
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

11-1991

A Reconstruction of Context-Dependent Document Processing In A Reconstruction of Context-Dependent Document Processing In

SGML SGML

Allen Brown Jr.

T. Wakayama

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Brown, Allen Jr.; Wakayama, T.; and Blair, Howard A., "A Reconstruction of Context-Dependent Document
Processing In SGML" (1991). Electrical Engineering and Computer Science - Technical Reports. 137.
https://surface.syr.edu/eecs_techreports/137

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/137?utm_source=surface.syr.edu%2Feecs_techreports%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-37

A Reconstruction of Context -Dependent
Document Processing in SGML

A. L. Brown, Jr., T. Wakayama, and H. Blair

November 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

A Reconstruction of Context-Dependent Document Processing

inSGML

Allen L. Brown, Jr., Toshiro Wakayama and Howard A. Blair

X~ro:z Corporation, W~bst~r Research Center, Webst~r, New York, U.S.A.

ABSTRACI': SGML achieves a certain degree of context-dependent document processing tluough
tllll"ib'*s and linking. These mechanisms 1118 deficient in several respects. To address these defi­
ciencies we propose augmenting SGML's LID and 1TTLIST constructs with two new mechanisms,
coordillllliora and (role-based) tllll"ibllliora. The latter can be used to specify the resllll of context­
dependent processing in a uniform fashion while considerably increasing SGML's expressive power.
We illustrate this enhanced power by sketching a specification of (the :result of) document layout that
can be encoded in SGML augmented with coordination and attribution.

1 Introduction
Our researeh enterprise is to develop a fully articulated foundation for document
representation. To that end we wish to understand the informal and intuitive models
of structured documents, and codify that understanding in a document description
language that can be interpreted by computers. Specifically, we seek a declarative,
constraint-based description language for structured documents that:

• has a precise formal semantics;

• separates the specifications of logical structure, form, and content;

• is fully expressive of the constructs typical of traditional (procedural) doc­
ument description languages that are mainly concerned with document pro­
cessing applications (e.g. interchange, layout, and recognition).

While the first objective above has not been a particular technical concern of
the designers of SGML, our formalism [BW91] could easily be used to give SGML
a formal semantics. 1be second objective is a central concern of the designers of
SGML as is evidenced by the following

... Generalized markup is based on two novel postulates:

a. Markup should describe a documents structure and other at­
tributes rather than specify processing to be peiformed on it, as
descriptive markup need be done only once and will suffice for all
future processing.

2 Brown, Wakayama and Blair

b. Mar/cup should be rigorous so that the techniques available for
processing rigorously-defined objects lilce programs and dma bases
can be used for processing documents as well.

C.F. Goldfarb [Gol90]

With respect to our last objective above, the designers of SGML would clearly
like such document processing descriptions to be possible, though they see such
descriptions to be outside the scope of (SGML) document specification. SGML,
as the designers themselves suggest [Gol90, §0.3 and §0.6], is in general insuf­
ficiently expressive to specify such processing. Indeed, the designers hint at a
"rule-based" language [Gol90, p. 100] using SGML syntax to that end.1 Our
task here is to develop an illustrative fragment of a document description language
incorporating rule-based constructs that will enable the rigorous and direct specifi­
cation of document processing in addition to specifying document structure. 2 This
language remains subject to a strictly enforced design principle: While the speci­
fication of the logical structure of a document can affect document processing, the
latter should not affect the former. For example, a journal article's logical structure
should independent of whether it is to be ultimately subjected to layout processing
in the ACM style or the IEEE style.

1be document representation that we favor has a number of components:

• Regular right-hand part grammars (RRHPGs) and parse trees: RRHPGs are
used to specify structural constraints. A DTD is a (concrete) version of such
a structural constraint specification (a source grammar) for a class of source
documents. We also use such constraints (in a result grammar) to specify
the structure of the result of a particular applicatioq (e.g. layout processing),
as well as the structural correspondences between constituents of the source
document and that result, e.g. a coordination between logical structure and
layout structure. Parse trees describe concrete instances of structures com­
patible with an associated constraining grammar. Thus an SGML document
instance is, in effect, a parse tree compatible with the grammar given by its
DTD. Other parse trees, compatible with other mentioned grammars, will be
created in the course of satisfying a result specification.

• Rule-based attribution and attributes: Attributes are associated with every
grammar (just as they are associated with DTDs). 1be specification of the

1The proposeddocumentstyle sernmtics and specification language [Adl91] is a related attempt
to associate document formatting semmtics with m SGML specified documenL

2 More prec:isely-and in acc:ord with our declarative inclinations-we declaratively lpe(:ify what
the nslllt of document processing is to be.

Reconstruction of SGML 3

values that those attributes may assume is given by definite clauses [Llo87,
SS86] (i.e. Pmlog-like facts and rules).

• Coordination and embedding: Coordination grammars constrain structural
correspondences between structural elements specified by source and result
grammars respectively. An embedding is an instance of such a correspon­
dence.

• Preference: 'Though the components mentioned above are sufficient to spec­
ify any computationally effective result, many such results are best specified
as optimizations according to particular preference criteria. While the lan­
guage of preference is beyond the scope of the present paper, this form
of specification is nonetheless central to our overall program of document
representation.

The remainder of the paper unfolds as follows: We first give a characterization of
(the results ot) context-dependent document processing in general and its particular
articulation within SGML. We then describe rule-based attribution and coordina­
tion in the context of abstract syntax, using layout as our illustrative document
processing application. Finally, we present our proposed embedding of attribution
and coordination in a concrete SGML syntax.

2 Context-Dependency in Document Processing
In this section, we discuss what context-dependency is in document processing and
why we need it. To this end, we first present document abstractions that underly
our document representation model, and underly others such as SGML and ODA.
We then show that the idea of context-dependent docummt processing is a natural
consequence of these abstractions, and that it is also a key idea in specifying such
processing. Finally, we show that the document representation model based on
these abstractions offers a framework in which various types of context-dependent
document processing can be classified.

2.1 A Document Representation Model

One of the most prominent properties of the electronic document is its amenability
to flexible processing of various kinds. For instance, it can be processed for
effective visual presentation (layout processing). It can be processed for answering
queries (query processing). It can be manipulated for extracting and re-organizing
a specific view of a document (view processing). In order to maximally exploit
the potential of electronic documents, modem document representation languages
suppon the following abstractions:

4 Brown, Wakayama and Blair

• the (processing) abstraction of a unifonn source representation of documents
which is free from any specific processing considerations. Hence a document
so represented can be used for a variety of processing applications. This
includes, for instance, a class of layout processing such as the ACM-style
processing and the IEEE-style processing.

• the (structure) abstraction of a common organization of documents so that
processing can be specified for a class of documents, not just for an individual
document instance.

The processing abstraction as described above immediately implies that:

• the processing specification is external to the source document, and hence it
must have its own representation;

• if the source document and its processing have different representations, there
must be a way of associating the two when the processing of a document is
demanded.

The structure abstraction, on the other hand, insists that there be a way of
specifying such associations for a class of documents via their common structure,
not just for individual document instances. Note that in this model, a document is
not an instance of"tagged" content (e.g., a document with marlrup tags inserted),
but it comes with an abstracted, external structure (e.g., a structurally organized set
ofmarlruptags) which has itsownfonnal realization(e.g., document type definition
in SGML). Thus, document processing can now be specified with respect to such
an externally defined fonnal structure. Most document representation languages,
including SGML, fail to take full advantage of their structure abstractions.

In our fonnal model of documents, the external structure common to a class
of documents is specified by an attribute grammar (see section 4) A document
instance of this class is a parse tree derived by the grammar. As to the language for
specifying processing, we use the same fonnal system based on attribute grammar.
As we commented earlier, our specification of document processing is declarative,
i.e., we only specify the desired outcome of processing, which can be viewed as yet
another document. This unifonnity in fonnal notation for representing documents
and (declaratively) their processing gives a closure property to our fonnal system
of document processing: i.e., a document after a processing is another document,
which in tum can receive another processing, and so on.

Thus, in our model of document representation (see figure 1), a source document
consists of a source grammar and a source documenl instance. When processing is
applied to a source document instance, we get a result documenJ instance, whose

Reconstruction of SGML

source grammar

!

source document instance
(source tree)

coordination -
embedding

--+

Figure 1: Document representation model.

result grammar

!

result document instance
(result tree)

5

structural properties are given by a result grammtJT. Note that the document
processing captured in a result grammar is generic, parameterized processing in
the sense that it can take any source instance of the corresponding source grammar.
Note also that this generality of processing specification is a natural consequence
of the two abstractions discussed above: the processing abstraction demands that
there be a separate description of processing, and the structure abstraction insists
that this description be general enough to accommodate a class of source document
instances. However, a naive adherence to these abstractions might easily result
in a document processing system which is blindly insensitive to peculiarities of
individual source instances. Our notion of context-dependent document processing
makes generic document processing maximally sensitive to individual differences
of source instances. Coordination and (rule-based) attribution are the two main
mechanisms to implement such processing: coordination offers a way of referring
to nodes of the source tree, and attribution expresses attribute dependency among
nearby nodes where the nearness metric is relative to paths in source, result and
coordination trees.

2.2 A Characterization of Context-Dependent Document Processing
The model of document representation introduced above views document process­
ing of a specific source instance3 as the generation of result trees from the source
instance, the pair of source and result grammars, and the coordination defined for
the pair. Note that document processing is, therefore, a generalization of parsing.
The usual parsing in single-grammar settings is document processing where,

• the result grammar is sufficiently trivial that source trees are simply unstruc­
tured strings;

• the coordination is empty.
3Unless otherwise noted. the tenn doc~~~~t~tlll processing refers to the processing of a specific

source instance, not the generic processing specified in the result grammar.

6 Brown, Wakayama and Blair

In this case, if the result grammar is context-free, the expansion of a nonterminal
node in each step of parsing is determined by the implicit linear order of the input
string and does not depend on any of its nearby nodes. The general setting of
parsing in document processing, on the other hand, is strongly context-dependent4

(although in a well-controlled way) in the following sense:

• the input to document processing is not simply a string but is an attributed
parse tree, where each step of parsing in general depends on both the subtree
structure, designated by the coordination, of this source tree, and on the
portion of the input string spanned by the subtree;

• each step of parsing must compute the attributes of the node to be expanded,
but these attributes may depend on attributes of the nearby nodes.

We will refer to a collection of nodes, either from the source tree or from the result
tree, on which each step of parsing depends as a scope of context-dependency.
Figure 2 (the first column) classifies various scopes of context-dependency. Since
these scopes have natural manifestations at a more abstract level as grammar ob­
jects, such as nonterminals and productions, we have included this correspondence
in the figure (the second column).

The first three rows are the cases where scopes are within a result tree. In
SGML, this type of context-dependency is called processing state dependency.5

In this class, the smallest scope is a single nonterminal (e.g., {word-block)). In
this case, its various attribute values (e.g., font attribute values such as italic) must
be directly provided, and can not be sensitive to attribute values of its nearby
nonterminals. However, {word-block) instances in a paragraph of the main body
({para-block)) may have attribute values different frol\1 those of (word-block)
instances in a figure caption ({caption-block)). If the result grammar has a
production of the form,

{caption-block) -- ···(word-block)+···

attribute values of {word-block} can be specified relative to this production.
Moreover, they can be computed by using attribute values of {caption-block)
(the second row of figure 2). This mechanism is absent in SGML, despite the fact
that SGML has a fonnal, external representation of a common structure of a class
of documents as a DTD. SGML fails to take advantage of structural relationships

4The term conJDa-seMiliw hu a specific technical meaning in fonnal language theory. Hence
we have chosen to use the term 'context-dependent' in the instances where the SGML community
would use 'context-sensitive'.

6Consistent with the notation detailed in section 4, we indicate nonterminal symbols of a grammar
by descriptive terms embraced by ().

Reconstruction of SGML 7

a source tree (T.ource) and a source grammar (Y,ource)

a result tree (Truuta) a result grammar (Yruuta)

a node of Truult a nontenninal of Yruuu

a height-one subtree of Treault a production of Yreauta

a height-n subtree of Truula a chain of productions of Yruula

+ a node of T.ource +a nontenninal of g,ource

+ a height-one subtree of T.ource +a production of g,ource

+ a height-n subtree of T.ource + a chain of productions of {i,ource

I
Figure 2: A classification of scopes of context-dependency in document processing.

of nontenninals (e.g., how (vord-block) is related to (caption-block)) in
specifying their attribute values. The third row of figure 2 shows a natural extension
of this idea, i.e., the scope of context-dependency may be a chain of productions
as opposed to a single production. For instance, (vord-block) may not be related
to (para-block) in a single production but through a chain of productions.

A scope in figure 2 preceded by '+' (the last three rows) is a scope in the
source tree which augments a scope in the result tree. A combination of a pair,
one from the first three rows and the other from the last three rows, defines a
scope of context-dependency extended by the coordination. We will see two
examples of such coordination in later sections: syntactic coordination (section
S) and semantic coordination (section 6). Syntactic coordination specifies scopes
of context-dependency in the source tree, but no attribute values pass from the
source scopes to the result tree. However, the identification of a source scope
itself may require examination of the attributes within the source scope. When
attribute dependency extends from the result tree to the source tree, we have the
case of source attribute dependency, which can be accommodated by semantic
coordination.

Implicit in the above characterization of context-dependency is another di­
mension of characterization, i.e., the complexity of attribute computation. In the
simplest case, an attribute of a nontenninal can be specified directly (e.g., the font
of (vord-box) is italic). 1be specification can also be rule-based (e.g., the font of
a (vord-box) instance is italic if the font of the preceding (vord-box) instance is
Roman). A rule-based specification can also be parametrized (e.g., the font of a
(vord-box) instance is twice that of the preceding (vord-box) instance.

8 Brown, Wakayama and Blair

3 Context-dependent Document Processing in SGML
In this section, we assume that the reader is familiar with elementary SGML
constructs such as element declarations and attribute declarations. Suppose we
have the following element declaration,

<!ELEMENT book-- (font?,body,rear?) +(quote)>

and that we want to specify the font of quote elements context-dependently, i.e.,
italic when they appear in the front part of the book while bold italic when they
appear in the body part. In SGML, this may be accomplished as in figure 3.
Note that the font attribute of the quote element is directly specified, there is no

(!LINK #INITIAL
front # USELINK q-style 1
body #USELINK q-style2 }

(! LINK q-stylel
quote [font=italic])

(! LINK q-style2
quote [font=bold-italic])

Figure 3: Syntactic context-dependency.

rule-based dependency expressed.
Now suppose that we want to detennine the font of quote elements according

to the values (direct or indirect) of their source attribute q-style. Figure 4
illustrates how this may be acconnplished. Note that those phrases in double quotes

(! LINK q-style2
quote [usage= "q-type EQ direct"

font=boldital]
quote [usage= "q-type EQ indirect"

font=italic])

Figure4: Semantic dependency (source attribute dependency).

Reconstruction of SGML 9

are outside the DTD language of SGML, and must be interpreted by the processing
application. Hence, the semantics of this ! LINK declaration's assignment of values
to attributes becomes application-dependent.

1be example of figure 5 shows that layout processing of an element depends on
layout processing of some other elements. This last example leaves the details of
associating values with attributes to an unspecified (to SGML parsing) application.
1be main message to be gleaned from the examples of this section is that document
processing context-dependencies of extended scope or complexity are specified
externally (to SGML). We aim to internalize such specifications.

{! LINK q-stylel
quote [usage= "curfont EQ italic"

font=boldital]
quote [usage= "curfont NE italic"

font=italic] }

Figure 5: Semantic dependency (processing state dependency).

4 Context-Dependency via Attribute Grammars
An attribute grammar scheme (AGS) provides a computational mechanism for
specifying families of ordered, finite, labelled trees, and thereby characterizes
a class of hierarchically structured documents. An AGS consists principally of a
finite set (a grammar) of regular right-hand part (RRHP) productions [Ota87] over
a finite vocabulary of tenninal and nontenninal symbols, and (for each production)
an associated set of definite clause schemes presented in Prolog-like syntax. 1be
clauses serve to define attributes6 associated with the nontenninal symbols of the
grammar. We introduce AGS's by way of the example in figure 6 which consists
of productions describing a document in tenns of pages, pages in tenns of lines,
lines in terms of words, and words in tenns of individual vocabulary items. Thus,
we arc specifying context-dependent document processing in the single grammar
sens of section 2.2. The notation of the figure indicates nontenninal and tenninal
symbols in productions by embracing them in (respectively) {) and 0. As usual
[Har78], the left-hand side of a production is a nonterminal symbol, and, in the case

8In conllast to clusicalaaribute grammm (AG's) [DJL88], AGS's define aaributes in arelalioNII
rather than ajilllctioNil fuhion. That is, aaribates 11n1 relalionl between items (nodes of pme ll'eeS

in our fonnalism) and values rather than functions from such nodes to values.

10 Brown, Wakayama and Blair

of the grammar of the figure, the stan symbol is (doc). 7 The right-hand sides of
the productions are regular expressions over (teiminal and nonteiminal) symbols.
Thus a (doc) may expand to a finite, non-empty sequence of (page)s; a (page)
may expand to a finite, non-empty sequence of (line)s; a (line) may expand to a
finite non-empty sequence of (vord)s; and a (word) may expand to one of [the],
[quick], etc. Symbols of the grammar are superscripted with scheme variables (in
parentheses). These variables will play a role in the definitions of attributes.

The clause schemes associated with the productions of an AGS mention two

kinds of predicate symbols, attributes and free predicates. The two types are
distinguished by the fact that the first teiDl of an attribute predicate in a clause
scheme is always written in an italic font, e.g. lmt(y) in pguard. Attributes
are defined by the collections of clause schemes associated with the productions
of an AGS, while free predicates (like plus in the figure) are defined by an
interpreter associated with the document processing system making use of the
AGS. The italicized teiDls in the attributes are schematic position expressions, that
is, expressions over position variables. These will be replaced by the nodes of
a parse tree according to a discipline that we will describe below. Each parse
tree of the (doc) grammar will induce a logic program as a consequence of that
replacement process.

In figure 7 we present a parse tree of the (doc) grammar for the string of
symbols [the] [quick] [brown] [fox] [jumps) (over] [the] [lazy] [dog]. We have
labelled each node of the tree both with its associated grammar symbol and a unique
position atom (do, d11 etc). Each node of the parse tree corresponds to a symbol in
the head of some production of the grammar. Thus the node will be identified with
the position variable associated with that production's head symbol. Each node of
the grammar that is an immediate child of some other noae will also correspond to

an instance of a symbol in the body of the production of the grammar in which the
parent node figures as the head. Thus the child node will also be identified with the
position variable of the corresponding body symbol. For the parse tree at hand, do
corresponds to the head symbol of the (doc) production and is thus identified with
the position variable, z, that superscripts (doc). The nodes d1 and d2 correspond to

(distinct) instances of the symbol (page) and are thus identified (each in tum) with
the variable y. Thus from the first production of the grammar we get the clause
substitution instances enumerated in figure 8. This set of clauses is still not fully
instantiated as we find therein position expressions like lmt(dt) and lt(d2), the
first denoting the leftmost sibling of d1 and the second denoting the left sibling of
d2 (both with respect to their parent, do); similarly, rt and rmt respectively denote

7We will typically associate a grammar (AGS) with its stan symbol. Thus we speak of the (doc}
grammar (AGS).

Reconstruction of SGML 11

right and rightmost siblings. Since the leftmost sibling of d1 is d 1 and the left
sibling of d2 is also d1, we replace the position expressions by the nodes denoted
and get the set of clauses of figure 9. Notice that there is no clause derived from
the clause that contained the position expression It(d1) since there is no node left
of d1• If we carry out the instantiation process for the node d1 of the parse tree with
respect to the clause schemes attached to the (page) production for which those
nodes correspond to head symbols, we obtain the clause instances of figure 10. We
continue in this vein to generate a complete set of clause instances corresponding
to the parse tree of figure 7. The resulting set not only fails to instantiate clause
schemes referring to nonexistent parse tree nodes (like It(d1), but also suppresses
duplicate instances of clauses.

An instance, then, of the class of documents defined by an AGS is a parse tree
according to that AGS together with the logic program induced by that tree. H t is
a parse tree, we denote the generated (according to some particular AGS that will
be clear from context) logic program as 1r't. We will say that a parse t, having root
node i, is admissible if guard(i) is a logical consequence of the program 1r t• that
is, if a Prolog interpreter would respond "yes" to the query ? - guard(i). Since the
grammar of figure 6 is highly ambiguous, there are many possible parse trees of the
string [the] ... [dog]. However, there is precisely one parse tree that is admissible
for fixed values of the constants maxct (the maximum number of (line)s on a
(page)) and maxln (the maximum number of characters on a {line)), taken to
have respective values of 2 and 15. Moreover, for the single admissible parse tree
corresponding to a particular content string, each (page) node of the parse tree
will have a lnct attribute whose value will be maxct unless the {page) node in
question is the last (page) of the (doc)ument, in which case the value will be
nonnegative and at most maxct. Similarly, each (line) node of the parse tree
will have a lnln attribute whose value will be maxln unless the (line) node in
question is the last (line) node descendant of its parent (page). In the latter case
the value will be nonnegative and at most maxln. Thus, the admissibility of a parse
tree hinges not only on its syntactic structure but also on the context established
by the values assumed by the attributes of the nodes of that tree. The attributes
have been constrained in such a way as to compute the first-fit line breaking of
the content string in the case of the unique admissible parse tree. To see how this
comes to pass we need to examine the clause schemes of figure 6 more closely.

1be parse tree rooted at the node do is admissible just in case guard(do) is true,
or just in case the pguard attribute of d1 is t where d1 is the leftmost (page) child
of d0• A necessary condition for the pguard attribute of a (page) node's being t
is that the guard of that node be true and that the pguard attribute of each of its
right sibling {page) nodes bet. Another necessary condition is that the {page)

12 Brown, Wakayama and Blair

node's lnct attribute be the maximum line count (muct) and that the value of
the vd1ln attribute of that node-the length of its leftmost {vord) child-be less
than the value of the {page) node's vdrem attribute. Now for guard to be true
of a {page) node it is necessary for the values of the pguard attribute of each of
the node's {word) children to have the value t. Moreover, the value of the vdrem
attribute (the number of characters remaining on the last line) of such a child node
must have a value numerically less than the value of the vd1ln attribute of the first
{line) child of that {page) node. These conditions are the essentials of a set of
first-fit constraints.

5 Context-Dependency via Syntactic Coordination
As discussed in section 2, syntactic coordination is a way of specifying source
scopes. In this section, we will illustrate this simpler form of coordination through
an example (figure 11). Since there is no transfer of attribute values from the
source tree to the result tree, we have chosen an example involving no attributes,
and hence our notations in the example are accordingly simplified (e.g., no position
variables are shown).

In this example (see 11), the source document is a bilingual manual ({man))
consisting of the English part ({esec)) and the Japanese part ((jsec)). Each part
has the usual paragraph structure. The finer structure below paragraph is not a
concern for this example, so we elide iL 1be result document ({man-lay)) is a
sequence of pages ({pg)), and each page has the left column ({lc)) and the right
column ({rc)). Again, we are not concerned with internal column structures. 1be
coordination, i.e., the { esec)-coordination grammar and the {j sec)-coordination
grammar, enforces that the English part (the Japanese part) of the manual be
displayed in left (right) columns.

Figure 12 shows a pair of source and result (partial) trees. A part of the
embedding of the source tree in the result tree is also shown. This node-to-node
correspondence of the embedding is induced by the coordination together with the
essential properties of the notion of embedding (e.g., maximal preservation of the
left-to-right order of the source tree, and preservation of the ancestral relation of
the source tree). [Toshiro: need to indicate how word order might have shifted
content in {aan-lay) relative to {man).] Thus, for instance, the scope of context­
dependency for the node e4 is the subtree rooted at the node d1, whereas that of the
node e5 is the subtree rooted at d2• The scope of e6, on the other hand, is that part
of the subtree rooted at d1 which is left unconsumed by the node e4 , and so on.

Reconstruction of SGML 13

6 Context-Dependency via Semantic Coordination
The type of context-dependency we will discuss in this section is known as source
attribute dependency in SGML. For instance, the font attribute (a result attribute) of
some words might depend on some source attributes of those words, and might not
be completely determined by result attribute values of neamy nodes. 'The example
in figure 13 illustrates this point.

'The source grammar in this example simply describes a sentence structure
with quotation. The quotation (qt} has a quotation-type attribute q -type, whose
value is to be specified by the user (the attribution clause associated with the first
production). The quotation (qt} is in tum a sequence of (word} 's, each of which
inherits the q -type attribute from (qt). 'The result grammar specifies that a {line}
is a sequence of {box) 's, and that the font attribute of {box} depends on another
attribute q-type of {box). The coordination states that a {box} is a container
of (word), and that each (box) object inherits its q-typa attribute value from its
corresponding (word} object.

Figure 14 shows a pair of source and result trees, together with the node-to­
node correspondence. It also shows the logic programs induced by those trees and
by the (word}-coordination tree.

7 Introducing Attribution and Coordination into SGML
Until this point our exploration of facilities to support context-dependent docu­
ment processing has been couched in terms of abstract syntaCtic descriptions of
documents. In this section we shall suggest a particular way of incorporating the
facilities of coordination and rule-based attribution into a concrete SGML syntax.
Our aim here is not to precisely specify an extension t9 SGML's formal syntax,
but rather to give examples of the new facilities in a form compatible with cur­
rent SGML syntax. Nonetheless, we believe it entirely straightforward to specify
formally such an extension and are proceeding to do so to support the archival doc­
ument representation needs of various research projects we have under way. We
shall use the "direct quote" example of section 6 as the subject matter to illustrate
concrete instances of the suggested extensions.

From the perspective of context-dependent document processing an SGML
document has three essential components: the document type definition (DTD),
the link process definition (LPD) and the document instance (DI). These items
typically appear in an SGML document in the order given. It also happens that
the DTD and DI are the only required components of an SGML document. We
introduce three new optional components: the result type definition (RI'D), the
coordination definition (CD), and the result instance (RI). Mixing SGML and ODA

14 Brown, Wakayama and Blair

[WCGH+86] tenninology we think of a source document consisting of a DTD,
01, RI'D, and CD as an editable, processable source document, and the product
resulting from processing processing an editable, processable result document
sequence. 8 Schematically document processing may then be represented as

•
<!DOCTYPE doc ... >

<!DOCTYPE doc ... >

(<doc> ... <I doc>)p~ss (
<doc> ... <I doc>

) <!RESTYPE format ... >
<!RESTYPE format ... >

<!COORD ... >
<!COORD ... >

<format> ... </format>

In figure 15 we present in concrete "extended" SGML syntax the specification
given abstractly in figures 13 and 14. The figure represents an editable, processable
result document. It is partitioned into segments bounded by SGML comments of
the fonn <! -- beginning . . . -->and<!-- end . . . -->.The document
exclusive of the RI portion constitutes an editable, processable source document.
The DTD, RI'D and CD portions of the document correspond to the abstract source
AGS O(sen)• result AGS O(line) and coordination {O(word)} of figure 13. The
01 and RI portions are, in effect, linear encodings of abstract (sen) and (line)
parse trees. The ! DOCTYPE component presented is an extension of the standard
SGML declaration of that sort. Each of the components ! DOCTYPE, ! RESTYPE
and ! CTYPE can be thought of as the same type of declaration applied to different
descriptive purposes, namely source, result and coordination specifications. As
their functional roles should already be clear from the descriptions of their abstract
equivalents in section 6, we will tum immediately to explaining the nature of their
descriptive augmentation with respect to ordinary SGML DID's.

The first thing to notice is that an ! A TTLIST component admits a new kind
of value field, ATOM, and a new kind of default field, IRULED. The fonner says
that the value of the attribute being defined is to be a Prolog atom, and the value
(by default) is actually to be computed by a Prolog rule. Now observe that
! ELEMENT declarations rather than merely mentioning other ! ELEMENT identifiers
in their content models pair such identifiers with Prolog (position) variables. These
variables will be instantiated in the course of parsing (be it a 01 according to a
DTD or an RI according to an RI'D) in exactly the way described in section 4.
The ! ELEMENT definition may also contain a sequence of Prolog rules, introduced
by ! RULES. These will actually specify values for attributes associated with the
declared ! ELEMENT by the mentioning ! A TTLIST when those attribute values have
the IRULED default As in the abstract presentation, we have guard attributes that

1LPD's may also occur in the source document and result document sequence. Slrictly speaking,
LPD's are functionally redundant with respect to the new facilities being proposed.

Reconstruction of SGML 15

detennine the admissibility of parse (sub)trees (or alternatively admissibility of
substructures of ofDI and RI structures). By default every ! ELEMERT has a guard
defining rule even if not explicitly mentioned (as it is in the case of that for the
word ! ELEMERT declaration). When not explicitly mentioned, as in the case of the
sen !ELEMERT declaration, it is presumed to be the fact guard(XO). where the
variable mentioned is always the position variable associated with the ! ELEMERT
being declared.

The DI (<sen> ... </sen>) and RI (<line> ... </line>) are simply linear
encodings of the abstract parse trees decorated with attribute value pairs. Attributes
are mentioned in DI's and RI's either because they are explicitly given or because
they are implicitly established via mentioned defaults. Thus the qt tag has an
attribute value because a default of (direct) was indicated. The box tags having
defaults acquire them via rules contained in the RTD and CD.

8 Conclusions
Our infonnal and intuitive model of structured documents is based on the pro­
cessing and structure abstractions. The processing abstraction demands separate
representations for source documents and their processing. The structure abstrac­
tion insists that these representations encompass a class of documents via their
common structure. The fonnal encoding of these observations results in a model
of document representation consisting of a pair of source and result grammars, a
pair of source and result trees, and the coordination defined for the pair of gram­
mars. The document processing in this model is then the generation of result trees

given the rest. The idea of context-dependent document processing is to make
the generic processing captured (declaratively) in the result grammar maximally
sensitive to individual differences of source instances. The main mechanisms to
implement such context-dependency are (rule-based) attribution and coordination.

SGML clearly supports the two abstractions, at least conceptually. But its
fonnal encoding of these abstractions is regrettably weak, owing to its particularly
rudimentary mechanisms that correspond to coordination (linking) and attribution
(direct specification of attribute values). We have shown how these SGML con­
structs fall short of realizing context-dependent processing, and how coordination
and full attribution extend their corresponding SGML constructs. Finally, we have
shown that our coordination and attribution can be straightforwardly incorporated
into the SGML-like syntax.

16 Brown, Wakayama and Blair

References

[Adl91] Sharon Adler. ISO/iec cd 10179, information technology- text and office systems
document style semantics and specification language (DSSL). Technical Report DIS

10179, International Standards Organization (ISO), Geneva, 1991.

[BW91] Allen L. Brown, Jr. and Toshiro Wakayama. Assigning meaning to markup:
A study of the logical foundations of document representation. Manuscript to be
submitted for publication, 1991.

[Cba87] Nigel P. Chapman. LR Parsing: Theory and Practice. Cambridge University
Press, Cambridge, 1987.

(DJLII] Pierre Deransart, Martin Jourdan, and Bernard Lorho. Attribute Grammars:
DefWtions, Systems and Bibliography, volume 323 of Lectun Notes in Computer
Science. Springer-Verlag, New York, 1988.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Oxford University Press, Oxford,
1990.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison­
Wesley, Reading, Massachusetts, 1978.

[Lio87] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
second edition, 1987.

[SS86] Leon Sterling and Ehud Shapiro. The A.rt of Prolog. MIT Press, Cambridge,
Massachusetts, 1986.

[WCGH+86] Henri C. Weisz, Ian R. Campbell-Grant, Roy Hunter, Roy Pierce, LJ.
Zeckendorf, and Barry J. Woods. Information processing, text and office systems,
office document architecture (ODA) and interchange format. Technical Report DIS
8613, International Standards Organization (ISO), Geneva, 1986.

Reconstruction of SGML

{doc)(z) - ((page)<'>)+
guard(x):- pguard(lmt(y), t).
pgct(lmt(y), 1).
pgct(y,N):- pgct(lt(y),M),plus(M, 1,N).
pguard(rmt(y), t):- guard(rmt(y)).
pguard(y, t) : - pguard(rt(y), t), guard(y),

lnct(y,maxct), wdrem(y, R),
wd1ln(rt(y),L),R < L.

{page)(z) - ({line)<'>)+
guard(x):- pguard(lmt(y), t).
lnct(lmt(y), 1).
lnct(y,N):- lnct(lt(y),M),plus(M, 1,1).
pguard(rmt(y), t):- guard(rmt(y)).
pguard(y, t):- pguard(rt(y), t), guard(y),

wdrem(y, U), wd1ln(rt(y), V),
u < v.

wd1ln(x,L):- wd1ln(lmt(y),L).
wdrem(x,R):- wdr•(rmt(y),R).

{line)<•> - ((word)('))+
guard(x).
wdrem(x,M):- lnln(x,L),minus(maxln,L,M).
lnln(x, L):- lnln(rmt(y), L).
lnln(Imt(y),L):- ln(Imt(y),L).
lnln(y,L):- lnln(lt(y),M),ln(y,N),plus(M,I,L).
wd1ln(x, U):- ln(Imt(y), U).

(word)(z) - [the)
ln(x, 3).
guard(x).

{word}(z) - [quick)
ln(x, 5).
guard(x).

(word)<•> - [dog]
ln(x,5).
guard(x).

Figure 6: FtrSt-fit documentlayouL

-lz

17

18

Figure 7: First-fit parse tree.

guard(do):- pguard(Zmt(dt), t).
guard(do) : - pguard(lmt(d2), t).
pgct(lmt(d1), 1).
pgct(lmt(d2), 1).

Brown, Wakayama and Blair

pgct(d1, N) : - pgct(lt(dt), M), plus(M, 1, N).
pgct(d2 , N) : - pgct(It(d2), M), plus(M, 1, N).
pguard(rmt(dt}, t) : - guard(rmt(dt)).
pguard(rmt(d2), t):- guard(rmt(d2)).

pguard{d11 t):- pguard(rt(d1), t),guard(dt),
lnct(d1, maxct), wdrem(d1 , R),
wd11n(rt(dt),L),R < L.

pguard(d2 , t) : - pguard(rt(d2), t), guard(d2),

lnct(d2 ,maxct), wdrem(d2 , R),
wd1ln(rt(d2),L),R < L.

Figure 8: Partially instantiared clauses of the doc production.

guard(do) : - pguard(d11 t).
pgct(d11 1).
pgct(d2, 1) : - pgct(d11 M), plus(M, 1, 1).
pguard(d2 , t):- guard(d2).

pguard(d., t):- pguard(d2 , t),guard(d1),

lnct(d17 maxct), wdrem(d17 R),
wd1ln(d2,L),R< L.

Figure 9: Fully instantiated clauses of the doc production.

Reconstruction of SGML

guard(dt):- pguard(da, t).
lnct(d3 , 1).
lnct(c:lt, I) : - lnct(d3 , M), plus(M, 1, 1).
pguard(c:lt, t) : - guard(c:lt).
pguard(d3 , t) : - pguard(c:lt, t), guard(da),

vdrem(d3 , U), vd1ln(c:lt, V),
U < V.

vd1ln(d11 L) : - wd1ln(d3 , L).
vdrem(d1 , R) : - vdrem(cit, R).

Figure 10: The clauses induced by the lefunost (page) node.

G1: Source AGS
{man) - {esec){jsec}
{esec)- {epara}+

{j sec) - {jpara) +

G(esec): {esec)-coordination
{esec)- (lc]+

G2: Result AGS
{man-lay}- {pg)+
{pg} - {lc}{rc)

G(jsec): (jsec)-coordination
{j sec) - (rc]+

Figure 11: Syntactic coordination.

FIGURE HERE
Figure 12: (aan} result tree coordinated with (aan-lay) source tree.

19

20

gt: Source AGS

(sen)(zo) --+ ((word)(z1))+(qt)(z:r)((vord)(z1))+

q -type(x2, Y):-user-q -type(x 2, Y)
(qt}(zo) --+ ((word}(zl))+

q-type(xl! Y):- q-type(x0 , Y)

(i2 : Result AGS

(line)(zo) --+ ([box]<z1))+

font(xhboldital):- q-type(x1,direct)
font(x 1, ital):- q-type(x1 , indirect)

g(word): (word)-Coordination AGS

(word)(zo) --+ [box]<zl)

q-type(x 1, Y) : - q-type(xo, Y)

Figure 13: Semantic coordination.

FIGURE HERE

Brown, Wakayama and Blair

Figure 14: {line} result tree coordinated with (sen} source tree.

Reconstruction of SGML

<!-- beginning of DTD -->
<!DOCTYPE sen

[<!ELEMENT (sen:XO) -- ((word:~1)+,(qt:X2),(word:X3)+)>

<!ELEMENT (qt:XO) -- (word:X1)+
<!RULES [q-type(Xl,Y) :- q-type(XO,Y).]>>

<!ELEMENT (word:XO) -- IPCDATA)
<!RULES [guard(XO) :- q-type(XO,Y).]>>

<!ATTLIST qt q-type (directlindirect) direct>
<!ATTLIST word q-type ATOM tRULED>]>

<!-- end of DTD -->

21

<!-- beginning of DI -->
<sen><word>the</word><word>quick</word><word>brown</word><word>fox</word>

<qt q-type = direct><word>jumps</word><word>over</word></qt>
<word>the</word><vord>lazy</word><vord>dog</word></sen>

<!-- end of DI -->
<!-- beginning of RTD -->
<!RESTYPE line

[<!ELEMENT (line:XO) -- (box:X1)+
<!RULES

[font(Xl,boldital) :- q-type(Xl,direct).
font(Xl,ital) :- q-type(Xl,indirect).]>

<!ELEMENT (box:XO) -- IPCDATA>
<!ATTLIST box font ATOM tRULED

q-type ATOM IRULED>]>
<!-- end of RTD -->
<!-- beginning of CD -->
<!COORD

[<!CTYPE word
[<!ELEMENT (word:XO) -- (box:Xl)

<!RULES
[q-type(Xl,Y) :- q-type(XO,y).]>

<!-- end of CD -->
<!-- beginning of RI -->
<line><box>the</box><box>quick</box><box>brown</box><box>fox</box>

<box font • boldital>jumps</box><box font • boldital>over</box>
<box>the</box><box>lazy</box><box>dog</box>

<!-- end of RI -->

Figure IS: The .. XSGML" specification of quotations and their presentation.

< ~c,c)

//clo~
<pQ~O / ----- ~--- < Y"~Q.)

/"·~ ~\'
~~<..\lne) ~ <J;,,Q; ~t; z\~~,Q')

/\'\ /\~ I\
de, ~\() ~\1 d\1. ~l"t; d\1\-

<:wol\\) <:wc~'l <-1.00f'i> <..I.Qu~) Z\Nil~'> £.wor-d>

\ \ \ \ \ \
~ \~ d \" ~1. 0 ~~. \ ~l1. ~1..,

lio'1..1 l\~'~'~'~~) (c,~Jl<r) l ~e) D~\") L d11~ l
diC.. <i\<'\

(\\.l.'~1 lb~~thJ

.(Sen)

do

~.~(~d,
"'"''"' <~o«h I\ <WO<O> <~o'")

d" ~\
< wo'l'h <. w ti i'cb

llt:,

\ '\,- "'f~el.\~, '<) :- lAY r- '\,-"'f jH <h, '< l

\ \-~yye (d~:>, "() :- \-""y~el~~J\)
I

\ '-~~e_L~, ~)_:-_ \-~yj• L03,'f)

LAH)'f' ~ \ V\,~ ""\ ''\) Vl.t \) \S

\-~1~(1_ \ e.31 "< J \- \-~re ld111, "<)

\--'c)'fe Lt4:,'i) :- \--tyye L~~_.. 1')

\A.~er- \) B ~ ~~ 9'h\v\~)

[u_~r- \-•y~ L_ ~,~ ~;rea;) ·1

tl.

r io'(\t (~\) bQ\~~"'"O..') ~- ~-~e._e\, <_~~ct_) ____ _
\ i. .. t Le., \'\~\) ,_ 'l,-')'pe Le•, lnfiir&ct J
\

' l-orit \._~1. 1 vo\di"t .. \) ·.- \;--~)'f~ \._ ~'l_.. c\i~ci)
itJnt _e.._,\--\-~\) ~- \-~yelE:J.;\'1\~\~)

~nt l~, \Jo\t\itt-\) -.- \-"'tv~ le", ~~~ct)
-to~t _e.~, '-t~\) .____ \-tne _-eb; i'l\t\;~ct:)

	A Reconstruction of Context-Dependent Document Processing In SGML
	Recommended Citation

	SU-CIS-91-37_001c
	SU-CIS-91-37_002c
	SU-CIS-91-37_003c
	SU-CIS-91-37_004c
	SU-CIS-91-37_005c
	SU-CIS-91-37_006c
	SU-CIS-91-37_007c
	SU-CIS-91-37_008c
	SU-CIS-91-37_009c
	SU-CIS-91-37_010c
	SU-CIS-91-37_011c
	SU-CIS-91-37_012c
	SU-CIS-91-37_013c
	SU-CIS-91-37_014c
	SU-CIS-91-37_015c
	SU-CIS-91-37_016c
	SU-CIS-91-37_017c
	SU-CIS-91-37_018c
	SU-CIS-91-37_019c
	SU-CIS-91-37_020c
	SU-CIS-91-37_021c
	SU-CIS-91-37_022c
	SU-CIS-91-37_023c
	SU-CIS-91-37_024c

