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Microwave response of vortices in superconducting thin films of Re and Al
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Vortices in superconductors driven at microwave frequencies exhibit a response related to the
interplay between the vortex viscosity, pinning strength, and flux creep effects. At the same time,
the trapping of vortices in superconducting microwave resonant circuits contributes excess loss and
can result in substantial reductions in the quality factor. Thus, understanding the microwave vor-
tex response in superconducting thin films is important for the design of such circuits, including
superconducting qubits and photon detectors, which are typically operated in small, but non-zero,
magnetic fields. By cooling in fields of the order of 100 µT and below, we have characterized the
magnetic field and frequency dependence of the microwave response of a small density of vortices
in resonators fabricated from thin films of Re and Al, which are common materials used in super-
conducting microwave circuits. Above a certain threshold cooling field, which is different for the Re
and Al films, vortices become trapped in the resonators. Vortices in the Al resonators contribute
greater loss and are influenced more strongly by flux creep effects than in the Re resonators. This
different behavior can be described in the framework of a general vortex dynamics model.

PACS numbers: 74.25.Qt, 74.25.Nf, 03.67.Pp, 03.67.Lx

INTRODUCTION

Superconducting thin films in sufficiently large mag-
netic fields are threaded by vortices of quantized mag-
netic flux that interact with currents flowing in the films
as well as materials defects. The microwave response
of superconductors can be profoundly influenced by the
presence of vortices and the dynamics they exhibit at
high frequencies. This can play an important role in the
design of superconducting microwave devices, where the
ability to fabricate low-loss resonant circuits has enabled
the development of entirely new classes of experiments.
There have been many recent groundbreaking studies of
quantum coherent superconducting circuits, which could
serve as qubits for forming the elements of a quantum
computer [1]. In addition, there has been much progress
in the development of superconducting Microwave Ki-
netic Inductance Detectors (MKIDs), which are highly
sensitive photon detectors for astrophysical measurement
applications [2]. In a quest to improve the performance
of such circuits yet further, there have been many recent
efforts to probe the effects of microwave loss in a variety
of areas, including dielectric layers and film surfaces that
form the microwave superconducting circuits [3, 4, 5].
Another possible loss mechanism in these systems is the
dissipation due to vortices trapped in the superconduct-
ing traces, which can result in substantial reductions in
the quality factor of superconducting resonators. Thus,
understanding this dissipation mechanism is important
for the design of microwave superconducting circuits.

Because superconductivity is suppressed in the core of
a vortex, the motion of vortices leads to dissipation, as is

typically characterized by the flux-flow vortex viscosity
η = Φ0Bc2/ρn, where Φ0 is the flux quantum, h/2e, ρn

is the normal-state resistivity of the material, and Bc2 is
the upper-critical field [6, 7]. A current density J flowing
through a superconductor exerts a Lorentz force on the
vortices, FL = J×Φ0n̂. Thus, an oscillatory current in a
superconducting microwave circuit can generate dissipa-
tive vortex motion. However, any practical superconduc-
tor inherently contains various materials defects which
produce vortex pinning, thus complicating the situation.
In the simplest case, the pinning potential wells U(x) can
be assumed to be harmonic with spring constant kp, giv-
ing a pinning force Fp = kpx. The vortex equation of
motion at zero temperature is given by

ηẋ + kpx = FL, (1)

where we have neglected a possible vortex mass, which
likely would not play a role until much higher frequencies
than the circuits in our experiments that operate between
∼ 2 − 11 GHz [8]. Thus, the interplay between the vis-
cous force and the pinning will determine the frequency
dependence of the vortex response. At low frequencies
the pinning will dominate and the response will be pri-
marily elastic, while at higher frequencies, the viscosity
will become more important and the response will be
more dissipative.

In one of the original investigations of the microwave
dynamics of vortices in superconductors, Gittleman and
Rosenblum measured circuits patterned from PbIn and
NbTa foils and described the vortex response in terms
of Eq. (1) [9, 10]. Similar measurements were also per-
formed on Al thin films in Ref. [11]. Several decades
later, various groups studied vortices at microwave fre-
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FIG. 1: (Color online) (a) Chip layout showing common feed-
line and four resonators. (b) Atomic Force Microscope (AFM)
image of portion of Al chip. (c) Schematic of measurement
setup, including cold attenuators with values listed in dB.

quencies in YBCO films, with particular relevance to
high-Tc thin-film microwave devices [12, 13, 14, 15].
Recently there have also been investigations of the mi-
crowave vortex dynamics in MgB2 [16, 17, 18] and Nb
films [19]. Previous work on the microwave response
of vortices in superconductors has primarily involved
large magnetic fields, at least several orders of magni-
tude larger than the Earth’s field. On the other hand,
superconducting resonant circuits for qubits and detec-
tors are typically operated in relatively small magnetic
fields, of the order of 100 µT or less and are fabricated
from low-Tc thin films that are often type-I supercon-
ductors in the bulk. In this article, we report on mea-
surements probing the magnetic field and frequency de-
pendence of the microwave response of a small number
of vortices using resonators fabricated from thin films of
rhenium and aluminum – common materials used in su-
perconducting resonant circuits for qubits and detectors.
Related measurements that motivated the present work
were performed in Ref. [20].

RESONATOR DESIGN AND MEASUREMENT

PROCEDURE

The use of resonant circuits allows us to probe small
changes in the response due to the introduction of a few
vortices. Several resonant circuit geometries are possible,
but the coplanar waveguide (CPW) geometry is partic-
ularly straightforward for implementing with thin films
and is a common configuration used in superconducting
qubit and MKID circuits. In order to map out the fre-
quency dependence of the vortex response, we would like
to have multiple resonators of different lengths patterned
from the same film that we measure under the same mag-
netic field and temperature conditions. Such an arrange-

ment is possible with a similar multiplexing scheme to
what was developed recently for MKIDs, with multiple
quarter-wave resonators of different lengths capacitively
coupled to a common feedline [2, 21].

Our layout consists of four quarter-wave CPW res-
onators with lengths 15.2, 9.3, 4.4, and 2.8 mm, which,
if we neglect the effects of the kinetic inductance of the
superconductors for now, yields fundamental resonances
near 1.8, 3.3, 6.9, and 11.0 GHz, as calculated with the
Sonnet microwave circuit simulation software [22]. As
with the resonators, our feedline also has a CPW layout,
with a nominal impedance of 50 Ω, and runs across the
centerline of the chip. Each resonator follows a serpen-
tine path in order to fit on the chip, with an elbow bend
at the open end, while the opposite end is shorted to the
ground plane. The coupling capacitance between each
resonator and the feedline is determined by the length
of its elbow. We design for the resonators to be some-
what over-coupled at zero field, where the loss at the
measurement temperatures is dominated by thermally-
excited quasiparticles. This gives us the ability to con-
tinue to resolve the resonance lines with the anticipated
enhanced levels of loss once vortices are introduced.

In order to control the number of vortices in the res-
onators, we cool through the transition temperature Tc

in an applied magnetic field B. The process for the
trapping of vortices in a thin superconducting strip of
width w upon field-cooling has been studied experimen-
tally [23, 24, 25] and theoretically [26, 27, 28], indicat-
ing a threshold cooling field Bth below which all of the
magnetic flux will be expelled from the strip. Apart
from numerical details of the various approaches, this
threshold field has been shown to scale approximately
like Bth ∼ Φ0/w2. In order to trap vortices only in the
resonators, we design the ground plane to have a lattice
of holes, with the webbing and the feedline linewidth to
be a factor of three narrower than that of the resonator,
which is nominally 12 µm [Fig. 1(b)]. This should then
provide about a decade of range in the cooling field where
vortices are primarily trapped in the resonators, with
Φ0/w2 ≈ 14 µT.

We use the same layout from Fig. 1(a) to pattern res-
onators from thin films of Re and Al. The Re films were
50 nm thick and were deposited by electron-beam evap-
oration onto a-plane sapphire at a temperature of 850 C.
The Al films were 150 nm thick and were also electron-
beam evaporated onto c-plane sapphire that was not
heated. Both types of films were patterned photolitho-
graphically followed by a reactive ion etch in a combina-
tion of BCl3, Cl2, and CH4 (Al) or SF6 and Ar (Re). The
superconducting transition temperatures Tc for the films
were identified with the corresponding step in the mi-
crowave transmission S21 through the feedline away from
any of the resonance dips, leading to T Re

c = 1.70 K and
T Al

c = 1.13 K. The width of the center conductors for the
measured resonators was 11.9 µm for the Re and 11.5 µm
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for the Al. The normal state resistivities were measured
to be ρRe

n = 1.6 µΩ-cm at 4 K, with RRR = 11, for the
Re, and ρAl

n = 0.33 µΩ-cm at 2 K, with RRR = 10, for
the Al. In the bulk, both Re and Al are Type-I supercon-
ductors, however, films of Type-I superconductors with
thicknesses less than the bulk coherence length in perpen-
dicular magnetic fields have been shown to support the
nucleation of h/2e Abrikosov vortices [29, 30, 31, 32, 33].

We cool the resonators to ∼ 300 mK using a 3He re-
frigerator and we generate the magnetic field with a su-
perconducting Helmholtz coil. A µ-metal cylinder atten-
uates stray magnetic fields in the laboratory. We per-
form our measurements using a vector network analyzer
(Agilent N5230A) to record the magnitude and phase
of the transmission through our feedline, S21. The mi-
crowave drive signal is delivered to one side of the feed-
line through a lossy stainless steel semi-rigid coaxial line
combined with -56 dB of cold attenuation [Fig. 1(c)].
The chip containing the resonators is mounted and wire-
bonded into a custom chip carrier with ports for trans-
mitting signals through the feedline. The signal on the
output side of the feedline is amplified with a cryogenic
HEMT amplifier (Caltech, model 165D) that is mounted
on the 4K flange of the refrigerator, before returning to
the network analyzer. The HEMT has a gain of ∼ 38 dB
between 0.5 − 11 GHz with a noise temperature in this
range of TN ≈ 5 K. We also include a 3 dB attenuator
between the output of the chip carrier and the coaxial
line to the HEMT to suppress spurious resonances and
reduce noise fed back from the HEMT input; a circu-
lator would not be practical here because of the wide
bandwidth required for our measurements.

In the vicinity of a resonance we observe a dip in |S21|,
while away from the resonances, the feedline exhibits full
transmission, upon accounting for the cold attenuation,
loss from the chip carrier and stainless steel coaxial line,
as well as the gain from the HEMT. The response of these
various components was calibrated separately with our
network analyzer. Over a wide range of power, roughly
60 dB, we observe no variation of the resonance line-
shape [Fig. 2(a)]. For stronger driving, ∼ −62 dBm
or larger delivered to the feedline, the dip becomes non-
linear and the quality factor decreases. The nonlinear
response of strongly driven superconducting resonators
has been investigated extensively in a variety of contexts
[34, 35, 36]. To avoid such strong-driving nonlinearities
we measure our resonators with a weak microwave drive,
typically delivering a power of less than −82 dBm to the
feedline. In order to extract the quality factor Qfit and
center frequency f0 for each resonator, we fit the reso-
nance trajectory in the complex plane, following a sim-
ilar 10-parameter fitting procedure to what is done for
MKID measurements [21]. Figure 2(b) shows an exam-
ple measurement of the magnitude and phase of S21 for
the Re resonator near 1.8 GHz cooled in B = 56.4 µT,
along with the corresponding fit.

FIG. 2: (Color online) (a) Dips in magnitude of S21 for differ-
ent microwave drive power for the Re resonator near 1.8 GHz,
B = 92.5 µT. (b) Magnitude and phase of S21 for Re res-
onator near 1.8 GHz cooled in B = 56.4 µT (symbols), along
with the corresponding fit (solid lines) as described in text;
Qfit = 10040, f0 = 1.758499 GHz.

FIG. 3: (Color online) Magnitude of S21 for different cooling
fields B for resonator near 1.8 GHz on (a) Re chip with B
from 0 to 149.6 µT; (b) Al chip with B from 0 to 94.5 µT.

MEASUREMENTS

We study the influence of vortices in the resonators by
repeatedly field-cooling through Tc in different magnetic
fields. For each value of B, we heat the sample above Tc

to 1.95 K (1.4 K) for Re (Al), adjust the current through
our Helmholtz coil to the desired value, then cool down
to 300 mK (310 mK) for Re (Al). The cooling time for
each field point is approximately 30 minutes. During our
measurements we regulate the temperature on the sample
stage to within ±0.2 mK of the stated values.

The addition of vortices through field-cooling results
in a downward shift in the resonance frequency and a re-
duction in the quality factor. This general trend can be
seen in Figure 3 where we plot the magnitude of S21 for
several different cooling fields for the Re and Al chips for
the resonator near 1.8 GHz. While the general trend is
similar for the Re and Al resonators, the details of the
response for the two materials are clearly quite different,
with a more substantial broadening of the resonance dip
with B for Al compared to the Re. By fitting the reso-
nance trajectories for each of the four resonators at each
cooling field on the Re and Al chips, we are able to ex-
tract the field and frequency dependence of Qfit and f0

for the two materials.

We compute the excess loss in each resonator due to
the presence of vortices, 1/Qv, by fitting the resonance
at a particular magnetic field to obtain 1/Qfit(B) and
subtracting the inverse quality factor measured with B =
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FIG. 4: (Color online) Fractional frequency shift δf/f0(B)
for (a) Re and (b) Al. Excess loss due to vortices 1/Qv(B),
as defined by Eq. (2) for (c) Re and (d) Al.

0, according to

1/Qv = 1/Qfit(B) − 1/Qfit(0), (2)

thus removing the loss due to thermal quasiparticles, cou-
pling to the feedline, and any other field-independent loss
mechanisms. The uncertainties in our values of 1/Qv

from the fitting process are less than 7 × 10−6 and the
corresponding error bars are too small to be seen for most
of the points in Figure 4(c, d).

We extract the fractional frequency shift of each reso-
nance relative to its center frequency at B = 0:

δf/f0 = [f0(0) − f0(B)] /f0(0). (3)

The uncertainties in our values of δf/f0 from the fitting
process are less than 2 × 10−10 and are not visible in
Figures 4(a, b).

We plot 1/Qv(B) and δf/f0(B) for Re [Figs. 4(a, c)]
and Al [Figs. 4(b, d)]. For both materials, there is a
region near zero field where there is essentially no change
in 1/Qv or f0, corresponding to cooling fields below the
threshold for trapping vortices in the resonators. Above
this threshold, both 1/Qv and δf/f0 increase with |B|
for both materials. However, the frequency dependences
of these quantities are quite different between the Re and
Al films. For the Re resonators at a particular B, δf/f0

decreases slightly with increasing frequency [Fig. 4(a)],
while for Al there is a substantial decrease in δf/f0 with
increasing frequency [Fig. 4(b)]. Even more striking, the
loss due to vortices 1/Qv increases with frequency for Re
[Fig. 4(c)], while it decreases for Al [Fig. 4(d)].

ANALYSIS AND EFFECTIVE RESISTIVITY

Gittleman and Rosenblum (GR) first considered Eq.
(1) and derived a complex resistivity due to the vortex
response [10]. This model was later extended by Coffey

and Clem [37], as well as Brandt [38], to address issues
of microwave vortex dynamics in the high-Tc supercon-
ductors, including the influence of flux creep, where vor-
tices can wander between pinning sites either by thermal
activation or tunneling [39]. Pompeo and Silva demon-
strated that these various models can be described by a
single expression for an effective complex resistivity ρ̃v

due to vortices [15]:

ρ̃v =
Φ0 (B − Bth)

ηe

ǫ + if/fd

1 + if/fd

, (4)

where fd = kp/2πηe is the characteristic depinning fre-
quency that corresponds to the crossover from elastic to
viscous response; ǫ is a dimensionless quantity that de-
scribes the strength of the flux creep and can range be-
tween 0 – recovering the zero-temperature GR model –
and 1 – when ρ̃v is purely real and equal to the con-
ventional Bardeen-Stephen flux-flow resistivity [40]. The
threshold cooling field is accounted for by including Bth.
For B < Bth there are no vortices present and ρ̃v = 0,
although pinning can result in the trapping of vortices
for B somewhat smaller than Bth. The real part of ρ̃v

is associated with the loss contributed by the vortices,
while the imaginary part of ρ̃v determines the reactive
response of the vortices. Relating fd and ǫ to the pin-
ning potential depends on the details of the particular
vortex dynamics model one considers [15].

In a variety of contexts the microwave response of a
superconductor is often characterized in terms of the sur-
face impedance Zs = Rs + iXs. Changes in Zs under dif-
ferent conditions, for example, different vortex densities
determined by B, can then be separated into changes in
the surface resistance ∆RS(B) and reactance ∆XS(B),
where these quantities correspond to the differences be-
tween measurements at B and zero field. For a partic-
ular superconducting resonator, ∆RS(B) and ∆XS(B)
can be related to the observable quantities 1/Qfit and
δf/f0 through

∆Rs(B) = G∆[1/Qfit(B)] = G [1/Qv(B)] , (5)

∆Xs(B) = 2G [δf/f0(B)] , (6)

where the geometrical parameter G depends on the de-
tails of the resonator geometry, the current distribution,
and the kinetic inductance contribution [41, 42]. Often
the dimensionless ratio r = ∆XS/∆RS lends useful in-
sight into the microwave response and thus eliminates
the influence of G. The complex vortex resistivity ρ̃v can
also be related to r as

r =
Im(ρ̃v)

Re(ρ̃v)
, (7)

thus providing a path for comparing our measured quan-
tities with the generalized vortex response given by Eq.
(4) [15, 16]. By analyzing the r−parameter and its fre-
quency dependence from our measurements, we will ex-
tract fd and ǫ for the Re and Al films. We can then study
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FIG. 5: (Color online) r(B) for (a) Re and (b) Al films for
four different resonator lengths.

the field dependence of the loss or frequency shift data
separately to compare ηe for the two materials.

In Figure 5 we plot r(B) calculated from the data in
Figure 4 for the four different resonators on the Re and
Al chips. For the Re resonators r is well above unity, in-
dicating the dominance of the reactive contribution of the
vortex dynamics in the frequency range covered by our
chip layout. In contrast, r is near or somewhat less than
unity for the Al resonators, indicating the significant loss
related to the vortex motion in this system. When |B| is
less than the threshold to trap vortices, 1/Qv ≈ 0 and r
diverges, thus we do not include values for r in this range
in Fig. 5. For |B| somewhat larger than the threshold,
r becomes roughly field-independent, particularly for the
Re film. When |B| is just beyond the threshold, there
are clear differences in r(B) between the Re and Al films
that will be addressed shortly.

The frequency dependence of r can be seen in Figure
5 by focusing on a particular value of B and observing
the variation in r for the four resonators. We plot this
explicitly in Figure 6 for one field each for Re and Al,
where, for both films, r decreases with frequency. We
can make a two-parameter fit to the r(f) data in Fig. 6
with Eqs. (4, 7) by varying fd and ǫ. Performing this
same analysis for each value of B in Figure 5 yields fit
values fd(B) and ǫ(B) (Fig. 7). We note that for both
our Re and Al data, it is not possible to fit r(f) with
ǫ = 0.

From Figure 7, there is clearly a substantial difference
in fd for the Re and Al films. For |B| > 50 µT, well
beyond the threshold for trapping vortices, the average
of fRe

d from Figure 7(a) is 22 GHz, much higher than our
highest resonator fundamental frequency. In contrast, for
Al, the average of fAl

d from Figure 7(b) is 4 GHz, near
the lower end of our resonator frequencies.

The ratio of the depinning frequencies fRe
d /fAl

d can be
used to compare the relative pinning strength for the Re
and Al films with the following expression

kRe
p

kAl
p

=

(

fRe
d

fAl
d

)(

ηRe
e

ηAl
e

)

. (8)

We can extract ηRe
e /ηAl

e from the 1/Qv(B) data of Fig-
ure 4 based on Eq. (4) by writing the resistance due to

FIG. 6: (Color online) r(f) for Re with B = −130.9 µT
(closed circles) and Al with B = −75.5 µT (open circles)
along with fits as described in text. Fit parameters are fd =
22.6 GHz (4.2 GHz) and ǫ = 0.0039 (0.15) for Re (Al).

FIG. 7: (Color online) B−dependence of parameters from fits
to r(f) at each B: fd for (a) Re and (b) Al; ǫ for (c) Re and
(d) Al films. Note the different scale factors on ǫ between (c)
and (d).

vortices Rv as

Rv = j(x)Re [ρ̃v] (l/wt) , (9)

where l is the resonator length, t is the thickness, and j(x)
is a dimensionless factor that scales Rv based on the cur-
rent density Js(x) at the position x of the vortices across
the width of the resonator. In general, Js(x) will be non-
uniform with more current flowing along the edges of the
center conductor. Thus, j(x) = Js(x)2/〈Js〉

2, where 〈Js〉
is the average current density across the center conduc-
tor. The numerical calculation of j(x) will be discussed
further in the subsequent section. For a resonator at f0,
1/Qv can be related to Rv and then ρ̃v by

1/Qv = (Rv/l) /2πf0L
′ (10)

= j(x)Re [ρ̃v] /2πf0wtL′ (11)

where L′ is the inductance per unit length of the res-
onator. After applying the definition of ρ̃v from Eq. (4)
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FIG. 8: (Color online) Plot of q(f0/fd), computed based on
definition in the text, which is proportional to ∂(1/Qv)/∂B
with ǫ values from text corresponding to Re (solid red line)
and Al (dashed purple line).

we then differentiate both sides of Eq. (11) with respect
to B:

∂(1/Qv)

∂B
=

j(x)Φ0

2πf0wL′

(

1

tηe

) [

ǫ + (f0/fd)
2

1 + (f0/fd)2

]

. (12)

By scaling with the frequency-independent factors on
the right-hand side of Eq. (12), we can investigate the
frequency dependence of ∂(1/Qv)/∂B. In Figure 8 we
plot q(f0/fd) = (fd/f0)(ǫ + (f0/fd)

2)/(1 + (f0/fd)
2) for

the ǫ values obtained from fits to the r(f) data for Re
and Al. With ǫ small, q(f0/fd) is an increasing func-
tion for f0 < fd – characteristic of our measurements
on Re, where all of the resonances are below fRe

d and
there is greater loss at higher frequencies. For f0 > fd,
q(f0/fd) is a decreasing function. In addition, a larger
value of ǫ enhances the loss at frequencies comparable to
and less than fd, and this dependence is characteristic of
our measurements on Al, where fAl

d is near the lower end
of our resonances and we observe a decrease in the loss
for increasing frequency.

We can compute ∂ (1/Qv) /∂B from the data in Fig.
4(c, d) by making linear fits for the data beyond the
threshold shoulder. If we then use the ǫ and fd parame-
ters from the r(f) fits in Figure 7, and neglect the small
difference in L′ between the Re and Al resonators be-
cause of differences in kinetic inductance, we can apply
Eq. (12) to the Al and Re data, then take the ratio of
these for each of the four resonator lengths. After ac-
counting for tRe/tAl we obtain ηRe

e /ηAl
e ≈ 1. A related

analysis involving the δf/f0 data and Im[ρ̃v] yields ap-
proximately the same value for ηRe

e /ηAl
e .

For comparison, we can also estimate ηRe
e /ηAl

e assum-
ing ηe corresponds to the Bardeen-Stephen (BS) flux-flow
viscosity η [40]. In this model, each vortex core is treated
as a normal cylinder with a radius equal to the effective
coherence length ξe with resistivity ρn. Dissipation dur-

ing the vortex motion leads to a viscosity η = Φ2
0/2πρnξ2

e

[6, 40].

Using ρAllAl = 4 × 10−16 Ω m2 from Ref. [43] and
our measured value of ρAl, we estimate the electronic
mean free path of our Al film to be of the order of
100 nm, much less than the BCS coherence length for
Al, ξ0 ≈ 1500 nm [6], thus putting the Al film well into
the dirty-limit. We have measured the shift in Tc as a
function of magnetic field for the Al film, and thus ob-
tained S = −dBc2/dT |Tc

, which we can then use with
the standard dirty-limit expression [44] to obtain the ef-
fective coherence length ξAl

e ≈ 230 nm, consistent with
estimates for other Al thin films [43].

We are not aware of any measurements of the coher-
ence length in Re. Furthermore, it is not clear if the Re
films are in the dirty limit, thus we can attempt to es-
timate ξRe

e using the BCS expression: ξ0 = ~vF /π∆(0)
with ∆(0) = 1.76kBTc [6]. If we apply the free-electron
model, we can write vF = (πkB/e)2/γρl, where γ is the
linear coefficient of the specific heat (260 J m−3 K−2 for
Re [45]). The quantity ρl is the product of the resistiv-
ity and mean free path with reported values for Re of
4.5 × 10−15 Ω m2 in Ref. [46] and 2.16 × 10−15 Ω m2 in
Ref. [47]. This results in ξRe

0 ≈ 50 − 100 nm. We note
that these values of ρl imply a mean free path for our
Re film between ∼ 140 − 280 nm, thus confirming that
the film is not in the dirty limit. Thus, we will assume
ξRe
e = ξRe

0 .

Using the BS flux-flow model with the parameter es-
timates above results in a viscosity ratio ηRe

e /ηAl
e =

(

ρAl
n /ρRe

n

) (

ξAl
e /ξRe

e

)2
between 1 and 4, depending on the

value for ξRe
e , with the lower end of this range consis-

tent with our measured viscosity ratio of ∼ 1 from the
1/Qv(B) data. Combining a viscosity ratio of ηRe

e /ηAl
e ≈

1 with the ratio of our depinning frequency fit values
fRe

d /fAl
d in Eq. (8) results in kRe

p /kAl
p ≈ 5.

The Re films in our experiment are nearly epitaxial,
but highly twinned, based on RHEED measurements
during the film deposition. Such extended defects likely
result in strong pinning, particularly when the twins are
oriented roughly along the length of the resonators, and
thus perpendicular to the Lorentz force direction. On
the other hand, the Al films deposited on non-heated
substrates likely do not have such extended defect struc-
tures, but rather have defects that are small compared
to ξAl

e . Thus, one would expect weaker pinning in the Al
films, consistent with kRe

p /kAl
p > 1. Because of the dif-

ference in pinning strength, flux creep is more significant
in the Al films, particularly with |B| well beyond Bth,
where ǫAl ≈ 0.15, compared to Re, where ǫRe ≈ 0.003.
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THRESHOLD FIELDS AND VORTEX

DISTRIBUTIONS

In order to examine the field dependence near Bth more
closely, in Figure 9 we plot 1/Qv(B) for Re and Al to-
gether, but only for B ≥ 0 for the lowest- [Fig. 9(a)] and
highest-frequency [Fig. 9(b)] resonators. Near B = 0 we
observe 1/Qv ≈ 0, indicating the presence of a thresh-
old field below which vortices are not trapped in the
resonators. For magnetic fields beyond the initial on-
set from 1/Qv = 0, there is a linear increase in 1/Qv

and we include linear fits to 1/Qv(B) [Fig. 9(a, b)]. As-
suming 1/Qv is proportional to the density of vortices
in the resonator, our observed 1/Qv(B) corresponds to a
linear increase in vortex density with B, consistent with
previous magnetic imaging measurements of field-cooled
superconducting strips [23, 24]. Following this analysis,
we can identify the point where these linear fits intercept
1/Qv = 0 as Bth. For the linear fits to the Re (Al) data,
we obtain BRe

th = 45 ± 2 µT (BAl
th = 30 ± 2 µT) for the

resonator near 1.8 GHz.
The field-cooling of a thin superconducting strip has

been studied theoretically by Likharev [28], Clem [26],
and Maksimova [27] and these treatments were also de-
scribed in Refs. [23, 24, 25]. Sufficiently close to Tc, the
effective thin-film penetration depth Λ = 2λ2/d can be-
come comparable to the strip width w, resulting in a uni-
form field distribution throughout the strip just below Tc.
As the temperature is lowered further and superconduct-
ing order develops, the magnetic field through the strip
nucleates into vortices and the ultimate spatial distribu-
tion of these depends on the vortex Gibbs free energy.
The theoretical treatments of this problem have consid-
ered the Gibbs free energy for a single vortex in the strip,
G(x), where the x-coordinate is oriented across the width
of the strip. This is determined by the interaction energy
of the Meissner screening currents in the strip with the
vortex and the self-energy of the vortex circulating cur-
rents. For small magnetic fields, G(x) has a maximum in
the center of the strip and falls off towards the edges of
the strip, thus vortices do not nucleate in the strip upon
cooling below Tc. As the strength of the cooling field is
increased, the maximum in the middle of the strip flat-
tens and eventually develops a dip in the center of the
strip. Clem [26] and Maksimova [27] considered the de-
velopment of this dip at B0 = πΦ0/4w2 to correspond to
the threshold field for trapping vortices near the center
of the strip. Likharev argued that the trapping threshold
is not reached until G(x) = 0 in the center of the strip
[28], leading to the expression

Bs =
2Φ0

πw2
ln

(

αw

ξ

)

. (13)

The constant α is related to the treatment of the vortex
core and can be 2/π [48] or 1/4 [28]. In their thresh-
old field imaging measurements for Nb strips of different

widths, Stan et al. found that Eq. (13) with α = 2/π
best described their observed values of Bth. A related
model for vortex trapping in thin superconducting strips
was proposed by Kuit et al. [24], who considered the cre-
ation of vortex-antivortex pairs upon cooling through Tc.
This model predicts a threshold field BK = 1.65Φ0/w2

and successfully described the measured Bth values for
field-cooled YBCO strips of different widths [24].

If we take our Bth values from the resonators near
1.8 GHz, BRe

th = 45± 2 µT and BAl
th = 30± 2 µT, we can

compare these with the various approaches. All of our
resonators are nominally 12 µm wide, thus B0 = 11 µT
and BK = 24 µT, which are below our measured Bth and
do not account for the differences between the Re and Al
films. Applying Eq. (13) with α = 2/π and assuming
Bs = Bth, we obtain ξRe

e = 60 nm and ξAl
e = 360 nm.

We note that these are within a factor of ∼ 2 of our
earlier estimates for ξRe

e and ξAl
e , although one might ex-

pect the relevant coherence lengths in determining Bth to
be somewhat larger, corresponding to an elevated tem-
perature at which vortices first become trapped in the
films during the cooling process. On the other hand,
the logarithm makes the dependence of Bs on w/ξ weak,
thus making it difficult to perform a detailed quantita-
tive comparison of ξe based on the Bth values alone. It is
possible that the various trapping models require modi-
fications to account for films of superconductors that are
Type-I in the bulk and thus have relatively short pene-
tration depths. If Λ were to remain finite compared to w
at the temperatures where vortices begin to nucleate, the
assumptions of weak screening and nearly uniform mag-
netic field distributions would need to be adjusted. Such
a treatment is beyond the scope of our present work.

In Figure 9(a, b) it is clear that 1/Qv(B) deviates
from the linear dependence for fields near Bth, and 1/Qv

first becomes nonzero at B = Bonset < Bth. Thus
1/Qv(B) exhibits shoulders, with BRe

onset ≈ 30 µT and
BAl

onset ≈ 20 µT. Stan et al. observed a deviation at small
fields from the linear increase of vortex density with B
and the initial trapping of vortices occurred at magnetic
fields somewhat below Bth [23]. This behavior was at-
tributed to the presence of pinning, which resulted in
local minima in G(x) such that vortices could become
trapped in the strip for B < Bs. Subsequently, Bronson
et al. performed numerical simulations of this process
and were able to obtain n(B) curves that agreed with
the measurements of Stan et al. [25], where n is the vor-
tex density. By varying the pinning strength and density,
Bronson et al. found regimes where n(B) increased for
B < Bth with a smaller slope than the linear increase
observed at large fields, as well as regimes where n(B)
increased more steeply for B < Bth than the linear de-
pendence at large fields, resulting in a shoulder on n(B).

If we assume that 1/Qv(B) is proportional to n(B) in
our Re and Al resonators, the shoulders that we observe
in 1/Qv(B) for B < Bth would be related to the same
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FIG. 9: (Color online) 1/Qv(B) for B ≥ 0 for Re and
Al together for (a) lowest-frequency resonator; (b) highest-
frequency resonator. Solid lines are linear fits to the B-
dependence well beyond the shoulder region as described in
text. Bth corresponds to intercept of fit line with 1/Qv = 0.

enhancement of vortex trapping by pinning as discussed
in Refs. [23, 25]. However, if one examines the r(B) data
plotted in Fig. 5, it appears that the situation may be
somewhat more subtle. In the simplest case, if there were
pinning wells of only one depth, one would expect r(B)
for a particular frequency to be flat, at least for n(B) less
than the density of pinning sites, as the B−dependence
in the frequency shift and loss would cancel out for the
calculation of r. On the other hand, a distribution of pin-
ning well depths would likely favor the initial trapping of
vortices in the deepest pinning wells, which would result
in larger values of r for B just above Bonset. Such a pic-
ture, with a few deeper pinning wells, is consistent with
our measurements of r(B) in Re [Fig. 5(a)], where r(B)
is mostly flat, with a small upturn as |B| approaches
Bonset, particularly for the lowest frequency resonator.
The measurements of r(B) for Al [Fig. 5(b)] exhibit a
more gradual increase in r as |B| is reduced towards Bth,
which may be related to a broader distribution of pin-
ning energies in the Al films. The decrease in r(B) for
Bonset < B < Bth for the Al resonators, implying a
weaker pinning of the initial vortices trapped in the film,
is not understood presently.

The vortex position in the resonator plays an impor-
tant role in determining the response because of the non-
uniform current density distribution in a superconduct-
ing coplanar waveguide Js(x), where the current density
is larger at the edges. Thus, one must account for this
when converting from ρ̃v to, for example, an effective re-
sistance Rv, as in Eq. (9). One approach for computing
Js(x) involves numerically solving the two-dimensional
London equations [? ] for our CPW geometry and we
plot this in Figure 10(a), where we have scaled Js(x)2 by
the square of the average current density in the center
conductor 〈Js〉

2 to obtain the dimensionless factor j(x)
that we introduced previously. Vortices trapped along
the centerline of the resonator will experience the small-
est Js(x) and will thus exhibit the weakest response com-
pared to vortices trapped near the resonator edge, which
will respond most strongly.

From the vortex imaging measurements of Stan et al.

FIG. 10: (Color online) (a) Calculated current density dis-
tribution normalized by the average current density, j(x) =
Js(x)2/〈Js〉

2, for CPW geometry with parameters for Al res-
onator: w = 11.5 µm (indicated by blue dashed lines) and
6.4 µm gap between the center conductor and the ground
plane (indicated by red dash-dotted lines). Predicted vortex
configurations in absence of pinning disorder based on Ref.
[25] for (b) Bth < B < 2.48Bth; (c) B > 2.48Bth.

and Kuit et al., for B just beyond Bonset, the vortices
tended to line up in a single row along the centerline
of the strips, while for somewhat larger B the vortices
formed multiple rows [23, 24]. The numerical simula-
tions of Bronson et al. indicated that the vortices should
form a single row until B = 2.48Bth, at which point
the distribution would split into two rows, one on either
side of the strip centerline at x ≈ ±(w/2)/3 [25] [Fig.
10(b, c)]. For B ≈ 5Bth the vortices would then form
three rows, and so on. Following these simulations, our
measured values of Bth for the Re and Al films would
correspond to the single-row configuration over much of
the range of B from our measurements, with the condi-
tion B > 2.48Bth occurring towards the upper end of our
cooling fields. Assuming a single-row configuration, we
can estimate the typical vortex spacing near the middle
of our field range if we assume the vortex density to be
described by n(B) = (B − Bth)/Φ0 for B well beyond
Bth, which is consistent with the measurements of Stan
et al. [23]. For a cooling field of 2Bth as an example, this
corresponds to a vortex spacing of 4 µm at B = 86 µT
for the Re resonators.

If pinning disorder were negligible, such that a clear
transition from the single- to double-row configurations
were to occur, one would expect a kink in the 1/Qv(B)
data with a larger slope at the largest fields of our
measurements and beyond. The ratio of the slope of
1/Qv(B) above and below the kink should correspond to
the ratio of j(x) for |x| = (w/2)/3 ≈ 1.9 µm (the vor-
tex location in the two-row configuration) and x = 0
(the vortex location in the one-row configuration), or
Js(1.9 µm)2/Js(0)2 = 1.15. While such a kink is not
clear from our data, a denser series of measurements over
a somewhat larger field range could potentially reveal this
slope change, provided the random pinning was not too
strong.

Based on our measurements we have compiled a
table of the various parameters for our Re and Al films
(Table I). These values can be used to compute ρ̃v,
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Material
Tc ρn fd ǫ ξe Bth

(K) (µΩ cm) (GHz) (nm) (µT)

Re 1.70 1.6 22 0.003 50−100 45
Al 1.13 0.33 4 0.15 230 30

TABLE I: Characteristic parameters for Re and Al thin films
and vortices.

then combined with j(0) = 0.35 [Fig. 10(a)], assuming a
single-row vortex configuration, and Eq. (12) to calculate
∂ (1/Qv) /∂B. This results in a calculated slope that
ranges between a factor of 0.6−1.0 of the fit slopes in Fig.
9 for the different Re and Al resonators. A similar anal-
ysis for the ∂ (δf/f0) /∂B data, following the approach
of Eqs. (11-12), yields a comparable level of agreement
between our calculated and fit slopes. As described
previously, disorder in the vortex positions caused by
a random distribution of pinning sites could lead to
deviations from the ideal single-row vortex configuration.
Thus, this microwave vortex response model provides
a satisfactory description of our measurements on Re
and Al resonators. The same approach could be used to
predict the microwave response of vortices in resonators
patterned from other materials, although this would
require some assumptions about the pinning strength in
advance in order to estimate probable values for fd and ǫ.

CONCLUSIONS

We have measured the microwave response of vortices
in superconducting thin films of Re and Al using reso-
nant circuits. We introduced vortices by cooling in fields
of the order of 100 µT and below, and the vortex density
exhibited a threshold field followed by a linear increase
with field, consistent with previous vortex imaging exper-
iments in Nb and YBCO strips. Despite the low vortex
densities of our measurements, the response can be de-
scribed reasonably in the context of an effective complex
resistivity, which involves the pinning strength and vor-
tex viscosity, along with a flux creep factor to account
for the escape of vortices from pinning wells.

Even at the small magnetic fields of our experiments,
it is clear that the presence of vortices has a substantial
influence on the resonator quality factor, although the
film properties play an important role in the vortex re-
sponse as well. Vortices in the Re resonators contribute
significantly less loss, particularly at the lower frequen-
cies of our measurements, compared to vortices in Al res-
onators. These differences are consistent with stronger
pinning in the Re films relative to the Al. This suggests
the possibility of controlling, and ideally reducing, the
vortex loss in Al films with artificially patterned pinning
configurations. Nonetheless, it is important to design su-

perconducting microwave circuits with narrow linewidths
for large Bth to eliminate trapped vortices due to ambi-
ent magnetic fields that are present when the devices are
cooled through Tc. Of course, these ambient fields can be
reduced in the first place with sufficient magnetic shield-
ing. However, even with a low ambient field, one should
also be careful to design a layout to minimize the pos-
sibility of pulsed control currents injecting vortices into
resonators and other traces that require low loss.
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