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Complete Shrinking Ricci Solitons have Finite Fundamental

Group

William Wylie

Abstract. We show that if a complete Riemannian manifold supports a vec-
tor field such that the Ricci tensor plus the Lie derivative of the metric with
respect to the vector field has a positive lower bound, then the fundamental
group is finite. In particular, it follows that complete shrinking Ricci solitons
and complete smooth metric measure spaces with a positive lower bound on
the Bakry-Emery tensor have finite fundamental group. The method of proof
is to generalize arguments of Garcia-Rio and Fernandez-Lopez in the compact
case.

1. Introduction

In this paper we are interested in studying complete Riemannian manifolds
(M, g) with a vector field X such that, for some λ > 0,

(1.1) Ricg + LXg ≥ λg

where LXg is the Lie derivative of g with respect to the vector field X .
This class of manifolds includes two well known subclasses. The first is the class

of complete manifolds such that Ricg + LXg = λg. This is the class of complete
Ricci Solitons. The study of Ricci solitons is important in understanding many
aspects of Ricci flow [CLN]. The second subclass is the class of smooth metric
measure spaces with Bakry-Emery tensor bounded below by λ. This class consists
of smooth manifolds that satisfy (1.1) for some gradient vector field X = ∇f . We
refer the reader to Lott [L] and Qian [Q] for topological results concerning the
Bakry-Emery tensor.

Fernández-López and Garćıa-Rı́o [FG] have proven the following Myers type
theorem: If a complete manifold (M, g) satisfies (1.1) and the vector field X has
bounded norm, then M is compact. It is an immediate corollary that any compact
manifold satisfying (1.1) has finite fundamental group. In the case where X is a
gradient vector field this was proven earlier by Lott [L].

The assumption of bounded ||X || is necessary to show M is compact since, for
example, Euclidean space with the vector field X(v) = v, ∀v ∈ R

n satisfies (1.1).
However, we show that the fundamental group must be finite in the noncompact
case.
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Theorem 1.1. If M is a complete Riemannian manifold satisfying (1.1) then
M has finite fundamental group.

Naber [N] has indepedently proven Theorem 1.1 under the additional assump-
tion that X = ∇f and the Ricci curvature is bounded.

There are complete manifolds with positive Ricci curvature and infinite funda-
mental group. It is an obvious consequence of Theorem 1.1 that the Ricci tensor of
these manifolds can not be perturbed by a Lie derivative term to be bounded away
from zero.

The proof of Theorem 1.1 is similar to the arguments of Fernández-López and
Garćıa-Rı́o [FG]. They show that if M satisfies (1.1) and ||X || is bounded then
the integral of the Ricci curvature along every geodesic is infinite. By the Ambrose
theorem [A] this implies that the manifold is compact. The main idea of this paper
is to replace the Ambrose theorem with an estimate of Hamilton [H] (See Lemma
2.2 below). This estimate allows us to obtain an upper bound on the distance
between two points that depends only on the value of ||X || at each point and an
upper bound on the Ricci curvature in a neighborhood of each point (Theorem 2.3).
Applying the upper bound to a point in the universal cover of M and its image
under a deck transformation yields Theorem 1.1.

2. Proof of Theorem 1.1

We make the following definition to aid the exposition.

Definition 2.1. For any point p ∈ M define

Hp = max {0, sup {Ricy(v, v) : y ∈ B(p, 1), ||v|| = 1}} .

We can now state the main lemma.

Lemma 2.2. Let (M, g) be a complete Riemannian manifold, let p, q ∈ M such
that r = d(p, q) > 1 and let γ be the minimal geodesic from p to q parametrized by
arclength, then

∫ r

0

Ric(γ′(s), γ′(s))ds ≤ 2(n − 1) + Hp + Hq.

Lemma 2.2 was used by Hamilton [H] to study the change in the distance
function on a Riemannian manifold evolving by Ricci flow and also appears in
Perelman ([P], Lemma 8.1). We include the proof for completeness.

Proof. By the second variation of arclength formula, for any piecewise smooth
function φ with φ(0) = φ(r) = 0,

(2.1) 0 ≤

∫ r

0

(
(n − 1)(φ′(s))2 − φ2(s)Ric(γ′(s), γ′(s))

)
ds.

Let φ be the function

φ(s) =





s 0 ≤ s ≤ 1
1 1 ≤ s ≤ r − 1
r − s r − 1 ≤ s ≤ r
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Then, since φ(s) = 1 and φ′(s) = 0 for 1 ≤ s ≤ r − 1, (2.1) becomes

0 ≤

∫ 1

0

(
(n − 1)(φ′(s))2

)
ds +

∫ r

r−1

(
(n − 1)(φ′(s))2

)
ds −

∫ 1

0

(
φ2(s)Ric(γ′, γ′)

)
ds

−

∫ r

r−1

(
φ2(s)Ric(γ′(s), γ′(s))

)
ds −

∫ r−1

1

Ric(γ′(s), γ′(s))ds.

Adding
∫ r

0
Ric(γ′(s), γ′(s))ds to both sides of the equation yields

∫ r

0

Ric(γ′(s), γ′(s))ds ≤

∫ 1

0

(
(n − 1)(φ′(s))2

)
ds +

∫ r

r−1

(
(n − 1)(φ′(s))2

)
ds

+

∫ 1

0

((
1 − φ2(s)

)
Ric(γ′(s), γ′(s))

)
ds(2.2)

+

∫ r

r−1

((
1 − φ2(s)

)
Ric(γ′(s), γ′(s))

)
ds.

We now work out the terms on the right hand side of equation (2.2). Since |φ′(s)| =
1 for 0 ≤ s ≤ 1 and r − 1 ≤ s ≤ r we have

(2.3)

∫ 1

0

(
(n − 1)(φ′(s))2

)
ds +

∫ r

r−1

(
(n − 1)(φ′(s))2

)
= 2(n − 1).

Moreover, 0 ≤ φ ≤ 1 and Ric(γ′(s), γ′(s)) ≤ Hp for 0 ≤ s ≤ 1, therefore

(2.4)

∫ 1

0

((
1 − φ2(s)

)
Ric(γ′(s), γ′(s))

)
ds. ≤ Hp.

Similarly, since Ric(γ′(s), γ′(s)) ≤ Hq for r − 1 ≤ s ≤ r,

(2.5)

∫ r

r−1

((
1 − φ2(s)

)
Ric(γ′(s), γ′(s))

)
ds. ≤ Hq.

Thus, combining (2.2), (2.3), (2.4), and (2.5) gives the lemma.
�

Using Lemma 2.2 and the arguments in [FG], we can now derive an upper
bound on the distance between two points that depends only on ||X || and H .

Theorem 2.3. If (M, g) is a complete manifold satisfying (1.1) then, for any
p, q ∈ M ,

(2.6) d(p, q) ≤ max

{
1,

1

λ

(
2(n − 1) + Hp + Hq + 2||Xp|| + 2||Xq||

)}
.

Proof. Assume that d(p, q) > 1 and let γ be the minimal geodesic from p to
q. Applying Lemma 2.2 we have

(2.7)

∫ r

0

Ric(γ′(s), γ′(s))ds ≤ 2(n − 1) + Hp + Hq.

On the other hand, by equation (1.1)
∫ r

0

Ric(γ′(s), γ′(s))ds ≥

∫ r

0

(λg(γ′(s), γ′(s)) − LXg(γ′(s), γ′(s))) ds

≥ λd(p, q) + 2gp(X, γ′(0)) − 2gq(X, γ′(r))

≥ λd(p, q) − 2||Xp|| − 2||Xq||.(2.8)



4 WILLIAM WYLIE

Where, in the last step, we have used

LXg (γ′(s), γ′(s)) = 2
d

ds
g(X, γ′(s)).

Combining (2.7) and (2.8) and solving for d(p, q) gives (2.6). �

Proof of Theorem 1.1. Let M̃ be the universal cover of M . M̃ satisfies
(1.1) for the pullback metric and pullback vector field, X̃. Fix p̃ in M̃ and let

h ∈ π1(M) identified as a deck transformation on M̃ . Note that B(p̃, 1) and

B(h(p̃), 1) are isometric, thus Hp = Hh(p). Also, ||X̃ep|| = ||X̃h(ep)|| so by applying
Theorem 2.3 to the points p̃ and h(p̃) we obtain

d(p̃, h(p̃)) ≤ max

{
1,

2

λ

(
n − 1 + Hp̃ + 2||X̃p̃||

)}
∀h ∈ π1(M).

Since the right hand side is independent of h, this proves the theorem.
�
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Helv. 78 (2003), no. 4, 865–883. MR MR2016700 (2004i:53044)

[N] A. Naber, Some geometry and analysis on Ricci solitons, arXiv:math.DG/0612532.
[P] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,

arXiv: math.DG/0211159.
[Q] Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser.

(2) 48 (1997), no. 190, 235–242. MR MR1458581 (98e:53058)

Department of Mathematics, University of California, Los Angeles, CA 90095

E-mail address: wylie@math.ucla.edu


	Complete Shrinking Ricci Solitons have Finite Fundamental Group
	Recommended Citation

	1. Introduction
	2. Proof of Theorem ??
	References

