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ON THE CLASSIFICATION OF GRADIENT RICCI SOLITONS

PETER PETERSEN AND WILLIAM WYLIE

Abstract. We show that the only shrinking gradient solitons with vanish-
ing Weyl tensor are quotients of the standard ones Sn, Sn−1

× R, and R
n.

This gives a new proof of the Hamilton-Ivey-Perel’man classification of 3-
dimensional shrinking gradient solitons. We also show that gradient solitons
with constant scalar curvature and suitably decaying Weyl tensor when non-
compact are quotients of H

n, H
n−1

× R, R
n, Sn−1

× R, or Sn.

1. Introduction

A Ricci soliton is a Riemannian metric together with a vector field (M, g, X)
that satisfies

Ric +
1

2
LXg = λg.

It is called shrinking when λ > 0, steady when λ = 0, and expanding when λ < 0.
In case X = ∇f the equation can also be written as

Ric + Hessf = λg

and the metric is called a gradient Ricci soliton.
In dimension 2 Hamilton proved that the shrinking gradient Ricci solitons with

bounded curvature are S2, RP 2, and R
2 with constant curvature [16]. Ivey proved

the first classification result in dimension 3 showing that compact shrinking gradi-
ent solitons have constant positive curvature [18]. In the noncompact case Perelman
has shown that the 3-dimensional shrinking gradient Ricci solitons with bounded
nonnegative sectional curvature are S3, S2 × R and R

3 or quotients thereof [28].
(In Perelman’s paper he also includes the assumption that the manifold is κ-
noncollapsed but this assumption is not necessary to the argument, see for example,
[11].) The Hamilton-Ivey estimate shows that all 3-dimensional shrinking Ricci soli-
tons with bounded curvature have non-negative sectional curvature ([11], Theorem
6.44) So the work of Perelman, Hamilton, and Ivey together give the following
classification in dimension 3. 1

Theorem 1.1. The only three dimensional shrinking gradient Ricci solitons with
bounded curvature are the finite quotients of R

3, S2 × R, and S3.

Recently Ni and Wallach [26] have given an alternative approach to proving
the classification of 3-dimensional shrinkers which extends to higher dimensional
manifolds with zero Weyl tensor. (Every 3-manifold has zero Weyl tensor.) Their
argument also requires non-negative Ricci curvature. Also see Naber’s paper [24] for
a different argument in the 3-dimensional case. By using a different set of formulas
we remove the non-negative curvature assumption.

1991 Mathematics Subject Classification. 53C25.
1We thank Ben Chow for pointing this out to us.
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Theorem 1.2. Let (Mn, g, f) be a complete shrinking gradient Ricci soliton of

dimension n ≥ 3 such that
∫

M
|Ric|2 e−fdvolg < ∞ and W = 0 then M is a finite

quotient of R
n, Sn−1 × R, or Sn.

Recall that a result of Morgan [23] implies e−fdvolg is a finite measure so as a
corollary we obtain a new direct proof of Theorem 1.1 that does not require the
Hamilton-Ivey estimate. When M is compact Theorem 1.2 was established using
similar techniques by Eminenti, LaNave, and Mantegazza in [12].

We note that a shrinking soliton has finite fundamental group [32] and that Naber
has shown that it can be made into a gradient soliton by adding an appropriate
Killing field to X [24]. In the compact case this was proven by Perelman [27].

If we relax the Weyl curvature condition and instead assume that the scalar
curvature is constant we also get a nice general classification.

Theorem 1.3. Let (Mn, g, f) be a complete gradient Ricci soliton with n ≥ 3,

constant scalar curvature, and W (∇f, ·, ·,∇f) = o
(

|∇f |2
)

, then M is a flat bundle

of rank 0, 1, or n over an Einstein manifold.

Note that the Weyl curvature condition is vacuous when n = 3 or M is compact.
Moreover, when M is compact or the soliton is steady it is already known that it
has to be rigid when the scalar curvature is constant [29]. It is also worth pointing
out that the theorem is in a sense optimal. Namely, rigid solitons with zero, one
or n-dimensional Euclidean factors have W (∇f, ·, ·,∇f) = 0. When n = 3 the
theorem yields the following new result.

Corollary 1. The only 3-dimensional expanding gradient Ricci solitons with con-
stant scalar curvature are quotients of R

3, H
2 × R, and H

3.

There are now many examples of non-trivial gradient solitons, but we do not
know of any with constant scalar curvature. Moreover, we have shown that any
gradient soliton which is homogeneous or has constant scalar curvature and is ra-
dially flat (i.e. sec(∇f, E) = 0) is a product of Einstein and Euclidean manifolds
[30, 29]. There are a number non-trivial homogeneous expanding Ricci solitons,
even in dimension 3 (see [1, 19, 21]). Unlike the shrinking case, these metrics do
not support a gradient soliton structure.

Our results follow from considering elliptic equations for various curvature quan-
tities on solitons. While there are well-known Ricci flow versions of a number of
these formulas, the elliptic proofs are surprisingly straight-forward and give some
interesting extra rigidity. For example, by considering the equation for the curva-
ture operator we show that if the second eigenvalue of the curvature operator of
a shrinking gradient Ricci soliton is nonnegative then the metric has nonnegative
curvature operator. This then extends a number of rigidity theorems for nonnega-
tive(or 2-nonnegative) curvature operator (see [4, 5, 24, 30]).

The paper is organized as follows. We start by deriving the formulas for f -
Laplacians of various functions and tensors related to curvature. Next we give
our constant scalar curvature characterization. The proof of this result is almost
entirely algebraic. By contrast the proof of the theorems for shrinking solitons relies
far more heavily on analytic techniques. In the appendix we review the proof of the
classification of 2-dimensional solitons giving a proof that follows from an Obata
type characterization of warped product manifolds found in [7] that does not seem
to appear elsewhere in the literature.
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2. The f-Laplacian of Curvature

In this section we are interested in deriving elliptic equations for the curvature
of a gradient Ricci soliton. Let V be a tensor bundle on a gradient Ricci soliton,
∇ be the Riemannian connection on V , and T a self-adjoint operator on V . The
X-Laplacian and f -Laplacian of T is the operator

(∆XT ) = (∆T ) − (∇XT )

(∆fT ) = (∆T ) − (∇∇fT )

Where ∆ is the connection Laplacian induced by ∇. We are interested in the cases
where V = ∧2M and T is the curvature operator R and where V = TM and T is
the (1, 1) Ricci tensor.

The formulas in these cases are the following.

Lemma 2.1. For a gradient Ricci soliton

∆fR = 2λR− 2
(

R2 + R#
)

∆fRic = 2λRic − 2

n
∑

i=1

R(·, Ei)(Ric(Ei))

∆f scal = 2λscal− 2|Ric|2

Remark 2.2. A mild warning is in order for the first equation. We define the induced
metric on ∧2M so that if {Ei} is an orthonormal basis of TpM then {Ei ∧ Ej}i<j

is an orthonormal basis of ∧2TpM . This convention agrees with [4] but differs from
[10, 14, 15].

Remark 2.3. The last equation is well known, see [29] for a proof. A similar equa-
tion for the Ricci tensor appears in [12]. Some other interesting formulas for the
curvature operator of gradient solitons appear in [5].

Remark 2.4. Since Ricci solitons are special solutions to the Ricci flow the above
equations can be derived from the parabolic formulas derived by Hamilton [14] for
the Ricci flow

∂

∂t
R = ∆R + 2

(

R2 + R#
)

∂

∂t
Ric = ∆LRic

∂

∂t
scal = ∆scal + 2|Ric|2.

However, we will simply perform the elliptic calculation which is more straight
forward (for example no “Uhlenbeck trick” is necessary). We also expect similar
calculations will give formulas for elliptic equations which do not come directly
from a Ricci flow.

R# is the Lie-Algebra square of R introduced by Hamilton in [15]. Recall that
if we change R# into a (0,4)-tensor its formula is

g
(

R#(X ∧ Y ), W ∧ Z
)

= R#(X, Y, Z, W )

= B(X, W, Y, Z) − B(X, Z, Y, W ),
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where

B(X, Y, W, Z) = −
n

∑

i=1

g (R(X, Ei)Y, R(W, Ei)Z)

and {Ei} is an orthonrmal basis of TpM. It is also convenient to identify ∧2TpM

with so(n). Then ∧2TpM becomes a Lie Algebra and the formula for R# becomes

g(R#(U), V ) =
1

2

∑

α,β

g ([R(φα),R(φβ)], U) g ([φα, φβ ], V )

for any two bi-vectors U and V , where {φα} is an orthnormal basis of ∧2TpM . (see
page 186 of [10] for the derivation of the equivalence of these two formulas. See
[4, 8] for more about R#.)

Before the main calculation we recall some curvature identities for gradient Ricci
solitons.

Proposition 1. For a gradient Ricci soliton

(2.1) ∇scal = 2div (Ric) = 2Ric (∇f)

(2.2) (∇XRic)(Y ) − (∇Y Ric)(X) = −R(X, Y )∇f

(2.3) ∇∇fRic + Ric ◦ (λI − Ric) = R (·,∇f)∇f +
1

2
∇·∇scal

(2.4)

n
∑

i=1

(∇Ei
R)(Ei, X, Y ) = R(∇f, X)Y

Proof. The proofs of the first three identities can be found in [29]. For the fourth
formula consider

n
∑

i=1

(∇Ei
R)(Ei, X, Y, Z) = −

n
∑

i=1

(∇Ei
R)(Y, Z, X, Ei)

= −(divR)(Y, Z, X)

= − (∇Y Ric) (Z, X) + (∇ZRic) (Y, X)

= g(R(Y, Z)∇f, X)

= g(R(∇f, X)Y, Z)

Where in the third line we have used the (contracted) 2nd Bianchi identity and in
the fourth line we have used (2.2). �

We are now ready to derive the formula for the f -Laplacian of curvature.

Proof of Lemma 2.1. We will begin the calculation by considering the (0,4)-curvature
tensor R. Fix a point p, let X, Y, Z, W be vector fields with ∇X = ∇Y = ∇Z =
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∇W = 0 at p and let Ei be normal coordinates at p. Then

(∆R) (X, Y, Z, W ) =

n
∑

i=1

(

∇2
Ei,Ei

R
)

(X, Y, Z, W )

=

n
∑

i=1

(

∇2
Ei,X

R
)

(Ei, Y, Z, W ) −
(

∇2
Ei,Y

R
)

(Ei, X, Z, W )

=

n
∑

i=1

(

∇2
X,Ei

R
)

(Ei, Y, Z, W ) −
(

∇2
Y,Ei

R
)

(Ei, X, Z, W )

+ (REi,XR) (Ei, Y, Z, W ) − (REi,Y R) (Ei, X, Z, W )

= ∇X (R (∇f, Y, Z, W )) −∇Y (R (∇f, X, Z, W ))

+

n
∑

i=1

(REi,XR) (Ei, Y, Z, W ) − (REi,Y R) (Ei, X, Z, W )

= (∇XR) (∇f, Y, Z, W ) + R (∇X∇f, Y, Z, W )

− (∇Y R) (∇f, X, Z, W ) − R (∇Y ∇f, X, Z, W )

+
n

∑

i=1

(REi,XR) (Ei, Y, Z, W ) − (REi,Y R) (Ei, X, Z, W )

Where in the fourth line we have applied (2.4). The second Bianchi identity
implies

(∇∇fR) (X, Y, Z, W ) = (∇XR) (∇f, Y, Z) − (∇Y R) (∇f, X, Z) ,

and the gradient soliton equation gives

R (∇X∇f, Y, Z, W ) = λR (X, Y, Z, W ) − R (Ric(X), Y, Z, W ) .

So we have

(∆fR) (X, Y, Z, W ) = 2λR (X, Y, Z, W ) − R (Ric(X), Y, Z, W ) + R (Ric(Y ), X, Z, W )

+

n
∑

i=1

(REi,XR) (Ei, Y, Z, W ) − (REi,Y R) (Ei, X, Z, W )

We now must unravel the the terms remaining inside the sum. By definition

(REi,XR) (Ei, Y, Z, W ) = R (Ei, X, R(Ei, Y )Z, W ) − R (R(Ei, X)Ei, Y, Z, W )

−R (Ei, R(Ei, X)Y, Z, W ) − R (Ei, Y, R(Ei, X)Z, W ) .

A straight forward calculation involving the Bianchi identity then gives

n
∑

i=1

(REi,XR) (Ei, Y, Z, W ) − (REi,Y R) (Ei, X, Z, W )

= R (Ric(X), Y, Z, W ) − R (Ric(Y ), X, Z, W )

+

n
∑

i=1

[−2R (X, Ei, R(Ei, Y )Z, W ) + 2R (Y, Ei, R(Ei, X)Z, W )]

+

n
∑

i=1

R (Ei, R(X, Y )Ei, Z, W )
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We now have

(∆fR) (X, Y, Z, W )

= 2λR (X, Y, Z, W ) + 2

n
∑

i=1

[−R (X, Ei, R(Ei, Y )Z, W ) + R (Y, Ei, R(Ei, X)Z, W )]

+
n

∑

i=1

R (Ei, R(X, Y )Ei, Z, W ) .

However,
n

∑

i=1

R (Ei, R(X, Y )Ei, Z, W ) = −
n

∑

i=1

R (W, Z, Ei, R(X, Y )Ei)

= −
n

∑

i=1

g (R(W, Z)Ei, R(X, Y )Ei)

= −2R2(X, Y, Z, W )

and

2

n
∑

i=1

−R (X, Ei, R(Ei, Y )Z, W ) + R (Y, Ei, R(Ei, X)Z, W )

= 2

n
∑

i=1

−g (R(X, Ei)W, R(Y, Ei)Z) + g (R(Y, Ei)W, R(X, Ei)Z)

= −2R#(X, Y, Z, W ).

So we have obtained the desired formula for the curvature operator.
To compute the formula for the Ricci tensor we could trace the formula for the

curvature tensor, or we can give the following direct proof.
Again fix a point p, extend Y (p) to a vector field in a neighborhood of p such

that ∇Y = 0, and let Ei be normal coordinates at p, then

(∆Ric)(Y ) =

n
∑

i=1

(

∇2
Ei,Ei

Ric
)

(Y )

=

n
∑

i=1

(

(∇2
Ei,Y

Ric)(Ei) −∇Ei
(R(Ei, Y )∇f)

)

=
n

∑

i=1

(

(∇2
Y,Ei

Ric)(Ei) − (RY,Ei
Ric)(Ei) − (∇Ei

R)(Ei, Y,∇f) − R(Ei, Y )(∇Ei
∇f)

)

= ∇Y (div(Ric)) + Ric(Ric(Y )) + R(Y,∇f)∇f + λRic(Y ) − 2

n
∑

i=1

R(Y, Ei)(Ric(Ei))

= (∇∇fRic) (Y ) + 2λRic(Y ) − 2

n
∑

i=1

R(Y, Ei)(Ric(Ei)).

Where in going from the first to second lines we have applied (2.2), in going from
the third to fourth lines we apply (2.4) and in obtaining the last line we apply
(2.3). �

From the Ricci equation we can also derive the following formula
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Lemma 2.5.

∆f (Ric(∇f,∇f)) = 4λRic(∇f,∇f) − 2D∇f |Ric|2

+2Ric (∇Ei
∇f,∇Ei

∇f) + 2

n
∑

i=1

R(∇f, Ei, Ric(Ei),∇f)

or equivalently

1

2
∆f (D∇f scal) = D∇f∆f scal+2Ric (∇Ei

∇f,∇Ei
∇f)+2

n
∑

i=1

R(∇f, Ei, Ric(Ei),∇f)

Proof. From the above equation we get

∆f (Ric(∇f,∇f)) = (∆fRic) (∇f,∇f) + 2Ric(∆f∇f,∇f) + 2Ric (∇Ei
∇f,∇Ei

∇f)

+4 (∇Ei
Ric) (∇Ei

∇f,∇f)

= (∆fRic) (∇f,∇f) − 2λRic(∇f,∇f) + 2Ric (∇Ei
∇f,∇Ei

∇f)

+4λ (∇Ei
Ric) (Ei,∇f) − 4 (∇Ei

Ric) (Ric (Ei) ,∇f)

= −2R(∇f, Ei, Ric(Ei),∇f) + 2Ric (∇Ei
∇f,∇Ei

∇f)

+4λRic (∇f,∇f) − 4 (∇∇fRic) (Ric (Ei) , Ei) + 4R(∇f, Ei, Ric(Ei),∇f)

= 4λRic (∇f,∇f) − 2D∇f |Ric|2

+2Ric (∇Ei
∇f,∇Ei

∇f) + 2R(∇f, Ei, Ric(Ei),∇f)

The second formula follows from

∆f scal = 2λscal− 2 |Ric|2 ,

2Ric (∇f,∇f) = D∇f scal

�

We are now going to see how the Weyl decomposition affects the formula for the
Ricci tensor.

Lemma 2.6.

∆fRic = 2λRic − 2nscal

(n − 1) (n − 2)
Ric +

4

n − 2
Ric2

− 2

(n − 2)

(

|Ric|2 − scal2

n − 1

)

I + W (·, Ei, Ric (Ei))

and

1

2
∆f (D∇f scal) = D∇f∆f scal + 2Ric (∇Ei

∇f,∇Ei
∇f)

+
2nscal

(n − 1) (n − 2)
Ric (∇f,∇f) − 4

n − 2
Ric (Ric (∇f) ,∇f)

+
2

(n − 2)

(

|Ric|2 − scal2

n − 1

)

|∇f |2 + W (∇f, Ei, Ric (Ei) ,∇f)

Proof. The Weyl decomposition looks like

R = W +
1

n − 2
Ric ◦ g − scal

2 (n − 1) (n − 2)
g ◦ g,

h ◦ g (x, y, y, x) = h (x, x) g (y, y) + h (y, y) g (x, x) − 2h (x, y) g (x, y)
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where W is absent when n = 3. More specifically we need

R (x, y, y, x) =
1

n − 2
(Ric (x, x) g (y, y) + Ric (y, y) g (x, x) − 2Ric (x, y) g (x, y))

− scal

(n − 1) (n − 2)

(

|x|2
∣

∣y2
∣

∣ − (g (x, y))2
)

+ W (x, y, y, x)

If we assume that Ei is an orthonormal frame that diagonalizes the Ricci tensor
Ric (Ei) = ρiEi, then

Ric (Y ) = g (Y, Ei) ρiEi

Ric (Y, Y ) = ρi (g (Y, Ei))
2

Ric (Y, Ric (Y )) = Ric (Y, g (Y, Ei) ρiEi)

using this the Weyl free part of the formula for

R(Y, Ei, Ric(Ei), Y ) = ρiR(Y, Ei, Ei, Y )

becomes
1

n − 2

(

scal · Ric (Y, Y ) + ρ2
i |Y |2 − 2Ric (Y, ρiEi) g (Y, Ei)

)

− scal

(n − 1) (n − 2)

(

|Y |2 scal− ρi (g (Y, Ei))
2
)

=
1

n − 2

(

scal · Ric (Y, Y ) + |Ric|2 |Y |2 − 2Ric (Y, Ric (Y ))
)

+
scal

(n − 1) (n − 2)

(

Ric (Y, Y ) − |Y |2 scal
)

=
1

n − 2

(

|Ric|2 − scal2

n − 1

)

|Y |2 − 2

n − 2
Ric (Y, Ric (Y ))

+

(

scal

(n − 1) (n − 2)
+

scal

(n − 2)

)

Ric (Y, Y )

=
1

n − 2

(

|Ric|2 − scal2

n − 1

)

|Y |2 − 2

n − 2
Ric (Y, Ric (Y ))

+
nscal

(n − 1) (n − 2)
Ric (Y, Y )

This establishes the first formula and the second by using Y = ∇f. �

3. Constant Scalar Curvature

We now turn our attention to the case where scal is constant in dimensions n ≥ 3.
Recall the following results from [29] (Propositions 5 and 7).

Proposition 2. Assume that we have a shrinking (resp. expanding) gradient soli-
ton

Ric + Hessf = λg

with constant scalar curvature. Then 0 ≤ scal ≤ nλ (resp. nλ ≤ scal ≤ 0.)
Moreover, the metric is flat when scal = 0 and Einstein when scal = nλ. In
addition f is unbounded when M is noncompact and scal 6= nλ.

This in conjunction with the above formulas allow us to prove
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Theorem 3.1. Any gradient soliton with constant scalar curvature, λ 6= 0 and

W (∇f, ·, ·,∇f) = o
(

|∇f |2
)

is rigid.

Proof. We can assume that M is noncompact and that f is unbounded. The fact
that the scalar curvature is constant in addition shows that

0 = ∆f scal = λscal − |Ric|2

and from the formula for ∆fRic (∇f,∇f) we get

0 =
1

2
∆f (D∇f scal)

= D∇f∆f scal + 2Ric (∇Ei
∇f,∇Ei

∇f) + 2W (∇f, Ei, Ric (Ei) ,∇f)

+
2nscal

(n − 1) (n − 2)
Ric (∇f,∇f) − 4

n − 2
Ric (Ric (∇f) ,∇f)

+
2

(n − 2)

(

|Ric|2 − scal2

n − 1

)

|∇f |2

= 2Ric (∇Ei
∇f,∇Ei

∇f) + 2W (∇f, Ei, Ric (Ei) ,∇f) +
2

(n − 2)

(

|Ric|2 − scal2

n − 1

)

|∇f |2

Since |Ric|2 = λscal is constant we see that both Ric and Hessf are bounded.

Thus Ric (∇Ei
∇f,∇Ei

∇f) is bounded and W (∇f, Ei, Ric (Ei) ,∇f) = o
(

|∇f |2
)

.

Recall that

scal + |∇f |2 − 2λf = const

so if the scalar curvature is constant and f is unbounded we see that |∇f |2 is
unbounded. This implies that

|Ric|2 − scal2

n − 1
= 0

as it is constant. We know in addition that Ric has one zero eigenvalue when
∇f 6= 0, so in that case the Cauchy-Schwarz inequality shows that

|Ric|2 ≥ scal2

n − 1

with equality holding only if all the other eigenvalues are the same.
If ∇f vanishes on an open set, then the metric is Einstein on that set, in par-

ticular scal = nλ everywhere and so the entire metric is Einstein. This means that
we can assume ∇f 6= 0 on an open dense set. Thus Ric has a zero eigenvalue
everywhere and the other eigenvalues are given by the constant

ρ =
scal

n − 1
.

But by Corollary 2 which we will prove below this implies that M̃ = Nn−1 × R

where N is Einstein if n > 3. When n = 3, N is a surface and so must also have
constant curvature if M does. �

We now prove that a gradient Ricci soliton whose Ricci curvature has one nonzero
eigenvalue of multiplicity n− 1 at every point must split. This will follow from the
following more general lemma.
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Lemma 3.2. Let T be a constant rank, symmetric, nonnegative tensor on some
(tensor) bundle. If g ((∆XT ) (s) , s) ≤ 0 for s ∈ kerT, then the kernel is a parallel
subbundle.

Proof. We are assuming that kerT is a subbundle. Select an orthonormal frame
E1, ..., En and let s be section of kerT. First note that

(∆XT )(s) = ∆X(T (s)) − 2

n
∑

i=1

((∇Ei
T ) (∇Ei

s)) + T (∆Xs)

so from the hypothesis we have

0 ≥ g((∆XT )(s), s)

= −2

n
∑

i=1

g((∇Ei
T ) (∇Ei

s), s) + g(T (∆Xs), s)

= −2

n
∑

i=1

g(∇Ei
s, (∇Ei

T ) (s)) + g(∆Xs, T (s))

= −2

n
∑

i=1

g(∇Ei
s, (∇Ei

T ) (s))

= 2

n
∑

i=1

g(∇Ei
s, T (∇Ei

s))

The nonnegativity of T then gives that ∇s ∈ kerT . �

Corollary 2. Let (M, g, f) be a gradient Ricci soliton such that, at each point, the

Ricci tensor has one nonzero eigenvalue of multiplicity n−1, then M̃ = Nn−1×R.

Moreover, if n > 3 then N is Einstein.

Proof. Let E1, ..., En be an orthonormal frame such that Ric (E1) = 0 and Ric (Ei) =
ρEi for i > 1. Then

(∆fRic) (Y ) = 2λRic (Y ) − 2
n

∑

i=1

R (Y, Ei)Ric (Ei)

= 2λRic (Y ) − 2ρ

n
∑

i=2

R (Y, Ei)Ei

= 2 (λ − ρ)Ric (Y ) + 2ρR (Y, E1)E1.

Since this vanishes on E1 we see that the previous lemma can be applied. �

4. Shrinkers

For gradient shrinking solitons we use an approach due to Naber ([24], section
7). There is a natural measure e−fdvolg which makes the f -Laplacian self-adjoint.
From the perspective of comparison geometry the tensor Ric + Hessf is the Ricci
tensor for this measure and Laplacian. (see e.g. [20, 23, 31]). In particular for a
shrinking soliton the measure must be bounded above by a Gaussian measure, note
that no assumption on the boundedness of Ricci curvature is necessary.
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Lemma 4.1. ([23], [31]) On a shrinking gradient Ricci soliton the measure e−fdvolg

is finite and if u = O
(

eαd2(·,p)
)

for some α < λ
2 and fixed point p then u ∈

L2(e−fdvolg).

In [24] Naber combines a similar volume comparison with a refinement of a
Liouville theorem of Yau ([33], Theorem 3). We will apply the Liouville theorem
to non-smooth functions such as the smallest eigenvalue of the Ricci tensor so we
need to refine these arguments further.

Theorem 4.2 (Yau-Naber Liouville Theorem). Let (M, g, f) be a manifold with
finite f -volume:

∫

e−fdvol < ∞. If u is a locally Lipschitz function in L2(e−fdvolg)
which is bounded below such that

∆f (u) ≥ 0

in the sense of barriers, then u is constant.

Proof. Note that since the measure is finite and u is bounded from below we can
assume u is positive by adding a suitable constant to u.

To prove the theorem we must modify slightly the techniques of Yau and Naber.
First we apply a heat kernel smoothing procedure of Greene and Wu (see [13],
section 3).

Let K be a smooth compact subset of M and let U(x, t) be the solution to the
equation

(

∂

∂t
− ∆f

)

U = 0

U(x, 0) = ũ(x)

on the double of a smooth open set that contains K where ũ is a continuous ex-
tension of u to the larger open set. Then, by the standard theory, Ut is a smooth
function that converges in W 1,2(K) to u as t → 0. Moreover, Green and Wu show
that given ε > 0 there is t0 such that for all t < t0

∆f (U(·, t)) ≥ −ε,

on K.
Now to the proof of the theorem. Let x ∈ M and rk → ∞. Using the procedure

described above we construct smooth functions uk such that

|uk − u|(W 1,2(B(x,rk+1)) <
1

k

∆f (uk) ≥ −1

k

Let φk be a cut-off function which is 1 on B(x, 1), 0 outside of B(x, rk + 1), and
has |∇φk| ≤ 2

rk
. First we integrate by parts.

∫

M

∆f (uk)φ2
kuk

(

e−fdvolg
)

= −
∫

M

2φkukg(∇uk,∇φk)
(

e−fdvolg
)

−
∫

M

φ2
k|∇uk|2

(

e−fdvolg
)

.

Then we complete the square
∣

∣

∣

∣

∣

√

1

2
φk∇uk +

√
2uk∇φk

∣

∣

∣

∣

∣

2

= 2φkukg(∇uk,∇φk) +
1

2
φ2

k|∇uk|2 + 2u2
k|∇φk|2
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to obtain
∫

M

∆f (uk)φ2
kuk

(

e−fdvolg
)

≤ −1

2

∫

B(x,rk+1

φ2
k|∇uk|2

(

e−fdvolg
)

+2

∫

M

u2
k|∇φk|2

(

e−fdvolg
)

.

On the other hand
∫

M

∆f (uk)φ2
kuk

(

e−fdvolg
)

≥ −1

k

∫

M

φ2
kuk

(

e−fdvolg
)

≥ −2

k

∫

B(x,rk+1)

u
(

e−fdvolg
)

So we have
1

2

∫

B(x,1)

|∇uk|2
(

e−fdvolg
)

≤ 8

r2
k

∫

B(x,rk+1)

u2
(

e−fdvolg
)

+
2

k

∫

B(x,rk+1)

u
(

e−fdvolg
)

.

Note that, since the volume is finite, u ∈ L2(e−fdvolg) implies u ∈ L1(e−fdvolg)
so the right hand side will go to zero as k → ∞. Taking the limit and using that
uk converge to u in W 1,2 we obtain

∫

B(x,1)

|∇u|2(e−fdvolg) = 0.

Which implies u is constant since it is continuous. �

Remark 4.3. One consequence of this theorem is that if a gradient shrinking soliton
has scal ∈ L2(e−fdvolg) then either scal > 0 or the metric is flat (see [29]).

We can also apply the Yau-Naber Liouville theorem to obtain a strong minimum
principle for tensors. The strong minimum principle for tensors in the parabolic
setting were developed for the study of Ricci flow by Hamilton see [15].

Theorem 4.4 (Tensor Minimum Principle). Let (M, g, f) be a manifold with finite
f -volume:

∫

e−fdvol < ∞, and T a symmetric tensor on some (tensor) bundle

such that |T | ∈ L2(e−fdvolg) and

∆fT = λT + Φ (T ) , where g(Φ(T )(s), s) ≤ 0 and λ > 0,

then T is nonnegative and ker(T ) is parallel.

Note that if T and Φ (T ) are nonnegative then the Bochner formula shows that
T is parallel.

Proof. As long as T is nonnegative and has constant rank Lemma 3.2 shows that
ker(T ) is parallel.

Denote the eigenvalues of T by λ1 ≤ λ2 ≤ · · · . Let s be a unit field such
that T (s) = λ1s at p otherwise extended by parallel translation along geodesics
emanating from p. We can then calculate at p ∈ M

∆fλ1 ≤ ∆fg (T (s) , s)

= g((∆fT ) (s) , s)

= λg (T (s) , s) + g (Φ(T )(s), s)

≤ λλ1

where the first inequality is in the barrier sense of Calabi (see [6]). Thus the first
eigenvalue satisfies the differential inequality

∆fλ1 ≤ λλ1
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everywhere in the barrier sense. A similar analysis where we minimize over k

dimensional subspaces at a point shows that

∆f (λ1 + · · · + λk) ≤ λ (λ1 + · · · + λk)

in the barrier sense.
To see that T is nonnegative let u = min {λ1, 0}, then u ≤ 0,

∆fu ≤ 0

in the sense of barriers, and, since |T | ∈ L2(e−fdvolg), so is u. The Yau-Naber
Liouville Theorem then implies u is constant. In other words, either λ1 ≥ 0 or
λ1 is constant and less than 0. However, this last case is impossible since if λ1 is
constant

0 = ∆fλ1 ≤ λλ1.

Knowing that λ1 + · · · + λk ≥ 0, now allows us to apply the strong minimum
principle to show that, if λ1 + · · · + λk vanishes at some point, then it vanishes
everywhere (see [22] page 244). Since dim(ker(T )) is the largest k such that λ1 +
· · · + λk vanishes this shows that the kernel is a distribution. �

We now apply the minimum principle to our formulas for the f -laplacian of
curvature. When T = R we have Φ (R) = −2

(

R2 + R#
)

. Since R2 is always
nonnegative we see from the minimum principle that the curvature operator of a
gradient shrinking soliton is nonnegative if and only if R# is nonnegative. In fact,
by examining the proof of the minimum principle we can also obtain the result
alluded to in the introduction. As notation, let

λ1 ≤ λ2 ≤ . . .

be the ordering of the eigenvalues of the curvature operator.

Corollary 3. Let (M, g, f) be a shrinking gradient Ricci soliton with λ2 ≥ 0 and
|R| ∈ L2(e−fdvolg) then R ≥ 0, kerR is parallel, and the holonomy algebra

holp = im
(

R : ∧2TpM → ∧2TpM
)

.

Proof. Fix a point p and let φ1 be a parallel bi-vector such that

g (R(φ1), φ1) = λ1

at p. Then, from the same argument as in the proof of the Tensor Minimum
principle, we obtain

∆fλ1 ≤ λλ1 − g
(

R#(φ1), φ1

)

Let {φα} be a basis of othonormal eigenvectors for R. The structure constants
of the Lie algebra are Cαβγ = g ([φα, φβ ], φγ), which are fully anti-symmetric in α,
β, and γ. Then if λ2 ≥ 0,

g
(

R#(φ1), φ1

)

=
∑

α,β

(C1αβ)
2
λαλβ

=
∑

α,β≥2

(C1αβ)
2
λαλβ

≥ 0.

Thus we see that λ1 ≥ 0. Next the tensor minimum principle can be applied to
see that kerR is parallel. This shows in turn that the orthogonal complement imR
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is parallel. The Ambrose-Singer theorem on holonomy then implies the last claim
(see [2].) �

Remark 4.5. In dimension 3 this implies that a gradient shrinking soliton with
nonnegative Ricci curvature has nonnegative curvature operator.

Remark 4.6. There are simple examples of manifolds with λ2 ≥ 0 that do not ad-
mit 2-nonnegative curvature operator metrics or even nonnegative Ricci curvature
metrics. Consider the product N × M where N is a negatively curved surface and
M a possibly one dimensional manifold with nonnegative curvature operator. Then
λ1 < 0 and λ2 = 0. If scalM > |scalN | , then the metric will also have positive scalar
curvature.

In the formula for f -Laplacian of the Ricci tensor we have Φ (Ric) is −2K where

K =

n
∑

i=1

g(R(·, Ei)(Ric(Ei)).

If we let {Ei} be a basis of eigenvectors for Ric with eigenvalues ρi. Then

g(K(Y ), Y ) =
n

∑

i=1

ρisec(Y, Ei)

So that K ≥ 0 if M has nonnegative (or nonpositive) sectional curvature, or if M is
Einstein. The minimum principle gives the following splitting theorem for shrinking
solitons with K ≥ 0. This is the soliton version of a result of Böhm and Wilking
[3] which states that any compact manifold with nonnegative sectional curvature
and finite fundamental group flows in a short time under the Ricci flow to a metric
with positive Ricci curvature.

Corollary 4. Let (M, g, f) be a shrinking gradient Ricci soliton with K ≥ 0 and

|Ric| ∈ L2(e−fdvolg) then M̃ = N × R
k where N has positive Ricci curvature. In

particular, a compact shrinking soliton with K ≥ 0 has positive Ricci curvature.

Proof. The minimum principle and the de Rham splitting theorem show that M̃ =
N × F, where N has positive Ricci curvature and F is Ricci flat. From [30] we get
that both N and F are gradient solitons. Finally Ricci flat solitons are Gaussians,
thus proving the corollary. The last bit about compact manifolds follows from
the fact that shrinking solitons have finite volume and hence finite fundamental
group. �

We now turn our attention to the proof of Theorem 1.2. We assume that M is
a non-flat, gradient shrinking soliton with W = 0 and |Ric| ∈ L2(e−fdvolg). Recall
that when W = 0

∆fRic = 2λRic − 2nscal

(n − 1) (n − 2)
Ric +

4

n − 2
Ric2

− 2

(n − 2)

(

|Ric|2 − scal2

n − 1

)

I

Let ρ1 ≤ · · · ≤ ρn be the eigenvalues of Ric and E a unit field such that Ric (E) =
ρ1E at p ∈ M and extend it to be parallel along geodesics emmanating from p.
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Clearly ρ1 ≤ Ric (E, E) with equality at p. Calculating at p we have

∆f (ρ1) ≤ ∆fRic (E, E)

= (∆fRic) (E, E)

= 2λρ1 −
2nscal

(n − 1) (n − 2)
ρ1 +

4

n − 2
ρ2
1 −

2

n − 2

(

|Ric|2 − scal2

n − 1

)

where ∆f (ρ1) is interpreted as being in the upper barrier sense of [6].
The ratio ρ1

scal then satisfies

∆h

( ρ1

scal

)

≤ 2φ,

h = f − log
(

scal2
)

,

where

φ =
ρ2
1 (nρ1 − scal)

(n − 1) scal2

+

((n − 2)ρ1 − scal)

(

(n − 1)
∑n

j=2(ρj)
2 −

(

∑n
j=2 ρj

)2
)

(n − 1)(n − 2)scal2

which is clearly nonpositive.
We now have ρ1

scal ≤ 1 and ∆h

(

ρ1

scal

)

≤ 0, so to apply the Yau-Naber Liouville

Theorem, we must show the measure is finite and the function is in L2(e−hdvolg).
This is clear from Lemma 4.1 because

∫

M

e−hdvolg =

∫

M

scal2e−fdvolg < ∞

and
∫

M

( ρ1

scal

)2

e−hdvolg =

∫

M

(ρ1)
2
e−fdvolg < ∞

Thus ρ1

scal is constant. In particular, φ must vanish and

ρ2
1 (nρ1 − scal) = 0

((n − 2)ρ1 − scal)






(n − 1)

n
∑

j=2

(ρj)
2 −





n
∑

j=2

ρj





2





= 0

The first equation tells us that either ρ1 = 0 or M is Einstein. When ρ1 = 0 the
second equation and the Cauchy-Schwarz inequality tells us that

ρ2 = ρ3 = · · · = ρn =
scal

n − 1
> 0.

Then by Corollary 2 the universal cover of M splits M̃ = N ×R where N is again a
shrinking gradient soliton with a Ricci tensor that has only one eigenvalue. When
n = 3 Hamilton’s classification of surface solitons (see Appendix) then shows that
N is the standard sphere, while if n > 3 Schur’s lemma shows that N is Einstein.
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Appendix A. Surface gradient solitons

In the literature the classification of shrinking surface solitons is usually stated
for metrics with bounded curvature. However, we have used this classification
under the weaker condition scal ∈ L2(e−fdvolg). In this appendix we verify that
the classification still holds in this case.

We consider warped product metrics, a slightly larger class of metrics than ro-
tationally symmetric ones.

Definition A.1. A Riemannian metric (M, g) on either R
n, Sn, or N × R is a

warped product if it can be written as

g = dr2 + h2(r)g0.

When M = R
n, we assume that h(0) = 0 and g0 is the standard metric on the

sphere. When M = Sn, we require h(0) = h(r0) = 0 and g0 is the standard metric
on the sphere.

There is a very simple Obata-type characterization of warped product metrics
found in [7].

Theorem A.2 (Cheeger-Colding). A Riemannian manifold (M, g) is a warped
product if and only if there is a nontrivial function f such that

Hessf = µg

for some function µ : M → R.

Proof. If g = dr2 + h2(r)g0 simply let f =
∫

h (r) dr.

Conversely, we see that f is rectifiable (see [30]) as

DX

1

2
|∇f |2 = Hessf (X,∇f) = µg (X,∇f)

Showing that |∇f | is constant on level sets of f. Let N be a nondegenerate level
set of f , g0 the metric restricted to this level set, and r the signed distance to N

defined to that ∇r and ∇f point in the same direction. Then f = f (r)

∇f = f ′∇r,

Hessf = f ′′dr2 + f ′Hessr.

This shows that µ = f ′′ and that

Hessr =
f ′′

f ′
g

on the orthogonal complement of ∇r. Thus g = dr2+(cf ′)
2
g0 where cf ′ (0) = 1. �

Remark A.3. This theorem indicates that any flow that preserves conformal classes
has the property that the corresponding gradient solitons must be rotationally
symmetric. This then makes it possible to classify all complete gradient solitons
for such flows.

Corollary 5. Any surface gradient Ricci soliton is a warped product.

Proof. Simply use that

Ric =
scal

2
g.

�
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So the problem of finding surface gradient solitons is reduced to determining
which functions h(r) give a soliton. For example, Hamilton’s cigar is obtained
by taking h(r) = tanh(r) and is the unique (up to scaling) non-compact steady
gradient soliton surface with positive curvature. For a non-trivial example of an
expanding surface gradient soliton see ([11], p. 164-167).

Now suppose we have a non-flat shrinking soliton on a surface with scal ∈
L2(e−fdvolg). As we have seen this implies scal > 0. Moreover, since we are
on a surface, the Ricci curvature is positive so Proposition 1.1 in [25] implies the
scalar curvature is bounded away from zero. Thus M is compact. Then, since it is
also a warped product, M must be a rotationally symmetric metric on the sphere.
Chen, Lu, and Tian show that this implies M is a round sphere [9].
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[4] Christoph Böhm and Burkhard Wilking. Manifolds with positive curvature operators are
space forms. To appear in Ann. of Math. arXiv:math.DG/0606187.

[5] Xiadong Cao. Compact Gradient Shrinking Ricci Solitons with Positive Curvature Operator.
J. Geom. Anal. 17 (2007), no. 3, 425-434.

[6] E. Calabi. An extension of E. Hopf’s maximum principle with an application to Riemannian
geometry. Duke Math J. 25(1958), 45-56.

[7] Jeff Cheeger and Tobias Colding. Lower bounds on Ricci curvature and the almost rigidity
of warped products. Ann. of Math. (2) 144 (1996), no. 1, 189-237.

[8] Haiwen Chen. Pointwise 1

4
-pinched 4-manifolds. Ann. Global Anal. Geom. 9 (1991), no. 2,

161-176.
[9] Xiuxiong Chen, Peng Lu, and Gang Tian. A note on uniformization of Riemann surfaces by

Ricci flow. Proc. of Amer. Math. Soc. 134(2006), no. 11, 3391-3393.
[10] Bennet Chow and Dan Knopf. The Ricci flow: an introduction. Mathematical Surveys and

Monographs, vol. 110, AMS, Providence, RI, 2004.
[11] Bennett Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci flow. Graduate studies in Mathematics,

AMS, Providence, RI, 2006.
[12] Manolo Eminenti, Gabriele La Nave, and Carlo Mantegazza. Ricci Solitons - the Equation

Point of View. arXiv:math.DG/0607546v2
[13] R.E. Greene and H. Wu. C∞ approximations of convex subharmonic and plurisubharmonic
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