
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

8-1991

An Improved Algorithm for Neural Network Classification of An Improved Algorithm for Neural Network Classification of

Imbalanced Training Sets Imbalanced Training Sets

Rangachari Anand
Syracuse University

Kishan Mehrotra
Syracuse University, mehrtra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Anand, Rangachari; Mehrotra, Kishan; Mohan, Chilukuri K.; and Ranka, Sanjay, "An Improved Algorithm for
Neural Network Classification of Imbalanced Training Sets" (1991). Electrical Engineering and Computer
Science - Technical Reports. 104.
https://surface.syr.edu/eecs_techreports/104

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/104?utm_source=surface.syr.edu%2Feecs_techreports%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-29

An Improved Algorithm for Neural Network
Classification of Imbalanced Training Sets

R. Anand, K.G. Mehrotra, C.K. Mohan, and S. Ranka

August 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

An Improved Algorithm for Neural Network

Classification of Imbalanced Training Sets

R. Anand, K. G. Mehrotra, C. K. Mohan and S. Ranka

August 15, 1991

Abstract

In this paper, we analyze the reason for the slow rate of convergence of

net output error when using the backpropagation algorithm to train neural

networks for a two-class problems in which the numbers of exemplars for the

two classes differ greatly. This occurs because the negative gradient vector

computed by backpropagation for an imbalanced training set does not point

initially in a downhill direction for the class with the smaller number of exem­

plars. Consequently, in the initial iteration, the net error for the exemplars in

this class increases significantly. The subsequent rate of convergence of the net

error is very low. We suggest a modified technique for calculating a direction in

weight-space which is downhill for both classes. Using this algorithm, we have

been able to accelerate the rate of learning for two-class classification problems

by an order of magnitude.

1 Introduction

Classification, the assignment of an object to one of a number of predetermined

groups, is of fundamental importance in a number of areas ranging from image and

speech recognition to the social sciences. Consequently, a number of statistical clas­

sification techniques have been developed, based primarily on Bayes' rule.

In the classification problem we assume that a pattern, can belong to exactly one

of several classes. We are provided a training set consisting of sample patterns which

1

are representative of all classes along with class membership information for each

pattern. Using the training set, we deduce rules for membership in each class and

create a classifier which can then be used to assign other patterns to their respective

classes according to these rules.

One connectionist approach to the classification problem, which has gained pop­

ularity in recent years, is the use of backpropagation-trained [10] neural networks.

Backpropagation, based on the method of steepest descent [6], is one of the most

widely used training algorithms for feed-forward neural networks. Since these net­

works can be taught arbitrary non-linear mappings, it is relatively straightforward to

adapt them for pattern classification tasks (5].

Although backpropagation has enjoyed wide popularity, it has been observed that

the rate of convergence of error is very low in many applications. Consequently,

several researchers have devised modifications to the backpropagation algorithm to

increase the convergence rate. The general approach has been to vary the learning

rate dynamically during training in order to maintain it at the largest value that will

not cause oscillations (13] (2]. Attempts have been made to learn from a subset of the

patterns to determine the network size and initialize the weights to reduce training

time [12].

When training a network with backpropagation for a two-class problems in which

the numbers of exemplars for the two classes differ greatly (i.e. the training set is

imbalanced), we have observed that the rate of convergence of net output error is

especially low. In an imbalanced training set, the class with more exemplars is called

the dominant class while the other is called the subordinate class. Imbalanced training

sets do occur frequently in practice.

In this paper, we show that the low rate of convergence of net error occurs because

the negative gradient vector computed by backpropagation for an imbalanced train­

ing set does not initially decrease the error for the subordinate class. Consequently,

in the initial iteration, the net error for the exemplars in the subordinate class in­

creases significantly. The subsequent rate of convergence for the exemplars of the

subordinate class is very low. To solve this problem, we suggest a modified technique

for calculating a direction in weight-space which is downhill for both classes. Using

this algorithm, we have been able to accelerate by an order of magnitude the rate of

learning for two-class classification problems.

2

In section 2 of this paper, we consider the standard backpropagation algorithm

and present an analysis of the MSE which points towards the reasons of the above

mentioned drawbacks. In section 3, we present a modified backpropagation algorithm

which performed significantly better than the standard backpropagation algorithm.

A comparison of the two algorithms is made in section 4 for three examples and

analysis is presented in section 5.

2 Backpropagation and classification problems

Although backpropagation has enjoyed wide popularity, it has been observed that

the rate of convergence is often very low in many applications. Consequently, several

researchers have devised modifications to the backpropagation algorithm to increase

the rate of convergence of error. Vogl, et al. [13], suggest that the learning rate be

modified during training depending on the rate of convergence of error. Anderson [2]

suggests that every weight in a network should be given its own learning rate and

and that these learning rates be varied during training.

We have observed that net error often converges especially slowly when training

networks with the standard backpropagation algorithm for two-class problems with

imbalanced training sets. In these problems, we have also found that the net error

for exemplars in the dominant class is reduced rapidly in the first few iterations but

net error for the subordinate class increases considerably. The subsequent rate of

decrease of net error for the subordinate class is very low.

Typical behavior of the errors is shown in figure 1 where the net error of the

subordinate and dominant class are plotted. A logarithmic scale is used for the X­

axis in order to highlight the large change in net error that occurs in the first iteration.

We analyze the cause of this phenomenon in section 2.2. Mathematical results are

presented only for networks with one hidden layer.

2.1 Definitions

In order to explain the reasons for the observed phenomenon, it is necessary to re­

produce some of the well known properties of feed-forward networks. In this section,

we define these concepts and introduce necessary notation.

3

0.8
Mean square
error

0.6

0.4

02

A vg. error per exemplar, subordinate class

/ Avg. error per exemplar, dominant class.

oL-~~~~~~~L-~~~~~~~~~~~

0 10 100 1000 10000 100000
Number of iterations

Figure 1: Net errors for dominant and subordinate classes after each iteration during

a training session.

Network architecture: A schematic diagram of a feed-forward network is shown

in figure 2. The nodes in the network are organized in the form of layers. There are

no interconnections among nodes in the same layer. The output of each node in one

layer feeds into all nodes in the next layer through weights. We will consider networks

with only one node in the output layer since we focus on two-class problems in this

paper.

The hidden layers are numbered in increasing order away from the output layer

as shown in the diagram. No computation is performed by the input layer: it merely

receives the input pattern and distributes the components to the last hidden layer.

We shall use the term downstream to mean "towards the output layer".

The output from the network is clamped during training. If the target for a pattern

of class 1 is 1 - f but the output is greater than 1 - E, then the output is clamped

to 1 - f. Similarly for a pattern of class 2, if the target is td but the network output

is less than f, then the output is clamped to f. The clamp is used to implement the

modified penalty function suggested by Sontag and Sussmann [11]. They observe that

backpropagation is less likely to get stuck in local minima when the output is clamped

during training. Clamping is particularly desirable in classification problems because

it makes no sense to say that an error has occurred when the network gives an output

4

Input layer Hidden layer 0 (Output layer)

1 Hidden layer 2 1
I Hidden layer 1

r-- -., ,..-t-., ,..-*-., r-- -.,

clamp

Figure 2: A multilayer feed-forward network for a two-class problem.

greater than 1- f when the target is 1 - f (i.e., the network classifies samples with

very low error).

Notation: To fix the notation, we consider a backpropagation network with one

hidden layer (HL) shown in figure 3. There are I+ 1 nodes in the input layer for

input patterns of length I; the additional node represents the bias, (), in the function

I+e-<+.. ·X+ II) computed at each node. The H L contains L + 1 nodes including a node for

the bias term. Since we deal only with two-class problems in this paper, we assume

that there is only one node in the output layer, which we call the output node.

The exemplars of class Ck form the set

The input vector for the jth exemplar of the l.-th class (i.e. the (j, k)th exemplar) is

(k) - ((k) (k))
xi - xi,l' ... 'xi,I+I

where x~~)+I = 1 and the target values are t~t) = 1- t and t~2) = t. The training set

T, for a two class problem is T1 U T2 •

5

HL
Input layer

Figure 3: Notation for identifying nodes and weights in a network.

The outputs of H L can be collectively written as

(k) - ((k) (k))
Yi - Yi,l' · · ·, Yj,L+l

where YJ~+1 = 1. The output of the network (i.e. that of the output node) is given

by zy>.
In this network, the weight assigned to the link from the rth node of the input

layer to the sth node of the H L is denoted by Ws,r· The weights on the links from

the input layer to the sth node in H L are collectively denoted by

We collectively refer to all weights between the input layer and H L by

W = (w(1), ... , W(L))·

The weight of the link from the sth node of the hidden layer to the output node

is denoted by W 8 • All such (w.,) weights are collectively denoted by w , i.e.,

W = (wt, ... ,WL+t)·

Finally, all weights of the network are denoted by W:

W = (w ,w).

6

Gradients: We express the net error for the entire training set, E(W), in terms of

the net errors for subsets T1 and T2 denoted by Et(W) and E2(W) respectively:

E(W) - Et (W) + E2(W) (1)

"' E~:(W) - L: f(t~k), z~k)) for k = 1, 2
i=l

Where f is the penalty function:

f(t'· o'·) = { (t~- o~)2 if ((t~ = 1- f) 1\ (o~ < t~)) V ((t~ = f) 1\ (o~ > t~))
'' ' 0 otherwise

The gradient, V E(W), of the error function E(W) can be expressed in terms of the

gradients for E1 (W) and E2(W):

V E(W) = V Et(W) + V E2(W) (2)

In each iteration of the standard backpropagation algorithm, we compute V E(W),

the gradient vector of the error surface. Since net error decreases most rapidly in the

direction exactly opposite to that pointed to by the gradient vector, we move the

weights in the direction of - V E(W).

Backpropagation is summarized in the following equation:

W(m + 1) = W(m)- .\VE(W(m))

where W(m) is the weights of the network at the beginning of the mth iteration, and

A, a positive constant, is the learning rate. Some modifications to backpropagation

vary the learning rate during the training process [2] [13].

A vector v is said to point in a downhill direction for E(W) if

V· (-VE(W)) > 0

In other words, the angle between v and - V E(W) is less than 90°.

Weight change computation: The hidden node outputs {yj~, ... , yj1} are com­

puted as follows:

x<.">.w
(k) e 1 <•>

Y;,s = (") , for s = 1, ... , L, k = 1, 2, and j = 1, ... , nk.
1 + exi ·We•>

7

The network output z?> is obtained with the following equation:

y<">.w
(k) - e J d . 1 zi - (A:) , for k = 1, 2, an J = , ... , nk.

1 + eY; ·W

h f h . 'd f t' 1 th 1 (k) (k) d (k) Due to t e nature o t e s1gmm unc wn, t+e-u, eva ues Yj,l, ... , Yj,L an zi

are always positive and in the range (0, 1).

All weight changes consist of a product of the error signal for a node and the

output of another node. The weight change in w8 due to the (j, k)th exemplar is

given by:

D.w~i,k) - A x Error signal of output node x Output of sth node of HL

D.w~i,k) - A ((t}k)- z~k))zt>(1- z~k))) (y~~) (3)

. d k 1 2 Th' d t \ aE<J,k)(W) for s = 1, ... , L + 1, J = 1, ... , nk an = , . 1s correspon s o "' aw. .

Similarly, the weight change in Wr,s due to the (j, k)th exemplar is given by:

D.w(i,k) -
r,s A x Error signal of rth node of HL X Output of sth input node

D.w(i,k)
r,B _ A ((t~k)- z}k))z?>{l- z~k))wr) (x~~1) (4)

for r = 1, ... , L, s = 1, ... , I+ 1, j = 1, ... , nk and k = 1, 2.

The contribution of the (j, k)th exemplar to the gradient vector, V E(j,k)(W) is:

(5)

where D.w (j,k) = (D.w~i,k), ... , D.w~+kf) and similarly D.w(i,k) = (D.w~j,k), ... , D.w~·k>).
Finally, the gradient vector V Ek(W) is defined as follows:

n~c

v Ek(W) = L v E(j,k)(W) k = 1, 2. (6)
j=l

2.2 Analysis of the standard BP

In this section, we present a mathematical analysis of the slow rate of convergence of

net error.

Theorem 1 If all inputs to a feed-forward network with one hidden layer are posi­

tive, then for eve1·y weight in the network, the weight change in the first iteration of

backpropagation has the same sign for all exemplars of class C1 and the opposite sign

for all exemplars of class c2.

8

Proof: In equations 3 and 4, we find that the sign of the weight change for any weight

in the network due to the (j, k)th exemplar depends only on the term (t}k) - zY))

since the weights are the same for all exemplars and all x, y and z have only positive

values. Since (t}k) - z~k)) is non-negative for class C1 and non-positive for class C2,

the result follows. 0

Discussion: In the statement of theorem 1, we have assumed that all inputs to

the network are positive.

The assumption of positive inputs is not restrictive since all inputs can be made

positive by a simple translation. In most applications of backpropagation it is desir­

able to transform the inputs to belong to (0, 1]I with a simple transformation. If this

is not done, a single large input value often dominates the output through a sigmoid

function, slowing down the rate of convergence of net error.

We have observed that error signals are attenuated as they travel backwards

through the randomly initialized network in the first iteration. Hence the changes

prescribed for the weights in the upstream hidden layers are very smalL

Consequently, even in the case when inputs to the network are negative, the results

of theorem 1 generally hold since the weight changes for the hidden layer weights are

small compared to the weight changes in the output layer weights as discussed in the

sequeL

We have also assumed that the network has only one hidden layer. Even in

in networks with more than one hidden layer, we have observed that the expected

magnitude of the error signals of the nodes in H L 1 are approximately the same.

Therefore, in general, we expect that the signs of the weight changes in the second

hidden layer will be different for exemplars of each class. This leads us to believe

that theorem 1 will continue to hold for networks with more than one hidden layer.

Experiments and numerical calculations have supported this observation.

Theorem 2 Under the asst~mptions of theorem 1,

VEt(W) · VE2(W) < 0.

9

Proof: The dot product of V E1(W) with V E2(W) is:

L+l l+I L
VE1(W) · VE2(W) = L ~wi1>~w~2) + LL~w~~)~w~~}

s=l r=ls=l

From theorem 1, we find that in each pair, (~wp>, ~w!2>) and (~w~~)~w~~)), one of

the terms is positive and the other term is negative. Hence the dot product is always

negative. In geometrical terms, the angle between V E1 (W) and V E 2(W) is greater

than 90°. D

Suppose £(·) denotes the expectation with respect to weights W, and t'w (·)

denotes the conditional expectation with respect tow while w remains fixed.

Theorem 3 The expected values of the squares of the lengths of the gradient vectors

satisfy:
£11V E1(W)II2 n~
£11V E2(W)II2 ~ n~

Proof: In the following proof sketch, only the leading term of each expected value

is considered. A more detailed proof is given in the appendix.

The square of the length of V Ek(W) is:

s=l r=ls=l

From lemma 3.a of the appendix, we obtain

and from lemma 3.b, the expected value of y}~yf.:> with respect tow is approximately

i· Thus,

£ (~(~w(k))2)) ~ {2t~k)- 1)2(L + 1) 2
~ s 256 nk.

The expected values of (~w~~)2 are negligible (see lemma 3.a). Hence,

£(!IV Ek(W)II)2 ~ (2t~k) - 2;;{L + 1) nz; k = 1, 2.

10

(2t<"'> t)2 (L+I)
Since ; -256 is the same for both values of k, the desired result holds. 0

Discussion In theorem 3, we have shown that the expected lengths of the gradient

vectors V Ek(W) are proportional to the sizes of the training sets, nk. This would

imply that, in general, the length of the gradient vector of the dominant class (class

2) will he very large when n2 ~ n1 1 • Typically observed V Et(W) and V E2(W) are

depicted in figure 4.

VE1(W)

B

E
.·

O:t (> ~)

Figure 4: Relationship between gradient vectors V E1(W), V E2(W) and V E(W).

The length of vector V E 2(W) is much larger than the length ofV E1(W), therefore

V E(W) ~ V E2(W).

Theorem 4 (Ostrowski) (7) If v is a unit vector, then there exists a constant A

such that

i} W' = W + AV and

ii}E(W') < E(W)

if and only ifv is a downhill vector for E(W).

Standard hackpropagation tells us that AD (refer to figure 4) is the best direction

to follow to reduce E(W). However, the effect of moving in the direction of AD can

1Since all weights are uniformly distributed, the variance of the square of length will be small
and by Chebyshev's inequality [1] the stated result will hold.

11

be measured in terms of AF for E1(W) and AE for E2 (W). But AE points in the

uphill direction of E 1 (W). Consequently by Ostrowski's theorem, if W is changed

in the direction AD then E 2(W) will decrease significantly and Et (W) will increase

significantly. The magnitudes of the changes are proportional to the lengths of AF

and AE.

It has been observed that rate of convergence of backpropagation is often very low

when the output error is high. The reason for this behavior can be explained easily

by analysis of the error signal for the output node:

(t- z)z(l - z)

A large error (It- zl ~ 1) implies that either z ~ 0 or z ~ 1.0. In either case, one

of the last two terms in the above expression will have a low value and due to this

reason, the amount of change in weights will be small.

In summary, we have observed that if W' denotes the new weight vector obtained

by changing the weight by moving in the direction of AD, E 1(W') the net error of

the subordinate class and E 2(W'), the net error of the dominant class, then,

1. After the first iteration, E 1(W') is high and E2(W') is low.

2. Since E1 (W') is high, the error signals from the output node will have a small

magnitude and rate of convergence of error is slow. Likewise, since E 2(W') is

small, the rate of change of E2(W') will be very slow.

3. Consequently, standard BP will make a major improvement in reducing the net

error in the first step and will likely get stuck in a slow mode of error reduction.

In addition to the magnitude of the gradient vector, the actual weight change for

each weight in the network also depends on the learning rate ~- Since we use a fixed

learning rate in backpropagation, the usual approach is to find, by trial and error,

the largest value of ~ which does not cause oscillation. In the context of imbalanced

training sets, however, we have found that increasing the learning rate does not

necessarily increase the rate of convergence of net error.

The reason for this behavior lies in the increase in E 1(W) which occurs in the

first iteration. By increasing ~, we also increase the value of E 1 (W) after the first

iteration. As we have noted previously, this causes the rate of convergence of E 1 (W)

to decrease. Experimental results are summarized in figures 9 and 10.

12

3 Modified backpropagation

From the results in section 2.2, it is clear that -\7 E(W) does not always point in

the best direction to minimize error for both classes in a two-class problem. The

main feature of our modification is to compute a descent vector, v, which points in a

downhill direction for both classes i.e. v satisfies

-v · \7 Ek(W) < 0, for k = 1, 2 (7)

and takes the place of the gradient vector in the backpropagation algorithm:

W(k + 1) = W(k)- -\v.

We propose to set the direction of v so that v bisects the angle between -\7 E1 (W)

and -\7 E2(W):
-\7 Et (W) -\7 E2(W)

II- VEt(W)II. v =II- VE2(W)II. v

(See figure 5). Unless the angle between -\7E1(W) and -\7E2(W) is exactly 180°,

we are always guaranteed to find a downhill direction for both E1 and E2 •

VEt(W)

~ VE2(W)
~ A~-r-:--------......, C'

B'

VE(W)

Figure 5: Direction of gradient vectors in modified algorithm.

The above method is not the only choice for computing a suitable descent vector.

A descent vector can be any vector that makes an angle less than ~ with both AB

13

and AC. The main reason for using the bisector is that it is simple to compute and

is guaranteed to point in a downhill direction for both classes.

The proposed algorithm does not suffer from the deficiencies of the standard back­

propagation stated previously. Both E1 and E2 continue to follow the downhill path

at each iteration rapidly. Therefore the proposed algorithm will, in general, be faster.

Empirical verification of the above observations is presented for three examples in

section 4.

Magnitude of proposed descent vector: We have investigated two schemes for

computing the magnitude of the descent vector v:

1. Proportional to the means of the magnitudes of '\7 E 1(W) and '\7 E 2(W):

(8)

2. Proportional to the same magnitude as would be computed by standard hack­

propagation for E(W):

(9)

We shall refer to these formulae as method 1 and method 2 respectively. Our experi­

ence with examples, described in the next section, indicates that net error converges

somewhat faster with method 2.

4 Numerical results

In this section, we compare the performance of modified backpropagation with stan­

dard backpropagation for three different classification problems. We first present

some details of the three classification problems and then summarize the results in

figure 8.

4.1 Example 1 {Grid)

The patterns in the training set are two dimensional and are uniformly randomly

generated, with no overlap between the classes. The patterns occur in 25 clusters as

14

0.~- a:· :I ~· I~ 4\:· i\.· I • ·t• • .
u~ : c -

0.7 ... ·--· • ._.. ! .,.. .~. a:. -.............. ~ , .. .
0.6 f- : : -

0.5 f-... ~- l (... :-~J ~ ... ~# .::M# •• ..:ll• -
0 4 ~------------·--------------··{··-----------------------------------·······"

o:3 ~ l \4\ l ~ ~ ~ -

:~ ~ ~ • ! "" ! "" "" "" : ~ :1 I 1: I I 1 ~
0~~~~-----L-----4----~----~----~----~----~~

0 1

Figure 6: Location of classes C1 and C2 for example 1. Dotted lines show that four

hidden units are sufficient for this problem.

shown in figure 6. Patterns that belong to the subordinate class, C~, lie within an

interior cluster. Class C2 , the dominant class, consists of the points in the remaining

24 clusters. Thus, n 1 = 25 and n2 = 600.

A single-output network with one hidden layer containing 4 nodes was used for

this problem. The target value for exemplars in class C1 was 0.9 while the target for

class C2 was 0.1. \Ve used 4 nodes in the hidden layer since 4 decision surfaces are

required to separate patterns of class cl from class c2 (shown with dotted lines in

figure 6). A learning rate of >. = 0.01 was used for all runs. In each experiment,

training was started from the same randomly generated set of initial weights for the

standard as well as the modified backpropagation algorithms.

The average error per exemplar for classes C1 and C2 during a typical training run

is shown in figure 7 for both standard and modified backpropagation.

4.2 Example 2 (Speech)

The data used in this example is for a speech recognition problem and was obtained

from the UCI repository of machine learning databases and domain theories. The

input patterns are 10 element floating point vectors representing vowel sounds which

belong to one of 11 classes. There are 45 exemplars for each class. We have derived

15

..--

1~--~.----~----~----,-----,

0.8

0.6 ~ .

0.4 .

0 0 10 100 1000 10000 100000

0.8

0.6

NUIIIIIorollltndaal

AVJ. -per eumpllr,lllllloldillllo ciMa

1141-- 0.4 Ava.errorpereumpllr,damlaaalc:llll

0.2 ,__t-...:...J
00 10000 100000

1~~~~""~~~~~-r~~

0.8

0.6

..,__ 0.4 Avs-errorpereaap clomialllleiMI

0.2 ,..__fo-.:..J

10 100 1000 10000 100000

Figure 7: Average error per exemplar of dominant (C1 and subordinate C2 classes

during training (Plots shown a.re for experiment 1 of example 1). Top: Standard

backpropagation. Middle: Modified backpropagation, method!. Bottom: Modified

backpropagation, method2.

16

a two-class problem from this 11-class problem: Class C~, the subordinate class, con­

tains exemplars for the vowel sound in "hid". Class C2 , the dominant class, contains

exemplars for the remaining 10 vowel sounds. Thus, we have n1 = 45 and n2 = 450.

As in the previous examples, the patterns were translated and scaled in order to lie

within [0, 1]1°.

A single-output net with one hidden layer of 20 nodes was trained for this prob­

lem with the learning rate .\ = 0.01. In each experiment, the same set of random

initial weights were used for both standard backpropagation as well as the modified

algorithm. Training was stopped when only three exemplars remained misclassified.

4.3 Example 3 (Fisher's Iris data)

In this example, we analyzed the well-known Fisher's Iris data set [4]. Although this

is actually a three class problem with 50 exemplars for each class, we have converted

it to a two class problem as follows: Class C1, the subordinate class, consists of the

exemplars for Iris Versicolor. Class C2, the dominant class, contains exemplars for

Iris Setosa and Iris Virginica. Thus, n1 = 50 and n2 = 100. The original patterns

were translated and scaled so as to lie within [0, 1]4• We used a network with one

hidden layer of 4 nodes and the learning rate .\ was set to be 0.05. In each experiment,

the same set of random initial weights were used for both standard backpropagation

as well as modified backpropagation. Training was stopped when only two exemplars

remained misclassified.

4.4 Summary of results

The results of the three experiments are shown in figure 8. In general, we find

that method 2 is faster than method 1 and both are considerably faster than standard

backpropagation. The speedup obtained with the modified backpropagation appears

to be greatest for problems with highly imbalanced training sets, hut even if the

imbalance ratio is only 2, as in the case of example 3, the average speedup is greater

than 5.

17

Example Experiment Standard BP Modified BP Speedup

Method 1 Method 2 Method 1 Method 2

1 43755 147 116 297.6 377.2

2 19532 313 869 62.4 22.5

1 3 23376 252 172 92.8 135.9

4 22340 388 232 57.6 96.3

5 21130 337 175 62.7 120.7

1 2280 170 108 13.4 21.1

2 2210 237 116 9.3 19.1

2 3 2340 282 383 8.3 6.1

4 1910 277 124 6.9 15.4

5 1960 197 100 9.9 19.6

1 1500 215 163 6.9 9.2

2 1390 501 363 2.8 3.8

3 3 1410 110 466 12.8 3.0

4 1470 222 260 6.6 5.7

5 1420 530 273 2.7 5.2

Figure 8: The number of iterations required for the number of misclassifications to

decrease to acceptable level.

18

,\ Num. Iter. E~~~) after first iter.

0.01 43755 0.486510

0.02 18318 0.726782

0.03 11160 0.792245

0.04 8674 0.806312

0.05 5991 0.809228

0.055 5416 0.809645

0.06 5910 0.809836

0.065 7939 0.809924

0.07 12588 0.809965

Figure 9: The effect of varying ,\ for example 1 experiment 1 using standard back­

propagation. Column 2: The number of iterations needed for the all exemplars to be

correctly classified. Column 3: Mean square error for class C1 after the first iteration.

5 Comparison of execution times

The standard backpropagation algorithm consists of two steps:

1. Evaluation of V E(W).

2. Weight adjustment W' = W + ,\ V E(W).

In the modified back propagation also, two gradient vectors V E1 (W) and V E2(W)

are computed but the time to compute these two vectors is exactly equal to the

amount of time needed to compute E(W). In this step, the only difference between

the standard and proposed backpropagation is that we need to store two gradient

vectors.

The only additional computation in the proposed backpropagation is in evaluat­

ing the descent vector with equation 7. The additional overhead for computing the

descent vector in the proposed algorithm is negligible compared to the time needed

to compute the gradient vectors. Since our algorithm generally requires far fewer

iterations for the error to converge, we achieve a good speedup in run times.

19

Num. Iter.

45000~~~~--~--~--~---r--~--,

40000
35000

30000
25000

20000
15000

10000
5000~~~~--_. __ _. __ ~--~--~~

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
..\ (Learning rate)

Figure 10: The influence of..\ on the number of iterations needed to correctly classify

all exemplars in example 1 experiment 1 using standard backpropagation.

In example 2 (speech recognition), the actual time taken by standard backpropa­

gation is:

Number of iterations x 495 x 8.2 milliseconds

on a SUN SPARCserver 490, whereas the time taken by the modified backpropagation

algorithm is

Number of iterations x ((495 x 8.2) + 2.2) milliseconds.

Thus in the proposed algorithm, it takes only 2.2 milliseconds per iteration to compute

the descent vector which is negligible compared to the time to compute the gradient

vectors.

6 Concluding remarks

In this paper, we have analyzed the reason for low rates of convergence of backprop­

agation for two class problems with imbalanced training sets for two-class problems.

We then propose a modified version of the standard backpropagation algorithm which

is significantly faster for such problems.

20

We have observed that although the net error of the dominant class decreases

in the first iteration of standard backpropagation, the net error of the subordinate

class actually increases significantly. The subsequent rate of decrease of net error

of the subordinate class is very low. We show that this phenomenon occurs because

the gradient vector computed by standard backpropagation for a randomly initialized

network points in a downhill direction only for the dominant class.

The main feature of our modification to standard backpropagation is that we

compute a descent vector which points in a downhill direction for both classes. Hence,

net errors for both the dominant and subordinate classes are decreased by moving

the weights in the direction of the descent vector.

We have compared the performance of standard and modified backpropagation for

three two-class problems with varying degrees of imbalance in their training sets. The

speedup obtained with modified backpropagation appears to be greatest for problems

with highly imbalanced training sets, but even if the imbalance ratio is low, as in

example 3 (Fisher's Iris data), the average speedup is greater than 5.

We plan to extend our results to multiclass problems as well. One difficulty that

we have often encountered in multiclass problems is that even when the average error

per exemplar is small, the probability of misclassification for one or more classes is

very high. Another difficulty that we have observed with multiclass problems is the

extremely low rate of convergence of error. We are currently trying to explain these

phenomena in a manner similar to that described in this paper.

References

[1] Hogg, R. V., and Craig, A. T., "Introduction to mathematical statistics", The

Macmillan Company, 1971.

[2] Jacobs, R. A., "Increased rates of convergence through learning rate adaptation",

Neural Netwo·rks, Vol. 1, 1988, pp 295-307.

[3] Jacobs, R. A., Jordan, M. I., and Barto, A. G., "Task decomposition through

competition in a modular connectionist architecture: The what and where vision

tasks", COINS Technical Report 90-27, University of Massachusetts, 1990.

21

[4] James, M. "Classification Algorithms", John Wiley and Sons, 1985.

[5] Kohonen, T., Barna, G., and Chrisley, R. "Statistical Pattern Recognition with

Neural Networks: Benchmarking Studies", Proceedings of the International Con­

ference on Neural Networks, 1988, Vol-1, pp 61-68.

[6] Kowalik, J., and Osborne, M. R., "Methods for unconstrained optimization prob­

lems", American Elsevier Publishing Company Inc., 1968.

[7] Ostrowski, A. M., "Solution of equations in Euclidean and Banach Spaces",

Academic Press, 1973.

[8] Pierre, D. A., "Optimization theory with applications", pg 297, John Wiley and

Sons, Inc., 1969.

[9] Plaut, D. C., and Hinton, G. E., "Learning sets of filters using back-propagation",

Computer Speech and Language", Vol. 2, 1987, pp 35-61.

[10] Rumelhart, D. E., and McClelland, J. L. "Parallel Distributed Processing, Vol­

ume 1", MIT Press, 1987.

[11] Sontag, E. D., and Sussmann, H. J. "Backpropagation separates when percep­

trons do", Proceedings of the International Conference on Neural Networks, 1988,

Vol-I, pp 639-642.

[12] Wayma.ere, N. and Martens, J-P., "A fast and robust learning algorithm for

feedforward neural networks", Neural networks, Vol. 4, No.3, 1991, pp 361-370.

[13] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D. L., "Acceler­

ating the Convergence of the Back-Propagation Method", Biological Cybernetics,

Vol. 59, 1988, pp 257-263.

22

A Appendix

Since we shall repeatedly encounter complicated functions of random variables, we

follow the procedure outlined below to find an approximation of their expected values.

Let g(u) be some function of random variable u. Suppose we wish to obtain

£ (g(u)) where £(·) denotes the expected value. Then, using the Taylor's series ex­

pansion of g(u) with respect to u up to three terms, about £u = p, we get,

£(g(u)) Rl £ (g(p) + g'(p) ·(u-p)+ ~(u-p)· g"(p) ·(u-p))

- g(p) + ~ ~~g:j(p)£((ui -pi)(uj -pj)) for vector u
' J

g(p), the leading term of the right hand side approximates the expected value of

g(u) when expansion is considered only up to the first two terms.

A.l Expected values of functions of weight changes

Lemma 3.a

&.w [~ws(j,k) ~ws(l,k)] (k) (k) { (2t(k)- 1)2
- Yi,JJ Y1.s 64

1 L+t }
- '"' [(2t(k) - 1)2 ((y(~))2 + (y(~))2) - y<~>y(k)] 64 X 12 ~ J,l 1•1 1,, J,• ,=1

x(k)xl(k)
£w [~w(j,k) ~w(l,k)] = J,r ,r (2t(k)- 1?

s,r s,r 192

Proof: To establish (3.a), we follow the procedure outlined previously and in addi­

tion, we use £(w) = 0, £(wD = ! and £(w8 w8 •) = 0. These equalities holds because

theWs are stochastically independent random variables uniformly distributed between

(-1, 1]. They~~} are constants when expectation is taken with respect tow .

If we confine our attention only to the leading terms,

23

£,.. ~w~i,k) ~w~l,k) y y [] (k) (k) { (2t(k) - 1)2 }

- ~ ~ - j,• I,• 64

£,.. [~w(i,k) ~w(l,k)] - 0 - .,, .,,

0

The following lemma helps obtain the expectations of the above values with respect

to the hidden layer weights:

Lemma3.b

Proof: The proof for lemma 3.b is similar to that of the previous lemma including

e(w.) = 0, £(w:,,) = l, and £(w.,,w.,,,) = 0 for similar reasons. Once again, the first

terms on the r.h.s. of each expression gives the leading term; e.g. ew(YJ,~>YJ~) = ~·
0

Theorem 3: The ratio of the expected square length of the gradient vector satisfies

where

and

24

n - ,.2

e - _!_ (f: Jlx; 1l 2x~k)) . x(k)
nk i=l

Ct { (2t(k)- 1)2 (80 + 12L- £2) + (L + 4)2}
- 96 192

C2 {(2t(k) -1)2 (L + 16)- ((2tCk) -1)2 + 1) (L2 + 4L)}
- 48 1152

c3 - { (2t<•> - 1)2 2 L }
- 1152 (L + 6L) + 1152

c4 - {L(L-1)}
27648

Cs {-(2t(k) -1)2L(L -1)} - 27648

Proof: Let us consider E(IIV E~;(W)II 2).

IIV Ek(W)II2 - (Vw (k), Vw(k)) · (Vw (k), Vw(k))
L+l 1+1 L

- L:(~wik>? + E L:(dw!~}?
8=1 r=l8=l

where ~w(k) = "'~!1 ~w(j,k) and ~w(k) = "'~!1 ~w(i,k) hence
8 i.JJ- 8 r,8 i.JJ- r,8 '

We first take the conditional expectation of each term over w keeping w fixed. These

values are obtained from lemma. 3.a.. In the next step, we find the expectation of these

values over w using lemma. 3.b and substitution in equation (10) and a. lengthy but

straightforward simplification 2 gives:

2The simplification was verified using the MACSYMA system.

25

Note: Coefficients C4 and C5 are negligible for two reasons:

(a) The denominators are very small;

(b) if all x~~J are between 0 and 1 then their higher order terms keep getting smaller

and smaller as the power increases.

Hence A1 ~ A2.

26

	An Improved Algorithm for Neural Network Classification of Imbalanced Training Sets
	Recommended Citation

	SU-CIS-91-29_001c
	SU-CIS-91-29_002c
	SU-CIS-91-29_003c
	SU-CIS-91-29_004c
	SU-CIS-91-29_005c
	SU-CIS-91-29_006c
	SU-CIS-91-29_007c
	SU-CIS-91-29_008c
	SU-CIS-91-29_009c
	SU-CIS-91-29_010c
	SU-CIS-91-29_011c
	SU-CIS-91-29_012c
	SU-CIS-91-29_013c
	SU-CIS-91-29_014c
	SU-CIS-91-29_015c
	SU-CIS-91-29_016c
	SU-CIS-91-29_017c
	SU-CIS-91-29_018c
	SU-CIS-91-29_019c
	SU-CIS-91-29_020c
	SU-CIS-91-29_021c
	SU-CIS-91-29_022c
	SU-CIS-91-29_023c
	SU-CIS-91-29_024c
	SU-CIS-91-29_025c
	SU-CIS-91-29_026c
	SU-CIS-91-29_027c

