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Abstract - We consider the problem of distributed binary 
hypothesis testing with independent identical sensors. It is well 
known that for this problem the optimal sensor rules are a 
likelihood ratio threshold tests and the optimal fusion rule is a 
K-out-of-N rule [1]. Under the Bayesian criterion, we show 
that for a fixed K-out-of-N fusion rule, the probability of error 
is a quasiconvex function of the likelihood ratio threshold used 
in the sensor decision rule. Therefore, the probability of error 
has a single minimum and a unique optimal threshold achieves 
this minimum. We obtain a sufficient and necessary condition 
on the optimal threshold, except in some trivial situations 
where one hypothesis is always decided. We present a method 
for determining whether or not the solution is trivial. Under 
the Neyman-Pearson criterion, we show that when the 
Lagrange multiplier method is used for a fixed K-out-of-N 
fusion rule, the objective function is quasiconvex and hence 
has a single minimum point, and the resulting ROC is concave 
downward. These results are illustrated by means of three 
examples.  

I. INTRODUCTION 

The problem of distributed binary hypothesis testing with 
multiple sensors has been extensively studied in the past decade. A 
fundamental result is that when the sensors are conditionally 
independent, the optimal sensor decision rules are necessarily 
likelihood ratio threshold tests [1]. However, determination of the 
thresholds is generally difficult. This difficulty is further increased 
due to the possible existence of multiple local optima [1]. One can 
obtain a numerical solution via a person-by-person-optimization 
(PBPO) procedure but the result may be only locally optimal. In 
this paper, we focus on the problem of distributed binary 
hypothesis testing with parallel independent identical sensors. By 
identical sensors, we mean that all the sensor observations follow 
a common probability distribution and all the sensors use identical 
decision-making rules. Using identical sensor rules gives a 
suboptimal result. However, the loss of optimality vanishes when 
the number of sensors goes to infinity [2,3].  
 

In this paper, we first consider a special case of the Bayesian 
detection problem. Here we know the prior probabilities and we 
seek the optimum fusion rule and the optimum sensor decision 
rules that minimize the average probability of error. We then 
consider the Neyman-Pearson detection problem. We seek the 
optimum fusion rule and the optimum sensor decision rules such 
that the probability of detection is maximized while the probability 
of false alarm is kept below a prescribed level. For both problems, 
it is known that the optimum fusion rule is a K-out-of-N rule and 
the optimal sensor rule is a likelihood ratio threshold test [1]. A 
recent study by Shi, Sun and Wesel [4,5] reveals an interesting 
property of this problem: quasiconvexity. They considered the 
problem of distributed detection of known signals in additive 
noise with identical sensors. Each sensor observation was a 
univariate random variable. Each sensor made a binary decision 
by comparing its observation to a threshold. For additive 

generalized Gaussian noise with any priors and for certain other 
additive noises with equal priors, they showed that the probability 
of error is a quasiconvex function of the sensor threshold, given a 
fixed K-out-of-N fusion rule.  
 
 The concept of quasiconvexity [6] can be quite useful since it 
eliminates the existence of multiple local optima. Hence a local 
optimum determined by any method is also the global optimum. 
Furthermore, it will provide justification for the use of the 
Lagrange multiplier method for solving the Neyman-Pearson 
detection problem with independent identical sensors. Note that 
the attempts of using this method to tackle the general Neyman-
Pearson detection problem have been questioned because the 
knowledge of the convexity regarding the problem is lacking.  
 
 In this paper, we consider the general situation with sensor 
observations having an arbitrary probability distribution. We 
consider the sensor decision rules in the likelihood ratio space, not 
in the observation space as in [4], since it is well known that an 
optimal sensor decision rule is a likelihood ratio threshold test [1]. 
The main contribution of this paper is the following. For a special 
case of Bayesian detection problem, we show that for any value 
for the prior probabilities and for a fixed K-out-of-N fusion rule, 
the average probability of error is a quasiconvex function of the 
sensor threshold. For the Neyman-Pearson detection problem, we 
show that when the Lagrange multiplier method is used for a fixed 
K-out-of-N fusion rule, the objective function is a quasiconvex 
function of the sensor threshold.  This quasiconvexity ensures that 
the objective function has a single minimum point that is achieved 
by the unique optimal sensor threshold. 
 
 In Section II, we present some definitions and notations. In 
Section III, we consider the Bayesian detection problem. In 
Section IV, we consider the Neyman-Pearson detection problem. 
In section V, we illustrate the results of Sections III and IV by 
means of three examples. In Section VI, we make some 
concluding remarks. 

II. DEFINITIONS AND NOTATIONS 

Let us consider a parallel fusion system that consists of n 
independent identical sensors and a fusion center. This system is 
used to determine whether an unknown hypothesis is H0 or H1. 
The sensor observations are conditionally independent given the 
unknown hypothesis. All the sensors employ the same decision-
making rule to make a binary decision regarding the identity of the 
unknown hypothesis. The sensors transmit their decisions to the 
fusion center. Based on the received sensor decisions, the fusion 
center makes the final decision.  

 
Let xi denote the observation of the ith sensor, i=1,…,n. Let ui 

denote the decision of the ith sensor. For these identical sensors, 
let pj(.) denote the common probability density function of 
observations at any sensor when Hj is true, j=0,1. The optimal 
identical sensor decision rule can be expressed as 

Optimal Distributed Binary Hypothesis Testing with Independent Identical Sensors 
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where λ is the common threshold. The quality of a sensor decision 
ui can be measured by the probability of false alarm PF and the 
probability of detection PD of the ith sensor. Since the sensors are 
identical, PF and PD are the same for every sensor. The (PF, PD) 
curve, which is generally referred to as the receiver operating 
characteristic (ROC), is important in the derivation of our result. 
 
 Let u0 denote the final decision made by the fusion center. Let 
u0=0 if the fusion center decides H0. Let u0=1 if the fusion center 
decides H1. Recalling that an optimum fusion rule is a K-out-of-N 
rule, we express the fusion rule as 
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where k is an integer and 1≤k≤n. The quality of the fusion center 
decision u0 can be measured by the probability of false alarm QF 
and the probability of detection QD of the fusion system 
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 A number of performance criteria can be formulated based on 
QF and QD. Our objective is to choose an appropriate performance 
criterion and find the corresponding optimal k and λ. In the next 
section, we use the minimum probability of error criterion. It is a 
specific Bayesian problem. However, we conjecture that the 
results hold for the general Bayesian problem. In section IV, we 
use the Neyman-Pearson criterion. 

III. THE BAYESIAN DETECTION PROBLEM 

In this section, we consider the Bayesian detection problem. Let 
q0 and q1 denote the prior probabilities of H0 and H1. Our goal is 
to find the fusion rule and the sensor decision rule that minimize 
the probability of error. Using QF and QD, we express the 
probability of error Pe as 

( )DFe QqQqP −+= 110 .                  (4) 

Pe is a function of k, λ, 0q  and 1q . Our goal is to find λ and k 

such that Pe is minimized. Toward this goal, we minimize Pe for 
each k, where 1≤k≤n. We then choose the smallest of these 
minima and the corresponding values of λ and k yield the desired 
solution. This systematic procedure is exhaustive and is 
guaranteed to result in a globally optimal solution.  
 

Next, we consider the minimization of Pe for each k. We show 
that for a fixed k, Pe is a quasiconvex function of λ. By a 
quasiconvex function f(λ) of λ, we mean that for some λ∗, f(λ)  is 
non-increasing for λ≤λ∗ and f(λ)  is non-decreasing for λ≥λ∗ [7]. 
In this paper, we assume that PF and PD have first order 
derivatives with respect to λ. This assumption is not restrictive in 
practical situations. 
 
Lemma 1: For a given k, Pe is a quasiconvex function of λ. 
Proof: 

To prove the lemma, it suffices to show that either 0≤λd

dPe  (or 

0≥λd

dPe ) for all λ, or 0≤λd

dPe  when λ≤λ* and 0≥λd

dPe  when λ≥λ* 

for some λ*. Some fundamental properties of ROC are used in the 

proof. Taking the derivative of both sides of equations (3.a), (3.b) 
and (4) with respect to λ, we obtain 
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Here we note that λ=
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dP

dP , a property of ROC. Define 
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and we obtain  

( ) ( )( )1, , −⋅= kr
d
dP ekge λ

λ λ .                  (6) 

 
 Since PF decreases as λ increases, we have g(λ,k)≥0. Therefore, 

the sign of λd
dPe  is determined by r(λ,k). According to equation (6), 

it suffices to show that r(λ,k) is either always negative (positive), 
or r(λ,k)≤0 for λ≤λ* and r(λ,k)≥0 for λ≥λ* for some λ*. 
 
 Taking the derivative of both sides of equation (5) with respect 
to λ, we obtain 
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Since (PF, PD) is a point on a ROC curve, as shown in Figure 1, 

we have 
F

D

F

D

P

P

P

P

−
−≥≥

1

1λ . Based on this result and that 0≤λd
dPF  and 

1≤k≤n, we have ( ) 0, ≥λ
λ

d
kdr , i.e. r(λ,k)  is a monotone non-

decreasing function of λ. Hence, r(λ,k) either intersects the λ-axis 
at some λ*, or it does not intersect the λ-axis at all. 
 
 If r(λ,k) does not intersect the λ-axis, then r(λ,k) is always 

negative (positive). From equation (6), λd
dPe  is always negative 

(positive). Thus Pe monotonically decreases (or increases) with λ. 
 
 If r(λ,k) intersects the λ axis at some λ*, then r(λ,k)≤0 holds for 

λ≤λ* and r(λ,k)≥0 holds for λ≥λ*.  
 
 In many situations, use of the log likelihood ratio is preferred. 
Let τ=lnλ. Because τ is a monotone increasing function of λ, 
Lemma 1 holds when λ is replaced by τ. 
 
Corollary 1: For a given k, Pe is a quasiconvex function of τ. 
 
Remark 1: 

The proof of Lemma 1 shows that ( ) 0, ≥λ
λ

d
kdr . A careful study of 

equation (7) shows that equality holds only if λ=+∞. Hence, 
r(λ,k) is a monotone increasing function of λ and r(λ,k)=0 has at 
most one root λ*, where λ* can take the value of +∞. For λ<λ*,  
r(λ,k)<0 and Pe is a monotone decreasing function of λ. For 
λ>λ*, r(λ,k)>0 and Pe is a monotone increasing function of λ.   

 
Remark 2: 

The proof of Lemma 1 and Remark 1 imply that Pe has a single 
minimum that is achieved by a unique λ. This result is stated in 
the following theorem. 
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Theorem 1: For a given k, Pe has a single minimum, which is 
achieved by a unique λ.  
 
 The proof of Lemma 1 suggests that if λ satisfies r(λ,k)=0, then 
the corresponding value of λ minimizes Pe. This is a sufficient 
condition stated in the following theorem. 
 
Theorem 2: For a given k, λ minimizes Pe if it satisfies  
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 It is shown later in Remarks 4 and 5 that for a non-trivial 
solution, i.e. when the fusion system does not always decide one 
hypothesis, equation (8) is also a necessary condition on the 
optimal λ.  
 
 To use Theorems 1 and 2 to find the optimal λ, r(λ,k)=0 must 
have a positive root. This condition is satisfied for a class of 
sensors. On the sensor ROC, let λ0,0 denote the slope at the point 
(0,0), and λ1,1 the slope at the point (1,1). The following theorem 
shows that if λ0,0=∞ and λ1,1=0, then λ1,1=0 has a positive root for 
any non-zero prior probabilities.  
 
Theorem 3: For a given k, 1≤k≤n, if λ0,0=∞, λ1,1=0, and q0, q1>0, 
then r(λ,k)=0 has a unique positive root. 
Proof: 
The uniqueness is shown in Remark 1. To prove the existence, it 
suffices to show that ( ) −∞=

→
kr ,lim

0
λ

λ
 and ( ) +∞=

+∞→
kr ,lim λ

λ
. 

 
Since λ0,0=∞ and λ1,1=0, we have 
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Since 0<q0, q1<1, 
0

1

q

q
ln  is finite. Using these limits, the fact that 

1≤k≤n and the definition of r(λ,k) in equation (5), we have 
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We recall that ( ) 0, >λ
λ

d
kdr  from Remark 1 and we conclude that 

r(λ,k)=0 has a positive root.  
 
Remark 3: 

Putting the four finite limits that are used in the proof of 
Theorem 3 into the definition of r(λ,k) in equation (5) and using 
τ=lnλ, we have 
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Therefore, r(τ,k) is approximately a linear function of τ at ±∞. 
 
 Because of this property, the r(τ,k) curve can be approximated 
by two straight lines and the SECANT algorithm [7] can be used 
to find the root of r(τ,k)=0. This algorithm is stated as follows 
1. Arbitrarily choose τ1, τ2 and a positive ε. Compute r1=r(τ1,k) 

and r2=r(τ2,k). Set i=3. 

2. Let 
21

1221

−−

−−−−

−

⋅−⋅=
ii

iiii

rr

rr
i

τττ . Compute ( )krr ii ,τ= . 

3. If ε≤ir , stop; otherwise, let i=i+1, go to step 2. 

When λ0,0=∞ and λ1,1=0, the algorithm converges quickly because 
r(τ,k) is well approximated by two straight lines. This algorithm is 
illustrated in Figure 2. 
 

Remark 4: 
If a sensor does not satisfy λ0,0=∞ and λ1,1=0, it is possible that 
r(λ,k)=0 has no root. Actually, it can be determined whether or 
not r(λ,k)=0 has a root. Since r(λ,k) is a monotone increasing 
function of λ, r(λ,k)=0 has a root if and only if r(λ0,0,k)≥0 and 
r(λ1,1,k)≤0. When these conditions are satisfied, the uniqueness 
of the optimal λ (Theorem 1) implies that r(λ,k)=0 is a necessary 
condition on the optimal λ. 

 
Remark 5: 

When the conditions given in Remark 4 are not satisfied, one 
can easily obtain the minimum Pe and the corresponding optimal 
values of λ. If r(λ0,0,k)<0, Pe is a monotone decreasing function 
of λ and its minimum occurs at λ=λ0,0. In this case, H0 is always 
decided and the minimum Pe is equal to q1. On the other hand, if 
r(λ1,1,k)>0, Pe is a monotone increasing function of λ and its 
minimum occurs at λ=λ1,1. In this case, H1 is always decided 
and the minimum Pe is equal to q0. These are trivial solutions.  

 
 From Theorem 2, we observe that the optimal value of λ is 
intimately related to k, q0 and q1. Here we present some results on 
these relationships. The proofs are not included due to limited 
space. They can be found in [11]. Suppose r(λ,k)=0 has a positive 
root for each k, where 1≤k≤n. Let λk denote this root. 
 
Lemma 2:  λk is a decreasing function of k for fixed q1 and q0, 
except when PD=PF, or when the sensors always decide H1.  
 
Lemma 3:  λk is a decreasing function of q1/q0 for fixed k, except 
when the sensors always decide H1. 

IV. THE NEYMAN-PEARSON DETECTION PROBLEM  

In this section, we consider the Neyman-Pearson detection 
problem. We show that this problem can be formulated as a 
minimum probability of error problem that we considered in the 
Section III. 
 
 In a Neyman-Pearson detection problem, QD is maximized while 
QF is kept below a prescribed level α. Since the sensor decisions 
are discrete random variables, “dependent randomization” [8] or 
“scheduling” [9] may be necessary. Basically, these schemes 
employ synchronized randomization of two sets of rules namely 
the fusion rule and sensor rules. These schemes introduce 
undesired degree of freedom and require additional computational 
resource for synchronization. In this paper, we do not consider 
these schemes that are undesirable in most practical situations. 
Without “dependent randomization” or “scheduling”, Warren and 
Willett prove that randomized fusion rules are suboptimal when 
the sensor observations contain no point-mass of probability [10]. 
Since this condition is assumed satisfied in this paper, we only 
need to consider K-out-of-N fusion rules. 
 
 We break the original Neyman-Pearson detection problem into a 
set of Neyman-Pearson detection problems for each value of k. We 
solve these problems for each value of k, then choose the solution 
that yields the maximal QD. For a given k, our goal is  
 Maximize  QD, 
 Subject to  QF≤α,  
 where α is a prescribed positive constant. 
 

We are particularly interested in solving this problem via the 
Lagrange multiplier method.  This method has seen limited use in 
solving the general distributed Neyman-Pearson detection problem 
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with non-identical sensors [1]. The reason is that the objective 
function may not be convex, even with a fixed fusion rule. This 
makes it difficult to determine whether or not there are multiple 
local extreme points, and if so, the number of local extreme points 
and their locations. The same difficulty arises when the fusion rule 
is not fixed. Fortunately for our problem, we show that for a fixed 
K-out-of-N fusion rule, the objective function is a quasi-convex 
function and therefore the Lagrange multiplier method can be 
employed to obtain the unique global minimum. Furthermore, we 
show that for a fixed K-out-of-N fusion rule, the ROC is concave 
downward. 
 
 Define Lk(λ,s)=s(QF-α)-QD, where s is the Lagrange multiplier 
and s≥0. Our goal is to minimize Lk(λ,s) with respect to s and λ.  
 
Lemma 4:  Lk(λ,s) is a quasiconvex function of λ. 
Proof: 
Since s≥0, we define prior probabilities q0=s/(1+s), q1=1/(1+s). 
Putting q0 and q1 into equation (4), we have Pe=q0QF+q1(1-QD). 
Putting Pe into the definition of Lk(λ,s), we obtain 

 ( ) 

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1 αλ
q

q
eqk PsL . 

Since Pe is a quasiconvex function of λ, so is Lk(λ,s).  
 
 Now Lk(λ,s) has a single minimum that is uniquely achieved by 
the optimal threshold. Noting that s=q0/q1, we obtain the solution 
by solving the following equations 

0=−αFQ , 
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To find the overall optimal solution, we repeat the above 
procedure for all possible values of k, and then choose the pair of k 
and λ that gives the largest QD. 
 
 In general, the resulting ROC is not concave downward as in 
centralized detection. However, we show that for a fixed K-out-of-
N fusion rule, the ROC is concave.  
 
Lemma 5:  For a given k, QD is a concave function of QF. 
Proof: 

It suffices to show that 02
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From Remark 1, we have ( ) 0, ≥λ
λ

d
kdr . Since 0≤λd

dPF , we have 

0≤λd

dQF . Hence we have 02
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Qd .   

 
 This concavity ensures that the Lagrange multiplier method can 
be used to uniquely determine the optimal threshold in the case 
considered here [1].  

V. NUMERICAL RESULTS 

In this section, we illustrate the results of the previous sections 
by means of three examples. 
 
Example 1: 

In this example, we consider the detection of known signals in 
Gaussian noise. The sensor observation x is x=sx+nx, where sx=±d 
is the transmitted signal and nx is a Gaussian random variable with 

zero mean and unit variance. Define H0≡{sx=-d} and H1≡{sx=+d}. 
The log likelihood ratio τx for this problem is given by τx=2dx. 
The sensor false alarm and detection probabilities can be 
computed as 
 ( )dQP

dF +=
2
τ , 

 ( )dQP
dD −=

2
τ , 

where ( ) ∫
∞ −=
z

x

dxezQ 2

2

2

1

π
 and τ is the log likelihood ratio threshold.  

 
 With fixed n=11 and d=0.1, we consider various combinations 
of q0 and q1, and observe the relationship between Pe, τ , k, q0 and 
q1.  
 
 In Figure 3, with q0=q1=0.5, Pe is plotted against τ for each 
value of k. We can see that for any given k, Pe is a quasiconvex 
function of τ and has a single minimum achieved by a unique 
value of τ. These results agree with the main results of Section III. 
We also notice that the optimal value of τ decreases with k, as 
suggested in Lemma 2.  
 
 In Figure 4, with q0=q1=0.5, r(τ,k) is plotted against τ for each 
value of k. We can see that r(τ,k) is a monotonically increasing 
function of τ for any given k. We also notice that an r(τ,k) curve 
can be well approximated by two concatenated straight lines. 
 
 In Figure 5, with q0=0.75 and q1=0.25, Pe is plotted against τ for 
each value of k. Comparing this figure to Figure 3, we find that the 
optimal τ for each value of k has increased. Such increases are due 
to the decrease in q1/q0, as implied by Lemma 3. In this figure, the 
global minimum Pe occurs at k=7. This provides a counter 
example to the conjecture that the best k is 0.5(n+1) [4]. However, 
the conjecture may still hold for the equal priors case. 
 
Example 2: 

In this example, we consider the non-coherent detection of a 
quadrature signal in Gaussian noise. The received signal has 
random phase and is subject to Rayleigh fading. When the signal 
is present in the environment, the sensor observation is 
 III nsx +=  

 QQQ nsx +=  

where subscripts I and Q denote the in-phase and quadrature 
components. The signal components sI and sQ have random phase 
and are subject to Rayleigh fading. The average power of the 
signal is equal to 0.5σ2. nI and nQ are independent Gaussian 
random variables with zero mean and unit variance. When the 
signal is absent, the observation is just Gaussian noise. 
 

Define H0≡{signal is absent} and H1≡{signal is present}. 
Because no phase information is available, non-coherent detection 
is employed. In this case, we use the statistic 222

QI xxr += . It can be 

shown that r has Rayleigh density function under either H0 or H1.
 The log likelihood ratio is τr=0.5r2σ2/(1+σ2)-ln(1+σ2). We note 
that the minimum value of τr is –ln(1+σ2). Similarly, the minimum 
value of the joint log likelihood ratio for n sensors is -nln(1+σ2). 
By the minimum value, we mean that any smaller value has no 
physical meaning. 
 
 The sensor false alarm and detection probabilities are given by 

 ( )2
2

2

11
11

1

1 στ
σ

σ
+−

+

+



= ePF , 
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 ( ) 21
1
σ+= FD PP , 

where τ is the log likelihood ratio threshold and τ≥–ln(1+σ2).  
 
 In Figure 6, with n=7, σ2=0.5, q0=0.55 and q1=0.45, Pe is plotted 
against τ for each value of k. In this case, Pe is a non-symmetric 
function of τ and the minimum τ is equal to –ln(1+σ2)≈-0.4055.  
 
 Since the minimum value of the joint log likelihood ratio for n 
sensors is -nln(1+σ2), it is possible that for some values of q0 and 
q1, Pe monotonically increases with τ. In fact, this happens when 
q1/q0≥(1+σ2). In this case, the minimum Pe occurs at τ=-ln(1+σ2) 
and H1 is always decided. This phenomenon is shown in Figure 7, 
with n=5, σ2=0.5, q0=0.1164 and q1=0.8836.  
 
Example 3: 

In this example, we consider the previous two examples under 
the Neyman-Pearson criterion. We solve the Neyman-Pearson 
detection problem for each value of k and then select the solution  
that yields the maximum probability of detection. We recall that 
QF is the probability of false alarm of the fusion system and QD is 
the probability of detection of the fusion system. 
 
 First, we consider the detection of known signals in Gaussian 
noise as defined in Example 1. In Figure 8, with n=3, d=0.5, the 
ROCs are plotted for each value of k. We find that the K-out-of-N 
fusion rule with k=2 always gives the best solution. When 
QF≤0.25, k=1 fusion rule is better than the k=3 fusion rule. When 
QF≥0.25, k=3 fusion rule is better than the k=1 fusion rule.  
 
 Next, we consider the non-coherent detection of a quadrature 
signal in Gaussian noise as defined in Example 2. In Figure 9, 
with n=4, σ2=1, the ROCs are plotted for each value of k. We find 
that for QF≥0.0162, the k=1 fusion rule is the best. For QF≤0.0162, 
the k=2 fusion rule is best. 

VI. SUMMARY 

We considered the Bayesian and Neyman-Pearson detection 
problems with distributed independent identical sensors. The goal 
was to find the optimal K-out-of-N fusion rule and the optimal 
sensor likelihood ratio threshold test. We showed that for a given 
K-out-of-N fusion rule, the corresponding objective function 
exhibits the property of quasiconvexity. This property ensures that 
the objective function has a single minimum that is uniquely 
achieved by the optimal sensor likelihood ratio threshold. 
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Figure 1: Sensor ROC 
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Figure 2: The SECANT algorithm 
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Figure 3: Pe vs. τ curves with equal priors for Example 1 
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Figure 4: ( )kr ,τ  curves for Example 1 
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Figure 6: Non-symmetric Pe vs. τ curves for Example 2  
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Figure 8: ROC curves for the detection of known signals in Gaussian noise 

for Example 3 
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Figure 5: The optimal k with unequal priors for Example 1 
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Figure 7: Monotonic Pe vs. τ curves for Example 2 
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Figure 9: ROC curves for non-coherent signal detection in Rayleigh fading 

channel for Example 3 
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