17Since all the interactions in the Einstein Hilbert Action equation 2.66 have inverse powers of the

Planck mass technically this will never happen in perturbation theory, so it is really non-perturbative

contributions to the Higgs mass that concern us when it comes to gravity.
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study on its own, and moreover it could still be a symmetry of nature at very high

energies, it may not be the solution to the hierarchy problem.

We can also take note of the fact that there is one place where we have seen

naturally light scalars already - the pions of the Chiral Lagrangian in 2.2.3. Because

the pions are composite DOF, they are not sensitive to energy scales above the scale

at which their constituents confine. By making the Higgs a composite DOF it would

only be sensitive to physics up to the scale that the given model breaks down at since

the Higgs is no longer an appropriate DOF above this scale. Models of this type have

long been of interest, in particular, models of top condensation [76]. We explore a

toy model for a composite Higgs in chapter 4.

A final word on fine-tuning is worth reflection. Fine-tuning is a guide we use

to build new models of physics. Being natural is nothing nature has to adhere to

or respect. That is, the hierarchy problem does not have to be solved. This is in

stark contrast to the position we found ourselves in at the outset of sections 2.2.1,

2.2.2, and 2.2.3. In those cases, perturbation theory was breaking down and we had

no choice, if we wanted a model that had predictive power above a certain energy

scale we were forced into considering new physics beyond the model in consideration.

Being fine-tuned on the other hand is something that nature may or may not address

in time. Only in retrospect will we be able to tell what amount of fine-tuning nature

has chosen to be acceptable.18 If it turns out that nature is indeed not fine-tuned,

it will be a tremendous advance purely based on our intuition of how nature should

work.

2.3.4 The Strong CP Problem

We now turn our attention to a fine-tuning problem of a different sort in the SM, the

Strong CP problem. When we discussed the perturbative expansion in section 2.1.3

18Note that the level at which people will accept fine-tuning is a function of time. In the 80s

and 90s when the minimal supersymmetric SM (MSSM) was fashionable, people did not think there

would be much fine-tuning at all. Nowadays it is considered acceptable to have some degree of

fine-tuning. See [17] and [18] as examples of models with some degree of fine-tuning.
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we were not very precise about what we were expanding around, now we need to be

a bit more precise. In this section we follow chapters 93 and 94 of [9] closely.

As a toy model, let us consider the one dimensional Hamiltonian

H =
p2

2m
+
λ

4!
(x2 − v2)2. (2.86)

To find the ground state, we extremize the potential and find two stable solutions at

x = ±v. Classically the particle will be confined to one of the minima and it will un-

dergo simple harmonic motion about the minimum it chooses. Quantum mechanically

the situation is more subtle because there will be tunneling between the two minima so

one can not simply isolate a particle to one or the other. The true vacuum is going to

be some linear combination of the classical minima |0true〉 = α|x = +v〉+ β|x = −v〉.
A similar situation arises in a SU(N) non-abelian gauge theory where we have the

action

S = −
∫
d4x

1

2g2
Tr [F µνFµν ]. (2.87)

The ground states of this model are given by solutions to the equation F a
µν = ∂µA

a
ν −

∂νA
a
µ + fabcAbµA

c
ν = 0. Solutions to this are a ‘pure gauge’ and are of the form

Aµ(x) = iU(x)∂µU(x)†. The solutions are classified by the winding number which is

written as a surface integral over the field configuration

n =
1

24π2

∫
dSµε

µνρσTr [(U∂νU
†)(U∂ρU

†)(U∂σU
†)]

=
i

24π2

∫
dSµε

µνρσTr [AνAρAσ]

=
1

16π2

∫
d4x εµνρσTr [FµνFρσ]. (2.88)

When we quantize this theory there will be tunneling between the vacua labeled

by the integers n. The true vacuum will be linear combination of the vacua |n〉,
denoted the ‘theta’ vacuum

|θ〉 =
∞∑

n=−∞
e−inθ|n〉. (2.89)

The vacuum-to-vacuum transition for the theta vacuum is given by
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Zθ =
∞∑

n=−∞
e−inθ

∫
DAµ e−

∫
d4x 1

4g2
Tr [FµνFµν ]

=

∫
DAµei

∫
d4x

(
1

2g2
Tr [FµνFµν ]− θ

16π2
Tr [Fµν F̃µν ]

)
. (2.90)

Strikingly, a similar contribution to the path integral comes from a completely

different source. There is nothing stopping us from considering the more general

fermion mass term

Lmass = −mψ̄ei2αγ5ψ. (2.91)

It is convenient to perform a chiral rotation to study the effects of the parameter α,

ψ → e−iαγ
5

ψ,

ψ̄ → e−iαγ
5

ψ̄. (2.92)

For fermions charged under a non-abelian gauge group this change of variables induces

a Jacobian from the fermion integration measure [20]

DψDψ̄ → DψDψ̄ e−i
∫
d4x α

8π2
Tr [FµνFµν ] (2.93)

which has the effect on the action

S → S −
∫
d4x

α

8π2
Tr [F µνFµν ]. (2.94)

An analogous situation arises in QCD where the θQCD angle combines with the

argument of the determinant of the quark mass matrix to create an additional term

in the SM Lagrangian,

LCP = −nfg
2θ

32π2
εµνρσTr FµνF

ρσ (2.95)

where θ = θQCD− arg(|Mq|) and nf is the number of quarks. We did not include this

term in the SM originally because it is a total derivative,

εµνρσTr FµνF
ρσ = ∂µJ

µ = ∂µ2εµνσρTr (AνFσρ +
i2

3
gAνAσAρ), (2.96)

which will not contribute anything to an amplitude in a perturbative expansion in

QCD.
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However, this is not the end of the story as we know QCD is not a convenient

way to analyze low energy physics as we explored in section 2.2.3. Instead we should

be analyzing effects of the theta term on the low energy DOF, the nucleons and

pions of the Chiral Lagrangian. Since QCD depends on the combination θ = θQCD −
arg(|Mq|) this means in the Chiral Lagrangian wherever we see arg(|Mq|) we should

take arg(|Mq|)→ −(θQCD − arg(|Mq|)), or simply arg(|Mq|)→ −θ.
Taking our generalized fermion mass matrix 2.91 into account in the Chiral La-

grangian 2.38 and expanding in small θ yields an additional interaction term

Lθ = −θc+m̃

fπ
πaN̄σaN + . . . (2.97)

where c+ = 1.7 and m̃ = mumd
mu+md

. This term yields an electric dipole moment of the

neutron

dn = 3.2× 10−16 θ e cm. (2.98)

The limit on the dipole moment is |dn| < 6.3 × 10−26 e cm which puts a bound on

theta, |θ| ≤ 2 × 10−10. If θ were just any old parameter its incredibly small value

would be strange in its own right. However, the problem is confounded by the fact

that θ is the difference between two parameters, θQCD and θq, the physical origin of

which are totally unrelated. Left alone, this implies an implausible cancelation and

thus a huge fine-tuning. The θ term in 2.95 violates CP, hence this fine-tuning, and

associated lack of CP violation, is known as the Strong CP problem. We can either

accept this tuning, or try to understand if there is some sort of physics that drives θ

so close to zero.

One possible resolution to this problem is based on the fact that the QCD vacuum

energy E(θ) is minimized for θ = 0 (mod 2π) [21]. We can see this as follows. Starting

from the Euclidean path integral for QCD (with just massive quarks charged under

QCD) in a volume V

e−V E(θ) =

∫
DADqDq̄ exp

(
−
∫
d4xL

)
(2.99)

where

L = − 1

4g2
Tr(GµνGµν) + q̄i(γ

µDµ +mi)qi +
iθ

32π2
Tr(GµνG̃µν). (2.100)
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If we integrate out the quarks we obtain

e−V E(θ) =

∫
DA det (γµDµ +mi)DqDq̄×

× exp

∫
d4x

(
1

4g2
Tr(GµνGµν)−

iθ

32π2
Tr(GµνG̃µν)

)
. (2.101)

In pure QCD the quarks have vector-like couplings. Thus for each eigenvalue λ of

the operator γµDµ there is another eigenvalue of opposite sign. Thus

det (γµDµ +mi) =
∏
λ

(iλ+M) =
∏
λ>0

(iλ+M)(−iλ+M) =
∏
λ>0

(λ2 +M2)2 > 0

(2.102)

and so det (γµDµ +mi) is positive and real. Hence if θ was zero, the integrand

consisting of the gluon action and the fermion determinant would be real and positive.

If we include the θ term (with its i coefficient), this contributes a phase which will

only reduce the value of the path integral, and thus increases the value of E(θ). Thus

E(θ) is minimized at θ = 0. This further implies that if θ was a dynamical field, it

would be driven to a vev of zero in order to minimize energy. If theta is a dynamical

field there will be a new particle, the axion, associated with fluctuations in the field.

In chapter 3 we explore a model that provides an axion candidate.

2.4 Way Beyond the Standard Model

2.4.1 Randall-Sundrum Space

Thus far when confronted with a discrepancy between experiment and theory we have

resorted to the algorithm of introducing new DOF in order to render the theory vi-

able. A priori the hierarchy problem does not necessitate new DOF like the previous

problems we encountered, that is, there is no discrepancy between theory and exper-

iment. Given that we do not necessarily need to add any new particle content to our

model to rectify the SM, let us consider a novel departure from the methods outlined

so far in this dissertation that was first proposed in [22]. In this section and next, we

follow [23] closely.
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We work on the background metric

ds2 = gMNdx
MdxN = e−2kyηµνdx

µdxν − dy2 (2.103)

where ηµν is the flat 4 dimensional space Minkowski metric. The y coordinate is

truncated on the interval: 0 < y < πR. We postulate the action

SHiggs =

∫
d5x
√
g(∇µφ∇µφ−M2

5φ
2 − λφ4)δ(y − πR)

=

∫
d4x (e−2πkRηµν∂µφ∂νφ−M2

5 e
−4πkRφ2 − λe−4πkRφ4) (2.104)

where g = det gMN and M5 is the 5d scalar mass that is naively susceptible to the

large quantum corrections we have discussed. In order to analyze the 4d effective

model we canonically normalize the scalar field with the rescaling φ → eπkRφ which

results in the 4d effective action,

Seff =

∫
d4x (ηµν∂µφ∂νφ− (M5e

−πkR)2φ2 + λφ4). (2.105)

The 4d effective scalar mass is identified as m4 = M5e
−πkR.

Assuming that M5 ≈ k ≈Mp and that we want m4 ∼ TeV, this means πkR ≈ 35

or R = 35
πk
≈ 10M−1

p . Hence a mild hierarchy between the k and Planck mass results

in an exponentially large hierarchy between the scalar mass and the Planck mass. All

mass scales at y = πR are similarly warped, making an effective cutoff on the brane

at y = πR a TeV. In particular if we localize the Higgs field to the ‘TeV’ brane its

mass will be similarly protected from large corrections.19

This model is known as the Randall-Sundrum (RS) model and in fact, this geom-

etry could be used to explain any hierarchy. Generally speaking, we can ‘geometrize’

our model building by mapping an energy scale into the geometry of the extra di-

mension. Given the success we have had so far, let us consider a larger framework

that builds on what we have uncovered.

19Before going any further, we should temper the excitement that we have potentially solved the

hierarchy problem once and for all. RS space does not necessarily solve the hierarchy problem, but

recasts it in a geometric fashion so that we might be able to think about it in a different way.
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2.4.2 AdS/CFT Correspondance

We now consider an even more radical proposition than we did in the last section,

first considered by Maldacena in [24]. The conjecture is summarized compactly as

Type IIB String Theory

on AdS5 × S5

DUAL

⇐⇒
N = 4 SUSY Yang Mills.

On the left hand side we have a ten dimensional manifold: a five dimensional anti de

Sitter space (the maximally symmetric Lorentzian manifold with constant negative

scalar curvature) and five other dimensions compactified into a five sphere S5. On

the right hand side is a four dimensional supersymmetric gauge theory with N = 4

supercharges. By ‘dual’ we mean that either side is an equivalent description of the

same physics.

The meaning of the correspondence is elucidated by the relationship between the

symmetries and parameters on either side of the correspondence. The symmetries

are related as follows. The isometry group of the five dimensional AdS is equivalent

to the group SO(2,4), the conformal group in four dimensions. The isometry group

of the compactified space S5 is SO(6), which is isomorphic to the group SU(4), the

R-symmetry group of the SUSY gauge theory. The parameters of this correspondence

are related by
R4
ADS

l4s
= 4πg2

YMN (2.106)

where the AdS5 curvature is RADS = 1
k
, ls is the string length and gYM is the Yang-

Mills coupling.

In terms of concrete calculations, we are interested in the correspondence between

generating functionals

Z[φ0] =

∫
DφCFT eiSCFT [φCFT ]+i

∫
d4x φ0O =

∫
DφeiSbulk[φ] ≡ eiSeff [φ0] (2.107)

where the φ0 are the AdS fields evaluated on the AdS boundary at z = −∞, where

we denote φ0(xµ) ≡ Φ(xµ, z)|AdS Boundary. This means we can calculate the correlation

functions of the CFT treating the AdS fields as source terms for the CFT operators,

〈T [O1 . . .On]〉 =

(
−i δ

δφ0,1

)
...

(
−i δ

δφ0,n

)
logZ[φ0]. (2.108)
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If we are to make contact with anything that resembles the SM, we first need to

analyze the limit where we can neglect the full stringy-ness of the model. In order

to do this, we will need to work in the regime of small ls. In particular we will take

R4
ADS

l4s
� 1 and hence 4πg2

YMN � 1.20 This means we are probing a strongly coupled

theory on the right hand side of the correspondence. Alternatively we could have

taken the weak coupling limit on the right hand side of the correspondence in order

to probe the strong coupling regime on the left hand side. Thus, this correspondence

enables us to probe and model strongly coupled physics that is otherwise outside our

perturbative description.

Even after taking the
R4
ADS

l4s
� 1 limit, we are a long way from the SM. We would

like to deform this elegant, constrained, framework into something we can use to

model BSM physics. We want to expand the model from the last section where we

modeled a naturally light scalar to include features like ultraviolet and infrared cutoffs

and symmetry breaking.

First let us go to a different coordinate system for the AdS space by defining

z = eky/k so that the metric is

ds2 =

(
1

kz

)2

(ηµνdx
µdxν − dz2) (2.109)

where 1/k < z < eπkR/k.21 Now the scaling invariance of the AdS space is transparent

under z → αz and xµ → αxµ. On the CFT side rescaling xµ means changing the

energy scale, that is, zooming in (xµ → αxµ for α < 1) in position space is akin to

probing higher energies. This suggests the coordinate z on the AdS side is like an

energy scale of the CFT. This implies manipulating localized fields throughout the

AdS space is akin to modeling the energy scales of the CFT.

20Technically we also need the string coupling gs → 0 so that the masses of non-perturbative

string states ms ∼ 1
gs

become negligible. Since gs ∼ 1
N we must additionally require that we work

in the large N limit.
21A common criticism that arises at this point is that in these coordinates we seem to have

reintroduced the hierarchy problem between the Tev and Planck branes. In practice what really

matters is that we can stabilize this geometry in a natural way. A standard phenomenological

solution to this is the Goldberger-Wise mechanism [25].
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This indicates we can go further and break the full conformal invariance of the

CFT by simply truncating the AdS space. A brane at small z which truncates the

extra dimension corresponds to an ultraviolet (high energy) cutoff for the CFT. The

dual of a brane at large z has a more subtle interpretation on the CFT side of the

correspondence. We can note that a brane at large z sets the scale for a tower of

massive states on the AdS side. Hence, the appearance of such a massive spectrum

on the CFT side means conformal invariance has been (spontaneously) broken and

so the brane at large z provides the dual of this spontaneous breaking [26].

This implies we were doing something very different than we thought we were when

we were manipulating the Higgs action on seemingly arbitrary background metric. In

reality we were probing a strongly coupled theory with composite DOF. So in some

sense this is nothing entirely new, but a new way of probing strongly coupled field

theories.

So far this is just a sketch of the correspondence. A full summary is well outside

the scope of this dissertation, but a tidy dictionary of the AdS/CFT correspondence

relevant to model builders is nicely summarized in table 2.1 [27].

A host of questions arise for this new framework. In particular the gravitational

sector on the AdS side will be dramatically different than four dimensional GR and

there will be TeV gravitational fluctuations associated with the distance between the

branes in the z coordinate. In chapter 3 we explore these gravitational excitations

and other light DOF arising from warped extra dimensions.
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Bulk of AdS ⇐⇒ CFT

Coordinate z along AdS ⇐⇒ Energy scale in CFT

UV brane ⇐⇒ CFT cutoff

IR brane ⇐⇒
CFT’s Conformal symmetry

spontaneously broken

KK modes localized to IR brane ⇐⇒ Composites of CFT

KK modes localized to UV brane ⇐⇒ Elementary fields coupled to CFT

Gauge fields in bulk ⇐⇒ global symmetry of CFT

Bulk gauge symmetry broken

on UV brane
⇐⇒ Global symmetry not gauged

Bulk gauge symmetry unbroken

on UV brane
⇐⇒ Global symmetry weakly gauged

Higgs on IR brane ⇐⇒
CFT becoming strong

produces composite Higgs

Bulk gauge symmetry broken

on IR brane by BCs
⇐⇒

Strong dynamics that breaks

CFT also breaks gauge symmetry

Table 2.1: AdS/CFT Dictionary



Chapter 3

Revealing Randall-Sundrum

Hidden Valleys and a Warped

Solution to the Strong CP Problem

Progress in particle physics is typically imagined as a slow march towards higher

energy, with increasingly advanced colliders and the discovery of particles with ever

larger mass, as outlined in sections 2.2.1 and 2.2.2. Hidden Valley models are a

departure from this paradigm and its associated collider signatures. In these models

there is an energy barrier, that once overcome, will give way to a new spectrum

of light states in colliders that were previously inaccessible. Their phenomenology

is unique and unlike standard BSM scenarios. Moreover, they have unanticipated

collider signatures that experimentalists might not otherwise be looking for. Standard

methods of data analysis such as looking for missing transverse energy are not effective

in searching for Hidden Valleys. Instead, we need to search specifically for the novel

collider signatures of these models in order to see signals of Hidden Valleys.

One class of light particles are of considerable interest in particular - axions. This

is due to the fact that the axion is a candidate solution to the strong CP problem,

as was reviewed in section 2.3.4. In standard axion models the SM is enlarged by

an additional global chiral U(1) symmetry, the Peccei-Quinn (PQ) symmetry. This

symmetry is then spontaneously broken resulting in a Goldstone boson, the axion.
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Explicit breaking from QCD instanton effects then gives the axion a potential such

that it relaxes so as to eliminate the CP violating phase in the QCD lagrangian. In the

early minimal axion models the scale of symmetry breaking was the electroweak scale

which is in severe disagreement with astrophysical and cosmological data. However,

the axion concept itself still appears an attractive solution to the strong CP problem

due to its simplicity, and remains an active research area.

Both of these concepts are naturally incorporated in the context of compact extra

dimensions, where light degrees of freedom can arise from 5D gauge symmetries. The

5D gauge symmetries then manifest themselves in the 4D effective theory as light

DOF either as Goldstone bosons or 4D gauge fields. Although standard 4D gravity

would result in extremely suppressed effective interactions, compact extra dimen-

sional scenarios lower the scale of gravitational interaction. The TeV gravitational

fluctuations will then create a bridge to otherwise hidden light sectors. Models of this

form were collectively investigated in [62].

3.1 Introduction

In this chapter we study cases in which there may be additional light fields which

reside within the same RS geometry. In principle, such fields may be playing an

important role in solving issues within the SM, such as the strong CP problem [34],

however we take the approach of studying a generic class of models in which there

are new light particles that have greatly suppressed couplings to SM fields. The most

likely candidates for such light particles would be Goldstone bosons, whose masses

are small in comparison with the weak scale due to a(n approximate) shift symmetry,

or new gauge fields, protected by a 4D gauge symmetry. Both classes of particles,

Goldstone bosons and 4D gauge fields arise naturally from 5D gauge symmetries as

a consequence of the different boundary conditions [35] that one may impose on the

5D gauge transformations (see [36] for reviews and additional references).

A main result of this analysis is the observation that extra-dimensional gravita-

tional excitations [37, 38, 39], whose couplings to such hidden sectors (HS) is inde-
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pendent of gauge-coupling [40], create a bridge between the visible and hidden fields.

Randall-Sundrum models are thus a natural setting for Hidden Valley models, in

which a new sector is separated from the SM through an “energy-barrier” [41, 42].

In RS scenarios, the role of the energy-barrier is played by the extra-dimensional

gravitational excitations of the Randall-Sundrum geometry.

As an explicit example, we construct a novel axion solution to the strong CP

problem which is in some senses a revival of the earliest axion models where elec-

troweak scale physics produces a Peccei-Quinn (PQ) axion [43, 44]. This 5D axion

is hidden by a small extra-dimensional gauge coupling, but has TeV-scale associated

Kaluza-Klein excitations, unlike in previous models [45], in which the IR brane is

coincident with the scale of PQ symmetry breaking. This model shares some features

with composite axion models [46, 47, 48], although the effective compositeness scale

in this case is close to the electroweak scale, and is decoupled from the scale associ-

ated with the axion coupling constant. The gravity sector can act as a bridge to the

axion sector, resulting in a greatly altered collider phenomenology, and necessitating

a re-evaluation of the usual astrophysical bounds on such light fields.

In Section 3.2 we describe the basic setup for an RS hidden gauge sector. In section

3.3 we discuss direct couplings of SM fields to the hidden sector. In section 3.4, we

calculate the couplings of RS gravitational fluctuations to hidden sector fields, and in

section 3.5 we describe a toy model in which the RS hidden sector is responsible for

producing an axion which resolves the strong CP problem. In section 3.6 we describe

the collider phenomenology of such hidden sectors, while in section 3.7 we discuss

astrophysical constraints on light hidden RS Goldstone bosons. In Appendices 3.9

and 3.10, we give Feynman rules for the interactions of hidden sector fields with RS

gravity, and describe details concerning gauge fixing.
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3.2 Basic Setup

We work in an RS geometry, using the coordinate convention where the metric is

conformally flat:

ds2 =

(
R

z

)2 [
ηµνdx

µdxν − dz2
]

(3.1)

Branes at z = R,R′ truncate the extra dimension, with R ∼ M−1
Pl , and R′ ∼ TeV−1.

The electroweak hierarchy problem is alleviated as the cutoff scale for radiatively

divergent observables in the low energy theory is lowered to near the TeV scale. It

is presumed new physics comes in near this scale which softens this dependence on

the UV scale. The model is constructed on an S1/Z2 orbifold in order to obtain

the chiral spectrum required to reproduce the SM. The gauge fields are assumed to

propagate in the bulk, and the mechanism of electroweak symmetry breaking is left

unspecified, as it is model-dependent. A TeV brane localized Higgs [22], a Higgsless

mechanism [28, 29, 30], or a 5D gauge field Higgs [31, 32], or some combination of

these ideas could be responsible for the generation of fermion and gauge boson masses.

We gauge a new symmetry (not necessarily abelian) in the bulk of the extra

dimension. The 5D Lagrangian for this gauge symmetry is given by:

L5D = −1

4

√
g
[
gMNgRSBa

MRB
a
NS

]
− 1

2

√
g (Ga)2 +

√
gca

δGa

δβb
cb (3.2)

The first term is the usual 5D gauge kinetic term, and the second term is a gauge

fixing term which removes 5D kinetic mixing between the Bµ and B5 fields. The

last term is a ghost Lagrangian that restores unitarity to the gauge-fixed non-abelian

theory. In Appendix 3.10, we provide further discussion of gauge fixing.

To determine the spectrum of the gauge sector, we expand the bulk gauge fields in

terms of eigenvalues of the 4D gauge equations of motion: Bµ(x, z) = εµ(p)f(z)eip·x.The

bulk equations of motion for the 4D vector-field wave functions in this geometry are:

f ′′ − 1

z
f ′ +M2f = 0 (3.3)

and the solutions to this eigenvalue problem are

f(z) = z (AJ1(mnz) +BY1(mnz)) . (3.4)
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The coefficients A,B and eigenvalues, mn, are found by choosing and imposing bound-

ary conditions and suitably normalizing the 4D effective fields.

We study two scenarios. First we take boundary conditions that produce B5 zero

modes (5D Goldstone bosons) due to breaking the 5D gauge symmetry twice, once

on each brane. In the other scenario, we assume that the 4D gauge symmetry is

unbroken on both branes, with resulting Bµ zero modes. We also discuss explicit and

spontaneous breaking of these symmetries which would lead to Goldstone (gauge)

field masses in each of these models, respectively.

3.2.1 Hidden RS Goldstones

To obtain Goldstone bosons from the 5D gauge symmetry, a subgroup of the gauge

symmetry must be broken twice, once at the UV brane, z = R, and again at the IR

brane, z = R′. The boundary conditions which achieve this, and which satisfy the

5D action principle, are Ba
µ|z=R,R′ = 0. In this section, we assume that the entire

gauge group is broken twice in this way, and thus the number of Goldstone bosons is

equal to the rank of the original bulk gauge symmetry. We additionally suppress the

internal gauge indices, and take the rank of the coset space (the number of Goldstone

bosons) to be N .

For the B5, the equation of motion in the gauge we choose is:

�B5 − ∂z
[
z∂z

(
1

z
B5

)]
= 0 (3.5)

There is a zero mode solution to this equation where �B5 = 0. In this case, the wave

function for the B5 zero-mode is given by B5 = B5(x)ζ(z) with R
z
ζ(z) = A0 +B0 log z.

The boundary condition Bµ|R,R′ = 0 ensures that there are no necessary boundary

gauge fixing terms, and so the boundary conditions for B5 simply arise from the terms

coming from integration by parts of the bulk gauge fixing term. These impose:

∂z

(
1

z
B5

)∣∣∣∣
R,R′

= 0, (3.6)

and thus the B5 zero mode takes the following form:

B
(0)
5 (x, z) =

√
2g5D

√
R√

R′2 −R2

z

R
B

(0)
5 (x), (3.7)
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where the overall coefficient ensures that the B
(0)
5 is canonically normalized in the 4D

effective theory.

The residual gauge symmetry, after adding the gauge fixing term specified in

Appendix 3.10, is given by:

�β − z∂z
(

1

z
∂zβ

)
= 0, (3.8)

implying that there is a residual subgroup which is global from the perspective of the

4D coordinates: β(z) = β0 + β2z
2.

The spectrum of Bµ modes can be found by imposing the boundary conditions on

the solutions to the bulk equations of motion, (3.3). The eigenvalue problem is then:

J1(mnR
′)

Y1(mnR′)
=
J1(mnR)

Y1(mnR)
(3.9)

with approximate solutions mnR
′ = 3.83, 7.02, 10.17, 13.32, ... The B5 Goldstone

bosons and their associated vector KK-modes are hidden from the standard model

in one of two ways. Either the gauge coupling associated with this 5D symmetry is

very small, g5D �
√
R, or the SM does not carry quantum numbers under the new

symmetry.

The effective scale of symmetry breaking that this Goldstone boson corresponds

to is given by (see also [45]), as we will show explicitly in Section 3.3:

feff =
1√
2R′

√
R

g5D

, (3.10)

and we will also see that couplings of this Goldstone boson to other light fields trans-

forming under the 5D gauge symmetry are suppressed by this breaking scale. We

note that the scale feff can be parametrically larger than the IR scale, 1/R′ if the 5D

gauge coupling is chosen such that g5D �
√
R. 1

1Such choices may be in conflict with the conjectured bounds on gauge couplings that arise by

considering the spectrum of charged Planck scale black hole remnants [49]. While perfectly sound

from an effective field theory point of view, it is likely that a new effective cutoff is introduced

which is given approximately by Λ = g5D

√
R, parametrically smaller than the 5D Planck scale. New

physics (perhaps stringy in nature) must appear at this scale which drive the gauge coupling to be

strong enough to avoid these bounds.
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3.2.2 Hidden RS Gauge symmetries

In this section, we briefly analyze the scenario in which the 4D portion of bulk gauge

symmetry is completely unbroken, and there are Bµ zero modes in the theory. In this

case, the boundary conditions are:

∂zBµ|z=R′,R = 0 (3.11)

In this scenario, the residual gauge symmetry on the branes corresponds to transfor-

mations that are a function only of the 4D coordinates: ∂zβ|z=R,R′ = 0. In this case,

there is a subgroup of the residual gauge transformations where the gauge transfor-

mation parameter is a function of the 4D coordinates only: β = β(x). Thus this 5D

gauge symmetry has a residual unbroken 4D gauge symmetry corresponding to the Bµ

zero-mode. The remaining gauge freedom contains z-dependence, and corresponds to

transformations of the tower of Bµ Kaluza-Klein modes.

Using the 5D bulk solution in Eq. (3.4) in coordination with these boundary

conditions, the eigenvalue problem is

J0(mnR
′)

Y0(mnR′)
=
J0(mnR)

Y0(mnR)
(3.12)

with approximate solutions mnR
′ = 0, 2.45, 5.56, 8.70, 11.84, .... The effective gauge

coupling for the zero-mode in terms of the geometrical parameters and the 5D gauge

coupling is:

g4D =
g5D√
R log R′

R

. (3.13)

3.3 SM Couplings to RS Hidden Sectors

Matter fields in the standard model may have couplings to the HS fields which are

suppressed by a small extra dimensional gauge coupling. In this section we discuss

the nature of these couplings to an unbroken HS gauge symmetry, and to a HS gauge

symmetry which is broken to a global subgroup, producing a light 5D Goldstone-

boson. We work out the case of a 5D fermion coupled to the HS; couplings to fields

with different spin can be derived straightforwardly.
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The action for a 5D fermion coupled to a HS U(1) with gauge fields BM is given

by:

S =

∫
d5x
√
g
[
Ψ̄i6DΨ +

c

R
Ψ̄Ψ
]

(3.14)

where DM is the hermitian gauge covariant derivative

DM =
1

2

(−→
∂ M −

←−
∂ M

)
− iqBM , (3.15)

and c is the 5D bulk Dirac mass in units of the curvature. The additional terms

involving spin connections that can appear in non-trivial geometries vanish with this

metric. The 5D Dirac fermion can be expanded in terms of KK-modes:

Ψ =
∑
n

 gn(z)χn(x)

fn(z)ψ̄n(x)

 . (3.16)

The functions χn(x) and ψ̄n(x) are solutions to the 4D Dirac equation, each with

mass mn, while the wave functions fn and gn are solutions to the 5D equations of

motion with eigenvalues mn.

We choose boundary conditions for the 5D fermion such that there is a massless

mode (e.g. (++,−−) boundary conditions, where − refers to Dirichlet boundary

conditions). Depending on the choice of the bulk mass term, c, the zero-mode fermion

is either localized on the UV brane (c < 1/2), or on the IR brane, c > 1/2.

3.3.1 Fermion Couplings to a B5 zero mode

In the case that the extra dimensional gauge symmetry is broken on both branes, and

there is a massless B5, there is a set of field redefinitions that may be performed that

elucidate the Goldstone nature of this field. This is in close analogy with the standard

prescription in 4D theories with spontaneous global symmetry breaking, where a field

Φ may be redefined as Φ → eiπ/fΦ′, where π are the Goldstone degrees of freedom

that couple derivatively, and Φ′ contains only the vev f , and the radial fluctuations

of the field. Similarly, fermions Ψ which carry charge q under the global symmetry

broken by the vev of Φ can be redefined as Ψ → eiqπ/vΨ′, where the transformation



53

law for Ψ′ is trivial, with the transformation of Ψ being carried by the shift symmetry

of the Goldstone boson.

For the fermion field in our discussion, the field redefinition can be taken to be [50]

Ψ(z, x) = exp

[
iq

∫ z

z0

dz′B5(x, z′)

]
Ψ′(z, x). (3.17)

The transformation law for Ψ′ is then

Ψ′(z, x)→ eiqβ(z0)Ψ′(z, x), (3.18)

independent of z. The constant z0 is arbitrary, however it can be chosen in a conve-

nient manner that depends on the 5D EWSB model into which this HS is embedded.

Under this redefinition, for an abelian HS, the fermion gauge invariant kinetic term

is modified in the following way:

Ψ̄i 6DΨ→ Ψ̄′i6D4Ψ′ − Ψ̄′iγ5∂5Ψ′ − q
∫ z

z0

dz′∂µB5(z′)Ψ̄′γµΨ′. (3.19)

Note that the B5 now couples derivatively in the 4D coordinates, as expected for

a Goldstone boson. In the presence of additional fields, such as Higgs scalars which

carry HS quantum numbers, (as was the case in [50]), the most convenient redefinition

may be slightly different, and could involve the scalar degrees of freedom.

We can now determine the effective global symmetry breaking scale that produces

the B5 Goldstone boson, and read off its corresponding classically conserved current.

From the action after the redefinition, we see that the interactions of the B5 zero

mode with fermions is given by:

Leff = −q
∫
dz
√
g

∫ R′

z

dz′A0

(
z′

R

)(
∂µB

(0)
5 (x)

)
Ψ̄′eµaγ

aΨ′

= −q∂µB(0)
5 (x)

∫ R′

R

dz
g5D√
2R

(
R

z

)4
z2 − z2

0

R′
(
Ψ̄′γµΨ′

)
≡ −q∂µB(0)

5 (x)
∑
m,n

[
1

fmnL

χ̄mσ
µχn +

1

fmnR

ψmσ̄
µψ̄n

]
(3.20)

where

1

fmnL

=
g5D√
2R

∫ R′

R

dz

(
R

z

)4
z2 − z2

0

R′
gm(z)gn(z)

and
1

fmnR

=
g5D√
2R

∫ R′

R

dz

(
R

z

)4
z2 − z2

0

R′
fm(z)fn(z). (3.21)
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The most convenient choice for z0 is model dependent, depending primarily on ad-

ditional brane localized sources of explicit breaking of the 5D gauge symmetry. For

example, a Dirac-type mass that mixes 2 5D fermions on the IR brane (one produc-

ing a LH zero mode, the other a RH zero mode) would transform under the above

redefinition as:

MΨ̄LΨR + h.c.→M exp

[
i(qR − qL)

∫ R′

z0

dz′B5

]
Ψ̄′LΨ′R + h.c., (3.22)

thus introducing additional interactions of the B5 zero mode with fermions which

are physically equivalent to the types of interactions in Eq. (3.20). Such interactions

contribute to the amplitudes in such a way as to give the same effective coupling in

any physical process. Choosing z0 = R′ for such a model eliminates this additional

contribution to the coupling, such that the entire interaction with fermions can be

read from Eq. (3.20).

Let us assume that there is a χ zero mode arising in Ψ′, and that there is a bulk

Dirac mass term, c, that determines the localization of this zero mode. The zero

mode profile is then given by:

g0(z) = κ
( z
R

)2−c
. (3.23)

This fermion is localized towards the UV (IR) brane for c > (<)1/2. Plugging this

wave function into the expressions in Eq. 3.21, we find that the associated breaking

scale for left handed zero mode fermions as a function of the c-parameter is given by:

f 00
L =

 1
R′

√
R√

2g5
c > 1/2 UV localized

1
R′

√
R√

2g5

1
3/2−c c < 1/2 IR localized,

(3.24)

roughly confirming the interpretation of the 5D gauge coupling in terms of a symme-

try breaking scale, Eq. (3.10).
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3.3.2 Gauge Field Couplings to a B5 zero mode

The redefinition (3.17) may produce a non-trivial Jacobian in the path integral mea-

sure, reflecting explicit breaking of the global shift symmetry of the B5 Goldstone

boson through anomalies [51, 20]. Such anomalies result in couplings of the B5 zero

mode to the 5D gauge fields, including SM gluons and photons [50, 45].

In the bulk, the theory is vector-like, and there can be no anomalies, however the

boundary conditions are chosen to project out a chirality on the branes to obtain a

low energy chiral spectrum. The contributions of a single 5D fermion with a chiral

zero mode to the anomaly are evenly distributed on the boundaries of the space, with

half of the chiral anomaly localized on the UV brane, and the other half on the IR

brane [52, 53]. Under an anomalous 5D gauge transformation, the action shifts by:

δS =

∫
d4x

∫ R′

R

dz β∂MJ
M −

∫
d4x βJ5

∣∣R′
R
≡
∫
d5x βA, (3.25)

with JM given by

JM ≡ √gΨ̄γMΨ, (3.26)

and the anomaly, A, is given by:

A(x, z) = 1
2

[δ(z −R) + δ(z −R′)]∑f q
f
(
qf2Y

16π2F · F̃ + Tr τfa τ
f
a

16π2 W · W̃ + Tr tfat
f
a

16π2 G · G̃
)

≡ 1
2

[δ(z −R) + δ(z −R′)]Q(x, z) (3.27)

Such anomalies are not an indication of a “sick” theory, since the transformation

is only anomalous on the boundaries of the extra dimension, where the 5D gauge

symmetry is restricted to be global with respect to the 4D coordinates.

The resulting action after the field redefinition (3.17), is augmented by the follow-

ing term:

Sanomaly = −1

2

∫
d4x

[∫ z0

R

dz′B5Q(R, x)−
∫ R′

z0

dz′B5Q(R′, x)

]
. (3.28)

In terms of the zero mode B5, which has the profile given above, these interactions

are:

Lanom =
1

2
A0B

(0)
5 (x)

[(
z2

0 −R2
)
Q(R)−

(
R′2 − z2

0

)
Q(R′)

]
. (3.29)
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Defining Q± ≡ Q(R′)±Q(R), we have,

Lanom =
1

2
A0B

(0)
5 (x)

[(
2z2

0 −R2 −R′2
)
Q+ −

(
R′2 −R2

)
Q−
]
. (3.30)

As mentioned above, the physics is not dependent on the choice of z0, however

there are choices which are more convenient than others. Again, in the presence

of a Dirac mass term on the IR brane, a sensible choice is z0 = R′. If another

value is chosen, the interactions of the Goldstone boson with fermions arising in

equation (3.22) will lead to additional triangle loop diagrams which contribute to the

interaction in Eq. (3.30) in such a way as to render the physical result independent

of z0. The anomaly interaction with the choice z0 = R′ is then given by:

Lanom =
1

2
A0

(
R′2 −R2

)
B

(0)
5 (x)

[
Q+ −Q−

]
. (3.31)

Finally, plugging in the normalization coefficient for the B5 zero mode, the effective

interaction of the B5 zero mode is given by:

Lanom =
1√
2

g5√
R

√
R′2 −R2B

(0)
5 (x)

[
Q+ −Q−

]
. (3.32)

And the effective suppression scale for the anomalous interactions of the B5 zero mode

with SM gauge bosons is approximately

f 00
anom =

1

R′

√
R√

2g5

, (3.33)

in agreement with the effective Goldstone boson scale arising from the couplings to

fermion zero-modes in Section 3.3. There are additional interactions of the B5 with

gauge boson KK-modes when the anomalies Q± are expressed in terms of a KK-mode

expansion.

3.4 Couplings to RS Gravity

Unlike the couplings of the Goldstone sector to SM fields, the couplings of the exci-

tations of RS gravity to the gauge fields Bµ (or physical B5 Goldstone bosons) are

independent of the 5D gauge coupling [39, 40]. Thus while the gauge sector may
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be “hidden” from the SM fields, the couplings of the hidden sector to TeV brane

localized gravitational waves are suppressed only by the IR brane local cutoff scale.

In this section, we calculate the couplings of RS gravitational excitations (the radion

and the first two tensor modes) to the hidden sector gauge fields.

We begin by reviewing the KK-reduction of the 5D metric including linearized

fluctuations. The usual Einstein-Hilbert action is given by:

SEH = −κ2R3

∫ R′

R

dz

∫
d4x
√
g (R− Λ) (3.34)

The distance element on this space, including linearized perturbations which solve

the vacuum Einstein equations, is given by:

ds2 =

(
R

z

)2 [
e−2F (z,x)ηµνdx

µdxν + hµνdx
µdxν − (1 + 2F (z, x))2 dz2

]
, (3.35)

where hµν is transverse and traceless, and contains the 4D graviton plus Kaluza-Klein

excitations. F is the radion field, expressed after canonical normalization as

F (z, x) =
( z
R′

)2 r(x)

κΛr

(3.36)

Plugging this radion excitation into the above EH action shows that the normalization

factor which sets the scale of the radion coupling to other fields is given by Λr =
√

6/R′.

The transverse traceless perturbations, h̃µν ≡ (R/z)2 hµν satisfy the following bulk

equation of motion:

h̃′′µν +
1

z
h̃′µν −

4

z2
h̃µν −�h̃µν = 0 (3.37)

while the boundary conditions require(
z2h̃µν

)′
|R,R′ = 0. (3.38)

After imposing the boundary condition at z = R, with the ansatz h̃µν =
∑

n φn(z) ĥn(x)µν
κΛn

,

the KK-graviton wave functions are given by:

φn(z) =

(
R

R′

)2 [
J2(mnz)− J1(mnR)

Y1(mnR)
Y2(mnz)

]
. (3.39)

Note that we have given the 4D modes hn(x) mass dimension 1, associating a scale

with the couplings of each graviton KK-mode that is calculated by imposing canonical
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normalization on the 4D modes. The prefactor (R/R′)2 is inserted to render the Λn’s

sensitive only to the IR scale (where the lower level KK-gravitons are localized).

The scales Λn are determined by expanding the EH action to quadratic order in the

fluctuations, reading off the coefficient of the kinetic terms and enforcing the low

energy theory to reproduce the Fierz-Pauli spin-2 kinetic term. This leads to the

following equation for Λn:
1

R3

∫
dz
( z
R

)
φ2
n = Λ2

n, (3.40)

From which we find Λ1R
′ = .285, Λ2R

′ = .212.

The final boundary condition at z = R′ determines the solutions to the eigenvalue

problem for mn:
J1(mnR

′)

Y1(mnR′)
=
J1(mnR)

Y1(mnR)
(3.41)

This is actually identical in form to the eigenvalue equation for the vector KK-modes

of the 5D Goldstone boson in this model, and thus the KK-gravitons have a spectrum

identical to the vector KK-modes associated with the Goldstone bosons.

We now calculate the interactions of the radion and KK-gravitons with the light

HS fields and the HS KK-modes. The gravitational excitations couple to the matter

stress-energy tensor:

Sgrav = −1

2

∫ R′

R

dz

∫
d4x
√
g(∆g)MNT

MN (3.42)

where the fluctuations including the radion, the graviton, and the KK modes of the

graviton are contained in (∆g)MN . Using Eq. (3.35) for the distance element, one

can read off the interactions of the radion with matter:

Sradion = −
∫ R′

R

dzd4x
√
gF (x, z)

[
Tr TMN − 3T55g

55
]

(3.43)

while for the graviton and its KK-modes, we have

Sgrav = −1

2

∫ R′

R

dz

∫
d4x
√
gh̃µνT

µν (3.44)

where the Greek indices are limited to the 4D uncompactified directions.

For a gauge theory, the Maxwell stress-energy tensor (before adding gauge fixing

terms) is given by:

TMN =
1

4
gMNBRSB

RS −BMRBNSg
RS. (3.45)
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Using the ansatz given above for the h̃µν fluctuations, interactions of KK-gravitons

with the HS are given by:

− 1

2Λn

∫
d4xĥnµν

∫ R′

R

dz
√
gφn(z)T µν

=
1

2Λn

∫
d4xĥnµν

∫ R′

R

dz
( z
R

)
φn(z)

[
BρκBσλη

κλ −Bρ5Bσ5

]
ηµρηνσ, (3.46)

Similarly, plugging the normalized radion field into Eq. (3.43), the radion couples in

the following way to the HS:

r(x)

Λr

∫ R′

R

dz
( z
R

)(R
R′

)2 [
1

2
BµνBρση

µρηνσ + 2ηµνBµ5Bν5

]
. (3.47)

Using the expressions for the normalized B5, B
(1)
µ , and ĥ

(n)
µν , we find the effective

4D Lagrangian coefficients which are summarized in Appendix A. The couplings are

expressed in terms of the normalization factors Λn, the hierarchy between the Planck

scale and the position of the UV brane, κ, and wave function overlap integrals of the

n’th graviton KK-mode with the HS field, parametrized as λnXX , where X are fields

residing in the HS. These coupling constants are robust under variation in the values

of R and R′, as long as R′ � R.

Note that for a completely brane localized field, X, the coupling ratios λnXX/Λn →
√

2R′, bringing our result into agreement with previous publications which have taken

the SM fields to be completely localized on the IR brane [39].

The primary process which contributes to production is gluon fusion. The 4D

effective Lagrangian for the couplings of the KK-gravitons to gluons are given by (at

tree level) [39]:

Lglue = ĥµν(1)GµρG
ρ
ν

0.191

Λ1 logR′/R
+ ĥµν(2)GµρG

ρ
ν

0.028

Λ2 logR′/R
, (3.48)

and the KK-graviton propagator is given by:

Dµν,ρσ
(n) =

[
Gµρ

(n)G
νσ
(n) +Gµσ

(n)G
νρ
(n) −

2

3
Gµν

(n)G
ρσ
(n)

]
1

2 (k2 −m2
n)

Gµν
(n) ≡ ηµν − kµkν

m2
n

.

(3.49)
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3.5 A TeV-Scale Axion

In this section, we describe a toy axion model that resolves the strong CP problem

and in which a PQ global symmetry is broken at the TeV scale (on the IR brane). We

gauge a U(1)PQ symmetry which is broken by boundary conditions on both branes.

The resulting B5 zero mode plays the role of the axion.

In this model the axion is hidden (and its mass supressed) by taking the 5D gauge

coupling to be small. The direct interactions with SM fields are all suppressed by the

small extra-dimensional gauge coupling, and with the relation given in Eq. (3.21), we

deduce that the effective PQ scale is given by:

fPQ =
1

R′

√
R√

2g5

(3.50)

This is the inverse coupling constant that appears in axion interactions that also

appear in standard 4D axion models. For instance, the coupling of the axion to

photons and gluons from anomalies is given by

cEM
B5

fPQ

F · F̃ + cQCD
B5

fPQ

G · G̃ (3.51)

where F , G and the tildas are the electromagnetic/ gluonic field strengths and their

duals. cEM and cQCD are the anomaly coefficients. Below the QCD confinement scale,

the second term in Eq. (3.51) leads to an axion mass through instanton effects. This

mass is given approximately by [44]

m2
B5
≈ Λ4

QCD

f 2
PQ

. (3.52)

Standard constraints on fPQ apply, and the allowed ranges of fPQ [54] are roughly

109 GeV < fPQ < 1012 GeV, where the lower bound arises from constraints on

supernova cooling rates and the upper bound arises from constraints on the relic

abundance of coherent axion oscillations (assuming an order one displacement of the

axion field from the CP conserving minimum in the early universe).

Charge assignments under the U(1)PQ symmetry are model dependent. For in-

stance, one could create a hadronic axion model, in which the SM fermions are un-

charged, but in which new heavy fermions carrying SU(3)C charge contribute to the
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anomaly, and lead to an axion mass. Another option is to model this 5D axion in a

manner similar to the DFSZ axion [55] in terms of the charge assignments:

(Hu) (Hd) Q ū d̄ L ē

Y 1/2 −1/2 1/6 −2/3 1/3 −1/2 1

PQ 1 1 −1/2 −1/2 −1/2 −1/2 −1/2

(3.53)

The Higgs fields are placed in parentheses as they are not crucial in extra dimensional

theories such as Higgless models of electroweak symmetry breaking. The simplest

model in terms of particle content is a Higgsless model augmented by a U(1)PQ. The

choice of fermion quantum numbers determines the anomaly coefficients cEM and cQCD

in Eq. (3.51), and the most convenient fermion redefinition for a Higgsless theory is

given in Eq. (3.17), with the choice z0 = R′.

This type of axion model has a strong benefit over previous constructions. This

feature concerns explicit global symmetry breaking terms arising from Planck scale

physics which must be suppressed in order to preserve the Goldstone nature of the

axion [56, 48]. Without some mechanism to forbid or suppress such operators, non-

derivative potential terms for the axion arise and displace the axion from the CP

conserving minima of the instanton potential. In the extra-dimensional construction,

such operators, in the 4D effective theory, take the form:

a

f
∂µj

µ
PQ =

a

f

[
gn
Mn

Pl

O4+n + cQCDG · G̃
]
. (3.54)

We have also included the term that generates the axion potential from instantons

for comparison. To not spoil the strong CP solution, we must have:

10−10cQCD〈G · G̃〉 &
gn
Mn

Pl

〈On+4〉 (3.55)

With cQCD〈G · G̃〉 ∼ Λ4
QCD, this becomes

gn . 10−10

(
ΛQCD

µ

)4(
MPl

µ

)n
(3.56)

where µ is the scale associated with fields appearing in the operator O4+n. For

dimension 5, 6, 7 operators (n = 1, 2, 3), the scales µ which satisfy this bound
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(assuming gn = 1) are µ . 4, 1 · 104, 1.4 · 106 GeV. In this extra-dimensional

construction, the terms which correspond to spontaneous symmetry breaking reside

on the IR brane, and are naturally of order TeV . Thus the scale µ is expected to be

of order TeV, and even at dimension 6 such operators are not dangerous, a significant

improvement on earlier models, in which µ was tied to the scale fPQ [48, 56].

Irrespective of the gauge coupling, as shown in the previous section, the RS gravity

sector bridges between the SM and this axion sector. There are thus operators which

are suppressed only by the TeV scale associated with the IR brane which connect

the SM with the HS axion and its excitations. In the next sections, we discuss

the phenomenology of such hidden sectors, with much of the discussion there being

relevant for this axion scenario.

3.6 Collider Phenomenology

Even with greatly suppressed direct couplings, the interactions of the HS with RS-

gravity provide a link to SM fields through processes which involve exchange of radions

or KK-gravitons. Observation of gravitational resonances have been considered a

smoking gun for extra-dimensional models, so it is vitally important to identify how

their phenomenology is modified in the presence of these hidden sectors. The most

dramatic feature involves decays of the radion and KK-gravitons to HS fields, although

direct production of HS fields is also possible.

3.6.1 Radion and KK-graviton decays to 5D Goldstone Bosons

Through the interactions shown in Table 3.1, the radion and the graviton KK-modes

can decay to the light B5 Goldstone bosons. These Goldstone bosons may escape the

detector, or decay back to light SM states, depending on the model chosen. In this

section, we calculate the partial widths of the radion and KK-gravitons to the light

Goldstones.
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The radion partial width to Goldstones is given by

Γ(r → B5B5) =
1

32π

m3
r

κ2Λ2
r

(3.57)

where Λr =
√

6/R′, independent of the 5D gauge coupling associated with the HS.

For light radions, where the decay mode W ’s and Z’s is closed, this decay dom-

inates the width, and notably suppresses the r → γγ branching fraction by roughly

a factor of 10 for radion masses between 114 GeV and 160 GeV . As γγ was the

most promising channel in which to search for radions at the LHC [37, 40], this is a

significant modification in the phenomenology. The B5 Goldstone bosons produced in

these decays stream through the detector since the Goldstones are only very weakly

coupled to SM fields.

The radion may also mix with the Higgs in extra dimensional models that contain

a scalar Higgs particle (see e.g. [37]). In this case, the Higgs may have a substantial

invisible branching fraction to these Goldstone bosons, even as much as 50 % if the

relative splitting of the scalar states is comparable to vR′. The amount of mixing

however is very model dependent (there may not even be a scalar Higgs particle in

the spectrum), and we leave this area as an avenue for future study.

For heavier radions, where the decays r → W+W− contribute to the width, the

branching ratio saturates at a value of roughly 20%.

The KK-graviton partial widths to Goldstones are

Γ(hµνn → B5B5) =
λ2
nB5B5

1920π

m3
n

κ2Λ2
n

(3.58)

Where λ1B5B5 = −.219, and λ1B5B5 = .049, as can be read from Table 3.1. This is

in agreement with expectations from the Goldstone theorem that this width should

be equal to the width to Z’s, the Higgs, and half the width to W ’s, which have been

reported in [39]. The Goldstone equivalence theorem can then be used to obtain the

branching fractions of the KK-graviton to light Goldstones,

BR(h1
µν → Ba

5B
a
5) =

N
Γtop

ΓZ
+ 4 +N

(3.59)

where N is the number of 5D Goldstone bosons. We have neglected the contributions

of light UV brane localized fermions and to KK-tops to the total width, as these
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are typically much smaller [39]. The branching fraction to a single U(1) Goldstone

boson is typically O(10%) for reasonable values of the top-right quark localization

parameter, which is the primary variable which determines the ratio Γtop/ΓZ .

3.6.2 Radion and KK-graviton decays to hidden 5D gauge

fields

The radion width to gauge boson zero modes is given by:

Γ(r → BµBµ) =
m3
r

128πκ2Λ2
r log2R′/R

(3.60)

Again, since these light vector modes are assumed to couple only very weakly (or not

at all) with SM particles, these particles would manifest as missing energy at colliders.

Unlike the Goldstone B5 HS, these invisible decays only contribute modestly to the

total width of the radion, and are of roughly the same size as the branching fraction

to γγ. Thus the radion phenomenology is not greatly altered. The smaller branching

fraction relative to the Goldstone HS scenario is due to the extra log suppression in

the couplings of the radion to the flat profile of the Bµ zero modes.

The level-1 KK-graviton width to gauge boson zero modes is given by

Γ(h(1)
µν → BµBµ) =

(
.191

κΛ1 logR′/R

)2 m3
(1)

1536π
(3.61)

and exhibits the same log suppression as the radion decays. Thus the branching

fraction to Bµ modes will be very small compared to the fractions to SM massive

gauge fields, and similar with the branching fraction to photons (in fact the branching

fractions are identical up to loop corrections).

3.6.3 Non-exact shift or gauge symmetries

The symmetries (HS shift/gauge symmetries) can not be exact/unbroken for most

choices of the 5D gauge coupling since there are stringent constraints from astro-

physics on new massless scalar fields and long range forces. The scalars or vector

fields in the HS must have some mass. If the light HS is hidden through a small 5D
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gauge coupling, and the SM fields have non-vanishing quantum numbers under the

gauge symmetry, the Goldstone bosons will decay to SM particles if the HS fields

are massive enough. Depending on how small the extra dimensional gauge coupling

is, and the masses of the light pseudo-Goldstone fields, their decays may range from

prompt to cosmological time scales.

For the lightest range of HS scalar masses, the 5D Goldstone boson may decay to

SM fermions. The decay width of a light 5D pseudo-Goldstone boson to SM fermions

is given by:

Γ(B5 → f̄f) =
q2

4π

(
mf

feff

)2

mB5 (3.62)

The distance traveled by a pseudo-Goldstone boson that couples universally to

leptons before decaying to muons (presuming the B5’s have mass less than 2mτ , and

assuming a 5D gauge symmetry charge of q = 1), is given by:

∆x = 58cm

(
feff

106GeV

)2(
10GeV

mB5

)√(
E

mB5

)2

− 1 (3.63)

The pseudo-Goldstone modes may also couple to SM quark fields, in which case there

will be displaced hadronic decays.

Thus these RS Hidden sectors are a concrete example of a “Hidden Valley”

model [41, 42], in which HS fields may be produced at colliders through on-shell

production of RS gravitations resonances which subsequently decay into the HS. The

final decay products of the HS fields may be substantially displaced from the pro-

duction vertex, depending on the choice of the extra dimensional gauge coupling.

Searches have been performed at the Tevatron, with null results thus far [57, 58]

In the case of light HS vector fields, the width to fermions is given in the massless

fermion limit by:

Γ(Bµ → f̄f) =
g2mBµ

4π
(3.64)

and the decay length in the detector is given by:

∆x = 20cm

(
10−8

g

)2(
10GeV

mBµ

)√(
E

mBµ

)2

− 1 (3.65)
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3.6.4 Hidden KK-modes at Colliders

It is also possible that higher level KK-modes of the light HS will be directly produced

by collider experiments such as the LHC. The most likely channel for HS KK-mode

production in the light Goldstone scenario is a level one KK-mode in association with

the light Goldstone boson: gg → r(ĥ
(1)
µν ) → B

(1)
µ B5, where the exchanged particle is

either a radion or a level one KK-mode graviton. For a HS with a residual gauge

symmetry it is gg → r(ĥ
(1)
µν )→ B

(1)
µ B

(0)
µ .

The production cross sections for these processes are very small for two reasons.

Firstly, the KK-modes of the gauge fields are quite massive. The lowest they could be

is in the 2 TeV range for a typical Higgsless model. Secondly, the rate is suppressed

as RS gravity couplings all come with the normalization factors Λr, or Λn which are

in the TeV range.

For a model with a HS Goldstone boson, taking R′ = (500 GeV)−1, the LHC cross

section at design energy (14 TeV CM energy) is σ(gg → r → B
(1)
µ B5) ≈ 1 · 10−5 pb.

For a model with a HS light gauge field, for the same parameters, the cross section

is σ(gg → r → B
(1)
µ B

(0)
µ ) ≈ 5 · 10−6 pb. These are up against the design goals of the

LHC, however with high luminosity (100′s of fb−1) a few events may be possible. The

HS KK-modes dominantly decay via the channel B
(1)
µ → B5r(B

(0)
µ r) for HS Goldstone

(gauge) field. If the light HS Goldstone (gauge) field can decay to SM leptons within

the detector, there is hope of triggering on and reconstructing even a few such events.

3.7 Astrophysical Constraints on RS Goldstone Bosons

At low energies, the couplings of the hidden sector to RS gravity induce higher di-

mensional operators involving SM fields that are suppressed only by the TeV scale.

In this section, we calculate the effective operators relevant for main sequence star

cooling, and supernova energy loss (see [59] for a related study). We take into account

the contributions from radion exchange, however we neglect the contributions of KK-

gravitons, as these are negligible in comparison. We leave a study of the astrophysical

constraints on light RS gauge fields for future work, although we provide expressions
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Figure 3.1: The diagram on the left involving the exchange of a RS radion leads to the effective

dimension 8 contact operator shown on the right.

for the relevant higher dimensional operators in this section. Existing light scalar

search experiments are not sensitive to the operators that arise from integrating out

the RS gravitational excitations.

3.7.1 Higher dimensional operators

Diagrams such as the one shown in Figure 3.1 create higher dimensional operators in

an effective theory valid at energies below the scale of RS gravitational excitations.

In this section, we calculate these higher dimensional operators as functions of the

radion mass and the parameters associated with the RS geometry.

Operators for 5D Goldstone Bosons

The coefficients of the irrelevant operators arising from integrating out the radion

can be determined by the form of the radion couplings to bulk SM fields [40]. The

results are given by:

Laaγγeff =
(∂µB5)2 F 2

ρσ

4m2
rΛ

2
r logR′/R

LB5B5gg
eff =

(∂µB5)2G2
ρσ

4m2
rΛ

2
r logR′/R

Laaf̄feff =
mf (cL − cR)

m2
rΛ

2
r

f̄f (∂µB5)2 (3.66)
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The last interaction is for fermions which are localized on the UV brane. The coef-

ficients cL and cR are the fermion bulk masses which determine the wave-functions

of the zero modes. The second interaction, at momentum transfer below the QCD

scale, leads to an effective coupling of the Goldstone boson to nucleons:

LB5B5nn
eff =

(∂µB5)2 n̄n

4m2
rΛ

2
r logR′/R

mn,p
8π

9αs

[ ∑
q=u,d,s

fTq − 1

]
(3.67)

where mn,p is the neutron/proton mass. The coefficient is obtained by taking the

matrix element of the scalar gluon current between nucleons:

n̄n〈n|G2
ρσ|n〉 → −n̄n mn

8π

9αs

[ ∑
q=u,d,s

fTq − 1

]
(3.68)

The fTq coefficients are defined by 〈n|mq q̄q|n〉 ≡ mnfTq.

Operators for unbroken gauge symmetries

Similarly, there are higher dimensional operators involving massless bulk gauge

fields, Bµ.

LBBγγeff =
B2
µνF

2
ρσ

16m2
rΛ

2
r log2R′/R

LBBggeff =
B2
µνG

2
ρσ

16m2
rΛ

2
r log2R′/R

LBBf̄feff =
mf (cL − cR)

m2
rΛ

2
r

f̄fB2
µν (3.69)

These are invariant under the 4D gauge symmetry. We leave a full analysis of the

effects of these operators for future study.

3.7.2 Main-Sequence Star and Supernova Cooling

In massive astrophysical bodies, processes may occur which produce the light fields

within an RS hidden sector. This is the case, for example, with standard axion

scenarios, and which leads to significant constraints on the coupling strength of a

pseudo-scalar axion to SM fields, f−1
PQ. However, our model predicts the existence

of new TeV suppressed operators which can contribute to astrophysical pseudoscalar
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production. If the HS fields are coupled weakly enough, the produced fields will free-

stream out of the astrophysical body, and contribute in a straightforward way to its

energy loss rate. In main-sequence stars and supernovae, an increased energy-loss

rate above that predicted within the SM has not been detected, putting constraints

on the higher dimensional operators that arise from integrating out RS gravitational

fluctuations.

In this section, we consider only RS hidden sectors containing a light Goldstone

boson, not a light gauge field. We leave constraints on HS gauge fields for future

study. These constraints are particularly relevant for the RS axion model considered

in Section 3.5.

We have calculated the scattering length of a 5D Goldstone boson produced in

the core collapse neutron star phase of SN1987a, taking into account only the higher

dimensional operators given above. The scattering length is given approximately by

fL = 1 · 1014m

(
30 MeV

Ea

)4(
1/R′

500 GeV

)4 ( mradion

120 GeV

)4

(3.70)

This scattering length is far larger than the size of the core for reasonable choices of

the parameters, and thus any produced Goldstone bosons in the core collapse process

are free-streaming 2.

In a generic scattering process within a neutron star, where thermal conditions

are semi-degenerate, the energy loss rate per unit volume due to particles which

free-stream out of an object is given by

Q =

∫
dΠPSS |M|2 δ(4)

(∑
i

pi −
∑
f

pf

)
Estreamf1f2 (1− f3) (1− f4) , (3.71)

where Estream is the energy lost in a single process due to particles streaming out

of the object, and the fi are the thermal occupation functions of the neutrons and

protons which scatter to produce the Goldstone bosons:

fi =
1

e(Ei−µ)/kT + 1
(3.72)

2There are also other processes due to direct couplings of the Goldstone sector with the SM fields

which can lead to re-scattering in a core collapse supernova. However, the relevant range of allowed

couplings for very light scalars f−eff1, are small enough to ensure that the light fields are still free

streaming.
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Figure 3.2: These are the new diagrams arising from RS gravitational excitations that contribute

to supernova cooling. N is either a neutron or proton, while P is a proton. The higher dimensional

operators involving B5’s arise primarily from integrating out the radion.

The phase space integration is over both initial and final state particles, and S contains

initial and final state combinatorics for identical particles.

We have estimated the energy loss rate due to nuclear bremsstrahlung in SN1987a.

The processes are: n n→ n n a a, where n is any nucleon, either a proton or neutron.

The diagrams which contribute to the matrix element are shown in Figure 3.2. We

make a number of approximations in calculating the energy loss rate, but all of these

simplifications overestimate the rate, meaning that the actual models are safer than

what is reflected in our calculations.

First, we neglect the final state phase space distributions. For Fermi-Dirac statis-

tics, the 1−fk functions vary between 1/2 and 1. We take these to simply be one. We

overestimate the energy loss per collision by assuming it is equal to the total initial

energy of the system: Estream = Eav ≡ E1 + E2 −mn1 −mn2 . This means that the

energy lost is purely a function of the initial states in the scattering process, and can

be factored out of the final state phase space integration. In reality, the energy lost is

generally much less. Once this is done, the phase space integration over final states

is the usual one for calculating cross sections:

Q =

∫
dΠPSS |M|2 δ(4)

(∑
i

pi −
∑
f

pf

)
Estreamf1f2 (1− f3) (1− f4)

.
∫
dΠisEavf1f2S

∫
dΠfs |M|2 δ(4)

(∑
i

pi −
∑
f

pf

)

=

∫
dΠisEavf1f2S (2E12E2vrelσ) . (3.73)

We compute the cross sections for the relevant processes using CalcHep [60]. These
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are relativistically invariant functions of the center of mass energy of the collision,

or equivalently the magnitudes of the 3-momenta in the center of mass frame. We

numerically interpolate these total cross sections over the relevant range of 3-momenta

and perform the above integration numerically.

The final energy loss rates due to the nuclear Bremsstrahlung processes are given

by

QNN = 3.9 · 1020

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s

QPP = 2.0 · 1021

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s

QNP = 3.9 · 1020

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s(3.74)

This corresponds to a total luminosity (for a 20 km radius neutron star) of La =

3 · 1040erg/s, and temperature kT = 30 MeV whereas the luminosity of the neutrino

burst phase is estimated to be Lν ≈ 1053erg/s. Thus, for this choice of parameters,

the additional energy loss due to processes involving the couplings of RS gravity to

the HS can be neglected. In Figure 3.3, we display the temperature dependence of

the total luminosity in Goldstone bosons due to the processes in Figure 3.2.

We have also calculated the energy loss rates in stars due to hidden Goldstone

boson production from the processes shown in Figure 3.4. Compton, Primakoff, and

Bremsstrahlung diagrams contribute, as well as photon annihilation to Goldstone

bosons. The solar energy loss rates, using a temperature kT = 1.3 keV, for each

process (labelled by the initial states) are given by:

Qγγ = 6.7 · 10−39

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s

Qe−γ = 2.1 · 10−36

(
100 GeV

mradion

)4

(R′ 500 GeV)
4

erg/cm3/s

QHγ = 6.8 · 10−11

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s

QHeγ = 1.1 · 10−10

(
100 GeV

mradion

)4(
36.8

logR′/R

)2

(R′ 500 GeV)
4

erg/cm3/s (3.75)
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Figure 3.3: In these plots, we show the temperature dependence of the luminosity in hidden sector

goldstone bosons in a core collapse supernova (left) and in main sequence stars (right) for a single

Goldstone scalar coupled to the SM via RS gravity excitations. The following parameters are used:

mradion = 100 GeV, R′ = (500 GeV)−1, and R = 1/MPl.

The Compton process has a different scaling due to the fact that the B5 couplings

to electrons are not dependent on the log of the scale hierarchy. In comparison with

usual solar nuclear energy production of a few erg/cm3/s, these energy loss rates are

negligible. In Figure 3.3 we display the temperature dependence of the total energy

loss rate, so that the results can be extended to other main-sequence stars. For the

higher red-giant core temperatures, the energy loss rate is still small in comparison

with nuclear burning rates of about 108 erg/cm3s.

3.8 Conclusions

We have examined a class of models embedded in a Randall-Sundrum geometry in

which there are new extra dimensional gauge symmetries which contain in their spec-
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Figure 3.4: These are the new diagrams arising from RS gravitational excitations that contribute

to star cooling. In addition to these diagrams, the electron may be replaced by the nuclei of the

solar elements. The higher dimensional operators involving B5’s arise primarily from integrating out

the radion.

tra either light scalar fields or light gauge fields. These new fields are taken to be

hidden from the SM, either through small couplings, or vanishing quantum numbers.

Such hidden sectors are still phenomenologically relevant, however, due to sizable cou-

plings to RS gravitational fluctuations which, in turn, couple with similar strength

to SM fields. Through these couplings, the collider phenomenology of the radion and

KK-gravitons may be drastically modified, and through scalar mixing, Higgs phe-

nomenology may change as well. We also motivate the case for such a hidden sector

by describing a simple model which resolves the strong CP problem, and in which a

light scalar field arising from an RS gauge symmetry plays the role of an axion. Hid-

den sectors which contain such light scalar fields contribute new amplitudes relevant

for star and supernova cooling. We have calculated constraints arising from these

operators, and find them to be well within current bounds.

3.9 Appendix A: Tables of gravitational interac-

tions

In this Appendix, we summarize the interactions of the radion and the gravitational

excitations with both broken and unbroken 5D gauge symmetries.

In Table 3.1, we give the interactions of the radion and graviton KK-modes with

the massless B5 and the associated KK-modes in the case where the gauge symmetry

is broken twice by boundary conditions. In Table 3.2, we give the couplings of the
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radion to an unbroken gauge group. Finally, in Table 3.3, we give the couplings of

the first two KK-gravitons to an unbroken bulk gauge group.

rB(1)µ∂µB5 1.09 M1

κΛr
ĥµν(1)B

(1)
µ ∂νB5 −0.134 M1

κΛ1
ĥµν(2)B

(1)
µ ∂νB5 .099M1

κ
Λ2

rB
(1)
µ B(1)µ 4

3

M2
1

2κΛr
ĥµν(1)B

(1)
µ B

(1)
ν −.137

M2
1

2κΛ1
ĥµν(2)B

(1)
µ B

(1)
ν .050

M2
1

2κΛ2

rB
(1)
µρB(1)µρ 1

3
1

2κΛr
ĥµν(1)B

(1)
µρB

(1)ρ
ν .137 1

2κΛ1
ĥµν(2)B

(1)
µρB

(1)ρ
ν .053 1

2κΛ2

r(∂µB5)2 2 1
2κΛr

ĥµν(1)∂µB5∂νB5 −.219 1
2κΛ1

ĥµν(2)∂µB5∂νB5 .049 1
2κΛ2

Table 3.1: This table contains the Lagrangian coefficients for interactions between RS gravitational

excitations and the modes associated with the bulk gauge symmetry that produces light Goldstone

modes.

rB
(0)
µνB(0)µν 1

4κΛr logR′/R
rB

(0)
µνB(1)µν .483

κΛr
√

logR′/R
rB

(0)
µνB(2)µν −.090

κΛr
√

logR′/R

rB
(1)
µνB(1)µν .556 1

2κΛr
rB

(1)
µ B(1)µ .222

M2
1

2κΛr
rB

(1)
µνB(2)µν −.237 1

κΛr

rB
(1)
µ B(2)µ −.175M1M2

κΛr
rB

(2)
µνB(2)µν .377 1

2κΛr
rB

(2)
µ B(2)µ .312

M2
2

2κΛr

Table 3.2: This table contains the Lagrangian coefficients for interactions between the radion and

the zero and KK-modes of an unbroken RS gauge symmetry.

3.10 Appendix B: Gauge fixing of the Hidden Sec-

tor

Since we are including the coupling of gravity to the gauge fields, and we have already

chosen a specific gauge in which to express the gravitational fluctuations, we must be

sure to respect general covariance in the gauge fixing term we add to restrict the path

integral to non-redundant hidden sector gauge field configurations. This is to ensure

we do not create spurious interactions which are artifacts of over-constraining the

gauge freedom. Note that the general R-ξ gauges often chosen in such models break

5D covariance, even in the bulk, so we must find a new gauge fixing potential. The one

we choose is, in the end, equivalent at the quadratic level to the 5D R-ξ gauges [61]
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µρB
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Table 3.3: This table contains the Lagrangian coefficients for interactions between the KK-gravitons

and the zero and KK-modes of an unbroken RS gauge symmetry.

with the choice ξ = 1, however the non-covariant R-ξ gauge still generates spurious

3-point couplings involving KK-gravitons and the radion.

To begin, we write the gauge kinetic term in an explicitly covariant manner (al-

though as usual the Christoffel symbols cancel by anti-symmetry of the gauge field

strength tensor):

Sgauge = − 1

4g2
5

∫
M
dV gMNgRS (∇MAR −∇RAM) (∇NAS −∇SAN)

=
1

2g2
5

∫
M
dV gMNgRS (∇RAM∇NAS −∇MAR∇NAS) (3.76)

where dV is the covariant volume element. We would ideally like to remove the kinetic

mixing between the vector fields and the components which are eaten to produce

massive 4D vectors in the effective field theory.

A general covariant gauge fixing term which removes the mixing is given by:

SGF = − 1

2g2
5

∫
M
dV G(B)2 = − 1

2g2
5

∫
M
dV
(
∇MA

M + vMA
M
)2

(3.77)

Here, vM is a vector field whose components we will determine in this section. Ex-

panded in component form, in the absence of gravity fluctuations, this gauge fixing

function is: (
R

z

)2 [
∂µBνη

µν −B′5 + 3
B5

z
+ ηµνvµBν − v5B5

]
(3.78)

The residual gauge symmetry with this gauge fixing term obeys the following
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equation (in the absence of gravity fluctuations):

�β − β′′ + 3
β′

z
+ ηµνvµ∂νβ − v5β

′ = 0 (3.79)

The kinetic mixing term between Bµ and B5, after summing up the standard

kinetic term and the contributions from the gauge fixing term are:

1

g2
5D

(
R

z

)[
(∂µBνη

µν + ηµνvµBν)

(
B′5 − 3

B5

z
+ v5B5

)
−B′µ∂νB5η

µν

]
(3.80)

Integration by parts of the last term in this expression causes the entire mixing term

to vanish if the vector vM is chosen such that vµ = 0, and v5 = 2/z.

Note that the gauge fixing function G(B) is a function of ∂µB
µ and only the eaten

B5 modes. The variation of the gauge fixing term then, with respect to the metric,

is:

δ

δgMN
LGF = − 1

2g2
5D

(
δ

δgMN

√
g

)
G(B)2 +

√
g

(
δ

δgMN
G(B)

)
G(B) (3.81)

Thus all interactions with gravitational fluctuations involve only the unphysical B5’s,

and terms involving ∂µB
µ which vanish in all matrix elements due to the 4D Ward

identities for the HS KK-modes. The interactions listed in Appendix A are thus

sufficient to describe the physical couplings of RS gravity to the excitations within

the HS.



Chapter 4

A Top Seesaw on a 5D Playground

As we explored in section 2.3.3 the fine-tuning of the Higgs mass is of paramount

interest to particle physicists as it represents one of the best indirect probes of BSM

physics. Traditionally there are two paths towards eleviating the fine-tuning of the

Higgs mass. The first is introducing new symmetries such as SUSY so that a light

Higgs is natural. More modest proposals typically concentrate exclusively on the

top quark sector of the SM. The focus on the top is because the Higgs couples most

strongly to the top than anything else in the SM, hence the top poses the greatest

contribution to the quantum corrections to the Higgs mass through its large Yukawa

coupling.

Top composite models flip this logic on its head, turning the large coupling between

the Higgs and top quarks into a virtue. Roughly speaking, the O(1) Yukawa coupling

of the top quark indicates the possibility of strong coupling between the tops and Higgs

sector. Loop corrections show that the situation is actually even more promising than

this. The renormalization group flow of the top Yukawa is governed by an infrared

fixed point near λt ∼ 1 at low energies, implying the Yukawa was in fact much larger

at higher energies and the Higgs could be a bound state of top quarks. If the Higgs

is indeed a composite particle, then it is immune to mass scales above the scale of

compositeness as above that energy it is no longer a DOF.

A toy model of a top composite Higgs in a flat extra dimension was considered in

[62]. This work also addressed the more general nature of quantum corrections in a
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full 5D effective action in a 5D language, instead of quantum corrections in the 4D

effective theory.

4.1 Introduction

Models of top-quark condensation [63, 64, 65, 66, 67] are particularly appealing mod-

els of electroweak symmetry breaking. These theories are relatively compact and

have the feature of automatically generating a large top Yukawa interaction with a

composite Higgs field that is a bound state of a top–anti-top pair. While the simplest

model is plagued by naturalness issues, subsequent embeddings of top condensa-

tion in supersymmetric [68] and strongly coupled models of electroweak symmetry

breaking (EWSB) [69, 70, 71] can reproduce the weak scale without excessive fine-

tuning. However, a combination of flavor [72, 73, 74, 75] and electroweak precision

constraints [77, 78] have consistently put tension on implementations of top conden-

sation within strongly coupled scenarios. For a review with extensive discussion of

these issues and a complete citation list, see [76].

Recent focus on extra dimensional models of EWSB, particularly those con-

structed on geometrically warped backgrounds [22, 79] has shed new light on nat-

uralness issues of the electroweak sector, and how precision tests might be addressed

in a weakly coupled framework. In this model, we explore the possibility of embed-

ding top condensation within an extra dimensional setup. Such models with warped

geometry are expected to generate natural hierarchies of scales. In this model, we

explore the 5D Nambu–Jona-Lasinio (NJL) mechanism [80, 81] in a flat space toy

model, with the idea that many of the results will carry over to more realistic extra

dimensional scenarios utilizing a warped compactification.

In calculating the 5D effective action for fermion–antifermion bound states, we

renormalize a 5D Yukawa theory compactified on an interval. The running is supple-

mented by an ultraviolet (UV) “composite” boundary condition at a scale Λ0. At the

UV boundary, which we take to be at an energy greater than the compactification

scale 1/L, the theory describes 5D fermions that interact via a four-fermion inter-
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action which arises from unspecified UV dynamics, perhaps from physics above the

cutoff due to the strong coupling limit of the extra dimensional model. In decon-

struction models [82, 83], where the extra dimension resolves into a product gauge

structure at high energies, the four-fermion operator could arise as a result of the

(unspecified) dynamics which breaks the product group structure down to the Stan-

dard Model (SM) at low energies. The four-fermion operator could also arise due to

intrinsically 5D dynamics such as a spontaneously broken 5D gauge theory.

Top condensation has been studied in extra dimensional contexts previously [84,

85, 86, 87, 88], although focus has typically been on the low-energy theory below

the scale of compactification. Our analysis includes the effect of 5D running up to

the scale associated with the four-fermion interaction, and gives predictions for a

Kaluza-Klein (KK) tower of scalar bound states corresponding to a 5D composite

field. Of particular interest are the form of and role played by brane localized terms

generated by fermion loops. Other top condensation models that simultaneously

generate the correct top and W -boson masses generally supplement top condensation

with a seesaw mechanism [89, 90] (see chapter 91 of [9] for a general description of

the seesaw mechanism). Features of our 5D construction are similar to those found in

extra dimensional top see-saw models [91, 92], in which the lightest KK excitations

of the fermions play a key role in the formation of the condensate.

We begin with a review of the 4D NJL model, which we then extend to a 5D

setup compactified on an interval, or equivalently, an S1/Z2 orbifold. Extension of

these methods to a compactified model is relatively straightforward, although there

are some complications associated with performing quantum corrections in an extra

dimensional model, which we discuss. We work in the fermion bubble approximation,

valid as long as the scale associated with the four-fermion operator is below the scale

at which any additional 5D interactions (i.e. gauge interactions of the SM) become

strongly coupled. Section 4.3 contains a study of the relevant fermion loop graphs in

5D flat space. We then calculate the 5D quantum effective action valid at low scales.

Solving the scalar equations of motion in this effective theory determines whether or

not a chiral symmetry breaking condensate is formed.
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We calculate the resulting light fermion and scalar spectrum, requiring a weakly

gauged SU(2)L × U(1)Y version of the model to reproduce the observed W -boson

mass. We find that the top quark mass and W mass constraints can be simultaneously

satisfied by making an appropriate choice of the fermion bulk mass parameters. The

lowest lying scalar fluctuation is found to be generically heavy, due primarily to a large

effective quartic coupling generated in the model. Lighter values can be generated

by going to larger Nc or creating a larger hierarchy between the four-fermion scale

and the compactification scale Λ0L � 1. The second of these choices is made at

the expense of increased fine-tuning of the interaction strength associated with the

four-fermion operator and reducing the validity of the fermion bubble approximation.

4.2 Extending the NJL Model to 5D

A toy model for spontaneous breaking of chiral symmetry in four dimensions can be

constructed with a low-energy effective theory of massless fermions supplemented with

a single chirally symmetric four-fermion contact operator [80, 81]. The Lagrangian

for this model, valid at the scale Λ is

L = ψ̄i6∂ψ +
g2

4Λ2

[
(ψ̄ψ)2 − (ψ̄γ5ψ)2

]
(4.1)

where ψ is a 4-component massless Dirac fermion. The Lagrangian is invariant under

independent chiral rotations of the left- and right-handed components of ψ.

In two component notation, utilizing a complex auxiliary scalar field φ, we can

re-write this Lagrangian as

L = ψ̄Li 6∂ψL + ψ̄Ri6∂ψR + gφψ̄LψR + h.c.− Λ2|φ|2. (4.2)

The field φ carries chiral charge such that this Lagrangian has the same symmetry as

Eq. (4.1). Running down this theory from the scale Λ to a low scale µ, taking into

account only fermion loops, one finds that the scalar field φ develops dynamics and

a quartic interaction. The fermion loop contribution to the scalar mass2 is negative,

and for sufficiently strong coupling, g, the quantum corrections overcome the positive
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Λ2|φ|2 term. In this case, the scalar field then picks a vacuum expectation value (vev),

and breaks the chiral symmetry of the theory.

This mechanism was posited as a method to spontaneously break the electro-

weak gauge interactions, where the fermion bound state consisted of top/anti-top

pairs [67]. A particularly appealing feature of this construction is the presence of a

quasi-infrared fixed point in the top Yukawa coupling which renders the top Yukawa

relatively insensitive to the compositeness scale [93, 94]. Above this fixed point, the

top Yukawa blows up in the UV, and the coupling is in the domain of attraction for

this fixed point which resides at a value of λt ∼ 1.

We consider a 5D version of the above model, in which there is a four-fermion

operator that leads to a composite five dimensional scalar field. This operator must

arise from some UV dynamics, as in the case of 4D top condensation models [70]. In

this dissertation, we do not specify this dynamics and focus on the mechanics of the

renormalization of this theory. A model with better UV behavior is currently under

investigation.

The theory at a high scale Λ0 consists of two 5D Dirac fermions, ΨL which contains

a left-handed zero mode in the spectrum, and ΨR which contains a right handed one.

Other assignments are possible, and will have different IR structure, however this

theory is the one that most easily generalizes to a standard model-like low-energy

spectrum. In addition, the chiral symmetries of this model are identical to those in

Eq. (4.2). We write the action for the theory at the scale Λ > 1/L as defined on a

circle with perimeter 2L:

S5D NJL =

∫
d4x

∫ L

−L
dz
[
Ψ̄L (i6∂ −ML(z)) ΨL

+ Ψ̄R (i6∂ −MR(z)) ΨR +
g2

Λ3
0

Ψ̄LΨRΨ̄RΨL

]
. (4.3)

where 6∂ ≡ γµ∂µ + iγ5∂z and all fields are assigned periodic boundary conditions.

The spectrum of the theory is then reduced by performing the identification z ↔ −z
which restricts the physical region of the space to the interval z ∈ [0, L]. The field

solutions that remain can be either odd or even under this identification, although

all operators in the Lagrangian must be even. The orbifold assignments that produce
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the spectrum described above are:

ΨL(z) = −γ5ΨL(−z), and ΨR(z) = γ5ΨR(−z). (4.4)

In order for the action to be invariant, the fermion mass terms must be odd under

the orbifold assignment: ML,R(z) = −ML,R(−z).

While this procedure is equivalent to beginning with an interval and assigning

boundary conditions [95, 27], we show in Appendix 4.8 that the orbifold language

allows a simple, intuitive explanation for the presence or lack of certain brane localized

terms that are induced by quantum corrections.

We assume mass profiles which are constant in the physical region, discontinuously

jumping at the orbifold boundaries to satisfy the boundary condition above:

ML,R(z) =

 +mL,R z > 0

−mL,R z < 0.
(4.5)

The zero modes are then exponentially localized, with profiles given by:

Ψ0
L(x; z) =

√
mL

1− e−2mLL
e−mL|z|

Ψ0
R(x; z) =

√
mR

e2mRL − 1
emR|z|. (4.6)

In the 4D low-energy effective theory and ignoring quantum effects, the zero modes

couple via a four-fermion operator that has a form identical to that of Eq. (4.2), with

effective four-fermion coupling given by an overlap of the zero mode wave functions:

g2
4D

Λ2
eff

=
g2

Λ3
0

mLmR

mL −mR

(cothmLL− cothmRL) , (4.7)

which is exponentially suppressed in the case that both mL and mR are the same sign,

and the LH and RH zero modes are localized on opposite boundaries of the physical

region. We will show that scalar bound states and chiral symmetry breaking with

scales well below the scale 1/L can still be obtained, regardless of this suppression. In

the KK mode interpretation, these scalars are presumably relativistic deeply bound

states of a combination of KK modes. This strongly suggests that a full 5D calculation

including all KK modes below the cutoff Λ0 should be performed in order to properly

formulate the low-energy theory.
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To analyze the IR behavior of this theory, we write the 5D four-fermion interaction

in terms of a complex auxiliary field φ. At the scale Λ0, the theory is then a model

of Yukawa interactions in which the scalar field has no dynamics:

S5D NJL =

∫
d4x

∫ L

−L
dzΨ̄L (i 6∂ −ML(z)) ΨL + Ψ̄R (i 6∂ −MR(z)) ΨR

− Λ2
0|φ|2 +

g√
Λ0

φΨ̄LΨR + h.c. (4.8)

Integrating out the field φ reduces Eq. (4.8) to Eq. (4.3). The main calculation of

this model will be on running this effective Lagrangian down to a low scale µ < 1
L

,

and solving the low-energy equations of motion for the scalar field. We calculate the

running in the “fermion bubble” approximation, integrating out only the fermionic

contribution to the scalar effective action. This approximation is the analog of re-

summing the fermion ladder diagrams in the theory written down in Eq. 4.3.

4.3 Quantum Corrections in 5D

In models with compactified extra dimensions, quantum corrections are complicated

by the fact that momenta along the compactified directions are discrete while the

4D momenta span a continuum. In our model, momenta along the compactified

coordinate are quantized in units of nπ/L, where L is the size of the physical region.

In this section, we compute these quantum corrections for the Yukawa theory in

Eq. (4.8).

Quantum effects in extra dimensional models have been studied in some contexts,

particularly for the running of gauge couplings [96, 97, 98]. Such calculations are often

made simpler due to gauge invariance, which ensures that calculating the running of

the coupling of the zero mode gauge field, which has a constant extra dimensional

profile, is sufficient to describe all running effects in 5D. Our analysis of a 5D Yukawa

theory must be intrinsically five dimensional, taking into account all possible external

scalar states, since there is no such underlying symmetry which keeps the lowest lying

mode flat.

In determining the quantum effects of the 5D theory, there is the approach of
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determining the KK spectrum, integrating out the extra dimension, and then trun-

cating the effects of the tower at the desired level of accuracy. It is then a matter of

computing usual 4D Feynman diagrams using these few KK modes. This approach,

however, obscures 5D translation invariance, and is in fact quite complicated if more

than a couple KK modes are included. This is especially the case in this construction,

since there are a large number of possible scalar bound states. When the equation of

motion is applied on the scalar field φ at the scale Λ0, and the fermions are expanded

in terms of their KK towers, we find:

φ =
g

Λ
5/2
0

Ψ̄RΨL =
g

Λ
5/2
0

∑
m,n

ψ̄mRψ
n
L. (4.9)

Quantum effects below the scale Λ0 mix these fermion bi-linears with each other, and

the effective action must then be re-diagonalized. It is much simpler and perhaps

more illuminating to instead compute all quantum effects from the 5D viewpoint,

and then solve the resulting 5D scalar equation of motion.

The most straightforward method is to compute all quantum corrections in mo-

mentum space, where the effects of orbifolding are taken into account in the form of

the propagators. Either a hard momentum cutoff or dimensional regularization may

then be used to study the divergence structure of the theory. The first of these is most

suited to the 5D NJL model, since it explicitly contains information about power law

divergences. Dimensional regularization, on the other hand, automatically subtracts

these, leaving only poles corresponding to logarithmic divergences. We study both

regulators, the former because it applies well to models with an explicit cutoff, and

the latter since it is a point of interest to see how the 5D divergence structure, which

contains no bulk log divergences, is obtained from the 4D KK tower which contains

an infinite number of them.

It is, in principle, possible to use a mixed position-momentum space basis, where

the propagators depend on the position in the extra dimensional coordinate, however

in this case it is unclear how one would implement a regularization procedure which

respects local 5D Lorentz invariance.
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4.3.1 Quantum corrections with vanishing fermion bulk masses

In the case that the bulk fermion masses vanish, the fermion propagators are not

difficult to compute. The Yukawa theory under consideration is then similar to the

one examined in [99], but with slightly different orbifold assignments and field content.

In this section we utilize the notation of these authors. In particular, a derivation of

the fermion propagators can be found in Section 2 of that publication.

In 5D momentum space, the fermion propagators are given by:

S
(L,R)
F (p; p5, p

′
5) = (2L)

i

2

{
δp5,p′5
6p+ iγ5p5

± δ−p5,p′5
6p+ iγ5p5

γ5

}
(4.10)

where the + is for a 5D fermion in which a left-handed zero mode survives the orbifold

projection, and the − is for a 5D fermion which contains a right-handed zero mode

in the spectrum1. The 5D momentum is given by p5 = nπ
L

, where n ranges over all

integers. The fermion propagators conserve the magnitude of the 5D momentum, but

only up to a sign. The breaking of 5D translation invariance is a manifestation of the

reflection conditions at the orbifold fixed points. The remaining conservation of KK

number is a tree level symmetry of the theory that is present in the limit of vanishing

bulk mass.

We are interested in computing the scalar two- and four-point functions. Since

interaction terms in extra dimensional theories are non-renormalizable, higher di-

mensional operators will be generated as well. For the purposes of illustration in this

toy model, we ignore these contributions. One could, in principle, arrange for these

terms to be removed via fine-tuning of the coefficients of such operators against the

quantum corrections to them. This tuning should then presumably be derived as a

natural consequence of some UV complete model.

1We have chosen a convention in which the period of the Fourier series appears in the Kronecker-

δs of momentum (2L δp5,k5), and in sums over unconstrained 5D momenta ( 1
2L

∑
k5

). This makes

it simpler to compare with the (mostly) standard treatment in non-compact dimensions where the

transformation to momentum space comes with a 1
2π normalization. The dictionary between the

compact and non-compact 5D theory consists of replacing sums with integrals, Kronecker-δs with

δ-functions, and all factors of 2L with 2π.
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The scalar two-point function

In the massless fermion bubble approximation, the scalar two-point function at

one loop consists of the diagram shown in Figure 4.1. In the compactified 5D theory,

this single diagram encapsulates the quantum corrections to the bulk kinetic and mass

terms. In addition, it also contains information about brane localized terms which

are quadratic in the scalar field. This diagram gives information about how to run

the scalar sector of the Yukawa theory from the high scale Λ0 down to low energies.

The value for the diagram is

H H

ΨL

ΨR

k

k + p

k′
5

p, p5 p, p′5k′
5 + p′5k5 + p5

k5

Figure 4.1: The 5D scalar two point function, where the scalar couples to two flavors of 5D Dirac

fields, each of which contains either LH and RH zero mode in the KK mode spectrum.

− g
2

Λ0

∑
k5,k′5

∫
ddk

(2π)d
Tr

[
(/k + iγ5k5)(δk5,k′5 − γ5δk5,−k′5)

k2 − k2
5

·(
/k + /p+ iγ5[k′5 + p′5])(δk5+p5,k′5+p′5

+ γ5δk5+p5,−k′5−p′5)

(k + p)2 − (k′5 + p′5)2

]
.

(4.11)

Let us first discuss brane localized divergences of the two-point diagram. In extra

dimensional theories, it is now well known that quantum effects generally violate

KK-number conservation [99, 100, 101]. The presence of brane localized terms can

be identified by divergences which do not conserve 5D momenta. Such divergences

signal that a counterterm is necessary, and that the brane term should be included

in the tree level action. Expanding the numerator of the diagram and simplifying the
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Kronecker-δs, there are in principle terms proportional to δp5,p′5 , δ−p5,p′5 , δ2k5,−p5−p′5 ,

and δ2k5,p′5−p′5 . The first two types of terms conserve 5D momentum up to a sign and

hence correspond to bulk corrections, while the second two Fourier transform into

δ-functions at the brane positions and so correspond to brane localized terms.

Applying the usual Dirac trace identities, the brane localized terms vanish. This

is perhaps somewhat surprising at first glance. One might expect that there are brane

localized quadratic divergences which renormalize the scalar mass independently on

the branes versus in the bulk. One might also expect the generation of brane localized

kinetic terms for the scalar field. The reason for the absence of such terms at the

one-loop level is that 5D translation invariance is not broken severely enough in this

process, as explained in Appendix 4.8. In fact, there are a variety of scenarios in

which brane localized terms are not generated at the one-loop level.

Let us now identify the bulk renormalization terms. We expect a cubically diver-

gent mass renormalization, and a linear divergence in the 5D kinetic terms. One of

the bulk renormalization terms is proportional to δp5,p′5 , the other δp5,−p′5 (effectively

reflected and transmitted waves through the orbifold fixed points). From the trace,

these have the following momentum structure:

k · (k + p)− k5(k5 + p′5)

(k2 − k2
5) ((k + p)2 − (k5 + p′5)2)

(4.12)

The k5 are quantized on k5 = nπ/L, with n any integer. This means that the 5D sum

cannot be shifted, while the 4D momenta can be redefined in the usual way in order

to make the Wick rotated integrand spherically symmetric in Euclidean momentum.

The coefficients of the δp5,p′5 and δp5,−p′5 terms are identical. After combining

denominators using Feynman parameters, they are given by:

− g2

4Λ0

∑
k5

∫
ddk

(2π)d

∫ 1

0

dx
(l2 − l25)− x(1− x)(p2 − p2

5) + l5p5(2x− 1)

[(l2 − l25) + x(1− x)(p2 − p2
5)]2

, (4.13)

where l5 = k5 + xp5. Unfortunately, one cannot shift the 5D momentum in the sum

this way since l5 is not quantized on the same spectrum as k5 and the above expression

is only a heuristic presentation.

This lack of shift invariance highlights the fact that a naive hard cutoff for the

4D momentum integrals obscures the underlying physics. Such a procedure explicitly
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violates 5D Lorentz invariance, and will lead to apparent violation of the spacetime

symmetries by short-distance interactions. For example, if one performs the sum over

all unconstrained five-momenta, one obtains an analytic expression as a function of

the 4D loop momentum. The remaining integrand can then be performed with a hard

cutoff, expanded in small external momenta, and then interpreted as a contribution

to the effective action. The resulting expression contains terms proportional to p2
µ

and p2
5 with coefficients which differ in general. 5D Lorentz invariance can then be

restored by fine-tuning separate counter terms order by order in perturbation theory,

but the connection with the original 5D theory defined at the physical scale Λ0 is then

lost. To properly formulate the low energy dynamics, one must choose the regulator

more carefully.

We first perform the integration utilizing dimensional regularization. Since there

is no explicit cutoff scale, there are no subtleties about the regularization procedure

respecting local 5D Lorentz invariance. Performing the 4D momentum integration

first, we have

iΠ(p2, p5) = −i g
2

4Λ0

∑
k5

∫ 1

0

dx
∆d/2−2

(4π)d/2
×

×
{
d

2
∆Γ(1− d/2) +

[
x(1− x)p2 + k2

5 + p5k5

]
Γ(2− d/2)

}
(4.14)

where ∆ is given by:

∆ = −x(1− x)(p2 − p2
5) + (k5 + xp5)2. (4.15)

Using zeta-function regularization for the remaining sum over 5D internal loop mo-

mentum we have

iΠ(p2, p2
5) = iΠ(0)− ig2

8Λ(4π)d/2

(π
L

)4−d
×

×
(
2ζ(4− d) + (µIRL)d−4

)
Γ(2− d/2)

[
p2 + p2

5 (2− d)
]
. (4.16)

We have regulated the contribution of the zero mode with an IR cutoff, µIR. The two

point function for vanishing external momentum, iΠ(0), is given by:

iΠ(0) = −i g2

4Λ(4π)d/2

(π
L

)d−2

ζ(2− d)Γ(1− d/2) (4.17)
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Taking the limit as d→ 4, with εIR ≡ µIRL, we have the final result:

iΠ(p2, p2
5) =

ig2

4Λ(4π)2

[
2
(π
L

)2

ζ ′(−2) + log(2πεIR)
(
p2 − 2p2

5

)]
(4.18)

Let us point out some aspects of these results: First, all expressions are finite

as d → 4. For the field strength term, the pole in the Γ function is canceled by

the sum of the zeta function and the contribution of the zero mode. That is, the UV

divergences created by the zero mode are canceled by the UV divergences of the tower

of KK modes. Second, note that the coefficient of the p2 and p2
5 terms differ in the

limit d→ 4. These finite terms correspond to non-local contributions to violations of

5D translation invariance from the presence of the orbifold fixed points.

The finiteness of the result in this regularization scheme is expected. Since all

divergences must be local, the UV structure of the bulk compactified theory should

match that of the uncompactified model. All divergences in noncompact odd di-

mensions are power laws and are automatically subtracted when using dimensional

regularization. So both the compact and uncompact models yield finite results for

the two-point function in this regularization scheme.

It is possible to utilize a hard cutoff regularization scheme which respects the local

spacetime symmetries. This is beneficial, since such a scheme has a better physical

interpretation in terms of our physical cutoff, Λ0. The procedure is described in detail

in Appendix 4.7, but in many cases it consists simply of approximating the sum

over momenta by an integral, at which point the integrand is manifestly 5D Lorentz

invariant, and integration over the interior of a four-sphere in the loop momentum

can be performed in the standard way. The substitution required is 1
2L

∑
k5
→
∫

dk5
2π

.

The two-point function in this regularization scheme is then

iΠ(p2; p5, p
′
5) =

(
δp5,p′5 + δp5,−p′5

) g2L

2Λ0

∫
d5k

(2π)5

∫ 1

0

dx×

× (l2 − l25)− x(1− x)(p2 − p2
5) + l5p5(2x− 1)

[(l2 − l25) + x(1− x)(p2 − p2
5)]2

, (4.19)

and we can now shift the full 5D loop momentum in the usual way, and use a 5D
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hard cutoff Λ. The result, as an expansion in P 2 = p2 − p2
5, is given by

iΠ(p2; p5, p
′
5) = iL

(
δp5,p′5 + δp5,−p′5

) [ g2Λ3

18π3Λ0

+
g2Λ

10π3Λ0

P 2

]
≡ L

(
δp5,p′5 + δp5,−p′5

)
iΠ̃(P 2). (4.20)

We have kept Λ0 separate from the regulator cutoff in this expression to highlight the

sensitivity to an arbitrary UV scale, although we take them to be equal in our final

expression for the effective action. Implicit in Eq. (4.20) is an IR scale, µ� Λ, which

can be put into the effective action with the replacements Λn → Λn
0 − µn.

The scalar four-point function

k
L

LR

R

p5

p′5

p′′5

p′′′5

k5

k5 + p5

k′
5

k′′
5

k′′′
5k′′′

5 + p′′′5

k′′
5 + p′′5

k′
5 + p′5

+ p′5 ↔ p′′′5

Figure 4.2: The 5D scalar four point function.

The quartic coupling also renormalizes, although we again find that all divergences

are confined to the bulk. The relevant Feynman diagrams are shown in Figure 4.2,

and evaluate to

iV4(0; p5, p
′
5, p
′′
5, p
′′′
5 ) = − g

4

Λ2
0

∑
k5,k′5,
k′′5 ,k

′′′
5

∫
d4k

(2π)4
×

× Tr
[
SRF (k; k5, k

′′′
5 + p′′′5 )SLF (k; k′′′5 , k

′′
5 + p′′5) ×

× SRF (k; k′′5 , k
′
5 + p′5)SLF (k; k′′′5 , k

′′
5 + p′′5)

]
. (4.21)



91

Terms which contribute to bulk running of the quartic arise from an even number of

insertions of the 5D momentum conserving Kronecker-δs while terms which contribute

to brane running of the quartic involve an odd number of these. The potential brane

terms each involve (at leading order in loop momenta) the trace of four identical Dirac

matrices, /k, with a γ5, and therefore vanish.

Performing the calculation using dimensional regularization again produces a finite

result, with KK modes canceling against the contribution of the zero modes. We only

present the result utilizing a 5D Lorentz invariant hard cutoff. We find

iV4(0; p5, p
′
5, p
′′
5, p
′′′
5 ) =

−ig4Λ

24π3Λ2
0

(2L)
∑
±
δ0,p5±p′5±p′′5±p′′′5 . (4.22)

Where the sum is over all 8 permutations of signs in the Kronecker-δ.

To summarize the results of this section, we find that the bulk UV structure of

the theory is as expected, where the running is purely power law. We have explicitly

shown the cancellation of log divergences in the dimensional regularization scheme

for the two-point function.

The one-loop brane localized divergence structure is different from naive expecta-

tions. Despite the intuition that brane localized terms should be forced by breaking

translation invariance via the orbifold identification, they are not generated at one

loop. As we discuss in Appendix 4.8, this is due to the interplay of the left- and

right-handed components of 5D fermions.

4.3.2 Quantum corrections with fermion bulk masses

The arguments that protect against brane localized terms fail when fermion mass

terms are added into the theory. Under the orbifolding procedure, such masses must

be odd under the projection since the fermion bilinears Ψ̄Ψ are odd. These masses

could arise from a scalar domain wall to which the fermions are coupled via a Yukawa

interaction. These domain walls are trapped at the orbifold fixed point by the orbifold

quantum numbers of this scalar field and give rise to fermion localization in the

extra dimension [103, 104, 105]. Because such fermion masses explicitly break 5D
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translation invariance at the orbifold fixed points, it is expected that they generate

brane localized terms.

In this section, we calculate the quantum corrections in the presence of fermion

bulk masses. These mass terms do not conserve even the magnitude of the 5D mo-

menta so that the explicit form of the propagators in momentum space is rather

complicated to compute. However, we can accurately capture the divergence struc-

ture of the theory by treating the 5D mass term as a perturbation to the massless

scenario.

We take the fermion masses to have the profiles given in Eq. (4.5). To obtain the

Feynman rule in momentum space, we compute the Fourier series of the fermion mass

terms in the action, and read off the interaction vertex. Since the mass term switches

sign at the orbifold fixed points, its Fourier series is non-trivial. That is, the mass

term acts as a source for 5D momentum which can be injected into a given diagram.

The Feynman rule is:

xL(R) L(R)

p5 p�5
=

4mL(R)

p�5 − p5
δodd
p5,p�

5

, (4.23)

where

δodd
p5,p′5
≡

 1 if p5 + p′5 is an odd multiple of π/L

0 if p5 + p′5 is an even multiple of π/L.
(4.24)

This is the familiar Fourier transform of the square wave function, with period 2L.

The corrections to the scalar two-point function arise from two diagrams, one with

a mass insertion on the fermion with a LH zero mode, the other with an insertion on

the one with a RH zero mode.

H H
p, p5 p, p′5

xL L

R

H H
p, p5 p, p′5

x RR

L

+

. (4.25)
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These contributions to the two-point function are linearly divergent:

iΠM(0; p5, p
′
5) = i

g2Λ

3π3Λ0

(mL −mR) δodd
p5,p′5

+ finite terms (4.26)

Adding a mass insertion diagram to the four-point function only contributes finite

terms.

4.4 The quantum effective action

The two- and four-point diagrams we have calculated can now be incorporated into

a quantum effective action that is valid at a low scale µ. We can express this action

as follows:

Seffective =

∫
d4x

∫ L

−L
dz

[
Ψ̄L(i 6∂ −ML(z))ΨL + Ψ̄R(i6∂ −MR(z))ΨR

+
g√
Λ0

HΨ̄LΨR + h.c. + ZH∂MH∂
MH† −

(
Λ2

0 + δM2
)
|H|2 − λ

4Λ0

|H|4
]

−
∫
d4x

[
m2

0 |H(z = 0)|2 +m2
L |H(z = L)|2

]
.

(4.27)

To map between our correlation functions and the terms in this effective action,

we first note that each amplitude can be written in terms of projection operators

Ep5,p′5 ≡ L
(
δp5,p′5 + δp5,−p′5

)
acting on “sub-amplitudes.” The projection operators are

the expression for dynamical external scalar legs when the scalar is even under the

orbifolding procedure, H(z) = H(−z). The sub-amplitudes represent Feynman rules

arising from bulk and brane localized terms in the effective 5D action.

For the bulk contributions to the two-point function, we have

iΠ(p2; p5, p
′
5) = Ep5,p′5iΠ̃(P 2)

=
1

2L

∑
q5

Ep5,q5Eq5,p′5iΠ̃(Q2). (4.28)

The contribution arising from the bulk mass insertion diagrams is

iΠM(0; p5, p
′
5) = iΠ̃Mδ

odd
p5,p′5

= iΠ̃M

(
1

2L

)2 ∑
q5,q′5

Ep5,q5Ep′5,q′5δ
odd
q5,q′5

. (4.29)
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We can identify ZH ≡ Π̃′(Q2 = 0), and δM2 ≡ −Π̃(Q2 = 0). The mass inser-

tion diagrams need to be Fourier transformed back into position space. We use the

identities ∑
p5 odd

eip5z = L
∑
N

(−1)Nδ(z −NL)

∑
p5 even

eip5z = L
∑
N

δ(z −NL) (4.30)

where the sum over N spans all integers. The Fourier transform thus corresponds to

opposite sign δ-functions on the two branes, δodd
q5,q′5
→ 1

2
[δ(z)− δ(z − L)]. The brane

localized mass terms are then m2
0 = −m2

L = −Π̃M/2. Finally, the four-point function

can be expressed as

iV4(0; p5, p
′
5, p
′′
5, p
′′′
5 ) = i

Ṽ4

8

∑
±
δ0,p5±p′5±p′′5±p′′′5

= i

(
1

2L

)4 ∑
q5,q′5,q

′′
5 ,q
′′′
5

Ep5,q5Ep′5,q′5Ep′′5 ,q′′5Ep′′′5 ,q′′′5 Ṽ4 δ0,q5+q′5+q′′5 +q′′′5
.

(4.31)

and we make the identification Ṽ4 = λ
Λ0

.

In summary, the effective action can be expressed as a function of the UV param-

eters as in Eq. (4.27) with coefficients given by

ZH =
Ncg

2

10π3

Λ

Λ0

δM2 = −Ncg
2

18π3

Λ3

Λ0

λ =
Ncg

4

3π3

Λ

Λ0

m2
0 = −m2

L =
Ncg

2

6π3

Λ

Λ0

(mR −mL). (4.32)

We now associate the regulator cutoff Λ with the physical scale Λ0. By defining the

coupling constants such that they are dimensionless, with the physical scale explicitly

appearing in the interaction terms, the quantum corrections (with the exception of

the bulk mass term) are all seen to be independent of the scale Λ0.
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It is interesting that the scalar mass2 receives brane localized contributions of

opposite sign on either brane. This is a severe violation of KK parity. If this parity

were preserved, the two brane localized terms are expected to be identical. However,

the fermion mass terms explicitly violate KK parity. Quantum effects transmit this

breaking of KK parity to the scalar sector in the form of these linear divergences.

These opposite sign, one loop, brane localized terms vanish, however, when the

fermion masses are taken to be identical. In this scenario, for positive bulk masses,

the LH zero mode is localized on the z = 0 brane, whereas the RH zero mode is

localized on the z = L brane. If the masses are equal, then the profiles are mirror

images of each other, and an “accidental” approximate KK parity is introduced.

We now choose a convenient normalization for the 5D fields. We choose a canonical

5D scalar kinetic term, obtained by redefining H → H/
√
ZH ,

S =

∫
d4x

∫ L

−L
dz

[
Ψ̄L (i6∂ −ML(z)) ΨL + Ψ̄R (i6∂ −MR(z)) tR +

g̃√
Λ0

HΨ̄LΨR + h.c.

+∂MH∂
MH† − m̃2|H|2 − λ̃

4Λ0

|H|4
]
−
∫
d4x

[
m̃2

0 |H|2
∣∣
z=0

+ m̃2
L |H|2

∣∣
z=L

]
.

(4.33)

The terms in this 5D effective theory are

g̃2 =
10π3

Nc

m̃2 =

(
10π3

Ncg2
− 5

9

)
Λ2

0

λ̃ =
100π3

3Nc

m̃2
0 = −m̃2

L =
5

3
(mR −mL). (4.34)

Above, we have assumed Λ � µ, where Λ is the scale that our original Lagrangian

with the four-fermion operator was defined, and µ is the low scale at which we evaluate

our 5D effective action.

There are also finite non-local contributions that arise from quantum corrections.

We have neglected these, as they are typically sub-dominant, and do not have an

interpretation as terms which are local in the extra dimensional coordinate.
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We note that there are no brane localized quadratic divergences at one loop.

Such terms might have been expected from considerations of the field content. In

the fermion bubble approximation, brane localized terms arise only from diagrams

with insertions of the 5D fermion mass, whose profile explicitly violates translation

invariance.

In the presence of fermion bulk masses, the conditions under which the chiral

symmetry of the low-energy theory is broken are modified. In the absence of the

boundary terms, the scalar bound states condense for g2 > 18π3/Nc. However, the

brane localized mass terms can drive condensation as well. In the next section we

explore the conditions for generation of a chiral symmetry breaking condensate, and

the resulting spectrum of the theory.

4.5 Vacuum Solution and Mass Spectrum

We have now shown that the low-energy effective theory is one with an additional

5D composite scalar degree of freedom. The equations of motion and the boundary

conditions for this scalar field can be derived from the effective action that we have

calculated. These determine the spectrum of the theory.

At the high scale, the 5D scalar Higgs field is equivalent to the fermion bilinear

H(z, x) = ψ̄L(z, x)ψR(z, x). With the fermionic orbifold assignments we have made,

the orbifold parity transformation of the composite field is

H(−z) = ψ̄L(−z)ψR(−z) = (−ψ̄L(−z)γ5)(−γ5ψR(−z)) = ψ̄L(z)ψR(z) = H(z).

(4.35)

The scalar field is thus orbifold even, which means that when deriving the equation

of motion for H, we cannot require that the variation itself vanish on the branes.

Rather, the Higgs field is sensitive to the brane localized mass terms.

In this model, chiral symmetry breaking can occur in one of two ways. First, the

coupling constant associated with the four-fermion operator may be sufficiently large

that the bulk mass term is driven negative, destabilizing the origin as a vacuum solu-

tion. The bulk quartic coupling then sets the value for the scalar vacuum expectation
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value.

The other possibility is that the scalar bulk mass2 remains positive, but a negative

brane localized mass term pushes the field value away from the origin. In this case, it

is still the bulk quartic coupling that stabilizes the vacuum field solution away from

the origin, since we have shown that no brane localized quartic coupling is induced.

The second solution is more interesting, as it distinguishes the behavior of the

compact 5D model from the non-compact one. Unlike the scalar bulk mass, the brane

localized terms are sensitive to the values of the fermion bulk mass terms (and thus the

relative localization of the fermion zero modes). Whether chiral symmetry breaking

occurs in the extra dimensional model is thus a function of the free parameters of the

model.

We now consider solutions to the composite scalar equations of motion. In the

bulk, the vacuum equation for 〈H(z, x)〉 ≡ v(z)/(2
√
L) is given by:

v′′(z) = m̃2v(z) +
λ̃

8Λ0L
v3(z). (4.36)

This differential equation can be solved in terms of a Jacobi elliptic function, sc(x|m).

The expression for the vacuum expecation value (vev) is

v(z) =

√
8Λ0Lκ−

λ̃
sc

(
|z − z0|

√
κ+

2

∣∣∣∣ 1− κ−
κ+

)
, (4.37)

where we have introduced the dimensionless quantities κ± = m̃2±
√
m̃4 − λ̃m̃2v20

4Λ0L
. The

quantities z0 and v0 are determined by imposing the boundary conditions. In order

for the low-energy chiral symmetry to be broken, the vacuum energy for the scalar

field must be minimized at a non-trivial value for v0.

The only brane localized terms which survive in the large cutoff limit are scalar

mass terms proportional to the difference in bulk fermion masses. These are shown

in Eq. (4.34). These mass terms, m̃2
0 and m̃2

L, set the boundary conditions for the

scalar vev equation:

v′(z)

v(z)

∣∣∣∣
z=0

=
1

2
m̃2

0

v′(z)

v(z)

∣∣∣∣
z=L

= −1

2
m̃2
L. (4.38)

We can analytically determine the phase boundary by expanding the solution

about small v0. The result is v(z) ≈ v0 sinh(|z − z0|m̃), and the boundary conditions
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are then:

v′(z)

v(z)

∣∣∣∣
z=0

= m̃ coth(|z0|m) =
5

6
(mR −mL)

v′(z)

v(z)

∣∣∣∣
z=L

= m̃ coth(|L− z0|m) =
5

6
(mR −mL). (4.39)

These are satisfied for z0 → −∞, and for m̃ = 5
6
(mR − mL). We can express this

phase boundary in terms of the original four-Fermi coupling g, which determines m̃

in the low-energy theory. The critical coupling is found to be:

g2
crit =

18π3

Nc

[
1 +

5

4

(mR −mL)2

Λ2
0

]−1

. (4.40)

We now scan the parameter space of the model. For these purposes, we presume

that the fermions are the 5D analogs of the LH third generation doublet and the RH

top quark. In this case, the scalar field then carries the SU(2)L × U(1)Y quantum

numbers of a SM Higgs, and when H obtains a vev, the W and Z bosons become

massive. We identify the region of parameter space in which we obtain the correct

W -boson and top quark masses.

The W mass is well approximated by assuming a flat profile for the lightest W -

boson mode, and convoluting the flat profile with the vev2:

m2
W =

g2
2

4

[(
1

2L

)∫ L

−L
dz v(z)2

]
, (4.41)

where g2 is the SU(2)L gauge coupling of the SM. The top quark mass is approximated

from the Yukawa interaction:

mtop =
g̃√
Λ0L

(NRNLL)

[
1

2L

∫ L

−L
dzv(z)e(mR−mL)|z|

]
(4.42)

where NR(L) are the normalization factors for the fermion zero mode profiles, ΨL(z) =

NLe
−mL|z|, and ΨR(z) = NRe

mR|z|. Note that the W mass depends only the differ-

ence between the fermion bulk mass terms (through the effective Higgs potential),

while the top quark mass has a quite different dependence arising from the fermion

normalization parameters. The W and top quark masses are thus independently

adjustable.
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|mL −mR|
(TeV)

g

mW ∼ 80 GeV

Figure 4.3: The phase boundary of the model is shown, as a function of |mL − mR| and the

four-fermion coupling g. The size of the extra dimension is L = 1 TeV−1, and Nc = 3. Thin solid

black lines indicate contours (moving outwards) of mW ∼ 40, 160, 320 GeV, while the thick blue

line corresponds to mW ∼ 80 GeV.

The phase boundary is shown in Figure 4.3 along with contours of mW as a

function of the original four-fermion coupling g and the difference between the fermion

bulk mass parameters |mR − mL|. We have set the other free parameters to Nc =

3, and Λ0L = 10. In Table 4.1, values of mL, mR and L which give the correct top and

W mass are shown, along with the associated value for the Higgs mass. Additionally,

we quote the value of g2/g2
crit− 1, a rough measure of the fine-tuning necessary in the

four-fermion coupling to achieve the correct W -mass.

We see that for the choice Λ0L = 10, Nc = 3, the Higgs is very massive. In fact, it

is above the perturbative unitarity bound. This can be alleviated by increasing Λ0L,

although the fermion ladder approximation begins to break down as Λ0 approaches

the scale at which the 5D gauge interactions become strong (about ΛL ∼ 30).

4.6 Conclusions

We have considered a compactified 5D version of a Nambu–Jona-Lasinio model. The

model is studied by computing quantum corrections to a 5D Yukawa theory in which

there are two species of fermions, each with a fermionic zero mode in the spectrum

with opposite chiralities. The scalar field is interpreted as a bound state of the two
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Table 4.1: Choices of the fermion bulk mass parameters that reproduce the SM values for mW

and mtop, and their associated predictions for the Higgs mass. In the third column, we give a rough

measure of the fine-tuning necessary to achieve the weak scale from the 5D four-fermion interaction.

All dimensionful parameters are given in units of TeV. We have set the other free parameters to

Nc = 3, Λ0L = 10.

mL mR L−1 g2/g2
crit − 1 mHiggs

9.1 18.8 2 0.0035 1.4

9.2 17.1 2 0.0031 1.25

9.45 15.2 2 0.0025 1.1

10. 12.7 2 0.0016 0.85

4.5 9.5 1 0.014 1.4

4.6 8.7 1 0.012 1.3

4.7 7.7 1 0.010 1.1

5.0 6.5 1 0.006 0.85

2.25 5.0 0.5 0.06 1.4

2.3 4.5 0.5 0.053 1.3

2.25 5.4 0.5 0.045 1.1

2.4 3.4 0.5 0.030 0.9

fermion species. The classical 4D effective theory at low energies exhibits a chiral

symmetry. Supplementation of the model by a 5D UV composite boundary condition

renders the model equivalent at the high scale to one with a 5D bulk four-fermion

operator. The quantum corrections to the low-energy Yukawa model are equivalent to

a re-summation of fermion bubble diagrams in the fermion four-point function arising

from the four-fermion interaction.

Both bulk and brane localized divergences are generated, although the brane lo-

calized divergences are softer than might have been expected. An accidental remnant

of 5D translation invariance on the parent S1 space survives, and protects against one-

loop quadratically divergent contributions to the scalar mass2 terms on the branes.
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In the presence of fermion bulk mass terms which explicitly violate translation in-

variance, linear divergences are generated. Under certain conditions, when the four-

fermion coupling exceeds a critical value, these brane localized terms destabilize the

scalar vacuum, and drive spontaneous chiral symmetry breaking.

If a portion of the chiral symmetry is weakly gauged, it is expected that this

symmetry will be spontaneously broken, as in top condensation models. We numer-

ically studied such a model, showing that it is possible to realize simultaneously the

correct top quark and W -boson masses. This can be seen as an explicit 5D realiza-

tion of top seesaw models, a deconstructed version of which was studied in [91, 92].

The Higgs mass is generically quite large in these models due to the large quartic

coupling, likely in conflict with perturbative unitarity and/or electroweak precision

constraints. A more realistic model implemented in warped space may alleviate both

of these tensions.

4.7 Appendix A: 5D Hard Cutoff

There are many ways in which to implement a hard cutoff in 5D theories, although

most do not preserve 5D Lorentz invariance. For example, a common procedure is

to write 5D propagators in mixed position/momentum space, where the propagators

are functions of 4D momenta, and of the extra dimensional coordinate, z. It is not

practical however, to implement a short distance cutoff in a manner which respects

local 5D Lorentz invariance since the extra dimension has been singled out. Another

common approach is to work in a KK-basis, and for each KK mode to integrate over

a four-sphere in the 4D momenta. However, the region in full 5D momentum space

that is integrated/summed over is not invariant under the 5D Lorentz group.

An ideal regularization procedure respects 5D Lorentz invariance in the UV, with

sub-leading terms generated as finite consequences of non-local finite-volume effects.

To obtain such a regulator, we recall that the Euler-Maclaurin formula allows one to
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express a sum over integers in terms of an integral and additional corrections:

∞∑
n=−∞

f(n) =

∫ ∞
−∞

dnf(n)+ lim
a→∞

[
f(a) + f(−a)

2
+
∑
j

B2j

(2j)!

(
f (2j−1)(a)− f (2j−1)(−a)

)]
(4.43)

Where the B coefficients are Bernoulli numbers. 5D loop integrals thus take the form

1

2L

∑
k5

∫
d4k

(2π)4
I(k, k5) =

∫
d5k

(2π)5
I(k, k5)

+
1

2L
lim
k5→∞

[
1

2

∫
d4k

(2π)4
(I(k, k5) + I(k,−k5)) +

∑
j

B2j

(2j)!

∫
d4k

(2π)4

(
I(2j−1)(k, k5)− I(2j−1)(k,−k5)

)]
, (4.44)

where the derivatives are with respect to the second argument of the integrand. On

the right hand side, to implement a hard cutoff, we wick rotate and then restrict the

momentum integration/summation to the interior of a euclidean four-sphere: K2 ≡
k2

0 + k2
1 + k2

2 + k2
3 + k2

5 ≤ Λ2. The final expression for any regulated 5D loop is

1

2L

Λ∑
k5=−Λ

∫
K2≤Λ2

d4kE
(2π)4

I(kE, k5) =

∫
K2≤Λ2

d5kE
(2π)5

I(kE, k5)+

1

2L
lim
k5→Λ

∑
j

B2j

(2j)!

∂(2j−1)

∂k
(2j−1)
5

(∫
k2E≤Λ2−k25

d4kE
(2π)4

(I(kE, k5) + I(kE,−k5))

)
.

(4.45)

The contribution from the second term in Eq. (4.44) vanishes, since the region of

integration in 4-momentum vanishes as k5 → Λ.

4.8 Appendix B: Brane Localized Terms

In [101], it was stated that brane localized terms are automatically generated in

theories with compact extra dimensions. There are, however, many cases in which

such terms are not generated at the one-loop level. In this appendix, we discuss these,

and provide a symmetry argument for why such terms are protected. For the purposes

of this discussion we use the orbifold language, in which the symmetry principle is



103

most clear. The extra dimensional space thus begins as a circle, parametrized by

angle θ, and is reduced to an interval by identifying points θ ↔ −θ.
The reason why most theories generate brane localized kinetic terms is that the

orbifolding procedure explicitly violates 5D translation invariance. In the simplest

case, fields can be assigned either even or odd parity under the orbifold identification,

a manifestation of this breaking. Quantum effects will then transmit this breaking

to other parts of the theory, creating brane localized kinetic terms, mass terms, and

interactions.

To see this in action, consider a 5D scalar field with no 5D mass term. The

propagator for a scalar which is even or odd under the orbifold assignment is given

by [99]:

∆(p; p5, p
′
5) =

i

2

1

p2 − p2
5

{
δp5,p′5 ± δp5,−p′5

}
(4.46)

Now let us add gauge interactions and consider the gauge boson two-point function.

There are two diagrams shown in Figure 4.4, although one creates a non-transverse

structure which is completely canceled by a portion of the second. This is a conse-

quence of gauge invariance.

1 QED

e

e

�

e

�

2 SQED at one loop

3 Crossing

1

Figure 4.4: Gauge boson two-point diagrams.

The diagram contains the following numerator structure which arises from the two

scalar propagators in the loop:∑
k5,k′5

1

D(k5, k′5)

(
δk5,k′5 ± δk5,−k′5

) (
δp5+k5,p′5+k′5

± δp5+k5,−p′5−k′5
)
→

∑
k5

1

D(k5, k′5)

{
δp5,p′5 + δp5,−p′5 ± δ2k5,p5−p′5 ± δ2k5,p5+p′5

}
(4.47)

The last two terms which do not conserve 5D momentum correspond to brane local-

ized terms, and are divergent when the full expression is evaluated. However, note
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that they come with either positive or negative coefficient depending on whether the

scalar has positive or negative orbifold parity. This shows that if a theory is con-

structed which has two such scalars, with opposite orbifold parity and equal gauge

coupling, that the brane localized divergences will cancel. The reason for this is that

the enhanced spectrum is identical to that of the theory before the orbifolding has

taken place, and therefore has all the field content of the complete circle before orb-

ifolding. 5D translation invariance on the full un-orbifolded circle protects against

the generation of brane localized terms.

Now consider a 5D fermion on the same spacetime. If the bulk mass of the fermion

vanishes, the fermion propagator (with the Dirac structure made explicit) is given by

∆(p; p5, p
′
5) =

i

2

1

6p+ iγ5p5

 12×2 ·
(
δp5,p′5 ± δp5,−p′5

)
02×2

02×2 12×2 ·
(
δp5,p′5 ∓ δp5,−p′5

)
 .

(4.48)

The fermion propagator contains two parts, one of which is orbifold even, and the

other odd. These correspond to the right- and left-handed components of the 5D

Dirac fermion. As with the case of two scalar fields, these degrees of freedom act

together in diagrams, and can potentially conspire to make brane localized terms

vanish. The question of whether or not brane localized terms are generated thus

comes down to the interplay of these two parts of the fermion propagator in particular

processes. In the two-point function we calculate for the Yukawa theory, only bulk

renormalization takes place, and no brane terms are generated. In contrast, for the

case of anomalies, the components of the propagator work together such that only

brane localized divergences are generated [99].



Chapter 5

Conclusions

In this dissertation we have reviewed the SM. In the course of doing so we have re-

viewed EFT, naive dimensional analysis and its advanced cousin, the beta function,

in chapter 2. We have also reviewed two of the outstanding theoretical problems of

the SM - the fine-tuning of the Higgs mass and the Strong CP problem. In addi-

tion, we have discussed one of the modern tools of particle physicists, the AdS/CFT

correspondence.

In chapter 3 we analyzed a general class of models that live on a slice of five dimen-

sional AdS background, otherwise known as Randall-Sundrum Space. In particular,

we have studied the gravitational fluctuations about the RS background metric. In

addition, we studied the generic light DOF these models contain in their four dimen-

sional effective actions. In particular, we analyzed a model that naturally provided

an axion candidate for the Strong CP problem. We analyzed the collider and astro-

physical phenomenology of these models.

In chapter 4 we analyzed a toy model for composite scalars. We used five dimen-

sional generalization of the NJL model and worked in the fermion bubble approxi-

mation to calculate the effective action of the composite scalar. This model had the

unique feature that the effective action did not follow the naive power counting rules

for brane localized operators that were generated at low energy. Because of the com-

posite nature of the scalar, this has potential implications for studying solutions to

the fine-tuning of the Higgs mass. A more realistic model will require extending the
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work to a Randall Sundrum background in order to make full use of the AdS/CFT

correspondence.
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