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Decoherence in Josephson-junction qubits due to critical current fluctuations

D.J. Van Harlingen,1 T.L. Robertson,2 B.L.T. Plourde,2 P.A. Reichardt,2 T.A. Crane,1 and John Clarke2

1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
2Department of Physics, University of California, Berkeley, CA 94720

(Dated: 12 December 2003)

We compute the decoherence caused by 1/f fluctuations at low frequency f in the critical current
I0 of Josephson junctions incorporated into flux, phase, charge and hybrid flux-charge supercon-

ducting quantum bits (qubits). The dephasing time τφ scales as I0/ΩΛS
1/2

I0
(1 Hz), where Ω/2π is

the energy level splitting frequency, SI0(1 Hz) is the spectral density of the critical current noise at 1
Hz, and Λ ≡ |I0dΩ/ΩdI0| is a parameter computed for given parameters for each type of qubit that
specifies the sensitivity of the level splitting to critical current fluctuations. Computer simulations
show that the envelope of the coherent oscillations of any qubit after time t scales as exp(−t2/2τ 2

φ)
when the dephasing due to critical current noise dominates the dephasing from all sources of dis-
sipation. We compile published results for fluctuations in the critical current of Josephson tunnel
junctions fabricated with different technologies and a wide range in I0 and A, and show that their
values of SI0(1 Hz) scale to within a factor of three of

[

144 (I0/µA)2 /
(

A/µm2
)]

(pA)2/Hz at 4.2 K.

We empirically extrapolate S
1/2

I0
(1 Hz) to lower temperatures using a scaling T (K)/4.2. Using this

result, we find that the predicted values of τφ at 100 mK range from 0.8 to 12 µs, and are usually
substantially longer than values measured experimentally at lower temperatures.

PACS numbers: 85.25.Cp, 85.25.Am, 03.67.Lx

I. INTRODUCTION

Superconducting devices involving Josephson junc-
tions are leading candidates for quantum bits (qubits)
because of their manufacturability, controllability and
scalability. Broadly speaking, there are three types of
superconducting qubits. The first type is the flux qubit,
which consists of a superconducting loop interrupted by
either one1,2 or three3,4 junctions. When the qubit is
biased at the degeneracy point the two states repre-
sented by magnetic flux pointing up and pointing down
are superposed to produce symmetric and antisymmet-
ric eigenstates. Quantum coherent behavior has been
verified by means of spectroscopic measurements of the
level splitting of these states1,3 and by the observa-
tion of Rabi oscillations.4 The second type of qubit is
based on the charge degree of freedom, and consists of
a nanoscale superconducting island coupled to a super-
conducting reservoir via a Josephson junction. The two
quantum states differ by a single Cooper pair. Superpo-
sitions of these states have been demonstrated through
Rabi oscillations,5 and signatures of the entanglement of
two charge qubits have been observed.6 These two qubit
types are distinguished by whether the Josephson cou-
pling energy EJ or the charging energy EC dominates
the junction dynamics. A hybrid charge-flux device was
operated in the crossover between these two regimes, at
its degeneracy points in both charge and flux;7,8 it ex-
hibited the longest dephasing time yet reported for a su-
perconducting qubit, about 0.5 µs. The third type is the
phase qubit, which consists of a single Josephson junction
current-biased in the zero voltage state.9,10 In this case,
the two quantum states are the ground and first-excited
states of the tilted potential well, between which Rabi
oscillations have been observed. Unlike the other qubits,

the phase qubit does not have a degeneracy point.

For all these qubits, the measured decoherence times
are substantially shorter than predicted by the simplest
models of decoherence from dissipative sources and than
would be necessary for the operation of a quantum com-
puter. As a result, there is an ongoing search to identify
additional sources of dephasing. In the case of charge
qubits, the coherence times have been limited by low fre-
quency fluctuations of background charges in the sub-
strate which couple capacitively to the island, thus de-
phasing the quantum state.11 Flux and phase qubits are
essentially immune to fluctuations of charge in the sub-
strate, and, by careful design and shielding, can also be
made insensitive to flux noise generated by either the
motion of vortices in the superconducting films or by ex-
ternal magnetic noise. The flux-charge hybrid, operated
at its double degeneracy point, is intrinsically immune to
both charge and flux fluctuations. However, all of these
qubits remain sensitive to fluctuations in the critical cur-
rent of the tunnel junctions at low frequency f , which
lead to variations in the level splitting frequency over
the course of the measurement and hence to dephasing.

Martinis et al.
12 analyzed decoherence in phase qubits

due to low frequency critical current fluctuations, and
Paladino et al.

13 treated decoherence in charge qubits
due to low frequency charge noise. In this paper, we
explore the effects of low frequency noise in the critical
current on the dephasing times τφ in various supercon-
ducting qubits incorporating Josephson junctions, and
compare our results with measured decoherence times.
In Sec. II we discuss two sources of low frequency fluctu-
ations in superconducting circuits and explain how they
induce dephasing. In Sec. III we calculate the sensitiv-
ity of several Josephson qubit schemes to critical current
variations, using parameters from recent experiments re-
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porting dephasing times. In Sec. IV we compile a list of
measurements of the critical current noise in a variety of
junctions and obtain a “universal value” that we use in
subsequent estimates of decoherence times. In Sec. V we
estimate dephasing times limited by 1/f noise, using nu-
merical simulations to elucidate the dephasing process.
Section VI contains some concluding remarks.

II. DECOHERENCE MECHANISM FOR LOW
FREQUENCY NOISE

We consider two intrinsic sources of low frequency noise
in superconducting devices which can cause dephasing.
Flux vortices hopping between pinning sites in super-
conducting films, illustrated in Fig. 1(a), result in fluc-
tuations of the magnetic flux in multiply-connected su-
perconducting circuits. Specifically, in superconducting
flux qubits operating at the degeneracy of the left and
right circulating current states, external magnetic flux
Φx breaks the degeneracy, causing a second-order change
in the tunneling frequency. This mechanism can usually
be made negligible in devices fabricated with linewidths
less than approximately (Φ0/B)1/2 for which vortex trap-
ping in the line is suppressed;14,15 here Φ0 ≡ h/2e is the
flux quantum and B is the field in which the device is
cooled.

A more serious problem is critical current fluctuations
caused by charge trapping at defect sites in the tunneling
barrier, as in Fig. 1(b). In the prevailing picture, trapped
charges block tunneling through a region of the junction
due to the Coulomb repulsion, effectively modulating the
junction area. In general, a single charge fluctuator pro-
duces a two-level, telegraph signal in the critical current
of a junction, characterized by lifetimes in the untrapped
(high critical current) state τu and the trapped (low crit-
ical current) state τt. This produces a Lorentzian bump
in the power spectral density with a characteristic time
τeff = (1/τt + 1/τu)−1. The dynamics of such fluctu-
ators in junctions have been extensively studied16,17,18,
and the lifetimes have been measured as a function of
temperature and voltage bias. There is strong evidence
from the voltage dependence that the dominant charges
enter the barrier from one electrode and exit to the other,
and that the fluctuators exhibit a crossover from thermal
activation to tunneling behavior at about 15 K. In the
tunneling regime, the fluctuating entity has been shown
to involve an atomic mass, suggesting that ionic reconfig-
uration plays an important role in the tunneling process.
Interactions between traps resulting in multiple level hi-
erarchical kinetics have been observed,19 but usually the
traps can be considered to be local and non-interacting.
In this limit, the coexisting traps produce a distribution
of Lorentzian features that superimpose to give a 1/f -like
spectrum.20,21

The parametric fluctuations in the qubit energy levels
introduce phase noise into the measurement of the prob-
ability distribution of the qubit states. The key point

FIG. 1: note: figure attached Effects of low frequency flux and
critical current fluctuations in a superconducting qubit. (a)
Flux modulation from vortices hopping into and out of a loop,
and critical current modulation from electrons e− temporarily
trapped at defect sites in the junction barrier. (b) A single
charge trap blocks tunneling over an area δA, reducing the
critical current. (c) Fluctuations modify the oscillation fre-
quency, inducing phase noise which leads to decoherence in
time-averaged ensembles of sequential measurements of the
qubit observable Z.

is that determination of the qubit state and its evolu-
tion with time requires a large number of measurements.
In the presence of low frequency noise, the energy lev-
els fluctuate during the data acquisition. This causes an
effective decoherence in the qubit, as illustrated in Fig.
1(c). The resulting decay of the qubit state probabil-
ity amplitude reflects the spectrum of the low frequency
noise.

III. QUBIT SENSITIVITY TO CRITICAL
CURRENT FLUCTUATIONS

We consider a superconducting qubit with quantum
states separated in energy by h̄Ω, and assume that the
splitting depends on the critical current of one or more
Josephson tunnel junctions in the qubit. The sensitivity
of the energy difference to critical current fluctuations is
described by the dimensionless parameter

Λ = |I0dΩ/ΩdI0| , (1)

the fractional change in the energy separation for a given
fractional change in the critical current I0. The value of
Λ depends on the qubit architecture, the device param-
eters, and the bias point. A large value of Λ indicates
that a particular qubit type is vulnerable to decoherence
caused by critical current fluctuations; small values in-
dicate a more robust qubit design for fluctuations of the
same amplitude. In the following sections, we calculate
Λ for a variety of qubit designs and parameters used in
recent experiments. In some cases, we can develop ana-
lytical expressions for the energy separation, which often
is a tunneling matrix element, from which Λ can be cal-
culated; in others, it is necessary to carry out numerical
calculations to estimate the response to critical current
changes.

A. One-Junction Flux Qubit (Ground State)

We first consider the one-junction flux qubit [Fig.
2(a)], consisting of a single Josephson junction of crit-
ical current I0 and capacitance C in a loop of induc-
tance L biased with an applied flux Φx. At the de-
generacy point Φx = Φ0/2, the energy vs. flux curve
is a degenerate double-well potential given by V (φ) =
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FIG. 2: note: figure attached One-junction flux qubit. (a)
Schematic. (b) Symmetric double well potential for flux bias
Φx = Φ0/2. (c) Flux fluctuation ∆Φ couples to Ω only in
second order. (d) Critical current fluctuation ∆I0 produces
exponential change in Ω.

(Φ2
0/8π2L)[2βL cos(φ)+(φ+π +2πΦx/Φ0)

2], in terms of
the junction phase φ. The two states of lowest energy
are approximately symmetric and antisymmetric com-
binations of localized states in the left and right wells
characterized by clockwise and counterclockwise circulat-
ing currents, between which the “phase particle” tunnels
[Fig. 2(b)]. Fluctuations in the flux tilt the potential
wells, weakly changing the tunneling frequency in second
order [Fig. 2(c)]; however, critical current fluctuations
directly modulate the barrier height, producing an ex-
ponential change in the qubit tunneling frequency [Fig.
2(d)].

We now calculate the tunnel splitting, or more pre-
cisely the energy difference between the ground and first
excited state, for the one-junction flux qubit using three
different methods. The purpose of this pedagogical ex-
ercise is to understand in which regimes certain approx-
imations are valid. We build on this insight to analyze
other qubits later in this paper.

Our first approach is to approximate the potential
with a quartic polynomial and quote an analytic result
for the tunneling frequency in the semi-classical WKB
approximation,2

Ω = ω0 exp
[

−η(βL − 1)3/2
]

. (2)

Here ω0 ≡ 2[(βL − 1)/LC]1/2 is the classical frequency
of small oscillations in the bottom of the wells, βL ≡
2πLI0/Φ0 is the dimensionless screening parameter, and
η ≡ (8I0CΦ3

0/π3h̄2)1/2 is a parameter which describes
the “degree of classicality” and hence determines when
quantum tunneling is important.2 Figure 3(a) plots Ω/2π
vs. βL for stated values of L and C.

However, the semi-classical approximation is valid only
in the regime where the bound states in each well nearly
form a continuum, which is far from the case we con-
sider here with only one bound state in each well. To
obtain the correct splittings for the ground state in the
WKB approximation one must modify Eq. (2). A more
accurate result is22

Ω = 2ω0

√

mω0φ2
m

πh̄
eAe−S0/h̄, (3)

where S0 is the action along the tunneling direction

S0 =

∫ φm

−φm

√

2mV (φ)dφ, (4)

and A is a correction factor

A =

∫ φm

0

[

mω0
√

2mV (φ)
− 1

φm − φ

]

dφ. (5)

Here m = C (Φ0/2π)
2

is the effective mass of the tun-
neling particle, and ±φm are the positions of the minima
of the symmetric double well potential. The great ad-
vantage of this formulation of the WKB approximation,
beyond its validity for ground state splittings, is that the
limits of the integrals are at the true extrema of the po-
tential rather than the classical turning points, making
the calculation more tractable.

By evaluating Eqs. (3)-(5) numerically, we obtain a
second result for Ω, shown in Fig. 3(a) as a function of
βL. We see that the two forms of the WKB approxi-
mation are similar in overall shape, with Ω vanishing at
βL = 1 where ω0 becomes zero, and decreasing expo-
nentially at larger values of βL. However, the two forms
disagree quantitatively at small values of βL and diverge
from one another at large values of βL. These difficulties
are hardly surprising, since the WKB approximation as-
sumes a well-defined state localized in each well, and for
states very close to the top of the barrier this assump-
tion is no longer valid. Thus, to obtain a more accurate
tunneling frequency we need a full quantum mechanical
solution for the degenerate double-well potential.

To find the wavefunctions we first choose a set of basis
functions bi(φ). By calculating the Hamiltonian matrix
elements

Hmn =

∫

∞

−∞

bn(φ)H(φ)bm(φ)dφ (6)

and the overlap matrix

Bmn =

∫

∞

−∞

bn(φ)bm(φ)dφ, (7)

we can find the energy levels as the eigenvalues of the
matrix

K = B−1H. (8)

To solve for the ground state wavefunction we choose as
our basis set 12 simple harmonic oscillator wavefunctions
centered in the left well and 12 more centered in the right
well. We use the Hamiltonian

H(φ) =
Φ0

2

8π2L

[

2βL cos(φ) + (π + φ + φx)
2
]

+
Φ0

2C

8π2

(

∂

∂φ

)2

, (9)

where φx ≡ 2πΦx/Φ0. The results for φx = 0 are shown
in Fig. 3(a). For large values of βL the full solution ap-
proaches the modified WKB expression, Eq. (3), asymp-
totically. As βL is decreased toward unity the tunneling
rate approaches a constant value. This is in contrast to
the semi-classical models which predict a tunneling rate
proportional to βL as the prefactor ω0 dominates; the full
solution shows that this is an artifact of the approxima-
tion.

Figure 3(b) shows Λ vs. βL for the three calculations.
The two semi-classical approximations predict that Λ
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FIG. 3: note: figure attached

Three quantities for the ground state of the one-junction
flux qubit at the degeneracy point calculated using the

standard WKB approximation (solid), WKB approximation
corrected for the ground state (dashed), and numerical

solution for the wavefunctions (points), plotted as a function
of the dimensionless screening parameter βL. (a) Splitting

frequency between ground and first excited states, (b)
sensitivity parameter Λ, and (c) effects of critical current

fluctuations of three magnitudes on tunneling rate.
Parameters are from Friedman et al.: L = 240 pH and

C = 104 fF.1

vanishes at certain values of βL, but this is an artifact
of the apparent maxima in Fig. 3(a); the full quantum
treatment shows no zero. Figure 3(c) plots the fractional
change in tunneling frequency, δΩ/Ω, vs. βL for the three
calculations for three fractional changes in critical cur-
rent, δI0/I0. We note that for βL

>∼ 1.1 the three ap-
proaches differ by no more than a factor of about two.

B. One-Junction Flux Qubit (Excited States)

The first demonstration of a one-junction flux qubit did
not employ ground states, however, but excited states
in deep, tilted potential wells.1 The WKB approxima-
tion is again unsuitable, for two main reasons. First,
treating asymmetric potentials is more difficult, because
of different prefactors for the two wells, but this can be
overcome.23 More importantly, resonant tunneling, which
causes a dramatic increase in the tunneling rate when
two energy levels are aligned, is entirely absent from the
WKB approximation. Thus, the only way to calculate
the sensitivity to critical current fluctuations is to solve
the Schrödinger equation for the energy levels numeri-
cally.

We adopt the approach of Sec. IV.A with a different
basis set. We use 60 harmonic oscillator wavefunctions
centered between the minima of the two wells, so that B
becomes the identity matrix. To reproduce the experi-
mental conditions,1 we set βL = 1.5 and find the energy
levels for successive values of applied flux φx. We find
that the energy difference between the third and ninth
excited states has a local minimum at φx ≈ 0.514 × 2π,
corresponding to the condition for resonant tunneling.
Fixing φx at this value and sweeping βL, we calculate
the relevant quantities for low frequency critical current
fluctuations. The results are shown in Fig. 4.

In Fig. 4(a) we see that near the resonant point
βL = 1.5, Ω decreases with increasing barrier height,
as one would expect from a semi-classical analysis, but
reaches a local minimum at a slightly higher value. As βL

is increased further, Ω increases because the energy levels
are no longer resonant. At the minimum, the derivative
quantity Λ vanishes, as the changing barrier height bal-
ances the loss of resonance, indicating that the system
is immune to small critical current fluctuations at this

FIG. 4: note: figure attached

Numerical solution for the excited states of an asymmetric
one-junction flux qubit. (a) Tunneling frequency between the
third excited state in the shallow well and the ninth excited
state in the deep well as a function of βL for a system on
resonance at βL = 1.5. (b) Derived sensitivity to critical
current fluctuations. Device parameters are as in Fig. 3.

point. We note that on resonance, where Λ is almost op-
timally bad, the system is immune to flux noise, because
the energy is a minimum as a function of flux. Thus, one
can exchange sensitivity to critical current fluctuations
for sensitivity to flux noise as appropriate.

C. Three-junction flux qubit

The three-junction qubit consists of three Josephson
junctions of critical currents Ia

0 ,Ib
0 , and Ic

0 in series in
a superconducting loop of geometric inductance L, as
shown in Fig. 5(a).3,4,24 The smallest of the junctions, c,
primarily controls the barrier height while the larger two
junctions, a and b, serve as Josephson inductors. We pa-
rameterize this device by the ratios of the Josephson cou-
pling energy of the three junctions to the charging energy
EC = e2/2C, where C is the mean capacitance of the two

larger junctions: Ea,b,c
J /EC = Ia,b,c

0 Φ0/2πEC = γa,b,c.
We assume that the junctions are in the phase regime
where γa,b,c >> 1 and require that 1/2 < 2γc/(γa+γb) <
1 so that a double-well potential is formed. We consider
the junctions individually so that we may allow their crit-
ical currents to fluctuate independently, and consider the
case where asymmetries in the large junctions are small,
i.e. 2γb/(γa+γb) << 1. The energy landscape at applied
flux Φ0/2 exhibits multiple wells, most notably two de-
generate wells separated by a tunnel barrier that is much
lower than the barriers to all other flux states. The po-
tential can be written

V (δ) = (EC/8C)(γa + γb + 4γc cos δ)2, (10)

where δ is a variable aligned with the tunneling direction
that is derived from the three junction phases. In the
small-inductance limit, we can apply the WKB approxi-
mation given in Eqs. (3)-(5) to calculate the rate for this
so-called intracell tunneling
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Ω =
ΓEC

h̄
exp



−
(4γc + γa + γb)

{

√

(4γc)2 − (γa + γb)2 − (γa + γb) arccos
(

γa+γb

4γc

)}

2
√

γc(γa + γb)(4γc + γa + γb)



 , (11)

where

Γ =
(4γc − γa − γb)5/4(γa + γb)1/4(4γc + γa + γb)

2π1/2(γc)7/4
. (12)

FIG. 5: note: figure attached Three-junction flux qubit. (a)
Schematic showing inductive loop, embracing Φ0/2 inter-
rupted by three Josephson junctions. (b) Tunneling frequency
and (c) Λ vs. Josephson-to-charging energy ratio. Solid lines
indicate dependence on large junction ratio γa,b with γc = 28,
and dashed lines indicate dependence on small junction ratio
γc with γa = γb = 35. EC = 7.4 GHz for all plots.

We note that the exponent reduces to a form previously
obtained24 when γa = γb; however the prefactor differs.

To calculate the effects of low frequency noise, we
must account for the fact that the critical currents of
the three junctions fluctuate independently. Because the
small and large junctions play different roles, we consider
changes in each separately. We adopt parameters used
in the experiments of Chiorescu et al.,4 γa = γb = 35,
γc = 0.8 × γa,b = 28, and EC/2πh̄ = 7.4 GHz. In Fig.
5(b), we plot the tunneling frequency Ω/2π as a function
of the Josephson-to-charging energy ratios for each of the
three junctions holding the other two constant. Figure
5(c) shows Λi = (γi/Ω)∂Ω/∂γi, where i = a, b or c, as
a function of the same variables. For the experimental
parameters, we calculate Ω/2π = 7.96 GHz, which differs
somewhat from the experimentally observed value of 3.4
GHz; however the exponential dependence in Eq. (11)
magnifies parametric uncertainties, making exact agree-
ment unlikely. We see that the small junction is indeed
the dominant contribution to Λ, with Λa,b = 4.6 and
Λc = 10.4. Adding the contributions incoherently gives
Λ = (Λ2

a + Λ2
b + Λ2

c)
1/2 = 12.3.

D. Single Josephson junction (phase) qubit

Martinis and coworkers have used a single, current-
biased Josephson junction as a qubit, the |0〉 and |1〉
states being the ground and first excited states of the
tilted washboard potential well, as shown in Fig. 6(a).
The energy separation between energies E0 and E1 is

Ω = (E1 − E0)/h̄ ≈ ωp, (13)

where

ωp =
(

2
√

2πI0/CΦ0

)1/2

(1 − I/I0)
1/4 (14)

FIG. 6: note: figure attached Single Josephson junction qubit.
(a) Schematic and (b) energy level diagram. (c) Variation of
energy separation with bias current. (d) Λ as a function of
bias current. Parameters are from Martinis et al.: C = 6 pF,
corresponding to a junction area of 100 µm2, and I0 = 21.1
µA.9

is the small oscillation (plasma) frequency in the well. In
Fig. 6(b) we plot Ω vs. I/I0 for the parameters used
in the experiments of Martinis et al.

9 We determine Λ
vs. I/I0 from Eq. (14), and plot the result in Fig. 6(c).
At the bias point used in the experiments, I = 20.77
µA (I/I0 = 0.985), Λ has the value 16 at a tunneling
frequency Ω/2π = 6.9 GHz.

E. Quantronium (hybrid charge-flux) qubit

The qubit developed by the Saclay group consists of
a Cooper pair box, a small island coupled by Josephson
junctions of critical current I0 and capacitance Cj on each
side, connected in a superconducting loop containing a
Josephson junction with a much larger critical current
[Fig. 7(a)].7 The island is connected to a voltage source
via a capacitor Cg. The circuit parameters are selected

with the Josephson energy Ea,b
J = Φ0I

a,b
0 /2π comparable

to the charging energy ECP = (2e)2/2(Cg +2Cj), so that
the device operates in the crossover regime between the
charge and flux modes. In this configuration, a charge
induced on the central island generates a phase change
around the loop, driving a circulating current determined
by the Josephson inductance of the two small junctions.
This current is detected by measuring the pulsed cur-
rent required to exceed the critical current of the readout
junction, Ir

0 . The qubit energy levels E0 and E1 are con-
trolled by the gate charge Nge and the phase difference
δ across both junctions according to the approximation8

E0,1 = ∓
{

[

EJ

2
cos

(

δ

2

)]2

+ [ECP (1 − 2Ng)]
2

}1/2

.(15)

where EJ = Ea
J + Eb

J is the total Josephson coupling
energy. Thus, the qubit frequency, which is proportional
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FIG. 7: note: figure attached The quantronium qubit, which
operates in the crossover regime between the charge and flux
modes, converts charge oscillations on the single electron tran-
sistor to flux modulation in the loop. (a) Schematic showing
phase difference δ across two small Josephson junctions with
charge Ng on island between them. (b) Level splitting fre-
quency Ω/2π and (c) critical current sensitivity Λ vs. Ng .
Curves are plotted for the parameters reported by Vion et

al., I0 = 18 nA, Cj = 2.7 fF; at the optimal working point
Ng = 1/2, δ = 0, Λ = 2−1/2, and Ω is calculated to be 17.9
GHz, slightly different from the observed value of 16.5 GHz.

to the level spacing, is

h̄Ω = E1 − E0 (16)

= 2

{

[

EJ

2
cos

(

δ

2

)]2

+ [ECP (1 − 2Ng)]
2

}1/2

.(17)

When Ng and δ are adjusted to the optimal working
point, δ = 0 and Ng = 1/2, the system is maximally
insensitive to phase and charge fluctuations; however, in-
coherent fluctuations in the critical current of the small
junctions couple linearly to the level splitting without
perturbing the phase or charge to first order, giving
Λ = 2−1/2. Away from Ng = 1/2, Λ is reduced, as plotted
in Fig. 7(b) for the parameters used in the Saclay exper-
iments, Cj = 2.7 fF (ECP /kB = 0.68 K), and I0 = 18
nA [(Ea

J + Eb
J )/kB = 0.86 K], but the device is then no

longer immune to charge fluctuations.

IV. 1/F CRITICAL CURRENT FLUCTUATIONS

Critical current fluctuations in Josephson junctions
have been extensively studied over the past two decades,
mostly to understand the low frequency noise in SQUIDs.
As a result, most of the reported measurements have been
in the temperature range 1 − 4 K on junctions of areas
from 4 − 100 µm2. We first briefly describe scaling of
the data by the junction area, the critical current, and
temperature.

As mentioned earlier, it is generally accepted that
critical current noise in Josephson junctions arises from
charge trapping at defect sites in the barrier. A trapped
charge locally modifies the height of the tunnel barrier,
changing the resistance of the junction, and, in the case
of a Josephson junction, also the critical current. For
a junction of area A, the change in critical current is
∆I0 = (∆A/A)I0, where ∆A is the effective area of the
junction over which tunneling is blocked by the tempo-
rary presence of the trapped charge. The critical current
spectral density for one trap is proportional to (∆I0)

2,
so that the spectral density for N identical, independent
traps scales as N(∆I0)

2 = nA(∆A/A)2I0
2, where n is the

number of traps per unit area. Consequently, for a given
junction technology characterized by a trap density n and
blocking area δA, we expect the critical current spectral

density SI0(f) to scale as I2
0/A. To test this hypothesis,

we have compiled a series of measurements of the 1/f
critical current noise at temperature T = 4.2 K, taken in
a variety of junctions and dc SQUIDs by different groups
(Table I). For each, we list the critical current I0 and area
A of the junctions, which vary by several orders of mag-
nitude, and the magnitude of the critical current noise
spectral density at 1 Hz, SI0(1 Hz). We observe that

the quantity S
1/2

I0
(1 Hz)A1/2/I0 is remarkably constant,

varying by less than a factor of 3.
This result supports the charge trap model for the

1/f critical current noise, and, since it includes mea-
surements on different junction barrier materials (AlOx,
InOx, NbOx) even suggests that the product of the trap
density and Coulomb screening area must be similar in
magnitude for these different oxides.

Averaging these measurements, we estimate the crit-
ical current noise at 4.2 K for any junction of critical
current I0 and area A to be

SI0 (1Hz, 4.2K) ≈ 144
(I0/µ A)

2

A/µm2

(pA)2

Hz
. (18)

The temperature dependence of the 1/f critical current
noise is less firmly established. Since the charge traps re-
sponsible for the noise are thought to be in the tunneling
regime at low temperatures, one might expect that the
temperature dependence would be weak. However, the
only measurement of the spectral density of the critical
current noise in Josephson junctions at low temperatures
we are aware of showed a T 2 dependence from 4.2 K down
to about 300 mK.25 The issue of whether or not this be-
havior extends to lower temperatures is of crucial impor-
tance to the development of qubits involving Josephson
junctions.

In the absence of other data or models, we take the
optimistic view that SI0(f, T ) scales quadratically with
temperature and so is dramatically reduced at the low
temperatures where superconducting qubits are oper-
ated. We thus take as a working hypothesis

SI0 (f, T ) ≈
[

144
(I0/µ A)2

(A/µ m2)

(

T

4.2K

)2

(pA)2

]

1

f
. (19)

The observed T 2 dependence is incompatible with the
electron trapping mechanism in the tunneling regime,
which predicts a linear temperature dependence.20 There
is strong evidence that charge trapping occurs via tun-
neling in the temperature range considered, so that the
noise should be relatively temperature independent. Fur-
ther, for eV , kBT << 2∆, where ∆ is the energy gap,
both the available number of single electrons and the
available number of final single-electron states scale as
exp(−∆/kBT ), so that charge trapping is expected to
freeze out at low temperatures. This leads one to seek
alternative explanations. One possibility is that the 1/f
noise is associated with leakage currents at voltages be-
low 2∆/e, which do not exhibit an exponential tempera-
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ture dependence. Such leakage currents presumably oc-
cur between opposing normal regions of the electrodes,
conceivably at the edges of the junctions or along the
core of a flux vortex penetrating the junction. An in-
vestigation of the correlation between leakage currents
and 1/f noise would be of great interest. Other possible
sources of the 1/f noise include the motion of electrons
between traps within the tunnel barrier, and the motion
of vortices in or near the junction, which could create
a thermally-activated contribution to the critical current
fluctuations. We note that a thermally activated model
yielding a T 2 dependence has been proposed by Kenyon
et al.

26 in the context of charge 1/f noise, but should be
equally applicable to critical current noise. In this model,
one assumes that the two-state systems have asymmetric
wells, and that the depths of the wells are independent
random variables.

V. DETERMINATION OF DEPHASING TIMES

As described above, the low frequency critical current
fluctuations generate phase noise and decoherence in any
measurement of quantum coherent oscillations. To deter-
mine the effect of the fluctuations on τφ, we simulate the
oscillations of the qubit state probability distribution.

In general, there are two techniques for observing
quantum oscillations in superconducting qubits. The
qubit bias can be pulsed suddenly to the degeneracy point
where the qubit oscillates between the measurement ba-
sis states at frequency Ω. After time t, the qubit bias
is pulsed suddenly away from the degeneracy point, af-
ter which the measurement is performed.5 In this sec-
tion we consider such a degeneracy point measurement
for a superconducting qubit in the presence of low fre-
quency critical current fluctuations. We normalize the
qubit states to +1 and −1 and always initialize the state
to +1 before each bias pulse to the degeneracy point. For
qubits coupled to Ohmic dissipation and without critical
current fluctuations, the subsequent oscillations of the
expectation value 〈Z(t)〉 decay with the dephasing time
τ0
φ according to

〈Z(t)〉 = e−t/τ0

φ cosΩt. (20)

We will see that the low frequency noise provides an ad-
ditional mechanism for decoherence and a different func-
tional form for the decay of 〈Z(t)〉.

Alternatively the qubit bias can remain fixed away
from the degeneracy point while the qubit is driven be-
tween the ground and excited states with resonant mi-
crowave pulses of varying width. This technique has been
used to measure Rabi oscillations of the quantum state
in several superconducting qubits.4,7,9 A measurement of
the dephasing time τφ in this driven case requires a more
sophisticated pulse arrangement, such as a Ramsey fringe
sequence.4,7 We note that for the single Josephson junc-
tion phase qubit,9 resonant microwave driving is the only

possible technique for observing quantum oscillations as
there is no degeneracy point at which the qubit can be
operated. Nonetheless, we expect our calculation of the
dephasing due to critical current fluctuations from a sim-
ulation of an experiment involving switching to and away
from the degeneracy point to give a reasonable estimate
for τφ in the microwave-driven experiments as well.

For our simulations of the quantum oscillations at the
degeneracy point, we allow the qubit to evolve for time
t followed by a single-shot measurement with a sampling
window that is much shorter than 2π/Ω (Fig. 8). We
assume that the interval between consecutive single-shot
measurements of the state is tZ ; this interval includes
the time to initialize the state, the delay time during
which the qubit evolves, the sampling time, the readout
time, and any time allotted for the system to thermalize
following the dissipative measurement. To map out the
time dependence of the qubit state, we measure the ex-
pectation value Nt times, at intervals separated by time
td, each point being the average of NZ measurements.
From this time evolution, we can determine the envelope
and its characteristic decay time, and, if the sampling
frequency is above the Nyquist frequency (twice the co-
herent oscillation frequency), the oscillation frequency.
The key point is that low frequency fluctuations in the
critical current cause the oscillation frequency to be dif-
ferent for each successive single-shot measurement of the
qubit, resulting in an effective dephasing.

Because of the nature of 1/f noise, the resulting de-
phasing depends both on the total number of samples
N = NZNt (which sets the elapsed time of the experi-
ment NtZ) and on the sequence in which the measure-
ments are taken. We consider two cases, illustrated in
Fig. 8. Method A is time-delay averaging, in which
we take NZ successive measurements for each time de-
lay and average them to find the qubit expectation value
at that delay time. Method B is time-sweep averaging,
in which we make a single measurement at each of the
Nt points, and then average NZ such time sweeps to gen-
erate the qubit time evolution. These differ because of
the time scales involved in 1/f noise: Method A averages
only high frequency fluctuations at each time-delay point,
while Method B averages both high and low frequency
components. Data sampling schemes intermediate be-
tween these extremes are also possible; these involve the
averaging of Ns < NZ multiple sweeps, each acquired by
sampling Nm = NZ/Ns successive measurements at each
time delay value.

For method A, the expectation value after time tm =

FIG. 8: note: figure attached Measurement sequences for
mapping out coherent oscillations. (a) Method A: time-delay
averaging. (b) Method B: time-sweep averaging. The inter-
val between qubit state measurements is tZ ; the spacing of
time-delay points is td.
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TABLE I: Compilation of 1/f critical current noise measurements in Josephson junctions of different technologies, areas A, and

critical currents I0 at 4.2 K; SI0(1 Hz) is the spectral density at 1 Hz. The relative invariance of the scaled quantity A1/2S
1/2

I0
(1

Hz)/I0 supports the charge trapping mechanism for the 1/f noise.

Junction A I0 S
1/2

I0
(1 Hz) A1/2S

1/2

I0
(1 Hz)/I0

technology µm2 µA pA/Hz1/2 µm(pA/Hz1/2)/µA

Nb-AlOx-Nb27 9 9.6 36 11

8 2.6 6 7

115 48 35 8

34 12 41 20

Nb-NbOx-PbIn25 4 21 74 7

4 4.6 46 20

4 5.5 25 9

4 5.7 34 12

4 11.4 91 16

Nb-NbOx-PbInAu28 1.8 30 184 8

PbIn-InOx-Pb29 6 510 3300 15

Average 12

mtd, with 1 ≤ m ≤ Nt, is given by

〈ZA(tm)〉 =
1

NZ

NZ
∑

n=1

cos

{[

Ω +
dΩ

dI0

δI0 (tA)

]

tm

}

e
−

tm

τ0

φ

=
1

NZ

NZ
∑

n=1

cos {Ω [1 + Λδi0 (tA)] tm} e
−

tm

τ0

φ ,

(21)

where tA = [(m − 1)NZ + n] tZ . For method B we have

〈ZB(tm)〉 =
1

NZ

NZ
∑

n=1

cos

{[

Ω +
dΩ

dI0

δI0 (tB)

]

tm

}

e
−

tm

τ0

φ

=
1

NZ

NZ
∑

n=1

cos {Ω [1 + Λδi0 (tB)] tm} e
−

tm

τ0

φ ,

(22)

where tB = [(n − 1)Nt + m] tZ . Here τ0
φ is the dephasing

time set by decoherence mechanisms besides 1/f noise
such as dissipative processes in the qubit and the environ-
ment. To simulate the dephasing due to critical current
fluctuations alone, we take τ0

φ to be infinite. The quan-

tity δI0(t) is the time-varying deviation in the critical
current from its average value. Note that the changes in
oscillation frequency scale with Λ and with the fractional
changes in the critical current δi0(t) = δI0(t)/I0.

We determine the time sequence of critical current fluc-
tuations (Fig. 9) by Fourier transforming a complex
spectrum of critical current fluctuations. This spectrum
is generated in frequency space, with magnitudes ran-
domly chosen from an exponential distribution with a
mean value equal to (SI0(1 Hz)/f)1/2 and phases ran-
domly chosen from a uniform distribution from 0 to 2π.

FIG. 9: (note: figure attached a) Simulated time-sequence of
critical current changes for an experiment with N = 104 total
qubit state measurements taken at intervals of tZ = 1 ms. (b)
Corresponding 1/f frequency spectrum.

This procedure is equivalent to sampling real and imagi-
nary components of the critical current fluctuations from
Gaussian distributions centered at zero magnitude, thus
ensuring that the generated noise is Gaussian. The ac-
tual critical current fluctuations of the junction may not
be strictly Gaussian if interactions between the charged
traps are present, but the assumption of Gaussian statis-
tics should give a good representation of the noise. The
relevant frequency range is from fmax = 1/tZ , set by
the single-shot measurement time, to fmin = 1/NtZ ,
where NtZ is the total duration of the experiment. As
an example, consider an experiment in which tZ = 1ms,
NZ = 100, and Nt = 100. We generate N = 104 time
sequence points over the period Ntz = 10 s. We choose
a representative qubit with a junction of critical current
I0 = 1 µA and area A = 0.01 µm2. At T = 100 mK, the
universal 1/f noise spectral density from Eq.(19) yields
SI0(1 Hz) = 8.16 × 10−24A2Hz−1, corresponding to a
root-mean-square fractional change in the critical cur-
rent of about 10−5 over the bandwidth from 10−1 to 103

Hz. Figure 9(a) shows a typical time trace simulated with
these parameters. The enhanced low frequency compo-
nents present in the 1/f spectrum are evident in the fluc-
tuation spectrum.

To simulate the observed coherent oscillations, we in-
sert such a noise time-sequence of the required duration
into Eqs.(21) and (22). In Fig. 10, we show the proba-
bility amplitude 〈Z〉 calculated for Nt = 1000 time de-
lay points, each averaged over NZ = 3000 qubit state
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measurements (thus, N = 3 × 106) acquired by sam-
pling methods A and B. We assume the qubit param-
eters I0 = 1 µA, A = 0.01 µm2, Ω/2π = 1 GHz
and Λ = 100, with T = 100 mK. The optimum sam-
pling rate is larger than the Nyquist frequency so that
the characteristic qubit oscillation frequency can be de-
termined, and incommensurate with the oscillation pe-
riod of the qubit, so that the envelope of the oscilla-
tions is fully delineated and not aliased. In this case,
we arbitrarily choose the sampling frequency to be the
irrational number (1 + φ)Ω/2π ≈ 2.618 GHz, where

φ = (1 +
√

5)/2 ≈ 1.618 is the Golden mean. Thus,
tZ = 0.382 ns. The envelope function is calculated by
demodulating the oscillations via convolution of the av-
eraged probability amplitudes with the Gaussian filter
kernel

K(t) =

(

1

2πσ2

)1/2

exp
(

−t2/2σ2
)

, (23)

where σ is chosen to be the sampling period tZ .
The oscillation amplitude of the qubit state is found

to decay with a Gaussian envelope function

〈Z〉env ∼ exp
(

−t2/2τ2
φ

)

, (24)

where τφ is a characteristic dephasing time. This form
arises from the frequency modulation of the qubit by the
critical current fluctuations, in contrast to an exponential
decay induced by dissipative processes. We note that
for long delay times the envelope does not vanish but
instead saturates to a noise floor level that corresponds
to uniform randomization of the oscillation phase by the
critical current fluctuations. The noise floor is Znoise ∼
N

−1/2

Z for both Methods A and B. Particularly for small
NZ , it is necessary to account for the noise floor to make
an accurate determination of τφ. We do this by fitting to

〈Z〉env ∼ Znoise + (1 − Znoise) exp
(

−t2/2τ2
φ

)

. (25)

Both the dephasing times and the scatter in the ampli-
tude envelope are different for the two methods. Method
A gives a longer dephasing time than Method B, in this
case by about 30%. This occurs because all of the qubit
state measurements at a particular delay time for Method
A are acquired in a time interval NZtZ , rather than over
the entire experiment duration NtZ as in Method B.
Thus, the number of decades of 1/f noise that affect the
qubit dynamics in Method A is log(NZ) = 3, compared
to Method B which samples log(N) = 6 decades. The
scatter in the simulated data is also greater for Method A
because the low frequency variation of the tunneling fre-
quency is not averaged out. The origin of this scatter can
be best understood by choosing junction and measure-
ment parameters for which τφ and Tosc are comparable
so that the coherent oscillations and the amplitude de-
cay can be resolved simultaneously. In Fig. 11, we show
the probability amplitude for the same qubit parameters
but with a substantially increased level of critical current

FIG. 10: note: figure attached Probability envelopes deter-
mined by simulations using measurement Methods A and B
for a qubit with I0 = 1 µA, SI0(1 Hz) = 8.16×10−24 A2Hz−1,
A = 0.01 µm2, Λ = 100, and Ω/2π = 1 GHz. The structure
visible in the Method B plot arises from periodic sampling
of the oscillations and is evidence of the increased effective
averaging relative to Method A.

FIG. 11: note: figure attached Simulated probability oscilla-
tions with large critical current fluctuations for measurement
Methods A and B. Qubit parameters as in Fig. 10, except
SI0(1 Hz) = 1.39 × 10−20 A2Hz−1

fluctuations, approximately 40 times larger in amplitude,
calculated for Nt = 200. Here, the discrete oscillations
are clear for Method B but quite distorted for Method
A. The dephasing time for Method A is again longer, in
this case by about 22%.

Because of the low frequency divergence of 1/f noise,
the variance in the measured dephasing time is substan-
tial, and it is necessary to carry out a series of experimen-
tal runs to determine the dephasing time accurately for a
given set of junction and measurement parameters. The
spread in dephasing times can be seen in Fig. 12 in which
we plot distributions of the dephasing times obtained by
Methods A and B for the qubit parameters used in Fig.
10 and for different numbers of flux measurements. For
any value of N , the mean dephasing time is larger for
Method A than for Method B, as expected since fewer
decades of 1/f noise affect the qubit; the standard devia-
tions are larger for Method B.

With a series of such simulations for different junction
and qubit parameters, it is straightforward to establish
that τφ is proportional to I0 and inversely proportional to

Ω, Λ, and S
1/2

I0
(1 Hz). The dependence of τφ on the num-

ber of measurements, which sets the range of 1/f noise
that is effective in dephasing the qubit, can be found by
carrying out the simulations for different measurement
parameters Nt and NZ , as shown in Fig. 12. The mean
dephasing times for a series of simulations with the same
parameters described above are shown in Fig. 13. As dis-
cussed above, Method A gives longer times than Method
B for all values of N . We find that the dephasing time
τφ for Method A decreases as a weak power-law of N ,
which is expected since the frequency range of the 1/f
noise increases for larger NZ . For Method B, τφ is nearly
constant, changing by only a few percent over 3 orders of
magnitude in N . This insensitivity likely arises because
the increased frequency range of the noise for larger N
(which should suppress the the dephasing time) is com-
pensated by the increased averaging which smoothes the
fluctuations. For large N , τφ for Method B agrees well
with the analytical result obtained by Martinis, et al.,12

differing only by a numerical factor of order unity, but
deviates substantially at lower N .

Using our empirical expression for SI0(f), Eq. (19),
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FIG. 12: note: figure attached Distributions of dephasing
times τφ calculated by Method A (open symbols) and Method
B (closed symbols) for different number of flux measurement
points N = 3× 104 (squares), 3× 105 (triangles), and 3× 106

(circles). Each distribution includes 1000 simulations of the
coherent oscillations accumulated into bins of width 2 ns.
Qubit parameters are as in Fig. 10.

and taking the number of qubit measurements in a typi-
cal experiment to be N = 106, we find

τA
φ (µs) ≈ 20A1/2(µm)/Λ(Ω/2π)(GHz)T (K) (26)

for sampling by Method A and

τB
φ (µs) ≈ 15A1/2(µm)/Λ(Ω/2π)(GHz)T (K) (27)

for Method B.
¿From these results, we estimate the values of τφ and

Ωτφ/2π predicted for each of the qubit schemes described
in Sec. III, using the device parameters reported in the
experiments and assuming sampling by Method B with
N = 106. We have set T = 100 mK and assumed ex-
plicitly that the T 2 dependence of SI0(f) extends to this
temperature. These results are listed in Table II. For
comparison, we also list the measured dephasing times
and the temperatures at which the experiments were per-
formed. Our estimated dephasing times range between
0.8 µs and 12 µs, with the longer times corresponding to
the qubit schemes with larger area junctions. Such times
would allow for several thousand oscillations of the quan-
tum state, making possible various quantum computing
operations. However, with the exception of quantronium,
the measured dephasing times are orders of magnitude
shorter than our estimated values, indicating that other
sources of decoherence are dominant. In the quantron-
ium experiments, the isolation obtained by operating at
the optimal working point, described in Section III.E,
enhances the coherence time nearly to the value where
our estimates (at 100 mK) predict critical current fluctu-
ations would have a noticeable effect; however, SI0 may
be substantially smaller at the experimental temperature
of 15 mK.

VI. CONCLUSIONS

Despite ongoing studies over more than two decades,
the origin of 1/f noise in the critical current of Josephson
junctions is still not fully understood. Although there is

FIG. 13: note: figure attached

Variation of the dephasing time τφ with the number of qubit
state measurements N for Methods A and B. Each point

corresponds to the mean value of τφ from 50 simulations of
the oscillation decay envelope. Qubit and noise parameters

as in Fig. 10.

strong evidence that the noise derives from a superpo-
sition of random telegraph signals produced by charge
trapping and untrapping processes, the origin of the T 2

dependence observed by Wellstood25 remains puzzling.
This temperature dependence can be explained within
the framework of a two-well potential in which the two
barrier heights are independent random variables, pro-
vided one assumes thermally-activated processes rather
than the tunneling processes one might expect. Further-
more, the absence of a temperature dependence of the
form exp(−∆/kBT ) at low temperatures is difficult to
understand in a picture in which the trap exchanges sin-
gle electrons with superconducting electrodes. Clearly
more work is required to understand this behavior. We
found that the measured spectral density of the 1/f noise
in the critical current of junctions with different materials
and a wide range of areas and critical currents scales sur-
prisingly well as [144(I0/µA)2/(A/µm2)](pA)2/Hz at 4.2
K. Based solely on the results of Wellstood we have cho-
sen to scale this number with (T/4.2 K)2 to predict the
1/f noise at 100 mK. How well this scaling remains valid
as more junctions are investigated and whether the T 2 de-
pendence holds down to (say) 10 mK are questions that
should be addressed with some urgency. These measure-
ments must of necessity be made with a SQUID amplifier;
the use of submicron junctions with relatively high crit-
ical currents should enhance the magnitude of the noise
and make its observation more straightforward.

For four different qubits we calculated the paramet-
ric effect of small changes in the critical current I0 on
the energy separation h̄Ω at the operating point. Us-
ing the normalized parameter Λ = |I0dΩ/ΩdI0| and the
extrapolated magnitude of the 1/f noise we investigate
dephasing in these qubits at 0.1 K. In agreement with the
treatment of Martinis et al.,12 we find that the sources
of decoherence accumulate as t2, so that the decoherence
is not interpretable as a rate. Rather, the frequency is
different each time a measurement is made. In all cases
where τφ has been measured, the calculated values due
to critical current 1/f noise are greater than the mea-
sured values. Furthermore, if the T 2 dependence of the
1/f noise does continue at temperatures down to (say)
10 mK, the predicted decoherence time, which scales as
1/T , will become an order of magnitude longer at this
temperature. Nonetheless, although critical current 1/f
noise appears not to be the limiting source of decoher-
ence in experiments conducted to date, ultimately this
mechanism will present an upper bound on τφ.

Although the level of 1/f noise is remarkably constant
for existing junction technologies, there may be alterna-
tive schemes for growing the tunnel barrier which reduce
the number of charge traps in the barrier, and hence re-
duce the noise. We note also that even in the presence of
low frequency noise, the use of various pulse sequences,
such as spin echoes,4,7,11,30 or bang-bang pulses31 can
significantly reduce its effects.

Finally, in the case of flux qubits this formulation could
be extended to the effects of 1/f flux noise originating
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TABLE II: Estimated dephasing times at 100 mK due to 1/f noise in I0 for various qubit schemes. Measured dephasing times
and experimental temperatures are included where measurements exist. For the one-junction flux qubit columns, values of
Ω/2π were calculated as described in the text. All other values of Ω/2π were taken from corresponding experiments. Values of
Λ for each qubit scheme were calculated as described in Sec. III.

Parameter 1-junction 1-junction 3-junction single quantronium7

flux qubit flux qubit flux qubit4 junction9

(ground state) (excited state)1

I0(µA) 1.46 1.46 0.5 21.1 0.018

A(µm2) 2.0 2.0 0.05 100 0.02

Λ 40.6 71.5 12.3 16 0.7

Ω/2π(GHz) 3.4 0.59 3.4 6.9 16.5

calc τφ(µs)(100 mK) 1.5 5.1 0.8 14 1.8

meas τφ(µs)(T/mK) — — 0.02(25) 0.01(25) 0.50(15)

calc Ωτφ/2π(100 mK) 5100 3000 2700 97000 30000

meas Ωτφ/2π(T/mK) — — 68(25) 69(25) 8000(15)

from either magnetic vortex motion or current noise in
the current supply by calculating the quantity dΩ/dΦ.
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