On the Question ‘Do We Need Identity?’

William C. Purdy
Syracuse University, wcpurdy@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

Part of the [Computer Sciences Commons](https://surface.syr.edu/eecs_techreports)

Recommended Citation

https://surface.syr.edu/eecs_techreports/101

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.
On The Question 'Do We Need Identity?'

William C. Purdy

October 1991

School of Computer and Information Science
Syracuse University
Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100
On the Question ‘Do We Need Identity?’

William C. Purdy*

October 1991

*School of Computer and Information Science, Syracuse University
Abstract

Sommers posed the question ‘Do We Need Identity?’ and answered in the negative. According to Sommers, the need for a special identity relation resulted from an arbitrary distinction between concept and object introduced by Frege and retained in modern predicate logic (MPL). This is reflected in the syntactic distinction between predicate and individual constant. Traditional formal logic (TFL) does not respect this distinction and, as a consequence, has no need for a special identity relation. But Sommers’ position has not gained general acceptance. On the contrary, it has received considerable criticism. While it is conceded that TFL can express the identity of individual constants, it is quickly pointed out that this falls far short of providing the expressiveness of the logical identity relation. But the precise extent of the deficit in expressiveness, if indeed there is any deficit, has not been determined. It appears that Sommers’ position on identity has not been adequately formalized to permit such a determination. This paper formalizes and extends Sommers’ position on identity. This formalization is compared with MPL to define precisely the difference in expressive power. The conclusion is that it has less expressive power than MPL, but nonetheless does provide essentially all the expressiveness of the logical identity relation. The formal language defined for this investigation is similar to the language of MPL. The similarity will not only facilitate comparison, but perhaps will also make this formal language more palatable to readers whose experience and/or predisposition favors MPL.
The question 'Do We Need Identity?' was raised by Sommers [4, 5]. He answered that a special identity relation is not needed in traditional formal logic (TFL), since predication and the laws governing it already allow identity to be expressed. But Frege injected a new, and arbitrary, distinction into modern predicate logic (MPL), which gave rise to the need for an identity relation.

The distinction is between concept and object, reflected in the syntactic distinction between predicate and individual constant (or name). Its import is that a predicate can predicate, but an individual constant cannot. Consequently, two individual constants can be related only under a binary predicate. In particular, two individual constants can be declared identical only by a binary identity relation.

TFL does not respect this distinction. In TFL an individual constant, denoting an object, can occupy the predicate position. For example, 'Hans is John' predicates the property (concept) of being John to Hans. But if 'John' is a predicate in 'Hans is John', consistency dictates that it is a predicate also in 'John is kind', and hence can be quantified. Thus 'some John is kind' must be well-formed, and must assert that the denotations of the predicates 'John' and 'kind' have nonempty intersection. Since 'John' is singular (i.e., denotes a singleton set), this is tantamount to asserting that the unique element in the set denoted by 'John' is a member of the set denoted by 'kind'. Therefore, 'John is kind' can be viewed as abbreviation for 'some John is kind'. Because of the singularity of the predicate 'John', 'some John is kind' is equivalent to 'all John is kind'. To indicate that 'John' is thus simultaneously universally and existentially quantified, Sommers writes 'ジョン is kind'. This he calls 'wild quantity'.
When the arbitrary distinction between object and concept is eliminated, the need for a special identity relation disappears. Thus ‘*Hans is John’ asserts that the denotations of the predicates ‘Hans’ and ‘John’ have nonempty intersection (equivalently, the denotation of ‘Hans’ is a subset of the denotation of ‘John’), that is, are identical. Sommers gives a demonstration that for individual constants a and b, the unary predication ‘*a is b’ in TFL has all the properties ascribed to the binary predication ‘$a = b$’ in MPL.

But Sommers’ position has not gained general acceptance. On the contrary, it has received considerable criticism. While it is conceded that ‘*a is b’ can express the identity of individual constants, it is quickly pointed out that this falls far short of providing the expressiveness of the logical identity relation. But the precise extent of the deficit in expressiveness, if indeed there is any deficit, has not been determined. It appears that Sommers’ position on identity has not been adequately formalized to permit such a determination.

This paper formalizes and extends Sommers’ position on identity. This formalization is compared with MPL to define precisely the difference in expressive power. The conclusion is that it has less expressive power than MPL, but nonetheless does provide essentially all the expressiveness of the logical identity relation.

The formal language defined for this investigation (hereinafter referred to as ‘PCS’) is similar to the language of MPL (hereinafter referred to as ‘PCI’). The similarity will not only facilitate comparison, but perhaps will also make PCS more palatable.
to readers whose experience and/or predisposition favors MPL. PCS differs from PCI in that the distinction between predicate and individual constant is not present.

In the following sections, the syntax and semantics of PCS are defined. Then the essential properties of singular expressions are established. To facilitate comparison, a conventional definition of PCI is provided. Translation from PCS to PCI demonstrates that PCS is equivalent to a subset of PCI. Translation from PCI to PCS is shown to be partial only, identifying a deficit in expressiveness of PCS relative to PCI. Therefore, there are wffs in PCI for which there are no semantically equivalent wffs in PCS. However, for such a wff in PCI, there is a schema in PCS that expresses the same meaning. In particular, any theory that can be axiomatized with axiom schemas in PCI can be axiomatized with axiom schemas in PCS. The treatment throughout is semantic; however, an axiomatic treatment can also be given (see [3]).
2 Definition of PCS

This section defines PCS, a first-order language that formalizes and extends Sommers' ideas regarding singular terms. PCS resembles PCI, the language of MPL, with the following difference. Singular predicates supplant individual constants and functions. It is not unusual to treat individual constants as nullary functions, nor to treat \(n \)-ary functions as \((n + 1)\)-ary predicates. But it appears that these devices have not been used together. When they are, the result is a uniformity in the treatment of individual constants, functions and predicates. While PCS does not have an identity relation, identity of singular expressions, which correspond to terms in PCI, can be expressed. Moreover, deduction with identicals can be performed conveniently in PCS.

2.1 Syntax
The vocabulary of PCS is listed first. Let \(\omega_+ := \omega - \{0\} \).

1. Predicate symbols \(\mathcal{P} \) of two kinds

 (a) ordinary predicate symbols \(\mathcal{R} = \bigcup_{n \in \omega_+} \mathcal{R}_n \), where \(\mathcal{R}_n = \{ R^n_i : i \in \omega \} \), and

 (b) singular predicate symbols \(\mathcal{S} = \bigcup_{n \in \omega_+} \mathcal{S}_n \), where \(\mathcal{S}_n = \{ S^n_i : i \in \omega \} \)

2. Variable symbols \(\mathcal{V} = \{ v_i : i \in \omega \} \)

3. Boolean operators \(\land \) and \(\neg \)

4. Quantifier \(\exists \)

5. Parentheses \((\) and \() \)

6. Comma \(, \)
There are no terms in PCS. In their stead, singular expressions are used. These are defined as follows:

1. if $S^1 \in S_1$ and and $x \in V$ then $S^1(x)$ is a singular expression

2. if $S^{n+1} \in S_{n+1}, x, x_1, \ldots, x_n \in V$ are distinct and S_1, \ldots, S_n are singular expressions, then $\exists x_1(S_1(x_1) \land \cdots \land \exists x_n(S_n(x_n) \land S^{n+1}(x_1, \ldots, x_n, x)) \cdots)$ is a singular expression

3. nothing else is a singular expression

Expressions in PCS are defined as follows:

1. if $P^n \in (R_n \cup S_n)$ and $x_1, \ldots, x_n \in V$, then $P^n(x_1, \ldots, x_n)$ is an expression

2. if ϕ is an expression then $\neg \phi$ is an expression

3. if ϕ, ψ are expressions then $(\phi \land \psi)$ is an expression

4. if ϕ is an expression and $x \in V$ occurs free in ϕ, then $\exists x \phi$ is an expression

5. nothing else is an expression

Free and bound variables are defined in the usual way. When a list of variable symbols follows an expression symbol, e.g., $\phi(x_1, \ldots, x_n)$, these variables are all the free variables and only free variables in the expression. When the expression symbol is used without a list of variable symbols, it is left open which variables are free in that expression. As a general rule, it is assumed that all expressions are rectified.
Since the intended interpretation of $\exists x \phi(x_1, \ldots, x_n, x)$ is identical to that of $\exists y \phi(x_1, \ldots, x_n, y)$, PCS expressions are defined to be equivalence classes, each equivalence class consisting of all alphabetic variants. This equivalence can be defined formally (e.g., see Barnes and Mack [1]), but this will not be done here. Any member of a given equivalence class will be used to represent the class. Hence the two forms given above represent the same PCS expression.

In the sequel, parentheses are dropped whenever no confusion can result. Metavariables are used as follows: R^n ranges over R_n; S^n ranges over S_n; P^n ranges over $R_n \cup S_n$; x, y, z range over V; S ranges over singular expressions; and ϕ, ψ, θ range over expressions. Applying subscripts to these symbols does not change their ranges.

2.2 **Semantics** An interpretation of PCS is a pair $I = \langle D, G \rangle$ where D is a nonempty set and G is a mapping defined on P satisfying:

1. if $R^n \in R_n$, then $G(R^n) \subseteq D^n$

2. if $S^{n+1} \in S_{n+1}$, then $G(S^{n+1}) \subseteq D^{n+1}$ such that for all $d_1, \ldots, d_n \in D$ there exists $d \in D$ with $(d_1, \ldots, d_n, d) \in G(S^{n+1})$ and for all $d' \in D$, $(d_1, \ldots, d_n, d') \in G(S^{n+1})$ implies $d' = d$

Let $g \in D^V$ be an assignment of values to variables, and ϕ be an expression of PCS. Then ϕ is satisfied by g in I (written $I \models \phi[g]$) iff one of the following holds:

1. $\phi = P^n(x_1, \ldots, x_n)$ and $(g(x_1), \ldots, g(x_n)) \in G(P^n)$

2. $\phi = \neg \psi$ and $I \not\models \psi[g]$
3. $\phi = \psi \land \theta$ and $(I |= \psi[g]$ and $I |= \theta[g])$

4. $\phi = \exists x \psi$, where x occurs free in ψ, and there exists $g' \in D^V$ that agrees with g off x such that $I |= \psi[g']$

An expression ϕ is true in I, written $I |= \phi$, iff for all $g \in D^V$, $I |= \phi[g]$. ϕ is valid, written $\models \phi$, iff ϕ is true in every interpretation.

2.3 Abbreviations

It is convenient to extend PCS by introducing the following abbreviations.

1. $\psi \lor \theta := \neg(\neg\psi \land \neg\theta)$

2. $\psi \rightarrow \theta := \neg(\psi \land \neg\theta)$

3. $\psi \leftrightarrow \theta := (\psi \rightarrow \theta) \land (\theta \rightarrow \psi)$

4. $\forall x \psi := \neg\exists x \neg\psi$

The semantics for these abbreviations can be given directly as follows:

1. If $\phi = \psi \lor \theta$ then $I |= \phi[g]$ iff $(I |= \psi[g]$ or $I |= \theta[g])$

2. If $\phi = \psi \rightarrow \theta$ then $I |= \phi[g]$ iff $(I |= \psi[g]$ implies $I |= \theta[g])$

3. If $\phi = \psi \leftrightarrow \theta$ then $I |= \phi[g]$ iff $(I |= \psi[g]$ iff $I |= \theta[g])$

4. If $\phi = \forall x \psi$, where x occurs free in ψ, then $I |= \phi[g]$ iff for all $g' \in D^V$ that agree with g off $x, I |= \psi[g']$
3 Properties of singular expressions Singular expressions play a central role in PCS. The denotation of a singular expression is a single (though not necessarily unique) individual. Singular expressions commute in a certain way with the Boolean operators. The principal result is that not only unary singular predicates, corresponding to individual constants in PCI, but more generally singular expressions exhibit 'wild quantity'. These results are established in this section.

In the following, if \(\phi(x_1, \ldots, x_n) \) is a wff, \(I \models \phi[d_1, \ldots, d_n] \) will abbreviate \(I \models \phi[g] \) where \(g \in \mathcal{D}^\nu \) such that \(g(x_1) = d_1, \ldots, g(x_n) = d_n \).

Lemma 1 There exists \(d \in \mathcal{D} \) such that \(I \models S[d] \) and for all \(d' \in \mathcal{D}, I \models S[d'] \) implies \(d' = d \).

Proof: Define the depth of a singular expression as follows. \(\text{depth}(S^1(x)) := 0. \)

\[
\text{depth}(\exists x_1(S_1(x_1) \Lambda \cdots \Lambda \exists x_n(S_n(x_n) \Lambda S^{n+1}(x_1, \ldots, x_n, x)) \cdots)) := 1 + \max\{\text{depth}(S_i(x_i)) : 1 \leq i \leq n\}.
\]

The proof is a straightforward induction on the depth of \(S(x) \).

In the following, Lemma 1 will be abbreviated \(\exists! d \in \mathcal{D} : I \models S[d] \).

Theorem 2 \(I \models \exists x_1(S_1(x_1) \Lambda \cdots \Lambda \exists x_n(S_n(x_n) \Lambda \neg \phi(x_1, \ldots, x_n)) \cdots) \) iff \(I \models \neg \exists x_1(S_1(x_1) \Lambda \cdots \Lambda \exists x_n(S_n(x_n) \Lambda \phi(x_1, \ldots, x_n)) \cdots) \).

Proof: \(I \models \exists x_1(S_1(x_1) \Lambda \cdots \Lambda \exists x_n(S_n(x_n) \Lambda \neg \phi(x_1, \ldots, x_n)) \cdots) \) iff \(\exists! d_1 \cdots \exists! d_n : (I \models S_1[d_1]) \Lambda \cdots \Lambda (I \models S_n[d_n]) \Lambda (I \models \neg \phi[d_1, \ldots, d_n]) \) iff \(\exists! d_1 \cdots \exists! d_n : (I \models S_1[d_1]) \Lambda \cdots \Lambda (I \models S_n[d_n]) \Lambda (I \not\models \phi[d_1, \ldots, d_n]) \) iff \(I \not\models \exists x_1(S_1(x_1) \Lambda \cdots \Lambda \exists x_n(S_n(x_n) \Lambda \neg \phi(x_1, \ldots, x_n)) \cdots) \).
\(\phi(x_1, \ldots, x_n) \) \(\cdots \) iff \(\mathcal{I} \models \neg \exists x_1(S_1(x_1) \land \cdots \land \exists x_n(S_n(x_n) \land \phi(x_1, \ldots, x_n)) \cdots \) (follows from the definition of satisfaction and Lemma 1).

Corollary 3 \(\mathcal{I} \models \exists x_1(S_1(x_1) \land \cdots \land \exists x_n(S_n(x_n) \land \phi(x_1, \ldots, x_n)) \cdots \) iff \(\mathcal{I} \models \forall x_1(S_1(x_1) \rightarrow \cdots \rightarrow \forall x_n(S_n(x_n) \rightarrow \phi(x_1, \ldots, x_n)) \cdots \).

Using the notation of restricted quantification, this result can be recognized as asserting the 'wild quantity' of singular expressions, e.g., \((\exists x : S(x))(\phi(x)) \leftrightarrow (\forall x : S(x))(\phi(x)) \).

Theorem 4 \(\mathcal{I} \models \exists x_1(S_1(x_1) \land \cdots \land \exists x_n(S_n(x_n) \land \phi(x_1, \ldots, x_n)) \land \psi(x_{i_1}, \ldots, x_{i_m})) \cdots \) iff \(\mathcal{I} \models \exists i_1(S_{i_1}(x_{i_1}) \land \cdots \land \exists i_m(S_{i_m}(x_{i_m}) \land \phi(x_{i_1}, \ldots, x_{i_m})) \cdots) \) and \(\mathcal{I} \models \exists j_1(S_{j_1}(x_{j_1}) \land \cdots \land \exists j_m(S_{j_m}(x_{j_m}) \land \psi(x_{j_1}, \ldots, x_{j_m})) \cdots) \), where \(\{i_1, \ldots, i_l\} \cup \{j_1, \ldots, j_m\} = \{1, \ldots, n\} \).

Proof: \(\mathcal{I} \models \exists x_1(S_1(x_1) \land \cdots \land \exists x_n(S_n(x_n) \land \phi(x_{i_1}, \ldots, x_{i_l}) \land \psi(x_{j_1}, \ldots, x_{j_m})) \cdots \) iff \(\exists !d_1 \cdots \exists !d_n : (\mathcal{I} \models S_1(d_1)) \land \cdots \land (\mathcal{I} \models S_n(d_n)) \land (\mathcal{I} \models (\phi(x_{i_1}, \ldots, x_{i_l}) \land \psi(x_{j_1}, \ldots, x_{j_m})) \land (\mathcal{I} \models \phi(d_{i_1}, \ldots, d_{i_l})) \land (\mathcal{I} \models \psi(d_{j_1}, \ldots, d_{j_m})) \land (\mathcal{I} \models \exists i_1(S_{i_1}(x_{i_1}) \land \cdots \land \exists i_m(S_{i_m}(x_{i_m}) \land \phi(x_{i_1}, \ldots, x_{i_m})) \cdots) \land (\mathcal{I} \models \exists j_1(S_{j_1}(x_{j_1}) \land \cdots \land \exists j_m(S_{j_m}(x_{j_m}) \land \psi(x_{j_1}, \ldots, x_{j_m})) \cdots)) \) (follows from the definition of satisfaction and Lemma 1).

Thus singular expressions distribute over conjunction. Examples, using the notation of restricted quantification, are: \((\exists x : S(x))(\phi(x) \land \psi(x)) \leftrightarrow ((\exists x : S(x))(\phi(x)) \land (\exists x : S(x))(\psi(x))) \) and \((\forall x : S(x))(\phi(x) \land \psi()) \leftrightarrow ((\forall x : S(x))(\phi(x)) \land \psi()) \).
4 PCS and PCI Compared

The expressiveness of PCS relative to PCI will be investigated through the use of meaning-preserving translations between the two languages. Translation from PCS to PCI is not surjective. The difference of PCI and the image of PCS in PCI will give the deficit in expressiveness.

To facilitate definition of a translation function, a brief definition of PCI will first be given. This definition is standard, but chosen to parallel the definition of PCS given in Section 2.

4.1 Definition of PCI

The vocabulary of PCI consists of the following.

1. Predicate symbols $\mathcal{R} = \bigcup_{n \in \omega^+} \mathcal{R}_n$, where $\mathcal{R}_n = \{ R^n_i : i \in \omega \}$

2. Individual constant symbols $\mathcal{C} = \{ c_i : i \in \omega \}$

3. Function symbols $\mathcal{F} = \bigcup_{n \in \omega^+} \mathcal{F}_n$, where $\mathcal{F}_n = \{ f^n_i : i \in \omega \}$

4. Variable symbols $\mathcal{V} = \{ v_i : i \in \omega \}$

5. Boolean operators \land and \neg

6. Identity relation $=$

7. Quantifier \exists

8. Parentheses (and)

9. Comma ,

Terms in PCI are defined as follows:
1. individual constant symbols and variable symbols are terms

2. if \(f^n \in \mathcal{F}_n \) and \(t_1, \ldots, t_n \) are terms, then \(f^n(t_1, \ldots, t_n) \) is a term

3. nothing else is a term

In the following, \(t \) will be used as a metavariable ranging over terms of PCI.

Expressions in PCI are defined as follows:

1. if \(R^n \in \mathcal{R}_n \) and \(t_1, \ldots, t_n \) are terms, then \(R^n(t_1, \ldots, t_n) \) is an expression

2. if \(t_1, t_2 \) are terms, then \(t_1 = t_2 \) is an expression

3. if \(\phi \) is an expression then \(\neg \phi \) is an expression

4. if \(\phi, \psi \) are expressions then \((\phi \land \psi) \) is an expression

5. if \(\phi \) is an expression and \(x \in \mathcal{V} \) occurs free in \(\phi \), then \(\exists x \phi \) is an expression

6. nothing else is an expression

An interpretation of PCI is a pair \(I = \langle \mathcal{D}, \mathcal{G} \rangle \) where \(\mathcal{D} \) is a nonempty set and \(\mathcal{G} \) is a mapping defined on \(\mathcal{P} \) satisfying:

1. if \(R^n \in \mathcal{R}_n \), then \(\mathcal{G}(R^n) \subseteq \mathcal{D}^n \)

2. if \(c \in \mathcal{C} \), then \(\mathcal{G}(c) \in \mathcal{D} \)

3. if \(f^n \in \mathcal{F}_n \), then \(\mathcal{G}(f^n) \in \mathcal{D}^{D^n} \)
4. \(G(=) \) is the diagonal relation on \(D \)

Let \(g \in D^V \) be an assignment of values to variables. Define an extension \(g^* \) of \(g \) to the set of terms of PCI as follows:

1. if \(x \in V \), then \(g^*(x) := g(x) \)
2. if \(c \in C \), then \(g^*(c) := G(c) \)
3. if \(f^n \in F_n \) and \(t_1, \ldots, t_n \) are terms, then \(g^*(f^n(t_1, \ldots, t_n)) := G(f^n)(g^*(t_1), \ldots, g^*(t_n)) \)

Let \(\phi \) be an expression of PCI. Then \(\phi \) is satisfied by \(g \) in \(I \) (written \(I \models \phi[g] \)) iff one of the following holds:

1. \(\phi = R^n(t_1, \ldots, t_n) \) and \((g^*(t_1), \ldots, g^*(t_n)) \in G(R^n) \)
2. \(\phi = (t_1 = t_2) \) and \(g^*(t_1) = g^*(t_2) \)
3. \(\phi = \neg \psi \) and \(I \not\models \psi[g] \)
4. \(\phi = \psi \land \theta \) and \((I \models \psi[g] \text{ and } I \models \theta[g]) \)
5. \(\phi = \exists x \psi \), where \(x \) occurs free in \(\psi \), and there exists \(g' \in D^V \) that agrees with \(g \) off \(x \) such that \(I \models \psi[g'] \)

The usual definitions and notational conventions defined for PCS carry over to PCI.

4.2 **Translation to PCI**
A translation function \(\tau \) from PCS into PCI is defined as follows. For atomic expressions:
1. \(R^n_i(x_1, \ldots, x_n) \mapsto R^n_i(x_1, \ldots, x_n) \)

2. \(S^1_i(x) \mapsto c_i = x \)

3. \(S^{n+1}_i(x_1, \ldots, x_n, x) \mapsto f^1_i(x_1, \ldots, x_n) = x \)

This definition for atomic expressions is extended to a \(\langle \land, \neg, (\exists x)_{x \in V} \rangle \)-homomorphism.

Let \(\mathcal{I} = \langle D, \mathcal{G} \rangle \) and \(\mathcal{I}' = \langle D, \mathcal{G}' \rangle \) be interpretations of PCS and PCI, respectively, over the same universe. Then \(\mathcal{I} \) and \(\mathcal{I}' \) are similar iff

1. \(\mathcal{G}(R^n_i) = \mathcal{G}'(R^n_i) \)

2. \(\mathcal{G}(S^1_i) = \{ \langle d \rangle \} \) iff \(\mathcal{G}'(c_i) = d \)

3. \(\langle d_1, \ldots, d_n, d \rangle \in \mathcal{G}(S^{n+1}_i) \) iff \(\mathcal{G}'(f^1_i)(d_1, \ldots, d_n) = d \)

Lemma 5 Let \(\mathcal{I} \) and \(\mathcal{I}' \) be similar interpretations of PCS and PCI, respectively, over universe \(D \). Let \(g \in D^\nu \) and \(\phi \in PCS \). Then \(\mathcal{I} \models \phi[g] \) iff \(\mathcal{I}' \models \tau(\phi)[g] \).

Proof: The proof is a straightforward induction on the structure of \(\phi \).

Thus \(\tau \) is a mapping of PCS into PCI.

4.3 **Translation from PCI**

Next consider a translation \(\tau' \) of PCI into PCS, defined for atomic expressions:

1. \(c_i = x \mapsto S^1_i(x) \)
2. \(c_i = t \mapsto \exists x (S^i_t(x) \land \tau'(t = x)) \), where \(t \notin \mathcal{V} \)

3. \(f^n_i(x_1, \ldots, x_n) = x \mapsto S^{n+1}_i(x_1, \ldots, x_n, x) \)

4. \(f^n_i(x_1, \ldots, x_n) = t \mapsto \exists x (S^{n+1}_i(x_1, \ldots, x_n, x) \land \tau'(t = x)) \), where \(t \notin \mathcal{V} \)

5. \(f^n_i(t_1, \ldots, t_n) = t \mapsto \exists x_{k_1} (\tau'(t_{k_1} = x_{k_1}) \land \cdots \land \exists x_{k_m} (\tau'(t_{k_m} = x_{k_m}) \land \exists x (\tau'(t = x) \land S^{n+1}_i(x_1, \ldots, x_n, x)) \cdots) \), where \(t, t_{k_1}, \ldots, t_{k_m} \notin \mathcal{V} \) and \((\{t_1, \ldots, t_n\} - \{t_{k_1}, \ldots, t_{k_m}\}) \subseteq \mathcal{V} \)

6. \(R^n_i(t_1, \ldots, t_n) \mapsto \exists x_{k_1} (\tau'(t_{k_1} = x_{k_1}) \land \cdots \land \exists x_{k_m} (\tau'(t_{k_m} = x_{k_m}) \land R^n_i(x_1, \ldots, x_n)) \cdots) \),

where \(t_{k_1}, \ldots, t_{k_m} \notin \mathcal{V} \) and \((\{t_1, \ldots, t_n\} - \{t_{k_1}, \ldots, t_{k_m}\}) \subseteq \mathcal{V} \)

As with \(\tau \), this definition of \(\tau' \) for atomic expressions is extended to a \(\langle \land, \neg, (\exists x)_{x \in \mathcal{V}} \rangle \)-homomorphism. Note that \(\tau' \) is partial since \(\tau'(x_1 = x_2) \) is not defined. Let \(\text{PCI}_1 \) be the domain of \(\tau' \).

Lemma 6 Let \(\mathcal{I} \) and \(\mathcal{I}' \) be similar interpretations of \(\text{PCS} \) and \(\text{PCI}_1 \), respectively, over universe \(\mathcal{D} \). Let \(g \in \mathcal{D}' \) and \(\psi \in \text{PCI}_1 \). Then \(\mathcal{I}' \models \psi[g] \) iff \(\mathcal{I} \models \tau' (\psi)[g] \).

Proof: The proof is a straightforward induction on the structure of \(\psi \).

Therefore, \(\text{PCS} \) and \(\text{PCI}_1 \) are equivalent in expressiveness, and any deficit in expressiveness of \(\text{PCS} \) is restricted to the difference \(\text{PCI} - \text{PCI}_1 \). More precisely, any deficit in expressiveness of \(\text{PCS} \) is restricted to those wffs of \(\text{PCI} - \text{PCI}_1 \) containing noneliminable occurrences of atomic expressions of the form \(x_1 = x_2 \). Occurrences of atomic expressions of the form \(x_1 = x_2 \) in a wff \(\psi \) are eliminable iff there exists a wff \(\psi' \) such
that for any interpretation \mathcal{I} of PCI, $\mathcal{I} \models \psi'$ iff $\mathcal{I} \models \psi$. Let PCI$_2$ be the set of wffs containing noneliminable occurrences of expressions of the form $x_1 = x_2$. That PCI$_2$ is not empty is shown next.

Consider the unary predicate $R_0^1 \in$ PCI and let $\psi = \exists x_1 \forall x_2 (R_0^1(x_2) \leftrightarrow (x_2 = x_1))$. Then in any interpretation $\mathcal{I}' = \langle \mathcal{D}, \mathcal{G} \rangle$ of PCI, $\mathcal{I}' \models \psi$ only if $\text{card}(\mathcal{G}(R_0^1)) = 1$. The next lemma shows that PCS is indifferent to this property.

Lemma 7 There is no closed wff $\phi \in$ PCS such that for every interpretation $\mathcal{I} = \langle \mathcal{D}, \mathcal{G} \rangle$ of PCS, $\mathcal{I} \models \phi$ only if $\text{card}(\mathcal{G}(R_0^1)) = 1$.

Proof: Let $\phi \in$ PCS and let $n \in \omega$ such that if S_j^l occurs in ϕ then $j < n$. Let $\mathcal{I}_1 = \langle \omega, G_1 \rangle$ and $\mathcal{I}_2 = \langle \omega, G_2 \rangle$ be interpretations of PCS, where G_1 and G_2 are defined as follows. $G_1(R_0^1) = \{(n)\}$ and $G_2(R_0^1) = \{(n), (m)\}$ for $n < m$, and for all other predicates R_j^l of PCS, $G_1(R_j^l) = G_2(R_j^l) = \emptyset$. For all singular predicates S_j^l of PCS, $G_1(S_j^l) = G_2(S_j^l) = \{(i_1, \ldots, i_{l-1}, j) : i_1, \ldots, i_{l-1} \in \omega\}$.

It suffices to show the following. If ϕ is any rectified wff of PCS with free variables x_1, \ldots, x_l, then $\exists i_1, \ldots, i_l \in \omega : \mathcal{I}_1 \models \phi[i_1, \ldots, i_l] \text{ iff } \exists j_1, \ldots, j_l \in \omega : \mathcal{I}_2 \models \phi[j_1, \ldots, j_l]$.

The proof is by induction on the structure of ϕ.

For the basis, let $\phi = P^l(x_1, \ldots, x_l)$ where P^l is an ordinary or singular predicate of PCS. First suppose that $\mathcal{I}_1 \models P^l[i_1, \ldots, i_l]$. Define b_{i_1}, \ldots, b_{i_l} as follows. For $1 \leq k \leq l$, if $i_k \neq m$ then $j_k = i_k$ and if $i_k = m$ then $j_k = m + 1$. It follows from the definitions of G_1 and G_2 that $\mathcal{I}_2 \models P^l[j_1, \ldots, j_l]$. For the converse, suppose that
Define i_1, \ldots, i_l as follows. For $1 \leq k \leq l$, if $j_k \neq m$ then $i_k = j_k$ and if $j_k = m$ then $i_k = n$. Again it follows from the definitions of G_1 and G_2 that $\mathcal{I}_1 \models P_l[i_1, \ldots, i_l]$. Hence $\mathcal{I}_1 \models P_l[i_1, \ldots, i_l]$ iff $\mathcal{I}_2 \models P_l[j_1, \ldots, j_l]$.

The induction step is straightforward.

It remains to show that the deficit in expressiveness of PCS relative to PCI is exactly PCI$_2$.

Theorem 8 Let \mathcal{I}' and \mathcal{I} be similar interpretations of PCI and PCS, respectively, and ψ be a wff of PCI. There exists a wff ϕ of PCS such that $(\mathcal{I}' \models \psi[g]$ iff $\mathcal{I} \models \phi[g]$) iff $\psi \not\in$ PCI$_2$.

Proof: The 'if' direction is an immediate corollary of Lemma 6. For the 'only if' direction, suppose ϕ is a wff of PCS such that $\mathcal{I}' \models \psi[g]$ iff $\mathcal{I} \models \phi[g]$. By Lemma 5, $\mathcal{I}' \models \tau(\phi)[g]$ iff $\mathcal{I} \models \phi[g]$. By definition, $\tau(\phi)$ has no occurrences of atomic expressions of the form $x_1 = x_2$. Therefore, $\psi \not\in$ PCI$_2$.

While the meaning of the wff $\exists x_1 \forall x_2 (R^1_0(x_2) \leftrightarrow (x_2 = x_1))$ of PCI cannot be expressed by a wff of PCS, the meaning can be expressed by a schema of PCS. Indeed an identity relation can be defined by the schema I:

\[[I.] \exists x_1(S_1(x_1) \land \exists x_2(S_2(x_2) \land R^2_0(x_1, x_2))) \leftrightarrow \exists x(S_1(x) \land S_2(x)) \]

Theorem 9 Let $\mathcal{I} = \langle \mathcal{D}, G \rangle$ be a PCS model of schema I. Then $G(R^2_0)$ is the diagonal relation on $\mathcal{D}' = \{d \in \mathcal{D} : \mathcal{I} \models S[d], \text{ where } S \text{ is a singular expression} \}$.

proof: Let $d_1, d_2 \in D$ such that $I \models S_1[d_1]$ and $I \models S_2[d_2]$. Then $I \models R_0^d[d_1, d_2]$ iff $I \models \exists x_1(S_1(x_1) \land \exists x_2(S_2(x_2) \land R_0^d(x_1, x_2)))$ (definition of satisfaction) iff $I \models \exists x(S_1(x) \land S_2(x))$ (schema I.) iff $\exists ! d \in D : (I \models S_1[d]) \land (I \models S_2[d])$ (definition of satisfaction and Lemma 1) iff $d_1 = d_2$.

D' is the set of named elements of the universe D. It follows from the theorem that for any set of axiom schemas in PCI there exists a semantically equivalent set of axiom schemas in PCS.
5 Conclusion Sommers' position on identity has not received the attention it deserves. Part of the reason is perhaps that his argument was presented in the context of the Calculus of Terms ([6]), running counter to the prevailing bias that only MPL can be taken seriously. Further, his argument appears to be incomplete, dealing only with individual constants.

This paper gives a full answer to Sommers' question, 'Do We Need Identity?'. The argument is couched in MPL, modified only as much as necessary to eliminate the distinction between concept and object. The answer given here essentially supports Sommers' position.
References

