
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1997

A global computing environment for networked resources A global computing environment for networked resources

Haluk Topcuoglu
Syracuse University

Salim Hariri
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Digital Communications and Networking Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Topcuoglu, Haluk and Hariri, Salim, "A global computing environment for networked resources" (1997).
Electrical Engineering and Computer Science. 133.
https://surface.syr.edu/eecs/133

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=surface.syr.edu%2Feecs%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=surface.syr.edu%2Feecs%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=surface.syr.edu%2Feecs%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/133?utm_source=surface.syr.edu%2Feecs%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

A Global Computing Environment for Networked Resources*

Haluk Topcuoglu and Salim Hariri
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY 13244-4100.

Abstract
Current advances in high-speed networks and

WWW technologies have made network computing
a cost-effective, high-performance computing alterna-
tive. New software tools are being developed to utilize
eficiently the network computing environment. Our
project, called Virtual Distributed Computing Environ-
ment (VDCE), is a high-performance computing envi-
ronment that allows users to write and evaluate net-
worked applications for different hardware and soft-
ware configurations using a web interface. In this
paper we present the software architecture of VDCE
by emphasizing application development and specifica-
tion, scheduling, and execution/runtime aspects.

1 Introduction
The new trends in networking protocols (includ-

ing ATM and Fast Ethernet) and emerging WWW
technologies have enabled the development of a cost-
effective, high-performance, distributed computing en-
vironment, network-based computing. The target
of current research on software tools and problem
solving environments is to exploit fully the under-
lying network-based computing framework. We are
developing a network-based computing environment
called Virtual Distributed Computing Environment
(VDCE). VDCE is composed of distributed sites, each
of which has one or more VDCE Servers. At each site
the VDCE Server runs the server software, called site
manager, which handles the inter-site communications
and bridges the VDCE modules to the site databases.
The main goal of the VDCE project is to develop
an easy-to-use, integrated software development envi-
ronment that provides software tools and middleware
software to handle all the issues related to developing
parallel and distributed applications, scheduling tasks
onto the best available resources, and managing the
Quality of Service (QoS) requirements.

In this paper we present the VDCE-based applica-
tion development] which can be divided into a pipeline

*This research is supported by Rome Laboratory contract
number F30602-95-C-0104.

of three phases: application design and specification,
scheduling] and execution/runtime. VDCE provides
a web-based graphical user interface] the Application
Editor, that helps users to design and build parallel
and distributed applications. The VDCE Application
Scheduler component is a distributed runtime sched-
uler that uses performance prediction of individual
tasks of an application to achieve efficient resource al-
locations. The third component, the VDCE Runtime
System, is responsible for monitoring the networked
resources, setting up the execution environment of a
given application, monitoring the task executions on
the assigned resources, and providing communication
and synchronization services for intertask communica-
tions.

The rest of the paper is organized as follows. In Sec-
tion 2 we present the application design and specifica-
tions issues. The Application Scheduler is explained
in Section 3. We present the VDCE Runtime System
in Section 4. Concluding remarks and future work are
given in Section 5.

2 Application Design and Develop-

The Application Editor component of VDCE is a
web-based, graphical user interface for developing par-
allel and distributed applications. The end-user estab-
lishes a URL connection to the VDCE Server software
within the site (Site Manager), which runs on a VDCE
Server. After user authentication, the Application Ed-
itor is loaded into the user’s local web browser so that
the user can develop his/her application.

The Application Editor provides menu-driven task
libraries that are grouped in terms of their functional-
ity, such as the matrix algebra library, C31 (command
and control applications) library, etc. A selected task
is represented as a clickable and draggable graphical
icon in the active editor area. Each such icon includes
the task name and a set of markers for logical ports.
The process of building an application with the Appli-
cation Editor can be divided into two steps: building
the application flow graph (AFG), and specifying the

ment

0190-3918/97 $10.00 0 1997 IEEE
493

task properties of the application.
After the application flow graph is generated, the

next step in the application development process is to
specify the properties of each task. A double click on
any task icon generates a popup panel that allows the
user to specify (optional) preferences such as compu-
tational mode (sequential or parallel), input/output
files, machine type, and the number of processors to
be used in a parallel implementation of a given task.
If an input of a task is supplied by its parent tasks, the
file entry is marked as dataflow. Figure 1 shows the
application flow graph of the Linear Equation Solver
and the contents of the task properties window for
LU-Decomposition and Matrix-Multiplication tasks.

Task dU_DecmposRlon>

Number of Nodes: 2
FTetened Machine Typo: <any>
Preferred Machins : <any>

Input: cl, < luSsi~DCE/uSe~~Wmal~~x~A.dat . SIZE=124.88(

Cmputmlon Type: <~aralieb

B serval.eal.syr.edus

TASK PROPERTIES WINDOW

LINEAR EQUATION SOLVER
APPLICATION

Task CMalilX_MUBPIiEB110nZ

Computallon Type: <Sequential>

Number of Node*: 1

Preferred Machine Type: <SUN solam>
Preferred Machlne : chunding.top.cls.syr.ed">

Input: <2r cdalallow. dataflow>

Output: <l> duJersNDCEluser_k/vector_X.daf. SIZE=<>
OSBrdai.Cd.S"r.edU,

TASK PROPERTIES WINDOW

Figure 1. Application Flow Graph of Linear
Equation Solver

3 Application Scheduling
The main function of the Application Scheduler

module in VDCE is to interpret the application flow
graph and to assign the most suitable available re-
sources for running the application tasks in order to
minimize the schedule length (total execution time)
i n a transparent manner. O u r schedul ing heur i s t ic is
based on list scheduling [a, 3 , 41. In list scheduling,
each node (task) of the graph is assigned a priority
before the scheduling process. The VDCE scheduling
heuristic uses the level [4] of each node to determine
its priority. The node (task) with a higher level value
will have a higher priority for scheduling. The level of
a node in the graph is computed as the largest sum of
computation costs along the path from the node to an

1 . Receive application flow graph from Application Editor.
2. Select k nearest VDCE neighbor sites,

Sremote = {SI, S2,. . . , S k } , for local site Siocai.
3 . Multicast application flow graph to each S, in Sremote.
4. Call Host-Selection-Algorithm (local and remote sites).
5. Receive the outputs of Host-Selection Algorithm,

from each S; in Sremote.

6. Initialize ready-tasks = {task, Itask; is an entrynode}.
7 . For each task; in ready-tasks set:

If the task* is an entry task or task; does not require input
*Assign task, to S,, which minimizesPredict(task;, R 3) .

.Determine the site(s), Sparent, which is assigned

*For each site S, in Sremote evaluate:

Else

for one or more of the parent nodes of task;.

Timetotal(task;, S,) = transfer-t ime(Sparen~, S,)

*Assign task; to S j , which min. TimetOtal(task;, S j) .
Store resource allocation information for taski .
Update the ready-tasks set by removing taski, and adding

xfile-size + Predict(taski, Rj)

children nodes of task;.

Figure 2. Site Scheduler Algorithm

exit node. For the computation cost, the task (node)
execution time on the base processor, which is already
measured and stored in the task-performance database
at site repository, is used. In VDCE the level of each
node of an application flow graph is determined before
the execution of the scheduling algorithm. VDCE pro-
vides distributed scheduling in a wide-area system in
which each site consists of its own Application Sched-
uler running on the VDCE server. After the best
schedule of the whole application is determined by
the local site and a set of nearest remote sites, the
resource allocation table is generated and transferred
to the Site Manager running on the VDCE server. Ap-
plication tasks are scheduled within a site (or within
the nearest-neighbor sites) to decrease inter-task com-
munication time. The Application Scheduler, which is
based on [l, 51, has two built-in algorithms: site sched-
uler algorithm and host selection algorithm, as shown
in Figure 2 and Figure 3 , respectively. When the Ap-
plication Scheduler receives t h e execut ion reques t of
an application, it runs the site scheduler algorithm. A
subset of remote sites is selected and the AFG is multi-
cast to these sites, at which the Application Schedulers
will run the host selection algorithm. The built-in host
selection algorithm at each remote site determines the
best available machine within the site for each task,
which minimizes the predicted execution time. Then
each site sends the mapping information of each task,

494

http://OSBrdai.Cd.S"r.edU

1. Retrieve task-specific parameters of AFG tasks from
task-performance database.

2. Retrieve resource-specific parameters of a set of resources,

Rdet = { R I , R2,. . . , Rm}, from resource-perf. database.
3. Set task-queue = {task,ltaslc, in AFG}.
4. For each t a s k , in task-queue

*Evaluate the performance prediction time of t a s k , ,
Predic t (task , , R t) , for all R, in Reet.

prediction time, Predzct(taslc,, R J) .
*Assign t a s k , to R, , which minimizes the performance

Figure 3. Host Selection Algorithm

i.e., machine name and predicted execution time, to
the local site. For the entry tasks that have no par-
ents, or the tasks that do not require any input file for
execution, the site scheduler algorithm selects the site
(the resource within the site) that minimizes the pre-
diction time for the task. For other cases the local-site
scheduler algorithm selects the best site, based on the
summation of predicted execution time and transfer
time of the task input files. The site at which a parent
task is scheduled is determined to evaluate the trans-
fer time. The inter-task transfer time i” based on the
network transfer time between a site and the parent’s
site, and the size of the transfer. The input size of the
application can be used for the transfer size param-
eter. For parallel tasks, the host selection algorithm
is updated to select the number of machines required
within the site. The core of the given built-in schedul-
ing algorithms is the performance prediction [6] phase,
which is provided by separate function evaluations of
each task on each resource.

Each site has a site repository for storing user-
accounts information, task and resource parameters
that are used by the scheduler. A user-accounts
database is used to handle user authentication. In
user-accounts database, each VDCE user account is
represented by a 5-tuple: user name, password, user
ID, priority, and access domain type. A resource
performance database provides resource (machine and
network) attributes or parameters such as host name,
IP address, architecture type, OS type, total mem-
ory size of the machine, recent workload measure-
ments, and available memory size. A task performance
database provides performance characteristics for each
task in the system and is used to predict the perfor-
mance of a task on a given resource. Each task imple-
mentation is specified by several parameters such as
computation size, communication size, required mem-
ory size, etc. A task constraznts database is used to
store the location information of each task (i.e., the

absolute path of the task executable) for each host

4 Application Execution and Runtime

The VDCE Runtime System separates control and
data functions by allocating them to the Control Man-
ager and Data Manager, respectively. The Control
Manager measures the loads on the resources (hosts
and networks) periodically and monitors the resources
for possible failures. The Data Manager provides low-
latency and high-speed communication and synchro-
nization services for inter-task communications.

4.1 Control Manager
Functionally, the Control Manager services are

grouped into two modules: the Resource Controller,
and the Application Controller.

Support

Resource Controller The Resource Controller within
a site contains three different processes: a Site Man-
ager, a Group Manager for each group leader machine,
and a Monitor daemon for each VDCE resource. In
what follows we summarize the functions of the Re-
source Controller components shown in Figure 4.

The Monitor daemon periodically measures the up-
to-date resource parameters, i.e., CPU load and mem-
ory availability and sends the values to the Group
Manager. The Group Manager sends to the Site Man-
ager only the workloads of the resources that have
changed considerably from the previous measurement

Another function of the Group Manager is to peri-
odically check all hosts in the group by sending echo
packets to hosts and waiting for their responses. When
a failure of a host is detected, the Group Manager
passes this information to the Site Manager. The
host is then marked as “down” at the site’s resource-
performance database.

The Site Manager component of the Resource Con-
troller periodically updates the resource-performance
database at the site repository with the monitoring
information (;.e, the workload measurement and fail-
ure detection information of the resources), and it up-
dates the task-performance database with the execu-
tion time after, an application execution is completed.

Another function of the Site Manager is to multi-
cast the resource allocation table to the Group Man-
agers that will be involved in the execution. Each
Group Manager sends an execution request message
and the related portion of the resource allocation in-
formation to the Application Controller of the related
machines. Additionally, the inter-site coordination

[71.

495

VDCE SERVER MACHINE
(SITE 1)

......................................

Group Leader,

NODE A

Monito

Application
COntrOlie,

NODE 0

VDCE SERVER MACHINE
(SITE 2)

Sne Manager

1. Retreieving the Resource Pefiomame Parametars
2. Monnoring the VOCE Resources
3 Updating the See Repositoly
4. Sending the Related Portion of

5. 1nter-site Cwiddloallon
RBSOU~SB Allmation Table

Figure 4. Interactions Among the Resource
Controller Components

and message transfer (for scheduling and monitoring
purposes) are handled by Site Managers.

Application Controller The Application Controller
sets up the execution environment and manages the
services provided by interacting with the Data Man-
ager. After the Application Controller receives an ex-
ecution request message from the Group Manager, it
activates the Data Manager. The Data Managers on
the assigned machines set up the application execution
environment by starting the task executions and creat-
ing point-to-point communication channels for inter-
task data transfer. When all the required acknowledg-
ments are received an execution startup signal is sent
to start the application execution.

The Application Controller monitors the applica-
tion execution on the assigned machines. If the current
load on any of these machines is more than a prede-
fined threshold value, the Application Controller ter-
minates the task execution on the machine and sends
a task rescheduling request to the Group Manager.
4.2 Data Manager

The VDCE Data Manager is a socket-based, point-
to-point communication system for inter-task commu-
nications. The Data Manager activates the communi-
cation proxy and sends the resource allocation infor-
mation, including the socket number, IP address for
target machine, etc., that will be used for communica-
tion channel setup. After the setup is completed suc-
cessfully, the communication proxy sends an acknowl-

edgment to the Application Controller. The execution
startup signal is sent to start the task executions, as
explained in the previous section.

The VDCE Runtime System provides several user-
requested services such as 1/0 service, console service,
and visualization service. A user can request these
services while developing his/her application with the
Application Editor. 1/0 Service provides either file
I/O or URL 1/0 for the inputs of the application
tasks. The user can suspend and restart the appli-
cation execution with the console service. The VDCE
visualization service provides application performance
and workload visualizations.

5 Conclusion
We have presented the design of the Virtual Dis-

tributed Computing Environment (VDCE) for net-
worked resources. We have successfully implemented a
proof-of-concept prototype on campus-wide resources
that supports the application design, scheduling, and
runtime aspects. We are improving the current im-
plementation of the VDCE so that it can support ac-
cesses to several geographically distributed sites. We
are also implementing a distributed shared memory
model that will allow VDCE users to describe their
applications using a shared memory paradigm.

References
[l] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.

Shao, “Application-Level Scheduling on Distributed
Heterogeneous Networks,” Proceedings of Supercom-
puting 96, November 1996.

[2] T.L. Adam, K. Chandy, and J. Dickson, “A Compar-
ison of List Scheduling for Parallel Processing Sys-
tems,” Communications of ACM, Vol 17, no. 12, pp.
685-690, Dec 1974.

[3] H. El-Rewini, H. Ali, T. Lewis, “Task Scheduling in
multiprocessing systems,” IEEE Computer, Decem-
ber 1995.

[4] Y. Kwok, I. Ahmad, “Dynamic Critical-Path Schedul-
ing: An Effective Technique for Allocating Task
Graphs to Multiprocessors,” IEEE Transactions on
Parallel and Distributed Systems, Vol. 7, pp. 506-521,
1996.

[5] J. Weissman, A. Grimshaw, “A Federated Model for
Scheduling in Wide-Area-Systems,’’ Proceedings of

[6] Y. Yan and X. Zhang, “An Efficient and Practical Per-
formance Prediction Model for Parallel Computing on
Non-dedicated Heterogeneous NOW,” To appear in
Journal of Parallel and Distributed Computing.

[7] H. Casanova, J. Dongarra, “Netsolve: A Network
Server for Solving Computational Science Problems,”
Supercomputing 96, November 1996.

HPDC5, pp. 542-550, 1996.

496

	A global computing environment for networked resources
	Recommended Citation

	A Global Computing Environment for Networked Resources - Parallel Processing, 1997., Proceedings of the 1997 International Conference on

