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Abstract 

In this report we present a novel and efficient maximum-likelihood soft-decision decoding 

algorithm for linear block codes. The approach used here is to convert the decoding prob­

lem into a search problem through a graph which is a trellis for an equivalent code of the 

transmitted code. Algorithm A*, which uses a priority-first search strategy, is employed to 

search through this graph. This search is guided by an evaluation function f defined to take 

advantage of the information provided by the received vector and the inherent properties of 

the transmitted code. This function f is used to drastically reduce the search space and to 

make the decoding efforts of this decoding algorithm adaptable to the noise level. Simulation 

results for the {48, 24) and the {72, 36) binary extended quadratic residue codes and the 

(128, 64) binary extended BCH code are given to substantiate the above claim. 
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1 Introduction 

Block codes and convolutional codes are two well-known error-control techniques for reliable 

transmission of digital information over noisy communication channels. Long linear block 

codes with coding gains far superior to those of convolutional codes have been known for 

many years. However, these block codes have not been used in practice for lack of an 

efficient soft-decision decoding algorithm. Soft-decision decoding can provide about 2 dB of 

additional coding gain when compared to hard-decision decoding. 

This report deals with the maximum-likelihood soft-decision decoding of linear block codes. 

By maximum-likelihood decoding, we mean a decoding algorithm which minimizes the prob­

ability of decoding to an incorrect codeword when all codewords have equal probability 

of being transmitted. By soft-decision we mean that the decoding algorithm can use real 

numbers (e.g., the analog output of filters matched to the signals) associated with every 

component of the codeword in the decoding procedure. 

Our approach to the maximum-likelihood soft-decision decoding of linear block codes is 

to convert this problem into a search problem through a graph which is a trellis for a code 

equivalent to the transmitted code. To search through this graph we use Algorithm A* 

which uses a priority-first search strategy. It is widely used in Artificial Intelligence search 

problems [17]. The use of this algorithm for decoding drastically reduces the search space 

and results in an efficient optimal soft-decision decoding algorithm for linear block codes. 

Furthermore, the decoding efforts of this decoding algorithm are adaptable to the noise level. 

In Section 2 we review maximum-likelihood decoding of linear block codes and describe 

Algorithm A*. In the next section we present our decoding algorithm and give the simulation 

results for the (48,24) and (72,36) binary extended quadratic residue codes, and (128,64) 

binary extended BCH code. Concluding remarks and an extension of our decoding algorithm 

to convolutional codes are presented in Section 4. 

1 



2 Preliminaries 

Let Vn,q be the set of all n-tuples over GF(q). A q-ary (n, k) linear block code C is a 

subspace of V,..,q of dimension k. C can be characterized by a generator matrix G or by a 

parity-check matrix H. Any set of k linearly independent vectors in C can be used as the 

rows of G. On the other hand, any set of n- k linearly independent vectors in Cl. (null 

space of C) can be used as the rows of H. Thus, a vector in V n,q is a codeword inC if and 

only if it is a linear combination over GF(q) of the rows of G. Therefore, a codeword inC 

can be written as c = u • G where u is a k-tuple over GF(q). Since Cis the null space of 

Cl., any vector v E V,..,q is a codeword of C iff it is orthogonal to every row of H, that is, 

v. HT = 0. 

Let c = (eo, Ct, .•• , c,.._1), Cj E GF(q) be a codeword of C transmitted over a time­

discrete memoryless channel with output alphabet B. Furthermore, let r = (r0 , r1, ... , rn-1 ), 

ri E B denote the received vector, and let c be an estimate of the transmitted codeword c. 

The maximum-likelihood decoding rule (MLD rule) for a time-discrete memoryless chan­

nel can be formulated as: 

set c = ce where ce =(ceo, ce1, ... , ce(n-1)) E C and 

n-1 n-1 

II Pr(ri!cej) ~ II Pr(rj!Cij) for all Ci =(cia, Cib ..• , Ci(n-1)) E C. 
j=O j=O 

We now give the MLD rule for a binary linear code C transmitted over the Additive 

White Gaussian Noise (AWGN) channel using antipodal signaling. In this case, the ph 
component of a codeword c = (c0 , c1 , ••• , Cj, ••. , Cn-1 ) of Cis transmitted as 

where E is the signal energy per channel bit. So the Ph component of the received vector 

r = (ro, r1, ... , rj, ... , rn-1 ) is 

where ej is the noise sample of a Gaussian process with single-sided noise power per hertz 
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N0 • The variance of ei is N0 /2. In this case the MLD rule can be written as 

set c = Ct, where Ct E C and 

n-1 2 n-1 2 
L (ri- (-1YtiVE) :::; L (ri- (-1Y;;v0f) for all Ci E C. 
~0 ~0 

In the special case where the codewords of C have equal probability of being transmitted, 

the MLD rule minimizes the error probability. 
n-1 

One way to implement the MLD rule is to calculate Pr(rlci) = II Pr(rilCii) for every 
j=O 

codeword inC and select the codeword that maximizes it. In practice this can be done only 

for those codes with a small number of codewords, that is, low rate codes or middle-to-high 

rate codes with short block length. 

In 1979 Hwang [12] showed that it is possible to select a codeword maximizing Pr(rlci) 

without calculating it for every codeword in a binary code C. He proved that if a codeword 

Cit = ci2ffi Ci3 where Ci2 and ci3 are disjoint codewords, then we can select a codeword 

maximizing Pr(rlci) without directly calculating Pr(rlci1). Recently it has been shown 

that if the MLD rule is implemented using Hwang's technique, then the codewords that can 

be dropped from the computation are only those satisfying the above property [14, 16]. 

In 1980 Hwang [13] proposed another approach to reduce the number of codewords that 

need to be considered when applying the MLD rule. However, since the k most "reliable" 

positions of the received vector may not be linearly independent, it is simple to design an 

example where the procedure proposed in [13] will fail to start. Such an example is given in 

Appendix A. 

Several researchers [6, 21, 18] have presented a technique for decoding linear block codes 

that converts the decoding problem into a graph-search problem on a trellis derived from the 

parity-check matrix of the code. Thus the MLD rule can be implemented by applying the 

Viterbi Algorithm [20] to this trellis which has at most min ( q", qn-k) states. Therefore, in 

practice this breadth-first search scheme can be applied only to codes with small redundancy, 

that is, small n - k or codes with a small number of codewords. 

When the decoding problem is converted into a graph-search problem, we are interested 

in finding a path from the start node representing the initial condition to a goal node that 
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represents the termination condition. This path will optimize some criterion that leads us 

to construct a codeword that maximizes Pr(Tici), where Ci E C. 

Thus, the decoding problem has been mapped to a more general graph-search problem. 

In this graph each arc is assigned a cost and the cost of a path is the sum of the costs of the 

arcs connecting the nodes in this path. The problem is how to find an optimal path from the 

start node to a goal node, that is, a path with minimal (maximal) cost. The algorithm A*, 

widely used in Artificial Intelligence, is an efficient procedure for finding an optimal path if 

one exists in a graph. 

In order to more easily describe Algorithm A*, we first give a general graph-searching 

procedure as presented in [17]: 

Procedure GRAPHSEARCH 

1. Create a search graph, g, consisting solely of the start node, s. Put s on a list called 

OPEN. 

2. Create a list called CLOSED that is initially empty. 

3. LOOP: if OPEN is empty, exit with failure. 

4. Select the first node on OPEN, remove it from OPEN, and put it on CLOSED. Call 

this node m. 

5. If m is a goal node, exit successfully with the solution obtained by tracing a path along 

the pointers from m to s in g. (Pointers are established in Step 7.) 

6. Expand node m, generating the set, M, of its successors that are not ancestors of m. 

Install these members of M as successors of m in g. 

7. Establish a pointer to m from those members of M that were not already in g (i.e., 

not already on either OPEN or CLOSED). Add these members of M to OPEN. For 

each member of M that was already on OPEN or CLOSED, decide whether or not to 

redirect its pointer to m. For each member of M already on CLOSED, decide for each 

of its descendants in g whether or not to redirect its pointer. 
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8. Reorder the list OPEN, either according to some arbitrary scheme or according to 

heuristic merit. 

9. Go LOOP. 

If the graph being searched is not a tree, it is possible that some of the elements of set 

M have already been visited-that is, they are already on list OPEN or list CLOSED. The 

problem of determining whether a newly generated node is on these lists can be computa­

tionally very expensive. For this reason we may decide to avoid making this test, in which 

case the search tree may contain several repeated nodes. These node repetitions lead to 

redundant successor computations and there is a trade-off between the computation cost for 

testing for repeated nodes and the computation cost for generating a larger search tree. In 

steps 6 and 7 of procedure GRAPHSEARCH, testing for repeated nodes is performed. 

In an uninformed search procedure no heuristic information from the problem has been 

used in reordering the list OPEN in Step 8. In this case, the two well-known search methods 

are the breadth-first and depth-first. However, these methods are exhaustive in nature, and 

thus in practice are applicable only to graphs with small numbers of nodes and paths. 

In many cases it is possible to use some inherent properties of a problem to help reduce 

the search. The search procedure using this information is called a heuristic search method. 

In many situations it is possible to specify heuristics that reduce considerably the search 

effort without compromising the optimality of the solution. 

One of the well-known heuristic search methods that guarantee to find the optimal solu­

tion if one exists is the Algorithm A* (17]. The description of A* given here is taken from 

[17]. A* uses a cost function called evaluation function f to guide the search through the 

graph. This function f is computed for every node that is added to list OPEN in Step 7 of 

the procedure GRAPHSEARCH. In Step 8 of this procedure, we reorder the list OPEN 

according to the value of the function f. From now on, in order to simplify the description 

of A*, we assume that an optimal path is one that minimizes the cost function. 

For every node m, we define the evaluation function f so that its value f(m) at node m 

estimates the cost of the minimum cost path that goes through node m. f(m) is computed 
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as 

f(m) = g(m) + h(m), 

where g( m) estimates the cost of the minimal cost path from the start node s to node m, 

and h( m) estimates the cost of the minimal cost path from node m to a goal node. 

In A*, the next node to be expanded is the one with the smallest value of f on the list 

OPEN since this node imposes the least severe constraints. 

Similarly, let f* be a function such that f*(m) at any node m is the actual cost of a 

minimum cost path that goes through node m. Analogously, 

f*(m) = g*(m) + h*(m), 

where g*(m) is the actual cost of a minimum cost path from the start node s to node m, 

and h*(m) is the actual cost of a minimum cost path from node m to a goal node. 

A* requires that g(m) ~ g*(m) and h(m) ~ h*(m) for every node m of the graph. These 

requirements guarantee that A* will find a minimum cost path if one exists; however, if the 

graph is finite, then the only condition that must be satisfied to guarantee optimality is 

h(m) ~ h*(m) for every node m of the graph [17]. 

An obvious choice for g( m) is the cost of the path in the search tree from the start node s 

to node m given by summing all the arc costs encountered while constructing the minimum 

cost path from the start nodes to node m. Note that this path is the lowest cost path from 

the start nodes to node m found so far by the algorithm. The value of g(m) may decrease 

if the search tree is altered in Step 7 of procedure GRAPHSEARCH. From now on we 

assume that function g is calculated in this way. In this case g(m) ~ g*(m) for every node 

m of the graph. Furthermore, if h( m) = 0 for any node m, then A* becomes a version of 

Dijkstra's algorithm [9]. 

To define h( m) < h *( m ), we use the properties of the problem. It can be shown [17] that 

if we have two evaluation functions f 1(m) = g1(m) + h1(m) and h(m) = g2(m) + h2(m) 

satisfying h1(m) < h2(m) ~ h*(m) for every node m, the A* using evaluation function h will 

never expand more nodes than the A* using evaluation function f 1 . Furthermore, if there 

exists a unique optimal path, then the above results hold when h1(m) ::; h2(m) ::; h*(m) is 
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satisfied for every node m. Also, if h( m) > 0 for any node m, then A*, using this function 

h, will never expand more nodes than the above version of Dijkstra's algorithm. 

The monotone restriction is a reasonable restriction that when imposed on h can sub­

stantially decrease the computation time and storage of A*. In (17], the function h is said 

to satisfy the monotone restriction if and only if for all nodes mi and mil such that node mi 

is a successor of node mi, 

0 < h(m·)- h(m ·) < c(m· m ·) - t 3 - ,, 3 

with h(t) = 0, where tis any goal node and c(mi, mi) is the arc cost between node mi and 

node mi. 

If the monotone restriction is satisfied, then it can be shown [17] that A* has already 

found an optimal path from the start node to the node it selects to expand. Thus there is 

no need for A* to check if the newly generated nodes are on the list CLOSED and we do not 

have to store this list. Furthermore, we do not have to update the parentage in the search 

tree of any successors of the node A* selects to expand. Also, if the monotone restriction is 

satisfied, the f values of the sequence of nodes expanded by A* is non decreasing [17]. 

In the proof of the above results [17], the conditions that are imposed by the monotone 

restriction, namely 0 :5 h(mi) - h(mi) and h(t) = 0, have not been used. So the only 

requirement for this proof is that 

(1) 

We will show that the h function we use in the next section will satisfy this inequality, so 

we can still use the above result to speed up the decoding procedure. It is easy to find an 

example to show that this h function does not satisfy 0 :5 h(mi)- h(mi)· 

Another property of A* [17, Prob. 2.6] that will be used in our decoding algorithm is 

as follows: Algorithm A* still finds the optimal path (if one exists) if it removes from list 

OPEN any node m for which f(m) > U B, where U B is an upper bound on the cost of an 

optimal path. 

From the description of A* it is clear that the most important factor in the efficiency of 

A* is the selection of the heuristic function h and, consequently, the evaluation function f. 
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3 Decoding Algorithm 

In order to simplify the description of our algorithm we restrict ourselves to binary linear 

codes transmitted over the AWGN channel using antipodal signaling. Thus, as stated 

earlier, the jlh component of c = (eo, c1 , ... , Cj, ••• , Cn-1) E C is transmitted as ( -1 )ci VB 
and thejfh component ofthe received vector r = (ro, r 11 ••• , rj, ... , rn-d is rj = ( -l)ci-JE+ 

ei. 

Our decoding algorithm, guided by an evaluation function f, searches through a graph 

that is a trellis for a code C*, which is equivalent to code C. C* is obtained from C 

by permuting the positions of codewords of C in such a way that the first k positions of 

codewords in C* correspond to the "most reliable linearly independent" positions in the 

received vector r. In Appendix B we give an algorithm to obtain G* from G. G* is a 

generator matrix of C* whose first k column forms a k x k identity matrix. The time 

complexity of this algorithm is also discussed in this appendix. 

In our decoding algorithm the vector r* = (r~, rr, ... , r~_1 ) is used as the "received 

vector." It is obtained by permuting the positions of r in the same manner in which the 

columns of G can be permuted to obtain G*. 

3.1 Construction of trellis 

We now give a short description of a trellis [1] for the code C* where the search will be 

performed. We remark here that even though we will describe the complete trellis, our de­

coding algorithm will construct only a very small subgraph of this trellis during the decoding 

procedure. Let H* be a parity-check matrix of C*, and let hi*, 0 ~ i < n be the column 

vectors of H*. Furthermore, let c* = (c~,c;', ... ,c:_1 ) be a codeword of C*. With respect 

to this codeword, we recursively define the states St, -1 ~ t < n, as follows: 

B-1 = 0 

and 
t 

St = St-l + c;h; = L:c:h:, 0 ~ t < n. 
i=O 
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Clearly, Bn-1 = 0 for all codewords of C*. The above recursive equation can be used to 

draw a trellis diagram with at most min(2\ 2n-k) states. In this trellis, s_1 = 0 identifies the 

start node which is at level -1; Bn-l = 0 identifies the goal node which is at level n -1; and 

each state St, 0 :::; t < n- 1 identifies a node at level t. Furthermore, each transition (arc) is 

labelled with the appropriate codeword bit c;. A more detailed description of a trellis for a 

linear block code can be found in [21]. Note that the trellis defined here corresponds to the 

expurgated trellis of [21]. 

3.2 Evaluation function 

As we pointed out before, the selection of evaluation function f is of the utmost importance, 

since it determines the search effort of A*. We now describe the function f we use in our 

decoding algorithm. 

In order to define function f, we need first to specify the arc costs. In the trellis of C*, 

the cost of the arc from Bt-l to Bt = Bt-1 + c; h * t is assigned the value ( r;- ( -1 y: VE)2. Thus 

the solution of the decoding problem is converted into finding a path from the start node to 
n-1 

the goal node, that is, a codeword c* = (c~, ci, ... , c~_1 ) such that :~::)r; - ( -l)ct VE)2 is 
i=O 

minimum among all paths from the start node to the goal node. 

Now we define function f for every node min the trellis as follows: 

f(m) = g(m) + h(m). 

As previously noted, g( m) is the lowest cost path from the start node to node m found 

so far by the algorithm, where the cost of a path from the start node to node m is obtained 

by summing all the arc costs encountered while constructing this path. 

We now define a function h which must satisfy h(m) :::; h*(m) for every node m. Recall 

that h*(m) is the cost of a minimum cost path from node m to the goal node. 

1. For nodes at level£, k- 1 :::; £ < n: 

Because of the linear property of C* and the fact that the first k columns of G* are 

linearly independent, there is only one path Pm' from any node m1 at level k -1 to the 

9 



goal node. Furthermore, we can easily determine the labels cj;, cj;+l, ... , c~_1 of this 
n-1 

path using G* and calculate its cost I: (ri - ( -1 )ci JE) 2 • In view of the above fact, 
i=k 

we define function h as follows: 

n-1 • 2 

h(m) = I: (ri- ( -1Y• JE) , 
i=Hl 

where cl'+l, cl'+2 , ••• , c~_1 are the labels of the only path Pm from node m to the goal 

node. 

Note that if node m is the goal node, then h(m) = 0. Furthermore, h(m) = h*(m) 

since there is only one path from node m to the goal node and h( m) is the cost of this 

path. The time complexity for calculating h( m) for node m at level £, k - 1 :::; .e < n is 

discussed in Appendix F. 

2. For nodes at level£, -1 :::; .e < k- 1: 

In order to define a function h which is a "good" estimator of h* we must use properties 

of the linear block code which are invariant under any permutation of the positions of 

the codewords. Here our function h is defined to take into consideration the fact that 

codewords of C can only have some specific Hamming weights. 

Let w0 < w1 < · · · < w 1 be the I + 1 distinct Hamming weights that codewords of C 

may have. Thus these are the only Hamming weights that codewords of C* may have. 

Let c(j, ci, ... , ci be the labels of the lowest cost path P:n from the start node to node 

m which is at level£ found so far by the algorithm, and let W(P:n) be the number of 

labels of P:n whose values are 1. 

Furthermore, let v = (vHb Ve+2, ••• , Vn-1) be a binary (n- .e- 1)-tuple. Denote by 

WH(v) the Hamming weight of v. Now, define the set 

T(m) = {v!WH(v) E {wi- W(P:n)IO:::; i:::; I}}. 

Note that 0:::; WH(v):::; (n- .e- 1) for all v E T(m). We will show that T(m) f= 0 in 
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Appendix C. Finally, we define h as 

h(m) = min I: (r;- ( -1)11ivE) . { 
n-1 2 } 

veT(m) i=l+l 

Obviously, h(m) :5 h*(m) for any node min the trellis. 

It is very important that the time complexity for calculating h( m) be "reasonable," 

for otherwise the time taken by the decoding algorithm is spent calculating h(m), even 

though there are only a few nodes to be visited (open) in the trellis. In Appendix C 

we present an algorithm to calculate h(m) for node mat levell, -1 :5 l < k -1 whose 

time complexity is O(n). 

For long block codes it may be impossible to determine the set, HW, of different Hamming 

weights the codewords may have. However, our algorithm will still find the optimal solution 

even if in the computation of function h the algorithm considers all the Hamming weights of 

any superset of HW. The algorithm using a superset of HW may visit more nodes than that 

using HW. Furthermore, in most cases the received vector is closed to a unique codeword. 

In this case, as pointed out in Section 2, the algorithm will not open fewer nodes if it uses a 

proper superset of HW instead of HW in the computation of function h. 

3.3 Speed-up techniques 

In this subsection we present some properties of the decoding algorithm that can be used to 

speed up the decoding procedure. 

In Appendix D we show that our h function satisfies the following property: 

where node m; is a successor of node mi and c( mi, m;) is our arc cost from node mi to node 

m;. Then, as we pointed out before, we do not need to store the list CLOSED and we do 

not have to update the parentage in the search tree of any successors of the node that our 

algorithm selects to expand. 
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Another property that can be used to speed up the decoding process (to be shown in 

Appendix E) is the fact that when our algorithm expands a node mat level£< k- 2, we 

need to compute the value of function f for only one of its successors. This is because the 

value of function f for the other successor is equal to that of node m and we can easily 

determine which successor has the value f(m). Thus our algorithm is a depth-first search 

type Algorithm A*. 

Furthermore, since our function h satisfies Inequality 1, by the remark in the previous 

section, the f values of the sequence of nodes expanded by our algorithm is nondecreasing. 

Let node m1 at level .i < k - 2 be the first node of list 0 PEN. Consider the sequence of nodes 

that the algorithm will follow from node m1 to node m2 which is at level k- 2. Due to the 

above properties, the value of the function fat every one of these nodes is equal to f(m1). 

Furthermore, the labels of the path corresponding to this sequence of nodes is determined 

when the algorithm calculates h(m1 ) (see Appendix E). Thus, we do not have to visit the 

nodes of this sequence. This reduces considerably the total number of nodes visited. 

Our algorithm will search the trellis only up to level k-1 since we can construct the only 

path from any node m at level k - 1 to the goal node using G*. The labels of the combined 

paths from the start node to node m, and from node m to the goal node, correspond to a 

codeword. So the cost of this path, which is equal to f(m), can be used as an upper bound 

on the cost of an optimal path. As noted in Section 2, we can use this upper bound to 

reduce the size of list OPEN. Furthermore, since in an expurgated trellis every path from 

the start node reaches the goal node, and the f values of the sequence of nodes expanded 

by our algorithm is nondecreasing, then we only need to keep one node on list OPEN whose 

f value is equal to the upper bound. 

Now we discuss another property of linear block codes that allows us to reduce the search 

procedure for our algorithm. Let Rn be the set of all n-tuples over R, the set of real numbers, 

and let c* = (c:;, ci, ... , c~_1 ) be a codeword of C*. Denote by Q;c• the geometric vector 

from the point 0 = (0, 0, ... '0) E nn to the point Vc• = (( -1)co-JE, ( -lYiVE, ... ' ( -lY~-1 
VE) E nn. Analogously, denote by o;* the geometric vector from the point 0 to the point r* 

= ( r0, ri, ... , r:_1 ) E Rn. Furthermore, let AN G ( Q;c. , Or*) be the smallest angle between 
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Q;c• and 0,:*. Let a = sin - 1 ~' where dnun is the minimum Hamming distance of C*, 
--+ --+ 

which is the same as that of C. It is very simple to show that if ANG(Ovc•, Or*) ::::;: a, 
n-1 2 

then L: (ri - ( -1 y: v'E) is minimum over all codewords of C*. Furthermore, it is easy 
i=O 

--+ --+ 

to calculate ANG(Ovc•, Or*). First, we multiply r* by a scalar fJ such that fJr* lies on the 

surface of the sphere of radius v:;lE centered at 0. Thus 

--+ --+ 

ANG(Ovc•, Or*) = 2 · sin-1 
1 

2 nE 

--+ 

Every time our algorithm constructs a codeword c* we can check if ANG(Q;c., Or*) 

< a holds. If so, c* is an optimal solution. 

3.4 Simulation results 

In the implementation of our decoding algorithm we have decided not to check for repeated 

nodes. In this situation the graph becomes a decision tree. Thus, we do not have to keep 

list CLOSED. Furthermore, list OPEN is always kept ordered according to the values f of 

its nodes. An outline of our decoding algorithm under this condition is given in Appendix 

F. In this appendix we also apply the algorithm to a numerical example. 

As derived in Appendix F, the time complexity and the space complexity of our algorithm 

are O(n x N(r)) and O(n x M(r)), respectively. Recall that 

N( r) the number of nodes visited during the decoding of r; 

M( r) - maximum number of nodes stored on list OPEN during the decoding of r. 

The values of N(r) and M(r) will strongly depend upon the signal to noise ratio (SNR). Up 

to now we do not have a "good" estimator of these values; however, they are upper bounded 

by 2k+l - 1. So, in the worst case, the time and space complexities of our algorithm are 

O(n x 2k), which are, under the condition k :::; (n- k), equal to those of Wolf's algorithm 

[21], which are O(n X min(2k, 2n-k)) [8]. 
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In order to verify the performance of our algorithm we give simulation results for the 

(48,24) and the (72,36) binary extended quadratic residue codes, and the {128,64) binary 

extended BCH code. For the (48,24) and the (72,36) codes, we know HW. However, for the 

(128,64) code, we only know a superset of HW, namely, {xl (xis even and 22 ~ x ~ 106) or 

(x = 0) or (x = 128)}. 

First, we give simulation results for the ( 48,24) and the (72,36) codes. Both of theses 

codes have dnun equal to 12. These codes are obtained by adding an overall parity check to 

the (47,24) and the (71,36) binary quadratic residue codes, respectively. Quadratic residue 

codes are known to be very good codes that are very difficult to decode even when only hard­

decision decoding is employed [4, 7, 5]. Some quadratic residue codes have been decoded by 

using information-set decoding algorithms [3]. However, these algorithms are sub-optimal, 

that is, do not implement the MLD rule. Thus, the only two non-exhaustive maximum­

likelihood soft-decision decoding algorithms known to us that can be used to decode the 

(48,24) and the (72,36) codes are Wolf's algorithm [21] and Hwang's algorithm [12]. 

It is very hard for us to compare the performance of our algorithm with that of Hwang 

because he found the subset of codewords that must be stored for implementing the MLD 

rule only for very short codes [12, Table I]. However, we observe that the complexities of 

Wolf's algorithm are approximately the same as those of Hwang's for the codes presented in 

Table I of [12]. Thus, we will compare the performance of our algorithm to that of Wolf. 

As pointed out before, we assume that antipodal signaling is used in the transmission so 

that the jih components of the transmitted codeword c and received vector r are 

respectively, where E is the signal energy per channel bit and e; is a noise sample of a 

Gaussian process with single-sided noise power per hertz N0 . The variance of ei is N0 /2 and 

the SNR for the channel is 1 = EfN0 • In order to account for the redundancy in codes of 

different rates, we used the SNR per transmitted information bit /b = Eb/N0 = 1n/k in our 

simulation. 

The simulation results for the ( 48, 24) binary extended quadratic residue code for /b equal 
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to 2 dB, 3 dB, 4 dB, 5 dB, 6 dB, and 7 dB are given in tables 1, 2, and 3. These results 

were obtained by simulating 17,000 samples for each SNR. Note that 224 ~ 1.68 X 107 . 

Table 1: Simulation for the ( 48, 24) code 

'b II 2 dB II 3 dB II 4 dB 

max mm ave max mm ave max mm ave 

N(r) 19442 24 452 13997 24 165 9141 24 58 

C(r) 7338 1 134 5154 1 42 2996 1 11 

M(r) 2427 24 66 1491 24 35 1101 24 26 

rb II 5 dB II 6 dB II 7 dB 

max mm ave max mm ave max mm ave 

N(r) 1377 24 30 551 24 25 183 24 25 

C(r) 356 1 3 164 1 2 34 1 2 

M(r) 159 24 25 66 24 25 47 24 25 

N(r) =the number of nodes visited during the decoding of r; 

C ( r) = number of codewords constructed in order to decide on the closest codeword to r; 

M( r) = maximum number of nodes stored on list OPEN during the decoding of r; 

max = maximum value among 17,000 samples; 

min= minimum value among 17,000 samples; 

ave= average value among 17,000 samples. 
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-+ -+ 

Table 2: The number of samples for which ANG(Ovc•, Or*) :::; a 

holds for the ( 48,24) code 

1/b I 2 dB I 3 dB I 4 dB I 5 dB I 6 dB I 7 dB I 
1 # 1 423 l1108 1 5128 !10557 l1s224 116844 1 

For high SNR the bit error probability can be estimated using the following formula [11]: 

(2) 

where nd is the number of codewords of Hamming weight dmin· 

Table 3: Bit error probability and coding gain for the (48,24) code 

/b 2 dB 3 dB 4 dB 5 dB 6 dB 7 dB 

H 9.60 X 10-3 1.34 X 10-3 8.95 X 10-5* 1.61 x w-6* 1.06 X 10-8* 1.94 X 10-lU 

CG 2.36 3.55 4.45 5.35 5.95 6.40 

Pb = bit error probability; 

CG =coding gain (dB); 

* Calculate using (2). 

The simulation results for the (72, 36) binary extended quadratic residue code for /b equal 

to 2 dB, 3 dB, 4 dB, 5 dB, 6 dB, and 7 dB are given in tables 4, 5, and 6. These results 

were obtained by simulating 17,000 samples for each SNR. Note that 236 ~ 6.87 x 1010 • 

Table 4: Simulation for the (72, 36) code 

/b II 2 dB II 3 dB 
II 

4 dB 

max mm ave max mm ave max mm ave 

N(r) 1012728 37 11931 683567 36 2075 38326 36 326 

C(r) 383542 2 3750 241090 1 560 11716 1 64 

M(r) 130372 36 1413 88031 36 241 4288 36 56 
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P, 

CG 

1b II 5 dB II 6 dB II 7 dB 

max mm ave max mm ave max mm ave 

N(r) 24493 36 81 1758 36 41 368 36 37 

C(r) 6202 1 10 446 1 3 50 1 2 

M(r) 2514 36 38 366 36 37 41 36 37 

--+ --+ 

Table 5: The number of samples for which ANG(Ovc•, Or*) :5 a 

holds for the (72,36) code 

11b I 2 dB I 3 dB 14 dB I 5 dB I 6 dB I 7 dB I 
1 # 1 o 1 4 1 35 1 377 1 2767 1 9323 1 

Table 6: Bit error probability and coding gain for the (72,36) code 

2 dB 3 dB 4 dB II 5 dB 6dB 7 dB 

7.13 X 10-3 4.72 X 10-4 1.03 X 10-h 1.85 X 10-h 1.21 X 10-9* 2.23 X 10-12* 
2.76 4.36 5.55 6.10 6.50 6.80 

II 

In order to give a better idea of the distributions of N(r), C(r), and M(r) for the (72,36) 

code, the histograms of these random variables corresponding to our experiments are given 

in figures 1 through 9. 

The time and space complexities of Wolf's algorithm [21] are O(n x min(2k, 2n-k)) [8] and 

those of our algorithm are 0( n x N( r)) and 0( n x M( r) ), respectively. Since it is very difficult 

to determine the "hidden costs" because they depend on a particular implementation, it is 

fair to compare both algorithms based on the values of min(2k, 2n-k), N( r ), and M( r ). 

For the (72,36) the results given in Table 4 show that our algorithm has reduced dramat­

ically the search space when compared to Wolf's algorithm. In our simulation of 1b = 2 dB, 

the worst case time (space) complexity of our algorithm is more than 4(5) orders of mag­

nitude smaller than that of Wolf's algorithm. For higher SNR this reduction is even more 
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drastic. We should also observe that the average values of N( r) and M( r) are approximately 

2 orders of magnitude smaller than those values in the worst case. In summary, the simula­

tion results have far exceeded our most optimistic expectations, especially because quadratic 

residue codes are known to be very hard to decode even when only hard-decision decoding 

is employed [4, 7, 5]. 

In order to verify the contribution of our h function to the efficiency of our decoding 

algorithm we modified our algorithm by defining another h function which was equal to zero 

for every node m at level f < k- 1 in the graph, that is, f(m) = g(m). This modified 

algorithm (MA) is Dijkstra's algorithm [9] combined with most of our speed-up techniques. 

If Dijkstra's algorithm is applied without using these techniques we expect a much worse 

performance than that of MA. In Table 7 we give simulation results for the decoding of the 

(72, 36) code using the proposed algorithm (PA) and MA for 'Yb equal to 5 dB, 6 dB, and 7 

dB. These results were obtained by simulating 100 samples for each SNR. 

Table 7: Simulation for the decoding of the (72,36) code using PA and MA 

'Yb 5 dB 6 dB 7 dB 

max min ave max min ave max mm ave 

N(r) 1345 36 79 631 36 43 89 36 37 

PA C(r) 314 1 10 68 1 3 16 1 2 

M(r) 132 36 38 36 36 36 36 36 36 

N(r) 241634 72 33358 69052 72 9213 15010 72 2337 

MA C(r) 43746 1 5295 9442 1 1173 1662 1 258 

M(r) 17905 36 2226 4382 36 538 724 36 140 

Based on the results given in Table 7 we can conclude that our function h contributes 

drastically to the reduction of search space. 

In order to compare fairly paths of different lengths, we again modified PA by reordering 

list OPEN according to the values of the Fano metric [15] calculated for those nodes opened. 

The optimality was guaranteed because we deleted only from list OPEN a node m for which 
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f( m) > U B. However, the performance of this modified algorithm was almost identical to 

that of MA for the samples tried. We conjecture that this fact is due to the reordering of 

the positions of r according to their reliabilities. 

Finally, we give simulation results for the (128,64) binary extended BCH code whose 

dmin = 22. This code is obtained by adding an overall parity check to the (127,64) binary 

BCH code. As pointed out earlier in the calculation of values of function h, the algorithm 

assumes that the Hamming weights of the codewords of this code belong to the set {x\(x is 

even and 22 :::; x :::; 106) or (x = 0) or (x = 128)}. Sub-optimal decoding procedures for this 

code have been proposed in [10, 3]. 

The simulation results for the (128,64) binary extended BCH code for /b equal to 5 dB, 

6 dB, 7 dB, 8 dB, 9 dB, and 10 dB are given in the following tables. These results were 

obtained by simulating 17,000 samples for each SNR. Note that 264 ~ 1.84 x 1019 . 

Table 8: Simulation for the (128,64) code 

/b II 5 dB 
II 

6 dB II 7 dB 

max mm ave max mm ave max min ave 

N(r) 524178 64 1400 27345 64 168 2047 64 71 

C(r) 104582 1 196 3150 1 14 144 1 2 

M(r) 44333 64 136 1479 64 66 216 64 65 

/b II 8 dB II 9 dB II 10 dB 

max mm ave max mm ave max mm ave 

N(r) 560 64 65 65 64 65 65 64 65 

C(r) 62 1 2 2 1 2 2 1 2 

M(r) 64 64 64 64 64 64 64 64 64 
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'Yb 

pb 

CG 

- -Table 9: The number of samples for which ANG(Ovc•, Or*) $a 

holds for the (128,64) code 

1/b I 5 dB I 6 dB I 7 dB I 8 dB I 9 dB 110 dB I 
1 # 1 118 1 2176 110861 116611 116998 l11ooo 1 

Table 10: Bit error probability and coding gain for the (128,64) code 

5 dB 6 dB 7 dB 8 dB 9 dB 

1.57 X 10-12* 1. 71 X 10-16* 1.82 X 10-2a 1.02 X 10-2h 1.43 X 10-35* 
8.85 9.22 9.50 9.70 9.85 

10 dB 

1.40 X 10-45* 
10.00 

When calculating Pb using (2), the value of nd = 243,840 was taken from [2]. 

Simulation results for the (128,64) code indicate that a drastic reduction on the search 

space is achieved for the majority of practical communication systems where the probability 

of error is less than 10-3 ( /b greater than 6.8 dB) [7] even when the algorithm uses a superset 

ofHW. 

4 Conclusion 

Long linear block codes with coding gains far superior to those of convolutional codes have 

been known for many years. However, these and other excellent block codes have not been 

used in practice for lack of an efficient soft-decision decoding algorithm. 

In this report we have proposed a novel decoding technique. Simulation results for 

various linear block codes attest to the fact that this decoding technique drastically reduced 

the searach space, especially for the majority of practical communication systems where 

the probability of error is less than 10-3 ( /b greater than 6.8 dB) [7]. Thus, this decoding 

procedure has not only resulted in an efficient soft-decision decoding algorithm for hitherto 

intractable linear block codes, but an algorithm which is in fact optimal as well. 
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Although we have developed our algorithm for linear block codes, there is no reason why 

we cannot extend this approach to convolutional codes. If the length of the information 

sequence is very large, we cannot wait for the end of the transmission to start the decoding 

process as in the case of block codes. In this case, we divide the received vector into suitable 

blocks of received symbols and apply a modified version of our algorithm to these blocks 

instead of to the entire received vector as is done in the case of block codes. In this way, we 

can start the decoding procedure after receiving the first block. We can easily determine the 

Hamming weights of these blocks when they are part of a codeword. Note that by inspecting 

these blocks, and not the entire received vector, the algorithm is assuming that they are 

independent, while actually they are not. Thus, in contrast with what happens with block 

codes when calculating the value of function h for a node, the algorithm may inspect patterns 

whose Hamming weights are different from those of any codeword. However, our function h 

still satisfies h(m) :::; h*(m) for any node m and thus will always find an optimal solution. 

Again, because the blocks are not independent, we cannot, within each block, order the 

received symbols according to the reliability of its positions as is done in the case of block 

codes. Although we do not yet have simulation results for convolutional codes using our 

decoding procedure, we predict that the impact will be equally dramatic, and that the use of 

this decoding approach will make practical, for the first time, optimal soft-decision decoding 

of convolutional codes with large constraint lengths. 

Furthermore, we would like to point out that the algorithm present in this report is 

suitable for a parallel implementation. One of the reasons is that when calculating h( m) 

for node m, the algorithm has determined the labels of the path from node m to a node 

at level k - 2 that it will follow, so the successors of the nodes in this path can be open 

simultaneously and processed independently. This will reduce substantially the idle time of 

processors and the overhead due to processor communication. Thus, we expect a very good 

speed-up from a parallel version of our algorithm. 

This decoding approach will impact both the theoretical and practical branches of coding 

theory. Theoreticians will be challenged to identify and construct classes of linear codes 

whose properties maximize the efficiency of this decoding procedure. And practitioners will 
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want to find the most efficient way to implement this algorithm in a fast, single-purpose 

processor using sequential/parallel structures. 
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Appendix A 

In this appendix we will give an example to illustrate our claim that Hwang's algorithm [13] 

has a fallacy. For the following example his algorithm will fail to start. 

Consider the (8,4) extended binary Hamming code generated by 

1 0 0 0 1 1 1 0 

0 1 
G= 

0 0 1 1 0 1 

0 0 1 0 1 0 1 1 

0 0 0 1 0 1 1 1 

Let r be the received vector and tjJ = ( c/>0, c/>1, ••• , c/>7) the channel measurement information 

vector of r [13]. Assume that c/>o < 0, c/>1 < 0, c/>2 < 0, c/>3 > 0, c/>4 > 0, c/>5 > 0, c/>s > 0, c/>r > 0, 

and 

In order to have the first k bits of t:P the most reliable, we must swap positions 3 and 4 in t:P 

and obtain t/J' = ( c/>o, ¢~, c/>2, 4>4, c/>3, c/>s, c/>6, c/>1 ). Corresponding to this exchange we have 

G'= 

1 0 0 1 0 1 1 0 

0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 

0 0 0 0 1 1 1 1 
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which generates code C'. 

To start the algorithm we must construct a codeword c'1 = (c40,c41, ... ,c;7) of C' such 

that 

Thus, c4o = 1, c41 = 1, c42 = 1, and c~3 = 0. However, (1, 1, 1, 1, 0, 0, 0, 0) and (1, 1, 1, 1, 1, 1, 1, 1) 

are the only codewords inC' whose first three bits are ones. Thus, the algorithm will fail in 

Step 1. The fallacy is in the assumption that the k most reliable positions of r are linearly 

independent. 

Appendix B 

Let .,. = (r0 , rt, ... , rn-t) be the received vector. Since we are transmitting codewords of C 

over the AWGN channel using antipodal signaling, ri can be considered to be more reliable 

than Tj if lril > lril where lxl is the absolute value of x [12]. Let r' = (r~,r~, ... ,r~_1 ) be 

a vector obtained by permuting the positions of .,. such that lrH ~ lr~+1 1 for 0 ~ i < n - 1. 

The k x n matrix G' is obtained from G by applying this same permutation to the columns 

of G. In order to give an algorithm to obtain G*, the generator matrix of C*, from G', we 

first introduce some definitions. 

Let A be an r x m matrix. Given a set S ={it, i2, ••• , is} C {0, 1, 2, ... , m- 1} we say 

that Sis a sub-information set of A iff the columns of A indexed by i 1 , i 2, ••• , is are linearly 

independent. Furthermore, we define the SW operator. For 0 ~ i,j < m, SW(A,i,j) is the 

r x m matrix obtained from A by swapping columns i and j of A. 

The following is an algorithm to obtain G* from G' for 2 5 k < n. 

1. i +-- 1; j +-- 1; S = {0}; G~ +-- G'. 

2. If S U {j} is a sub-information set of G~, then G~ +-- SW(Gi, i,j); 

else 

j +-- j + 1; 

go to 2. 
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3. s ~ s u {i}. 

4. If lSI = k, then stop; 

else 

i ~ i + 1; 

j ~ j + 1; 

go to 2. 

5. Transform Gi into G* by row operation such that the 

first k columns of G* form a k x k identity matrix. 

The time complexity of the procedure to construct G* is O(k2 x n); however, many of 

the operations performed during this construction can be done in parallel. In this case, the 

time complexity becomes O(k x n). 

Appendix C 

In this appendix we present an algorithm to calculate h(m) for node mat level£, -1 $ £ < 

k- 1, whose time complexity is O(n). We also show that T(m) =/: 0. 

Let vector ue = ( ue0, ue1, . .. , Ue(n-e-2)) be obtained by permuting the positions of 

(r;+ll r;+2, ... , r~_ 1 ) in such a manner that uu $ Ue(i+1) for 0 $ i < n -I!- 2. Now we 

define b E { -1, 0, 1, ... , n- 1} as follows: if u_1(o) ~ 0, then b = -1; if u_1(n-1) < 0, then 

b = n- 1; otherwise, b is the position in u_1 such that u_1(b) < 0 and u-l(b+l) ~ 0. Let 

8 = b+ !· 
Our algorithm computes h(m) using ue instead of r*. This is possible because of the 

property 

h(m) = min {I: (ue(i-t'-1) - (-lt;v£) 2
} 

VET(m) i=Hl 

where T( m) is defined in Section 3.2. 

This property is easily proved because if v E T( m ), then all binary vectors of the same 

Hamming weight as v are contained in T(m) and ue is obtained by applying a permutation 

rre to the components of (r;+l, r;+2, ... , r~_1 ). At the end of this appendix we will show how 
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this permutation can be used to determine the labels of the path with constant value off, 

which will be the path up to level k- 2, followed by the decoding algorithm. Furthermore, 

7rt can be easily obtained from 7r_ 1 • 

We now prove some technique lemmas. Consider the set Tw of all binary ( n -C -1 )-tuples 

of Hamming weight w. Furthermore, let Vp = ( Vpo, Vpt, ... , Vp(w-l)' Vpw, ... , Vp(n-l-2)) E Tw, 

where Vpi = 1, 0:::; i <wand Vpi = 0, w:::; i < n- .e- 1. 

Lemma Cl. If v = ( vo, Vt, ... , Vn-t-2) E Tw, then 

n-t-2 
2:: (Uti- ( -1)VpivEr < 

n-t-2 

2:: 
i=O i=O 

PROOF. 
n-t-2 

2:: 
i=O 

n-t-2 
(uti- (-1tP•vE"f- L (uti- (-1t'YEf 

i=O 

2VBnf2 
{ Ut; (( -1ti- ( -1tpi)} 

t=O 

LetS= {xlvx = 0 and 0 s x < w} and S' = {xJvx = 1 and w s x < n-C-1}. Since 

Vp = (1,1, ... ,1,0,0, ... ,0) and WH(v) = WH(vp), then JSJ = JS'J. So Dt = 4VE(~iES 

Uti- ~iES' Uti) S 0 since JSJ = JS'J and Uti :::; Utj, i E S and j E S'. 0 

Let St = {xJutx < 0} and v~ = (v~,v~1 , ... ,v~(w'-l)'v~w''···,v~(n-t-2)) E Tw', where 

v;i = 1, 0 :::; i < w' and v;i = 0, w' :::; i < n- .e- 1. 

Lemma C2. If w' < w :::; JStJ, then 

n-t-2 

2:: 
i=O 

n-t-2 

2:: 
i=O 

(uti- (-1)v~;V£) 2 • 
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PROOF. 
n-i-2 n-i-2 2 

D2 2: (Uti- ( -1)Vpiv'Er - 2: (Uti- ( -1t~iv'E) 
i=O i=O 

w-1 

- 4VEL Uti< 0 since Uti< 0,0 ~ i < w. 
i=w' 

0 

Lemma C3. If IStl < w < w', then 

The proof of this lemma is similar to that in Lemma C2. 

Let c~, c]", ... , c( be the labels of the path P:n from the start node to node m at levell 

found so far by the decoding algorithm. Furthermore, let c(+l, c(+2, ... , c:_1 be the labels of 

a path Pm from node mat levell to the goal node. Note that W(Pm) can only have values 

that belong to the set Q = {wi- W(P~)IO ~ Wi- W(P~) ~ n -l -1 and 0 ~ i ~I}. 

We now show that Q =I 0 and thus T(m) =I 0. Let ~,c)", . .. c; be the labels of P~. 

Furthermore, let u= ( ~' c]", ... c(, 0, 0, ... , 0) be a binary k-tuple. Then u • G* is a codeword 

in C*. Since the first k columns of G* form a k x k identity matrix and l < k - 1, then 

(WH(u • G*)- W(P~)) E Q. 

Let J E {0, 1, ... , I} such that WJ- W(P~) is the smallest value in Q. Analogously, let 

I' E {0, 1, ... , I} such that WJ'- W(P:n) is the largest value in Q. 

By Lemma C1, our algorithm to compute h(m) only needs to consider vectors of the 

form Vp = ( Vpo, Vpb ..• , Vp(n-t-2)) = (1, 1, ... , 1, 0, 0, ... , 0) with Hamming weights Wi -

W(P,:J, J ~ i ~ I'. Furthermore, by lemmas C2 and C3, we only need to consider the 

following cases: 

Case 1. IStl < (wJ- W(P~)). So, 

n-l-2 

h(m) = L 
i=O 

(Uti - ( -1) Vpi v'E) 2 , 
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Case 2. !Btl~ (wl'- W(P~J). So, 

n-l-2 

h(m) = 2: (Uti-< -ltpiv'Er, 
i=O 

where Wn(vp) = WJI- W(P~J. 

Case 3. Wi1 - W(P~J ~ !Btl < Wi1+1- W(P~J. So, h(m) = min{A1, A2}, where A1 = 
n-l-2 2 n-l-2 2 L (uti- (-ltP;JE) and WH(vp) = Wi 1 - W(P~), and A2 = I: (ui'i- (-ltP;JE) 

i=O i=O 
and WH(vp) = Wi1+1- W(P~). 

Thus, given U£ and IBd, the time complexity of computing h(m) is O(n). However, 

we can by simple inspection construct Ut and compute !Btl from u-1 and h. So, the time 

complexity of the entire procedure to compute h(m) is O(n). 

We now give a procedure to construct the path P m = ( mt, mt+l, ... , ml+(k-t-2)) with 

constant value of f which will be the path up to level k - 2 followed by the algorithm from 

node mt = m. In Appendix Ewe show that f(mHi) = f(mt) fori= 1, 2, ... , (k- f- 2). 

Let Vp = (vpa,vp1 , ••• ,vp(n-l-2)) E T(m) be the vector used to calculate h(m). Further­

more, define the function t from {l + l,l + 2, ... , n- 1} to {0, 1, ... , n- l- 2} as 

t(7r't(l + 1 + i)) = i. 

Now the labels of path P m are given by 

Vpt(i+l), Vpt(l+2)l • • ·, Vpt(l+(k-l-2)}· 

Thus, P m can be determined from these labels. 

Appendix D 

Let node m2 at level l be a successor of node m1 . Furthermore, let ci be the label of the 

arc from node m1 to node m2 and c(m17 m2) = (r;- (-lYiv'Er. We now prove that 

h(mi) ::::; h(m2) + c(mt, m2). 
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(a) l < k -1. Let v= (vt+t,Vf+2, ... ,vn-1) E T(m2) such that 
n-1 2 

h(m2) = L (r;- (-l)v•v'E) . Since v E T(m2), 
i=l+1 

then (c;, Vf+t, V£+2, ... , Vn-d E T(m1)· Thus 
n-1 

L: (r;- (-1)v;JEr + c(m1,m2) ~ h(m1), i.e., h(m2) + c(m1,m2) 2:: h(mt)· 
i=Hl 

(b) l = k- 1. h(m1 ) ::; h*(m1) and h(m2) = h*(m2). Since h*(m1)- c(mb m2) ::; 

h*(m2), then h(m1) ::; h*(m2) + c(m17 m2) = h(m2) + c(mb m2). 

(c) l > k- 1. h(mt) = h*(m1) and h(m2) = h*(m2). Since h*(m1)- c(mt,m2) = 
h*(m2), then h(m1) = h(m2) + c(m1, m2). 

Appendix E 
n-l-1 2 

Consider node mat Ievell, -1 ::; l < k-2. Furthermore, let h( m) = 2:::::: (re+j - ( -1 )vt+i JE) . 
j=1 

Now consider the path Pmt = (me,mt+l, ... ,ml+(k-e-2)) from node me= m to node 

ml+(k-e-2) at level k- 2 whose labels are ve+I, V£+2, ... , vl+(k-t-2 ). We now show by contra­

diction that if me+I is a node in this path at levell + 1, then f(me) = f(ml+d· 

Assume f(me) =I f(me+I)· By definition !(me)= g(me)+h(me) and f(mC+1) = g(me+t)+ 

h(me+I) = g(me) + c(me, m£+1) + h(mt+1) where c(me, me+I) = (r;+I- ( -1)vt+lv'Er. 
n-l-1 2 

Thus, h(me) =I c(me, me+I) + h(mt+1). Since h(me) = L (rt+i- ( -ltt+i v'E) , thus 
j=l 

n-l-1 

2::::: (r;+i- (-It~+iJEr =I h(mt+t)· Since (vC+2,vC+3, ... ,vC+(n-e-1)) E T(me+t), then 
j=2 

n-l-1 

L: (r;+i- (-lt't+iJEr > h(ml+1)· Thus h(me) > c(me,mH1) + h(mt+d· But by the 
j=2 

result in Appendix D, h(me) ::; c(me, mC+1 ) + h(mH1 ), which is a contradiction. The same 

argument can be used to prove that f(me+ 2 ), ••• , f(mt+(k-t- 2)) are all equal to f(mt), since 

the f values of the sequence of nodes expanded by our algorithm are nondecreasing. Note 

that for any node m, successor of ml+(k-t-2), f(m) = g(m) + h*(m). 
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We remark here that the path Pmt is constructed when h(mi) is calculated (see Appendix 

C). 

Appendix F 

In this appendix we give an outline of our decoding algorithm. Recall that we do not check 

for repeated nodes, thus we do not have to store list CLOSED. We also give the orders of 

time and space complexities of this algorithm. 

Given r: 

1. .,. ~ (3r where (3r lies on the surface of the sphere of radius ..;nE centered at 0. 

2. Construct G* and r* (see Appendix B); store the permutation used to construct r* 

from r. 

3. Construct tL1 and find 7r_1 and 8 (see Appendix C). 

4. Calculate a. 

5. IS-1! ~ f8l; calculate f(s) = h(s) and construct P 8 (see Appendix C). 

6. RESULT _J ~ 4nE; RESULT _c* ~ 0. 

7. Create OPEN containing only the start node. 

8. LOOP: Select a node on OPEN with minimum value j, remove it from OPEN. Call 

this node m. (Note that whenever node m2 is inserted into OPEN in Step 12(b), then 

this node can always be selected as node m.) 

9. If the level of node m is k- 1, then go to Step 14. 

10. Expand node m, generating nodes m1 and m2 , the successors of node m. 

11. If m is at level k- 2, then for i = 1 to 2 
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(a) Construct the codeword c* whose information bits are given by the labels of the 

path from the start node to node mi. 

(b) Calculate g(mi) and h(mi): 

__,. --+ 

(c) If ANG(Ovc•, Or*) ~a, then 

RESULT_c* +---- c*; 

goto Step 14. 

(d) If f(mi) < RESULT_J, then 

RESULT _c* +---- c*; 

RESULT-!+---- f(mi); 

remove all nodes on OPEN 

whose f values are equal to or 

greater than RESULT -f; 

insert mi into OPEN. 

(e) If f(mi) ~ RESULT_f, then discard node mi. 

12. If m is at Ievell < k - 2, then 

(a) Select the node that is not on P m, 

call it m1; 

Calculate g(m1 ) and h(mt); 

If l < k- 3 then construct Pm1 (see Appendix C); 

f(mt) +---- g(mt) + h(mt); 

If f( m 1) < RESULT -f then 

insert node m1 into OPEN; 

otherwise discard node m1 . 

Iff< k- 3, then construct Pm2 by deleting node m from Pm; 

Insert m 2 into OPEN as first node. 
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13. Go LOOP. 

14. Construct c from RESULT _c* by applying the inverse permutation that was used to 

construct r* from r. 

We now apply the algorithm to a numerical example. In order for this example to be - -more illustrative we do not calculate a and ANG(OVc•, Or*) so we do not perform steps 1, 

4, and 11 (c) of the algorithm. 

Example: Let C be the (8,4) binary extended Hamming code with w0 = 0, w1 = 4, 

and w2 = 8. Cis transmitted over an AWGN channel withE= 1. The generator matrix 

of Cis 
1 0 0 0 1 1 1 0 

G= 
0 1 0 0 1 1 0 1 

0 0 1 0 1 0 1 1 

0 0 0 1 0 1 1 1 

Assume that the received vector is r = (-3,-2,-2,1,4,-1,0,0). We identify a node m 

at level£, 0 ~ l ~ k - 1 in the tree by m( c~, cr' ... 'ci), where ~' cr' ... 'ci are the labels 

associated with the path P:n from start node to node m. 
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1 0 0 0 1 0 1 1 

G*= 
0 1 0 0 1 1 0 1 

0 0 1 0 1 1 1 0 

0 0 0 1 0 1 1 1 

r* = (4,-3,-2,1,-2,-1,0,0), 

d ( 0 1 2 3 4 5 6 7) h . . d t * an 7r = 1 2 4 3 0 5 6 7 , w ere 1r IS a permutation use to construe ,. 

from r. 

STEP 3: 
u_I - ( -3, -2, -2, -1, 0, 0, 1, 4), 

7r -1 - (0 1 2 3 4 5 6 7) 
70162345' 

and 8 - 3.5. 

STEP 5: 

IS-1 1 = 4. Since IS-1 1 = 4 and W(P:) = 0, then the conditions of Case 3 in Appendix C 

are satisfied for Wi1 = 4 and Wi1 +t = 8. Thus, h(s) = f(s) =min{ A~, A2}, where 

At = ( -3 + 1)2 + ( -2 + 1)2 + ( -2 + 1)2 + ( -1 + 1)2 + (0- 1)2 + (0- 1)2 

+(1-1)2 + (4- 1)2 = 17, 

A2 = ( -3 + 1)2 + ( -2 + 1)2 + ( -2 + 1)2 + ( -1 + 1)2 + (0 + 1)2 + (0 + 1)2 

+(1 + 1)2 + (4 + 1)2 = 37. 

Since At < A2, then v 11 = (1, 1, 1, 1, 0, 0, 0, 0). Using (1r -t)-1 we obtain the labels of P 8 as <0, 1, 1>. 

STEP 6: 

7 

RESULT_f = 8 + L rl = 43, 
i=O 

and RESULT_c* = (0, 0, 0, 0, 0, .0, 0, 0). 
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STEP 7: 

OPEN= <s>. 

LOOP 1: 

STEP 8: Consider node s. 

STEP 10: Expand node s to obtain m(O) and m(1 ). 

STEP 12(a): 

m1 = m(1). Sinceuo = (-3,-2,-2,-1,0,0,1), ISol = 4 and W(P'mt) = 1, 

then the conditions of Case 3 in Appendix C are satisfied for Wit = 4 and 

WitH= 8. Thus h(mt) =min{ At, A2}, where 

A1 = ( -3 + 1)2 + ( -2 + 1)2 + ( -2 + 1)2 + ( -1- 1)2 + (0- 1)2 + (0- 1)2 + (1- 1)2 = 12, 

A2 = ( -3 + 1)2 + ( -2 + 1)2 + ( -2 + 1)2 + ( -1 + 1)2 + (0 + 1)2 + (0 + 1)2 = 12. 

Since A1 ::; A2 , then Vp = (1, 1, 1, 0, 0, 0). Using ( 1r _ 1)-1 and the fact that u 0 

is constructed from u_1 by deleting its last component, we obtain the labels of 

Pmt as <1, 1>. g(mt) = (4 + 1)2 = 25, so f(mt) = 25 + 12 = 37. Since 37 < 43, 

then OPEN= <m(1)>, 

STEP 12(b): 

LOOP 2: 

Pm(O) = <1, 1> and f(m(O)) = 17. 

OPEN= <m(O),m(1)>. 

STEP 8: Consider node m(O). 

STEP 10: Expand node m(O) to obtain m(O, 0) and m(O, 1 ). 

STEP 12(a): 

m1 = m(O,O). Since Ut = (-2,-2,-1,0,0,1L IStl = 3 and W(P'm 1 ) = 0, then 

the conditions of Case 3 in Appendix C are satisfied for Wit = 0 and wi1 +1 = 4. 

Thus h(m1 ) = min{A~, A2}, where 

A1 - ( -2- 1)2 + ( -2- 1)2 + ( -1- 1? + (0- 1)2 + (0- 1)2 + (1- 1)2 = 24, 

A2 - (-2+1)2 +(-2+1)2 +(-1+1)2 +(0+1)2 +(0-1)2 +(1-1)2 =4. 
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Since A2 <At, then Vp = (1,1,1,1,0,0). Using (7r_1)-1 and the fact that u 1 

is constructed from u_1 by deleting its last and :first components, we obtain the 

label of Pm1 as <1>. g(m1) = (4-1? + ( -3 -1)2 = 25, so J(mr) = 25+4 = 29. 

Since 29 < 43, then OPEN= <m(O, 0), m(1)>. 

STEP 12(b): 

LOOP 3: 

P m(O,l) = <1> and f(m(0,1))=17. 

OPEN = <m(O, 1), m(O, 0), m(1)>. 

STEP 8: Consider node m(O, 1). 

STEP 10: Expand node m(0,1) to obtain m(0,1,0) and m(0,1,1). 

STEP 12(a): 

m1 = m(0,1,0). Since u2 = (-2,-1,0,0,1), IS2! = 2 and W(P'mJ = 1, 

then the conditions of Case 1 in Appendix C is satisfied for WJ = 4. Thus 

h(m1) = (-2 + 1)2 + (-1 + 1)2 + (0 + 1)2 + (0- 1)2 + (1- 1)2 = 3. g(m1) = 

(4 -1)2 + (-3 + 1)2 + (-2 -1)2 = 22, so J(m1 ) = 22 + 3 = 25. Since 25 < 43, 

then OPEN = <m(O, 1, 0), m(O, 0), m(1)>. 

STEP 12(b): 

f(m(O, 1, 1)) = 17. 

OPEN = <m(O, 1, 1), m(O, 1, 0), m(O, 0), m(1)>. 

LOOP 4: 

STEP 8: Consider node m(O, 1, 1). 

STEP 10: Expand node m(0,1,1) to obtain m1 - m(0,1,1,0) and m2 -

m(O, 1, 1, 1). 

STEP ll(a): Pick m1; 

c* = (0,1,1,0,0,0,1,1). 
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STEP ll(b): 

f(m 1 ) = (4 -1)2 + (-3 + 1)2 + (-2 + 1)2 + (1-1)2 + (-2 -1)2 

+( -1- 1)2 + (0 + 1)2 + (0 + 1)2 = 29. 

STEP ll(d): 

RESULT_c• = (0, 1, 1, 0, 0, 0, 1, 1). 

RESULT -f = 29. 

OPEN = <m(O, 1, 0), m(O, 1, 1, 0)>. 

STEP ll(a):Pick m2; 

c* = (0, 1, 1, 1, 0, 1, 0, 0). 

STEP ll(b): 

j(m2) = (4- 1)2 + ( -3 + 1)2 + ( -2 + 1)2 + (1 + 1)2 

+( -2- 1)2 + ( -1 + 1)2 + (0- 1)2 + (0- 1)2 = 29. 

STEP ll(e): discard node m2 = m(O, 1, 1, 1). 

LOOP 5: 

STEP 8: Consider node m(O, 1, 0). 

STEP 10: Expand node m(O, 1, 0) to obtain m 1 = m(O, 1, 0, 0) and m 2 = 
m(O, 1, 0, 1). 

STEP ll(a): Pick m1; 

c* = (0, 1, 0, 0, 1, 1, 0, 1). 

STEP ll(b): 

f(mt) = (4 -1)2 + (-3 + 1)2 + (-2 -1)2 + (1-1)2 

+( -2 + 1)2 + ( -1 + 1)2 + (0- 1)2 + (0 + 1)2 = 25. 

STEP ll(d): 

RESULT_c* = (0, 1, 0, 0, 1, 1, 0, 1). 

35 



RESULT_J = 25. 

OPEN = <m(O, 1, 0, 0)>. 

STEP ll(a): Pick m 2 ; 

STEP ll(b): 

c* = (0,1,0,1,1,0,1,0). 

j(m2) = (4 -1)2 + (-3 + 1)2 + (-2 -1)2 + (1 + 1)2 

+ (-2 + 1) 2 + ( -1 - 1) 2 + ( 0 + 1) 2 + ( 0 - 1) 2 = 33. 

STEP ll(e): Discard m2 = m(O, 1, 0, 1). 

LOOP 6: 

STEP 8: Consider node m(O, 1, 0, 0). 

STEP 9: Go to STEP 14. 

STEP 14: 

c = (1,0,1,0,0,1,0,1). 

In Table F1 we give the orders of time and space complexities for each step of the 

algorithm. One way of implementing list OPEN is to use a B-tree [19]. The time complexities 

of steps 8, 11( d), and 12( a) given in Table F1 assume that this data structure is used. These 

complexities are obtained by noticing that the maximum number of nodes visited during 

decoding of r are upperbounded by 2k+1 - 1, the number of nodes in a complete binary tree 

of height k. Thus, the time complexity of step 8 is O(k), and that of steps ll(d) and 12(a) 

is O(n). 

We remark here that Step 11 (a) is not performed for all the nodes visited (open) during 

the decoding procedure. It is performed only for those nodes visited at level k- 1. Further­

more, in this step some operations performed during the construction of a codeword u · G* 

can be done in parallel. So, the time complexity of this step becomes O(n) which we will 

assume to be the case in the following analysis. 
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Table F1: Order of Complexities 

Complexities 

Step Time Space 

1 O(n) O(n) 

2 O(k x n) O(k x n) 

3 O(n x logn) O(n) 

4 O(n) 0{1) 

5 O(n) O(n) 

6 O(n) O(n) 

7 0{1) O(n) 

8 O(log(2k+I - 1)) O(n) 

9 0(1) 0(1) 

10 O(k) O(n) 

ll(a) O(k x n) O(n) 

11(b) O(n) 0(1) 

ll(c) O(n) 0(1) 

ll(d) O(n + log(2k+1 - 1)) O(n) 

ll(e) 0{1) 0(1) 

12(a) O(n + log(2k+I- 1)) 0(1) 

12(b) 0{1) 0(1) 

13 0(1) 0(1) 

14 O(n) 0{1) 

In order to give the time and space complexities of our algorithm, we define the following 

quantities: 

N(r) =the number of nodes visited during the decoding of r; 

M(r) = maximum JOPENI that will occur during the decoding of r, where jOPENI 

denotes the number of nodes on list OPEN. 

Based on the information given in Table F1, we have 
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(a) time complexity is O(k x n + n x N(r)); 

(b) space complexity is O(k x n + n x M(r)). 

Since a lower bound for N ( r) and M ( r) is k, then we may write the time complexity as 

O(n x N(r)), and the space complexity as O(n x M(r)). 
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