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Abstract 
 
 
 This paper proposes a robust estimation procedure, the bounded influence estimate (BIE), 

that is robust against departure from the conditional normality of the autoregressive conditional 

heteroskedasticity (ARCH) models to describe the behavior of exchange rates.  First, the BIE 

identifies the additive outliers (AO, e.g., Fox 1972) caused by abnormal information arrivals 

which may be triggered by changes in domestic policies and international shocks. Identification 

of outliers allows us to analyze the major economic and political factors that contribute directly 

to the dramatic changes in exchange rates.  Second, the performance of the BIE is compared with 

the maximum likelihood estimate (MLE) and a semiparametric estimator (SP) of Engle and 

Gonzalez-Rivera (1991).  

 



 

Introduction 
 

 Knowledge of the distribution of exchange rates has important implications for theories 

of international finance and their applications.  The specification of the stochastic processes of 

exchange rates is essential for the options pricing on foreign currencies.  Understanding the 

behavior of exchange rates also helps predict its effects on international trade and investments.  

In the analysis of capital markets, testing exchange market efficiency requires the information of 

statistical properties of the exchange rate distribution.  Also, the variance of exchange rates is a 

major risk component in international investing. Furthermore, knowledge of the volatility of 

exchange rates is important both for portfolio selection and for the evaluation of the performance 

of international asset portfolios.  

 The empirical evidence on the distribution of exchange rates, however, has been far from 

conclusive. While most previous studies have recognized that the rate of change in a foreign 

currency is not normally distributed, there is a lack of consensus on what type of distribution is 

most appropriate for describing the behavior of exchange rates.  Examples of alternative 

statistical distributions, which have been commonly suggested in describing the changes in 

exchange rates, include the symmetric stable Paretian, the Student t, the mixture of normal 

distributions, and the normal distribution with time-varying parameters (e.g., Friedman and 

Vandersteel 1982; Booth and Glassman 1987; and Tucker and Scott 1987).  Nevertheless, none 

of these well-documented alternatives has gained general acceptance. 

 An alternative approach to issues of exchange rates is the ARCH model (see Engle 1982; 

Bollerslev et al. 1990, for a survey). This model is intuitively appealing because the observed 

exchange rates seem to exhibit volatility clusters, i.e., periods of high volatility that tend to be  
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followed by periods of high volatility.  Hsieh (1988, 1989a) and Baillie and Bollerslev (1989) 

applied the ARCH model to daily exchange-rate series, and Diebold and Nerlove (1989) 

estimated the ARCH model for weekly spot-exchange rates. Overall, the findings of ARCH in 

exchange rates are important.  First, ARCH models are consistent with unconditional 

leptokurtosis in the changes of exchange rates (e.g., see Westerfield 1977; Boothe and Glassman 

1987).  Second, ARCH models may prove to be provide particularly helpful tools in future 

analyses and enhance understanding of currency-option pricing with stochastic volatilities’ 

models (e.g., Hull and White 1987; Melino and Turnbull 1990).   

 Among all assumptions of ARCH models, a very important one is that the distribution of 

the disturbance at time t conditional on the available information up to t-1 is normal.  However, 

numerous studies (e.g., Hsieh 1988, 1989; Baillie and Bollerslev 1989) showed that the 

distribution of the changes in exchange rates is, unconditionally as well as conditionally, far from 

being normal.  In fact, leptokurtosis and skewness are frequently present.  Hence, the normality 

assumption seems to be inadequate and often leads to false or inefficient inferences.  This is 

mainly due to the fact that exchange rates are contaminated by some outliers or extreme values so 

that the conditional distribution looks heavy-tailed.  

 To account for heavy tails of the conditional distribution, Engle and Bollerslev (1986) 

and Bollerslev (1987) used student-t rather than normal, since student-t distribution is heavy-

tailed relative to the normal distribution. In addition to the students-t distribution,  Hsieh (1989b) 

and Nelson (1991) also used the generalized error distribution (GED), which encompasses the 

normal, exponential, and uniform distributions.  However, Nelson (1991) noted that the GED has 

only one parameter to control the shape of the conditional distribution, and it may not be flexible 

enough due to too many outliers in the data. 
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 This paper proposes a BIE that is robust against departure from normality (of the 

conditional distribution) to describe the behavior of the changes in exchange rates. First, the BIE 

is used to identify the additive outliers (AO) caused by abnormal information arrivals that may be 

triggered by changes in domestic policies and international shocks.  Identification of outliers 

allows us to analyze the major economic and political factors that contribute directly to the 

dramatic changes in exchange rates not described by the model.  Second, the performance of the 

BIE will be compared with the maximum likelihood estimate (MLE), and a semiparametric 

estimator (SP) (Engle and Gonzalez-Rivera, 1991).  Issues related to the assumption of the 

distribution such as non-normality, leptokurtic, and outlying observations will also be addressed.   

 The paper is organized as follows.  The next section provides some background necessary 

to understand the proposed BIE and place it in context with related work.  Section 3 describes the 

BIE in details.  In Section 4, data and empirical results are reported.  Finally, Section 5 provides a 

summary.  

 
2. Model 
 

 Consider an ARCH model suggested by Geweke (1986), 

 2
1 (0, )t t ty N−ψ σ:  (1) 

 
2 2

1 2 1log log ,t ty −σ = α + α  

where yt is the rate of change for the foreign exchange spot rate, 1t−ψ  is the information set 

available at time t-1 and 2
tσ  is the conditional variance.  Note that the conditional variance 2

tσ  is 

positive for all values of α .  Equation (1) is sometimes referred as the log-ARCH model.  The 

log-likelihood function is 
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The MLE either maximizes equation (2) or solves the following equation 

 
ln1

0,
∂ =
∂θ    (3) 

where 1 2( , ).θ = α α   Note that if 2 0α = , the changes in exchange rates reduce to a random walk. 

 Hsieh (1989), Engle and Bollerslev (1986), and Baillie and Bollerslev (1989) have found 

the MLE of ARCH is sensitive to distributional assumptions.  One explanation is that the 

observations are contaminated by outliers and/or extreme values that make the conditional 

distribution look heavy tailed.  Consequently, the outliers may not be helpful in predicting future 

variances, and the estimates in the variance function may be unduly influenced by a few extreme 

observations.  These arguments strongly suggest the need of constructing robust-resistant ARCH 

parameter estimates and use these robust estimates to detect outliers. 

 Note that equation (1) can be written as  

 2 2
1 2 1log log ,t t ty y v−= α + α +  (4) 

where 2 2log logt t tv y= − σ  are uncorrelated for t = 1,2,..., T.  Thus equation (1) can be rewritten  

as an autoregressive model of order 1 (AR(1)) for 2log ty .  Hence, the process 2log ty  has the 

same correlation structure as that of an AR(1) process with AR parameter 2α .  

 Pantula (1986) recently introduced the following generalized ARCH (GARCH(1, 1)) 

model that allows the conditional variance to depend not only on past residuals, but also on its 

own past realizations: 

 
2

1

2 2 2
1 2 1 3 1

(0, )

log log log .

t t t

t t t

y N

y

−

− −

ψ σ

σ = α + α + α σ

:
 (5) 

Note that the equation (5) can also be written as  
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 ( )2 2
1 2 3 1 3 1log log ,t t t ty y v v− −= α + α + α + α +  (6) 

where 2 2log log .t t tv y= − σ   This reveals that 2log ty  in equation (5) follows an autoregressive and 

moving average model (ARMA(1, 1)) with serially uncorrelated vt.   

 In the standard ARCH/GARCH, little attention has been given to outlying observations.  

Jorion (1988) has a model that is very similar to the AO model.  In his model, Jorion allows the 

mean of the exchange rate to follow a jump process, while the variance of the exchange rate 

follows an ARCH process.  However, the present study considers the AO in the ARCH process 

to the variance but not the mean.   

 Now we take a more careful look at the outlying observations on ARCH models. Before 

assessing the effects of outliers on the ARCH models, we define what we mean by outliers in the 

time series models.  Two major types of outliers have been defined by Fox (1972):  One is called 

the additive effects outliers (AO) model; the other is referred as the innovation outlier (IO) 

model.  An IO represents an extraordinary shock at time t influencing 1, ,...,t ty y +  through the 

dynamic system described by equation (1).   

 In the IO model, occasional innovations have larger variance than the majority and 

therefore, can appear as outliers.  In the AO model, on the other hand, the isolated outlier has an 

additive transient character that is unrelated to the time series model.  Thus, the AO is also called 

a gross error, since only the level of tth observation is affected.  In fact, the IO outliers transmit 

their effect through to later observations; AO outliers do not.  We also note that IO model will 

create the heavy-tailed distribution and ARCH model is heavy-tailed. ARCH model, therefore, 

seems to be able to capture the IO by construction.  Assume that the observations are generated 

from  

 t t tz x e= +   (7) 
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where 2logt tx y=  follows an AR(1) model in equation (4), and et is an independent sequence of 

variables, independent of the sequence of xt.  The variable et has distribution H, given by  

 0(1 ) ,H G= − ε δ + ε  

where 0δ  is the distribution that assigns probability 1 to the origin and G is an arbitrary 

distribution.  Therefore, with probability 1− ε , the AR(1) process xt itself is observed, and with 

probability ε  the observation is the AR(1) process xt plus an error with distribution G. Further 

insights into the effects of AO to the ARCH model can be seen as follows:  Let 

 1 1

0(1 ) .

t t t

t x t t

t

z x e

x x v

e G
−

= +
= α + α +

− ε δ + ε:

 

Making the autoregressive transformation of zt, we have that  

 2 1 2 1 2 1.t t t t t tz z x x e e− − −− α = − α + − α  (8) 

Note that the sum of the two uncorrelated moving average (MA(1)) processes on the RHS 

equation of (8) is MA(1).  Hence equation (8) is an ARMA(1, 1) process.  That is, the AR(1) 

model with an AO becomes an ARMA(1, 1) model in equation (8).  In other words, the 

ARCH(1) model with an AO will become a GARCH(1, 1). Hence, GARCH (1, 1) model in 

equation (5) is able to capture the AO. 

 Looking at the equation (6) and equation (8), it appears that AO hypothesis implies a 

testable restriction on the parameters of a GARCH(1,1)  model.  In particular, the AO hypothesis 

implies that from equation (8) the estimated AR parameter will be equal to the estimated MA 

parameter in a GARCH (1,1) model.  This AO hypothesis will be tested in a later paper. 
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3. Bounded Influence Estimation 
 

 The foregoing analysis shows that the MLE of the ARCH models may be sensitive to 

AO-type outliers.  Consequently, detection of outlying observations implies that a robust 

estimation should be used.  The motivation for BIE arises from studies such as Krasker and 

Welsh (1982), Kao and Dutkowsky (1989), and Peracchi (1990a, 1990b, 1991). 

 The BIE proposed here is an iteratively reweighting technique where the weights decrease 

as some norms of the score function increases.  The BIE for θ , denoted by $θ  solves 

 $ $
1

( , ) ( , ) 0,
T

t t
t

w y s y
=

θ θ =∑  (9) 

where ( )w g  is a nonnegative weight function, θ  is a K by 1 vector of parameters to be estimated 

and ( )s g  is the score function such that  

 
1/ 2

1/ 21
( , ) min 1, ,

( , ) ( , )T

bK
w x

s x A s x−

  θ =  
 θ θ   

 (10) 

where 

 2 ( , ) ( , ) ( , ) .TA E w y s y s y = θ θ θ   (11) 

The influence bound b is specified prior to estimation.  Krasker and Welsch (1982) demonstrated 

that b has lower bound of unity. 

 The problem of selecting the optimal influence bound has not been conclusively resolved 

(see Samarov 1985; Powell 1990).  Suggested by Krasker et al. (1982), a criterion requires a 

predetermined level of asymptotic efficiency relative to the MLE at the “ideal” model.  Hampel, 

Rousseeuw, Ronchetti, and Stahel (1986, p. 252) pointed out, however, that such an approach 

may lead to estimators with very low robustness.  They suggested choosing the influence bound 

near 1.  Carroll and Ruppert (1987) and Kao et al. (1989) used these bounds ranged from 1.1 to 
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1.7 in their empirical studies.  Peracchi (1990a) suggested that b is chosen so as to obtaining an 

average weight of about 95 percent. 

 Equation (9) implies that the BIE falls within the class of weighted MLE.  The BIE 

modifies the score function and finds the roots of the resulting likelihood functions.  Equation 

(10) describes the choice of observation weights based on a Mahalanobis-type distance of 

( , )ts y θ  from the centroid of { }( , ) : 1,2,...,ts y t Tθ = . An observation is downweighting only if its 

influence exceeds the maximum allowable influence 1/ 2bK .  Observations with influence below 

this bound receive a weight of unity.  In this way the BIE compares with the MLE while, at the 

same time, the estimator protects against highly influential observations.  From Equation (11) we 

see that A is a robust version of the second-moment matrix of ( , ).s y θ  

 The influence function (IF) of the BIE is 

 1( , ) ( , ) ( , ),IF y B w y s y−θ = θ θ  (12) 

where  

 [ ]{ }( , ) ( , ) / .B E w y s y= − ∂ θ θ ∂θ  (13) 

Note that the influence function (IF) (see, e.g., Hampel, 1986, Peracchi, 1990b) measures the 

effect, on the asymptotic bias of an estimator, of an arbitrarily small contamination of the 

assumed statistical model. 

 The corresponding asymptotic covariance matrix of the BIE, denoted by V, is then 

 1 1.V B A B− −=   (14) 

 Since the IF is a K x 1 vector, there is no natural ordering for influence.  Obtaining a 

scalar in measuring of influence requires the application of appropriate norm for ( , )IF y θ .  This 

norm maps the IF into 1R ,  combining the influence of a given observation over each parameter 

in θ  to compute an overall measure of the observation’s influence.  The Euclidean norm cannot 
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be used here since it depends heavily upon the scaling of independent variables.  A more suitable 

measure which is independent of the particular parameterization is the self-standardized gross-

error sensitivity (e.g., Krasker and Welsch1982), 

 { }1/ 21max ( , ) ( , ) .Ts y A s y−λ = θ θ  (15) 

The γ  in equation (15) measures the worst effect that a small amount of contamination by gross-

error can have on the bias of the BIE. The construction of the weights in equation (15) implies 

that bγ <  for suitable choices of the influence bound.  Therefore, the foregoing estimator 

achieves bounded influence.  Bounding the gross-error sensitivity ensures robustness, with 

greater robustness produced by smaller bounds.  The details of the computational algorithm can 

be found in Carroll et al. (1987), Kao et al. (1989), and Peracchi (1990a, 1990b). 

 Note that bounded influence weights, ( )w g , provide useful diagnostic information for 

outliers and influential observations, in particular, and identifying potential sources of model 

failure. Recently, several nonparametric and semiparametric estimators for the ARCH/GARCH 

have been discussed in the literature (e.g., Diebold and Nason 1990; Pagan and Ullah 1988; 

Pagan and Schwert 1990; Robinson 1988). Gallant el al. (1991) used a semi-nonparametric 

method where the conditional density is estimated with a polynomial expansion using ARCH as 

a leading term. Engle and Gonzalez-Rivera (1991) estimated the conditional distribution using a 

nonparametric penalized likelihood density estimation of Tapia and Thompson (1978).  Weiss 

(1986) and Bollerslev and Woodridge (1988) proposed a quasi-maximum likelihood (QMLE) for 

ARCH and GARCH. These estimators have certain robustness properties (such as consistency), 

but can be very inefficient, for they disregard entirely the information contained in the parametric 

assumptions.  For example, Engle and Gonzalez-Rivera (1991) showed that the loss of efficiency 

of the QMLE could go up to 84 percent due to misspecification of the density. The BIE, on the 
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other hand, provides a compromise between efficiency and robustness, since they take parametric 

assumptions into account. 

 
4. Data and Empirical Results 

 

 The data set consists of daily spot rates of foreign exchange rates (in terms of U.S. dollar) 

from the International Financial Statistics.  Five major currencies are selected: the British Pound 

(BP), Canadian Dollar (CD), Deutsche Mark (DM), Japanese Yen (JY), and Swiss Franc (SF).  

There are 1579 daily observations from May, 1 1980 to June 16, 1986.  The analyzed series for 

each of the United States exchange rate is the first differences of the logarithms of the spot price 

of a specific currency in terms of dollars.  Hence, the data represent the continuously 

compounded percentage rate of return for holding the particular currency one day. 

 Table 1 reports the MLE and BIE of the parameters of the ARCH(1) processes. A 

ZXMIN subroutine of the IMSL libraries is used to compute the maximum likelihood estimators. 

The algorithm of computing BIE is written in FORTRAN and (9) is solved by subroutine 

ZSPOW in the IMSL libraries. For a given currency, the first row and second row display the 

parameter estimates of ARCH(1) process. Standard errors appear in the parentheses. The MLE of 

1α  and 2α  are significantly different from zero.  The only exception is the estimate of 2α  for the 

Swiss Franc.  

 As mentioned earlier, there are some outliers in the daily exchange rate data that may not 

be representative of the true exchange rate process.  Including these data that are not 

representative may cause bias in the parameter estimation.  To assess the effect of outlying 

observations on the parameter estimates, the ARCH(1) process is re-estimated with the BIE.  

Column three to column seven in Table 1 report the estimates of the BIE for the ARCH(1) 

process.  Different values of bounds are set (1.1 to 1.7) in the estimation.  The smaller the 
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bounds, the more the data were downweighted. Table 1 shows that parameter estimates are very 

sensitive to the outliers.  In particular, the estimates of 2α  increased about 200 percent to 400 

percent for the BIE with the bound equal to 1.7 compared to the MLE.  The signs of 2α  for DM, 

JY, BP and SF changed from negative to positive under the BIE. If the BIE represents the true 

parameter estimates of the population, then the volatility of exchange rates has been 

underestimated by a substantial amount when the MLE is used as in most of previous studies.   

 MLE and BIE for the GARCH(1, 1) model are given in the Table 2. Their results show 

that using BIE-ARCH(1) lead to significant differences with respect to ARCH(1).  This is due to 

the fact that the BIE is less sensitive than the MLE to local violations of the model assumptions. 

BIE-GARCH(1,1) and GARCH(1,1) tend to be close.  

 The BIE-GARCH(1, 1) identified two groups of abnormal data in the foreign exchange 

rates.  The first group includes the “shocks” that cannot be explained by the ARCH(1) and 

GARCH(1, 1) process.  As shown in Table 3 and Table 4, these are large fluctuations in foreign 

exchange associated with important political and economic events.  The second group includes 

the AO-type outliers that are captured by the GARCH(1, 1) process.  The procedure of 

identifying these AO outliers is as follows.  Using the BIE we fitted the exchange rate data to the 

BIE-ARCH(1) and the BIE-GARCH(1, 1) process.  We found some observations are 

downweighted substantially for the ARCH(1) process but are either not downweighted or just 

downweighted slightly for the GARCH(1, 1).  This means that these observations do not fit the 

ARCH(1) process well but fit fairly well to the GARCH(1, 1) process.  Since the only difference 

between these two models is that the GARCH(1, 1) process includes a moving average 

component, these observations must be associated with the AO-type outliers.  In this way, we 

identify the AO effects of economic and political changes that cause the jumps in exchange rate 

movements. 
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 Table 2 also presents the results obtained by estimating the various currencies using the 

semiparametric GARCH proposed by Engle and Gonzalex-Rivera (1990) (see Engle and 

Gonzalez-Rivera for details on the computations).  These results show that using semiparametric 

GARCH does not lead to significant differences with respect to MLE.  Semiparametric and MLE 

estimates tend to be close.  It seems that EG’s semiparametric ARCH is not robust with respect 

to outliers, which is not surprising (see Huber, 1981, p. 6).  For example, the sample mean is a 

nonparametric estimator of the population mean, but the sample mean is highly sensitive to 

outliers and therefore very non-robust.   

 Table 3 reports the data points that were substantially downweighted by the BIE for the 

British Pound for the purpose of demonstration.  As shown in the table, most of the observations 

downweighted in the BIE-GARCH(1, 1) process are also downweighted in the BIE-ARCH(1) 

process.  The AO-type outliers are listed in Table 3.  The unexplained outliers in Table 3 may be 

due to the level-shift (LS) type outliers or structural change in Lastrapes (1989), Diebold and 

Pauly (1988), Chen and Tiao (1990) and Lamoureux and Lastrapes (1990).  Further work is 

needed for explaining the ARCH or GARCH with LS-type outliers (e.g., Gourieroux and 

Monfort 1990; Chu, 1991). 

 Tables 4 documents some major events occurring on these dates identified in Table 3.  

The events displayed in Tables 4 reflects major policy changes and international turbulence.  The 

findings indicate that these events led to abnormal jumps or fluctuations in the foreign exchange 

rates for the British Pound. 

 
5. Conclusion 

 

 This paper extends the current literature on the distribution of exchange rate changes in a 

number of ways.  First, the parameters of the distribution were estimated with a BIE.  The results 
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of section 4 show that exchange rate changes estimated from the same set of data can differ 

significantly depending on the choice of the model and estimation technique.  In particular, the 

ARCH(1) can different significantly from BIE as a consequence of the presence of only a small 

of fraction of extreme observations. This estimation procedure offers an efficient mechanism to 

downweight outlying observation and therefore, provides more accurate estimates for the 

parameters of the exchange rate changes distribution.  Second, the major political and economic 

events that caused jumps and abnormal fluctuations in exchange rates were identified by 

examining the data points that were detected by the BIE.  The effects of policy changes and 

international events on exchange rate movements were carefully analyzed.  The analysis provides 

policy makers very valuable information on the sensitivity of exchange rate to policy shifts and 

economic events.  
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Table 1.    MLE and BIE for the log-ARCH Processa 

2

1
(0, )

t t t
y y N− σ:  

2 2

1 2 1
log log

t t
y −σ = α + α  

 
Currency MLE BIE (1.7) BIE (1.5) BIE (1.3) BIE(1.1) 

Canadian Dollar      

1
α  -11.183 

(0.073) 
 

-10.674 
(0.068) 

-10.653 
(0.063) 

-10.722 
(0.061) 

-10.926 
(0.057) 

2

2
x10α  5.932 

(0.527) 
13.936 
(0.421) 

15.483 
(0.376) 

15.438 
(0.370) 

15.277 
(0.344) 

      
Deutsche Mark      

1
α  -9.606 

(0.045) 
 

-9.595 
(0.057) 

-9.648 
(0.057) 

-9.736 
(0.056) 

-10.048 
(0.049) 

2

2
x10α  -0.606 

(0.362) 
4.731 

(0.438) 
4.748 

(0.436) 
4.708 

(0.433) 
5.064 

(0.372) 
      
Japanese Yen      

1
α  -10.527 

(0.059) 
 

-9.821 
(0.052) 

-9.861 
(0.052) 

-9.997 
(0.051) 

-10.297 
(0.049) 

2

2
x10α  -4.341 

(0.401) 
7.005 

(0.309) 
6.993 

(0.309) 
0.823 

(0.306) 
6.103 

(0.300) 
      
British Pound      

1
α  -9.123 

(0.067) 
 

-8.861 
(0.061) 

-8.809 
(0.055) 

-8.846 
(0.054) 

-8.932 
(0.053) 

2

2
x10α  -5.036 

(0.571) 
12.098 
(0.433) 

14.213 
(0.374) 

14.348 
(0.366) 

14.407 
(0.355) 

      
Swiss Franc      

1
α  -8.139 

(0.014) 
 

-9.430 
(0.021) 

-9.497 
(0.021) 

-9.660 
(0.021) 

-9.915 
(0.019) 

2

2
x10α  -0.000 

(0.130) 
4.938 

(0.176) 
4.890 

(0.176) 
4.662 

(0.174) 
4.871 

(0.017) 
     aAsymptotic standard errors are in parentheses below each coefficient.  BIE(1.5) is the BIE with 
bound to be 1.5.  Sample period is from May 1, 1980 to June 16, 1986. 
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Table 2.    MLE, BIE, and SP for the log-GARCH Process 

 
Currency MLE BIE (1.7) BIE (1.5) BIE (1.3) BIE(1.1) 

Canadian Dollar      

1
α  -0.412 

(0.051) 
 

-0.096 
(0.021) 

-0.071 
(0.020) 

-0.085 
(0.019) 

-0.351 
(0.018) 

2

2
x10α  4.038 

(0.202) 
 

3.614 
(0.194) 

3.553 
(0.187) 

3.667 
(0.178) 

3.212 
(0.069) 

3
α  0.919 

(0.005) 
0.955 

(0.003) 
0.956 

(0.002) 
0.954 

(0.002) 
0.938 

(0.002) 
Log-likelihood -8758.823    -7404.278 
      
Deutsche Mark      

1
α  -0.081 

(0.031) 
 

-0.263 
(0.056) 

-0.273 
(0.056) 

-0.326 
(0.059) 

-0.141 
(0.045) 

2

2
x10α  1.958 

(0.185) 
 

3.174 
(0.250) 

3.203 
(0.248) 

3.276 
(0.242) 

1.732 
(0.084) 

3
α  0.968 

(0.004) 
0.938 

(0.007) 
0.937 

(0.007) 
0.932 

(0.007) 
0.963 

(0.002) 
Log-likelihood -6768.853    -5448.361 

 
      
Japanese Yen      

1
α  -0.087 

(0.037) 
 

-0.002 
(0.007) 

-0.001 
(0.006) 

-0.004 
(0.006) 

-0.076 
(0.004) 

2

2
x10α  0.534 

(0.132) 
 

1.207 
(0.117) 

1.212 
(0.109) 

1.253 
(0.103) 

0.686 
(0.093) 

3
α  0.985 

(0.005) 
0.986 

(0.002) 
0.987 

(0.001) 
0.987 

(0.001) 
0.984 

(0.002) 
Log-likelihood -7102.765    -5748.399 
      
British Pound      

1
α  -0.053 

(0.019) 
-0.076 
(0.026) 

-0.078 
(0.025) 

 

-0.082 
(0.025) 

-0.066 
(0.057) 

2

2
x10α  1.755 

(0.172) 
 

3.414 
(0.242) 

3.527 
(0.235) 

3.544 
(0.229) 

1.574 
(0.070) 

3
α  0.974 

(0.003) 
0.954 

(0.004) 
0.953 

(0.004) 
0.953 

(0.004) 
0.974 

(0.004) 
Log-likelihood -6925.577    -5543.019 
      
Swiss Franc      

1
α  0.245 

(0.003) 
-0.254 
(0.030) 

 

-0.281 
(0.030) 

-0.312 
(0.031) 

0.258 
(0.002) 

2

2
x10α  4.193 

(0.089) 
 

3.749 
(0.146) 

4.146 
(0.145) 

4.369 
(0.141) 

6.315 
(0.091) 

3
α  0.974 

(0.001) 
0.932 

(0.005) 
0.926 

(0.005) 
0.922 

(0.004) 
0.972 

(0.002) 
Log-likelihood -6183.429    -4783.725 
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Table 3.    Selected Downweighted Cases from the BIE(1.7): 

The Case of British Pound 
 

Case Number Date 
BIE-ARCH 

Weights 
BIE-GARCH 

Weights 
Outliers 

Type 
3 5/06/80 .05a 1.00 AOb 

121 10/21/80 .08 .07  
217 3/10/81 .03 .97 AO 
221 3/16/81 .09 1.00 AO 
257 5/06/81 .04 1.00 AO 
263 5/14/81 .04 .03  
512 5/03/82 .05 .15  
587 8/18/82 .06 .61 AO 
596 8/31/82 .02 .38 AO 
691 1/11/83 .02 .02  
751 4/05/83 .02 .06  
771 5/03/83 .04 .57 AO 
811 6/28/83 .05 .61 AO 
845 8/15/83 .08 .69 AO 
945 1/03/84 .05 .14  

1035 5/08/83 .02 .04  
1161 10/31/84 .09 1.00 AO 
1244 2/27/85 .04 .07  
1246 3/01/85 .01 .49 AO 
1258 3/19/85 .05 .09  
1264 3/27/85 .02 .16  
1283 4/24/85 .09 .16  
1307 5/28/85 .04 .04  
1355 8/02/86 .09 .13  
1361 8/12/85 .02 .49 AO 
1380 9/06/85 .03 .06  
1391 8/23/85 .03 .04  
1534 4/16/86 .09 .51 AO 

     aCases are selected when weights are less than .10. 
     bAO-type outliers are indicated when weights in BIE-GARCH are large (say ,.40) 
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Table 4.   Important Events Coincide with the Shocks Found by the BIE: 

The Case of British Pound 
 

Date Events 
5/14/81 Agreement reached on the increase in international minimum interests rates. 

 
6/4/81 Mexico reduced its oil price on June 3. 

 
1/11/83 Clearing banks raised base lending rate from 10 to 11 percent on January 11. 

 
2/27/85 On this day there was coordinated central bank frozen exchange intervention to 

restrain the dollar. 
 

3/19/85 Market anticipated a fall in base rates of as much as 1 percent. 
 

3/27/85 National Westminister and Lloyds banks prepared to announce that they would 
be cutting their based rates to 13 percent. 
 

4/24/85 to 4/29/85 Rumors of a $1 cut in the price of Soviet crude oil occurred. 
 
 

8/2/85 There was severe concern in the foreign exchange market that interest rates 
might be pushed down. 
 

9/6/85 to 9/9/85 
 

Break with OPEC pricing by Saudi Arabia. 
 

9/23/85 to 9/27/85 
 

Meeting of the G5 (group of five industrial countries) in New York on weekend 
of September 21st and 23rd. 
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