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Abstract

This thesis documents a quest to develop and study several novel interacting stochas-

tic processes. As for the first example, we generalize a system of vicious random walkers

in which the only interaction between any two random walkers is that when they in-

tersect, both walkers are annihilated. We define a system of N vicious accelerating

walkers with each walker undergoing random acceleration and compute the survival

probability distribution for this system. We also define and study a system of N vi-

cious Lévy flights in which any two Lévy flights crossing one another annihilate each

other. The average mean-squared displacement of a Lévy flight is not proportional to

time, but scales with what is known as the Lévy index divided by two. In both cases,

vicious accelerating walkers and vicious Lévy flights, we are motivated by ultimately

generalizing our understanding of Gaussian random matrices via non-Markovian and

non-Gaussian extensions respectively. Moreover, inspired by recent experiments on pe-

riodically sheared colloids at low densities, we define and investigate several new contact

processes, or interacting stochastic processes, with conserved particle number and three-

or-more-body interactions. We do so to characterize the periodically sheared colloidal

system at higher densities. We find two new dynamical phase transitions between an

active phase, where some fraction of the colloids are always being displaced from their

position at the beginning and end of each shear cycle, and an inactive phase in which all

colloids return to their initial positions at the end of each shear cycle. One of the transi-

tions is discontinuous, while the second, which is due to a caging, or crowding, effect at



high densities, appears to be continuous and in a new universality from what is known

as conserved directed percolation. The latter transition may have implications for the

onset of glassiness in dense, particulate systems. In addition, this thesis also includes

analysis of the heterogeneous force network present in amorphous solids near the onset

of rigidity, or jamming. The onset of rigidity can, in some sense, be viewed an interact-

ing stochastic process with added constraints to enforce force-balance on each particle,

for example. Our analysis yields string-like correlations in the locally-large forces in the

system. Such correlations are reminiscent of force chains. While force chains have been

readily observed in experiments, it is the first time these correlations have been observed

in conjugate gradient simulations of repulsive soft spheres. We also study the contact

geometry of the force network and explore a link with spin systems, namely spin glasses,

to search for signatures of chaos due to marginal stability, for instance. Connections

between jamming systems and spin glass systems will hopefully open up new avenues

of theoretical investigation for both systems. Finally, we explore the quantum version

of an individual stochastic process, namely the fractional Schrödinger equation. We

prove that previously claimed exact solutions for certain potentials are incorrect and

determine a new exact solution for a Lévy index of unity and the harmonic oscillator

potential. While our results contribute to the realm of mathematical physics, a physical

realization of the fractional Schrödinger equation will indeed launch a new subfield of

quantum mechanics.
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1.5 Vicious Lévy flights . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Particle-conserving interacting stochastic processes in crowded

environments 26

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Directed percolation . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Conserved directed percolation . . . . . . . . . . . . . . . . 32

2.1.3 Caging and kinetically constrained models of the glass tran-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Mean field analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



Table of contents vii

2.5 Two-dimensional simulations . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Simulation protocol . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Force network analysis of amorphous solids near the onset of

rigidity 57

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Force bonds and spatial correlations . . . . . . . . . . . . . . . . . . 62

3.4 Contact number and spins . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Jammed solids, spin glasses, and some speculation . . . . . . . . . . 76

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 On the non-locality of the fractional Schrödinger equation 83

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Free particle . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Dirac δ potential . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Inquiry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Infinite one-dimensional square well . . . . . . . . . . . . . . . . . . 88

4.4 Other systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 The fractional harmonic oscillator . . . . . . . . . . . . . . . . . . . 92

4.5.1 WKB approximation . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2 An exact solution for α = 1 . . . . . . . . . . . . . . . . . . 93

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Long-range, one-dimensional Potts glass 96

Bibliography 101

vii



List of Figures

1.1 Schematic plot of a directed polymer brush of five polymers as the

trajectories of five vicious random walkers [11]. . . . . . . . . . . . . 3

1.2 Trajectories of discrete vicious random walkers. The fluctuation of

position of the leftmost walker P1 converges to the famed Tracy-

Widom distribution as proved by Baik [10]. . . . . . . . . . . . . . . 4

1.3 Realization of a one-dimensional Lévy flight (short-dashed blue)
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Chapter Summaries

Note to the reader: The following section contains a birdseye view of the thesis

along with summaries of each chapter. In other words, it is an abstract of un-

constrained length. As for the chapters, each chapter begins with a background

section followed by an inquiry section. The background section provides the reader

with enough material and/or references to more firmly grasp the context of the

results of each chapter, while the inquiry section relays the overall question driv-

ing the research performed in each chapter. A compilation of all the background

sections could provide for an overall introduction to the thesis, however, we have

decided to make each chapter self-contained and, hence, chosen this particular

construction. We should also note that the variables invoked within each chapter

are self-contained.

The study of interacting stochastic processes impacts upon a wide range of sys-

tems ranging from magnetism to epidemic spreading to the competition between

species. While numerous examples exist, two celebrated ones are the contact pro-

cess [1] and the exclusion process [2]. The contact process considers active, or

infected, sites and inactive, or healthy, sites on a hypercubic lattice. Inactive sites

become activated by nearest neighbor active sites at a rate proportional to the

number of nearest neighbor active sites. In addition, active sites become inactive

(recover their health) at a rate of unity. There exists a critical value of the propor-

xiii
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tionality constant below which the infection (the presence of active sites) dies out.

As for the exclusion process, particles diffuse freely on a lattice with the constraint

that they cannot overlay and must avoid each other in order to cross (in dimen-

sions higher than unity). The system may exchange particles with some infinite

reservoir at the boundaries, or may be closed. One of the initial motivations for

studying this process, at least in one dimension, was to model mRNA translation

where the particles correspond to ribosomes moving along mRNA strands [3].

One of the main quests documented in Chapters 1 and 2 is to construct and

study new models of interacting stochastic processes. The new models are mo-

tivated by two different, though related topics, the first being generalizations of

random matrix ensembles and the second being glassiness in disordered systems.

These two topics are related by the idea that the Instantaneous Normal Modes of

fluids near the glass transition can be characterized by a random matrix whose

elements depend on the Euclidean distance between points randomly distributed

in space [4]. Another main quest documented in Chapter 3 is the study of the

implications of a previously developed interacting stochastic process—the onset

of rigidity in amorphous solids, otherwise known as jamming. Jamming involves

an intricate interplay between forces and contact geometry in order to balance

the forces on each particle. We go beyond the usual distribution of forces to look

for spatial correlations in the forces generated as well as investigate perturbations

in the contact geometry and find an effect linked to chaos in spin glass systems

near the onset of jamming. Finally, Chapter 4 addresses a mathematical physics

problem we discovered while developing a new interacting stochastic process now

dubbed vicious Lévy flights. The problem involves building correct, exact solutions

for the fractional Schrodinger equation in which the ordinary Laplacian operator is

replaced with the fractional Laplacian operator. The fractional Laplacian operator

describes Lévy flights (in the continuum limit).
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Chapter 1

Consider the following interacting stochastic process. There are N random walk-

ers on a line. When any two walkers intersect, both are annihilated. This system

is known as vicious random walkers with the viciousness referring to the annihi-

lation [5]. There exists a link between vicious random walkers and the Gaussian

random matrices. In an effort to ultimately go beyond Gaussian random matri-

ces, we study a system of N vicious accelerating walkers with the acceleration

undergoing Gaussian fluctuations, as opposed to the velocity. We numerically

compute the survival probability exponent, α, for this system, which character-

izes the probability for any two walkers not to intersect. For example, for N = 3,

α = 0.71±0.01. Based on our numerical data, we conjecture that 1
8
N(N−1) is an

upper bound on α. We also numerically study N vicious Lévy flights and find, for

instance, for N = 3 and a Lévy index µ = 1 that α = 1.31± 0.03. While vicious

accelerating random walkers may prove relevant for a non-Markovian extension

of Gaussian random matrices, vicious Lévy flights may be relevant for random

Lévy matrices. Moreover, vicious accelerating walkers relate to no-crossing con-

figurations of semiflexible polymer brushes just as vicious random walkers relate

to no-crossing configurations of flexible polymer brushes. This work was published

in Europhysics Letters in 2011.

Chapter 2

Periodically sheared colloids at low densities demonstrate a dynamical phase tran-

sition from an inactive to active phase as the strain amplitude is increased [6]. To

begin to answer the question of what happens to this system at higher densi-

ties approaching that of the colloidal glass transition, we build and investigate a

conserved-particle-number interacting stochastic process with a three-body inter-
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action as opposed to the usual two-body interaction. In particular, one active (dif-

fusing) particle collides with two inactive (non-diffusing) particles such that they

can become active. In mean-field, this system exhibits a continuous absorbing

phase transition belonging to standard conserved directed percolation universality

class. Simulations on two-dimensional lattices support our result. In contrast, the

three-body interaction with two active particles colliding and activating one inac-

tive particle exhibits a first-order transition. Inspired by kinetically-constrained

models of the glass transition, we investigate the ”caging effect” at even higher

particle densities to look for a second dynamical phase transition back to an in-

active phase. Again, mean-field calculations demonstrate a continuous transition.

Two-dimensional lattice simulations suggest a continuous dynamical phase tran-

sition, however, the universality class appears to be a different from the standard

conserved directed percolation universality class. This difference is presumably

due to the localized geometric constraint of caging. This work is in preparation.

Chapter 3

Jamming is an interacting stochastic process involving force balance, isostaticity

and local mechanical stability. Using a system of repulsive, soft particles as a

model for an amorphous solid, we analyze its force network as characterized by

the magnitude of the contact force between two particles, the local contact angle

subtended between three particles, and the local coordination number. In particu-

lar, we measure the local contact angle distribution as a function of the magnitude

of the local contact force. We find the suppression of small contact angles for lo-

cally larger contact forces, suggesting the existence of chain-like correlations in

the locally larger contact forces. We also investigate perturbations in the contact

geometry. Using a coordination number-spin state mapping, we measure chaos
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due to marginality in the jammed system similar to what is found in spin glass

systems at the spin glass transitions. By coupling the force-chain results with the

coordination number-spin state mapping we suggest the possibility of a jammed

(amorphous) solid being described by a sea of weakly interacting spins providing

for long-range interactions along a chain-like backbone of more strongly interact-

ing spins. This suggestion may easily explain the mean-field nature observed in

numerical simulations of the jamming transition. This work is under review at

Physical Review E.

Chapter 4

A number of papers over the past eight years have claimed to solve the fractional

Schrödinger equation for systems ranging from the one-dimensional infinite square

well to the Coulomb potential to one-dimensional scattering with a rectangular

barrier. However, some of the claimed solutions ignore the fact that the fractional

diffusion operator is inherently nonlocal, preventing the fractional Schrödinger

equation from being solved in the usual piecewise fashion. We focus on the one-

dimensional infinite square well and show that the purported groundstate, which

is based on a piecewise approach, is definitely not a solution of the fractional

Schrödinger equation for general fractional parameters α. On a more positive

note, we present a solution to the fractional Schrödinger equation for the one-

dimensional harmonic oscillator with α = 1. This work was published in the

Journal of Mathematical Physics in 2010.



Chapter 1

Vicious accelerating walkers and

vicious Lévy flights

1.1 Background

1.1.1 Vicious random walkers

A
random walk is the simplest stochastic process for an individual par-

ticle. It also provides the basis for numerous interacting stochastic

processes. For instance, consider N random walkers in one-dimension.

These random walkers act independently unless two random walkers intersect or

cross. Then, the pair of walkers annihilate each other, hence the term ”vicious”.

The N vicious walkers system dies leaving behind an N−2 vicious walkers system.

This interaction was introduced by M. E. Fisher in 1984 during his Boltzmann

Medal lecture [5].

Why choose such an interaction? It was originally proposed to study interfacial

wetting in 1+1 dimensions, which is driven by the interaction of different interfaces

1



2 Chapter 1. Vicious accelerating walkers and vicious Lévy flights

(the various random walkers) [5, 7]. Close to the wetting transition, the interface is

pinned to the wall with alternate segments either attached to the wall or staying

apart from the wall to form bubbles. The fluctuations of the interface normal

to the wall can be modeled with random walks, while the direction parallel to

the wall is treated as time. Therefore, the wetting transition is equivalent to

having the random walks (different segments of the interface) annihilate upon

contact such that the entire interface is attached to the wall, or wetted. A similar

situation occurs in the one-dimensional Ising spin system with Glauber spin-flip

mechanism, where the domain walls act as random walks and disappear when they

intersect [5, 7].

Later on it was noted that the fermionic nature of vicious walkers (where no

two walkers can occupy the same lattice site in a discretized version of vicious

walkers) provides for a Coulomb gas description [8]. Interestingly, the parti-

tion function of a log-potential Coulomb gas in one dimension is equivalent to

the partition function of an ensemble of Gaussian random Hermitian matrix (at

three particular temperatures with each temperature relating to the three types

of Gaussian random matrices—orthogonal, unitary, and symplectic) [9]. Further-

more, Baik [10] proved that a particular limiting conditional distribution of the

displacement of the leftmost walker is equivalent to the Tracy-Widom distribution

for Gaussian random Hermitian matrices. The Tracy-Widom distribution charac-

terizes the fluctuations in the largest eigenvalue in a Gaussian random Hermitian

matrix. In addition, vicious walker configurations correspond to directed polymer

brushes with the vicious mechanism capturing the non-intersecting property of

the polymers [11]. See Fig. 1.1 for a schematic of a polymer brush. Polymer

brushes consist of polymers adhered to a surface at high densities such that there

is crowding among the polymers forcing them to elongate away from the surface

to avoid overlapping with other polymers or themselves (no self-avoidance). So
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Figure 1.1: Schematic plot of a directed polymer brush of five polymers as the
trajectories of five vicious random walkers [11].

while the study of vicious walkers has attracted attention from the mathematical

physics community, a number of different physical applications also drive its study.

Let us start with the fundamentals characterizing vicious random walkers. A

single random walker in one-dimension with position x(t) as a function of time t

is described by the equation of motion,

ẋ = η(t), (1.1)

where η(t) is Gaussian noise < η(t) >= 0 and < η(t)η(t′) >= 2Dδ(t − t′). The

corresponding Fokker-Planck equation is simply

D
∂2

∂x2
p(x, t) =

∂

∂t
p(x, t), (1.2)

where p(x, t) is the probability density distribution for the one-dimensional random

walk. For an N vicious random walkers system, since the N random walkers be-

have independently, the joint probability density distribution p(x1, ..., xN , t) obeys
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Figure 1.2: Trajectories of discrete vicious random walkers. The fluctuation of po-
sition of the leftmost walker P1 converges to the famed Tracy-Widom distribution
as proved by Baik [10].

the Fokker-Planck equation

D
N∑
i=1

∂2

∂x2i
p(x1, ..., xN , t) =

∂

∂t
p(x1, ..., xN , t). (1.3)

In order to implement the vicious interaction between random walkers, we assign

the boundary condition p(x1, ...xN , t) = 0 if ∃(i, j) such that xi = xj. If all the

walkers are ordered initially xi < xj ∀i < j, the vicious interaction preserves the

order since the dynamics of a random walk is local and no crossing is allowed. For

a schematic of the vicious walker trajectories, see Fig. 1.2.

We are interested in a particular time scale in the system. In particular, for

how long can the N vicious random walkers avoid each other so that the system

survives? To investigate this problem, one can introduce a survival probability for

the system s(t), defined as the probability that the system is still alive up to time

t. For N = 1, s(t) = 1.

For N = 2, we have two vicious random walkers on a line and the system

dies only if they meet. That is, as long as the distance between them is not zero,

the system survives. One can then define a new variable x(t) = x1(t) − x2(t)
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and perform the change of variable on the Fokker-Planck equation for the N = 2

system to obtain

2D
∂2

∂x2
p(x, t) =

∂

∂t
p(x, t). (1.4)

This is the Fokker-Planck equation for a single 1D random walker (with diffusion

constant 2D) and x(0) = x1(0) − x2(0) < 0. The boundary condition is now

p(x = 0, t) = 0. We now have in fact converted the N = 2 vicious random walkers

problem into the first-passage problem of one random walk. If one defines a first-

passage probability function f(t), it is related to the survival probability function

s(t) via

s(t) = 1−
∫ t

0

f(t′)dt′

ds(t)

dt
= −f(t). (1.5)

The solution to the first-passage problem of a 1D random walk is well-known. At

long times, f(t) ∼ t−3/2. Thus, for N = 2 vicious walkers, the survival probability

distribution scales as s(t) ∼ t−1/2.

For N = 3 vicious random walkers on a line, we can first use a relative co-

ordinate change of variables. Specifically, set x = x1 − x2, y = x2 − x3. The

Fokker-Planck equation is now

2D

(
∂2

∂x2
+

∂2

∂y2
− ∂2

∂x∂y

)
p(x, y, t) =

∂

∂t
p(x, y, t). (1.6)

To get rid of the coupled term, apply a second set of coordinate transformations,

u = x+ y and v = −(x− y)/
√
3, to arrive at

2D

(
∂2

∂u2
+

∂2

∂v2

)
p(u, v, t) =

∂

∂t
p(u, v, t). (1.7)
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The absorbing boundaries now lie at v = ±u/
√
3. By the two-step change of

variables, we have mapped the N = 3 vicious walkers problem to a single two-

dimensional random walk in an absorbing wedge geometry with a 60◦ wedge angle.

The first-passage properties of a two-dimensional random walk in an absorbing

wedge has been solved. One way to solve it is conformal mapping[32]. Given the

rotational invariance of the diffusion operator, one can use the transformation

z′ = zπ/θ to map a wedge with angle θ to the upper-half plane, and the absorbing

boundary now lies on the x-axis. Since the random walk in x-direction is actually

freed, the problem is reduced to a 1D random walk with absorbing wall in y-

direction, and the survival probability is presented above as s(t) ∼ t−1/2. Use

the inverse mapping, one can obtain that the survival probability of a 2D random

walk in an absorbing wedge with angle θ is then s(t) ∼ t−π/2θ. For the 60◦ we

have obtained for the N = 3 vicious walkers problem, the survival probability is

s(t) ∼ t−3/2.

The same technique can be applied to arbitrary values of N to map the vicious

random walkers problem to an N − 1 dimensional random walk in an absorbing

wedge geometry. In addition, for any infinite domain with absorbing boundaries,

the survival probability of a random walk generally decays as a power-law relation

at long times, i.e. s(t) ∼ t−α, while for a bounded domain, the survival probability

decays exponentially. The first-passage probability distribution for an infinite

domain is then also power-law as f(t) ∼ t−β at long times with β = α+ 1.

In a related derivation, Fisher [5] has shown that the long-time asymptotic

distribution for the N vicious random walkers is

p(x1, ...xN , t) =
e−

∑N
i=1 x

2
i /2t

(2πt)N/2
e−N(N−1)(2N−1)/12t

N∏
i>j

(exi/t − exj/t). (1.8)

The first factor is the product of N independent random walks without any in-
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teraction. The second exponential term approaches unity in the long time limit

t → ∞. The most important factor is the third one, or
∏N

i>j(e
xi/t − exj/t), which

is denoted as the ”death factor” in Fisher’s derivation. The product in the death

factor has N(N − 1)/2 terms in itself, and one of each corresponds to a pair of

vicious random walkers (xi, xj). The survival probability can be obtained from the

asymptotic distribution above by integrating it over all possible set of xi
′s subject

to the boundary condition x1 < x2... < xN−1 < xN , where the integral will even-

tually become again a product of individual death factors Dij for the pair (xi, xj).

As we already know each pair (xi, xj) generates a survival probability s(t) ∼ t−1/2,

the probability for all the N(N − 1)/2 pairs to survive is s(t) ∼ t−N(N−1)/4, or

the survival probability exponent α = N(N − 1)/4. This is one of the central

analytical results for vicious random walkers.

1.1.2 Lévy flights

As a foundation for vicious Lévy flights, we would like to introduce the proper-

ties of an individual Lévy flight. Lévy flights are generalizations random walks in

that they retain the Markovian nature of a random walk. However, the step-size

distribution (or Lévy distribution) of a Lévy flight as an infinite mean and/or

variance. In particular, the Lévy distribution can be asymptotically expressed

as f(x) ∼ x−1−µ, where µ is the Lévy index. When µ > 2, the variance of a

Lévy distribution is finite, however, when 1 < µ ≤ 2, the variance is infinite (but

mean finite) and when 0 < µ < 1, both the mean and variance are infinite. For

0 < µ ≤ 2, because of the broad tail in the Lévy distribution, Lévy flights can

make long jumps in contrast to step-size distributions with finite mean and/or

variances. See Fig. 1.3. Lévy flights have been observed in many systems, includ-

ing animal foraging patterns, DNA-binding protein searching for binding sites,

kinetic Ising model with long-range interactions, and light waves transporting in
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certain materials [12, 13, 14, 15].

When µ > 2, the variance of a Lévy distribution is finite and the Central Limit

Theorem holds such that a Lévy flight is equivalent to a Gaussian random walk

at long times. When µ < 2, however, the variance and/or mean of the step-size

distribution diverges and one expects to see qualitatively different behavior from a

Gaussian random walk since one of the assumptions invoked in the Central Limit

Theorem no longer applies. Then, the mean square displacement of a Lévy flight

with Lévy index µ follows < r2 >∼ t2/µ, where for µ = 2 the linear, normal random

walk behavior is recovered. One might remember that for anomalous diffusion,

the mean square displacement also grows non-linearly in t such that Lévy flights

may describe anomalous diffusion.

The long jumps of a Lévy flight make the process non-local such that it can

overshoot a given target without hitting. People have investigated the distribution

of leapovers p(l), where the leapover l is defined as the length of overshooting to a

given target, for Lévy flights in one-dimension. The leapover distribution scales as

p(l) ∼ l−µ/2, meaning that for 1 < µ < 2 even if the average step length is finite,

the average overshooting length could be diverging [16]. Nevertheless, the first

passage time probability distribution of a Lévy flight in 1D scales as f(t) ∼ t−3/2

independent of the value of µ, which is a result of the Sparre-Andersen theorem.

The Sparre-Andersen theorem states that for any symmetric step size distribution,

the first passage probability distribution in 1D always has the same exponent as

a Gaussian random walk. It is quite a powerful statement and we will invoke it

later on in this chapter.
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Figure 1.3: Realization of a one-dimensional Lévy flight (short-dashed blue) and
the comparison with an ordinary random walk (black) and an accelerating random
walk (long-dashed red). The inset is a blow-up of the ordinary random walk.

1.2 Inquiry

There have been generalizations of vicious walkers to dissimilar walkers [17], walk-

ers with drift [18], and walkers with external potentials [19]. Here, we introduce

a system of N accelerating vicious walkers and ask the question: What is the

survival probability, s(t), the probability for having none of the N accelerating

walkers annihilated up to time t in the long-time limit?

In one-dimension, a randomly accelerating walker, x(t), is defined by

d2x(t)

dt2
= η(t), (1.9)

where η(t) is Gaussian noise with ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = 2Dδ(t − t′). If we

introduce the velocity variable v = dx/dt, the above equation of motion can be

rewritten as

dv =
√
dtMt(0, 1)

dx = vdt, (1.10)
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where the right-hand-side of the equation for dv is the Markov propagator of a

Wiener process as called in the mathematical literature with Mt(0, 1) denoting

normal distributed number with mean zero and variance unity. A detailed expla-

nation of this representation can be found in Ref.[20]. The basic idea is that even

if
√
dt is larger than dt as dt→ 0, the fluctuation of a normal distributed number,

Mt(0, 1) (also proportional to
√
dt as seen in ordinary diffusion), will regulate the

right-hand-side of the equation of dv back to the order of dt.

To eventually arrive at the corresponding Fokker-Planck equation, for an ar-

bitrary smooth function f(x, v), one can compute the total derivative up to the

order of dt as

df =
∂f

∂x
dx+

∂f

∂v
dv +

∂2f

∂v2
(dv)2

2

df =
∂f

∂x
vdt+

∂f

∂v
Mt(0, 1)

√
dt+

∂2f

∂v2
dt

2
. (1.11)

Also, given the probability density distribution, p(x, v, t), one has the following

identity ∫ ∫
dxdv

∂p

∂t
f(x, v) =

⟨
df(x, v)

dt

⟩
. (1.12)

Now insert the total derivative for f(x, v) as derived in Eq.(1.11) (along with

< Mt(0, 1) >= 0) to arrive at

∫ ∫
dxdv

∂p

∂t
f(x, v) =

⟨
v
∂f

∂x
+

1

2

∂2f

∂v2

⟩
∫ ∫

dxdv
∂p

∂t
f(x, v) =

∫ ∫
dxdv

(
v
∂f

∂x
+

1

2

∂2f

∂v2

)
p(x, v, t). (1.13)

Integrating the right-hand-side by parts and dropping surface terms will lead to

∫ ∫
dxdv

∂p

∂t
f(x, v) =

∫ ∫
dxdvf(x, v)

(
−v ∂p

∂x
+

1

2

∂2p

∂v2

)
. (1.14)
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Since f(x, v) is arbitrary, the above equation yields the Fokker-Plack type equation

we need

∂

∂t
p(x, v, t) =

1

2

∂2

∂v2
p(x, v, t)− v

∂

∂x
p(x, v, t), (1.15)

where the prefactor 1/2 can be dropped via a rescaling of x and v such that the

final version of the Fokker-Planck equation for a random acceleration process in

one-dimension is [
D
∂2

∂v2
− v

∂

∂x

]
p(x, v, t) =

∂

∂t
p(x, v, t). (1.16)

Note that the final result is a special case of the Kramers equation[21]. In

Ref.[21] the general Fokker-Planck equation for Brownian motion in a potential is

written as

∂

∂t
p(x, v, t) = −

(
K(x)

m

∂

∂v
+ v

∂

∂x

)
p(x, v, t) +

ζ

m

∂

∂v

(
kBT

m

∂

∂v
+ v

)
p(x, v, t),

(1.17)

where m is the mass of the Brownian particle, ζ is the friction constant, kB is

the Boltzmann constant, T is the temperature, and K(x) = −∂V (x)/∂x is the

external field of force associate with a given potential V (x).

As one can see from the above equation (Eq. 1.16), a randomly accelerating

walker is presumably the simplest non-Markovian stochastic process. Given the

fermionic interaction between vicious accelerating walkers, one can explore the

possibility of a non-Markovian analogue to the log-potential Coulomb gas and,

hence, a potentially new class of non-Markovian random matrices [8, 9]. Recently,

Fukushima and collaborators [22] have revisited Dyson’s original Brownian motion

model for random matrices [9] and found a non-Markovian stochastic process after

generalizing the coefficients of the matrices. We anticipate further generalizations

in the future.

In addition, a randomly accelerating walker appears in the Boltzmann weight of
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an extensible, semiflexible polymer of length L with non-zero bending energy [23].

For a given displacement vector r⃗(z) from some reference point along a contour

length, z, the Hamiltonian, H, is given by

H(r⃗(z), u⃗(z); z) =
κ

2

∫ L

0

dz

(
d2r⃗(z)

dz2

)2

, (1.18)

where u⃗(z) denotes the tangent vector and κ characterizes the bending rigidity.

Mapping the contour length z to time t and the displacement vector r⃗ to x⃗(t), the

equation of motion for this system corresponds to a randomly accelerating walker

in the corresponding dimension. Implementing the vicious interaction between

N random accelerating walkers, therefore, corresponds to the statistics of non-

intersecting semiflexible polymer brushes [24].

1.3 N ≤ 3 vicious accelerating walkers

We begin by considering N = 2 vicious accelerating walkers in one-dimension

with equal diffusion constants D1 = D2 = D. The two accelerating walkers are

governed by the equation,

D

(
∂2

∂v21
+

∂2

∂v22

)
p(x1, x2, v1, v2, t)

−
(
v1

∂

∂x1
+ v2

∂

∂x2

)
p(x1, x2, v1, v2, t) =

∂

∂t
p(x1, x2, v1, v2, t) (1.19)

with the initial condition, p(x1, x2, v1, v2, t = 0) = δ(x1−x1,i)δ(x2−x2,i)δ(v1)δ(v2),

with x1,i < x2,i. In addition, to compute the survival probability, s(t), we imple-

ment the boundary condition,

p(x1 = x2, v1 > v2, t) = 0 (1.20)
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such that the system “dies” when the two walkers meet in space and have ingoing

velocities. Note that the boundary condition in v is redundant since, due to the

initial positions, the two walkers cannot meet with a relative outgoing velocity.

We then choose the relative coordinate system to reduce the N = 2 vicious

accelerating walkers to one random accelerating walker in the presence of an ab-

sorbing wall. This change of variables takes the form, x = x1−x2 and v = v1−v2.

The Fokker-Planck equation thereby reduces to

[
2D

∂2

∂v2
− v

∂

∂x

]
p(x, v, t) =

∂

∂t
p(x, v, t), (1.21)

with the boundary condition, p(x = 0, v > 0, t) = 0.

The survival probability for this process is nontrivial in that one cannot invoke

the method of images as is done for the ordinary random walker. Using properties

of the integral of a Brownian curve, Sinai [26] proved that the asymptotic survival

probability distribution is given by

s(t) ∼ t−1/4 (1.22)

at long times. Note that the first-passage time distribution, f(t), where the first

passage time is defined by the time at which any of the two walkers meet is given

by f(t) = −ds(t)
dt

such that f(t) ∼ t−5/4. In general, if the survival probability

distribution is given by s(t) ∼ t−α at large times, then f(t) ∼ t−β with β = α+1.

A heuristic argument, based on Sinai’s approach, for α = 1/4 was given in

Ref. [27]. First, a new time counter, M , is defined by each “original” time the

velocity crosses zero. In other words, the original time is now defined by the

distribution of first-passage time of a random walk undergoing a Lévy flight with

Lévy index µ = 1/2. Moreover, with this new counting, the position variable is also

a Lévy flight with Lévy index µ = 1/3. By invoking the powerful superuniversality
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of the Sparre-Andersen theorem in one-dimension [28, 29, 30], the first passage

time distribution for the position in terms of M is the same as for a random walk,

i.e. M−3/2. To convert back to the original time, one simply needs to compute

the integral

f(t) ∼
∫

1

M
3
2

M

t
3
2

exp(−t2/M)dM, (1.23)

where M

t
3
2
exp(−t2/M) is the limiting distribution for the sum of M µ = 1/2 Lévy

variables. We should also mention that Burkhardt [23] made the use of Marshall-

Watson functions [25] to solve for the Laplace transform version of Eq. 1.21 with

the absorbing boundary condition.

To numerically check for α = 1/4 result (and other results), we implement the

go-with-the winners algorithm [31]. We do this because as N increases, the first

passage time exponent β increases, making it more difficult to sample the tail of

the distribution. The go-with-the winners algorithm iterates replica systems in

parallel. Once the number of surviving replicas fall below a preset fraction, those

surviving replicas are copied over to the ”dead” replicas so that the total number

of running replicas remains a roughly same value. We choose that fraction to be

one-half such that each copy generated carries a relative weight of 1/2c, where c

is the number of copies, which is then incorporated into the survival probability.

The number of replicas range between 1, 000 and 10, 000. The number of runs

averaged over range between 10 and 40. Fluctuations between the runs are then

used for error analysis.

Having calibrated our results for the N = 2 case, we now consider N = 3

vicious accelerating walkers with equal diffusion constants. The Fokker-Planck

equation is given by

3∑
j=1

[
D

(
∂2

∂v2j

)
−
(
vj

∂

∂xj

)]
p(X,V, t) =

∂

∂t
p(X,V, t), (1.24)
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Figure 1.4: Log-log plot of survival probability distribution versus time for N = 2
and N = 3 vicious accelerating walkers in line and for a single accelerating walker
in a π

3
wedge geometry. The line denotes a survival probability exponent of 1/4,

while the dashed line denotes a survival probability exponent of 3/4.

where X = {x1, x2, x3}, and V = {v1, v2, v3}.

We apply change of variables v = v1− v2, u = v2− v3, x = x1−x2, y = x2−x3

such that the LHS operator for two relative coordinates becomes

2D

(
∂2

∂v2
+

∂2

∂u2
− ∂2

∂v∂u

)
−
(
v
∂

∂x
+ u

∂

∂y

)
(1.25)

with the absorbing boundary at x = 0, y = 0, u > 0 and v > 0. Again, here,

boundary conditions on the velocities are redundant. To remove the coupled

term in u and v, we perform another set of linear transforms, u = l−q/
√
3

2
, v =

−l−q/
√
3

2
, x = −z−w/

√
3

2
, and y = z−w/

√
3

2
to obtain

6D

(
∂2

∂q2
+
∂2

∂l2

)
−
(
q
∂

∂w
+ l

∂

∂z

)
(1.26)

with absorbing boundaries, z = ±w/
√
3, i.e. a π

3
wedge in the z − w plane.

We have reduced three vicious accelerating walkers in one-dimension to one ac-

celerating walker in two-dimensions in a wedge geometry. While there is currently

no analytical solution for the survival probability distribution for an accelerating
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walker in a π
3
wedge geometry, for a π

2
wedge, the Sparre-Andersen theorem can be

invoked for the two independent directions to arrive at an asymptotic power-law

survival probability distribution with α = 1
2
. In addition, for a π wedge, α = 1

4
.

While the Sparre-Andersen theorem is quite powerful and can easily be extended

to as many independent dimensions as needed, the π
3
wedge geometry couples the

two directions (for N = 3, at least) and, therefore, the Sparre-Andersen theorem,

as it stands, cannot be invoked.

However, to smoothly interpolate between the π
2
and π cases, we conjecture that

for other wedge angles, the survival probability distribution also asymptotes to a

power-law with survival probability exponent, α, with α decreasing continuously

as the wedge angle increases. To test this conjecture, we resort to numerical

simulation of both the wedge geometry for one accelerating walker and the line

geometry for three accelerating walkers. The result is presented in Fig. 1.4. We

measure a survival probability exponent of α = 0.71 ± 0.01 for N = 3 vicious

accelerating walkers in a line, which agrees with the π
3
wedge geometry result

(with essentially the same error bar). Also, referring back to the accelerating

walker-Lévy flight mapping implemented to demonstrate the α = 1
4
exponent for

an absorbing accelerating walker in one-dimension, simulating a µ = 1/3 Lévy

flight in a π
3
wedge geometry with the opening angle, θ, between 0 and π

3
, yields

α = 0.71± 0.03.

Figure 1.5 tests our conjecture that α continuously decreases with increasing

wedge angle. Both the numerical values of α for the π
2
and π wedges agree well

with their analytical counterparts. For comparison purposes, we have also plotted

the curve α = π/4θ, which agrees with the two analytical solutions and can be

viewed as a trivial extension of the random walker solution. While the agreement

looks reasonable at larger angles, the deviation becomes more apparent at smaller

angles. It also appears that the divergence in α as θ decreases to zero is slower
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than 1/θ.

In the interest of studying a mixture of flexible and semiflexible polymer

brushes, one can study a mixture of vicious accelerating and random walkers.

Consider a mixture of vicious accelerating and random walkers—an example of

a vicious walkers system with dissimilar members. For one random walker and

one random accelerator, the random walker can be approximated as an absorbing

boundary at rest since the displacement of a random walker scales as x(t) ∼ t1/2,

while for a random accelerating walker, the velocity scales as v(t) ∼ t1/2 such that

the displacement scales as x(t) ∼ t3/2. Thus, in long time limit, the displacement

of a normal random walker is negligible compared with that of a random acceler-

ator. In other words, one can simply take the normal random walker as a fixed

absorbing wall to fulfill the vicious mechanism. Simulations of one random walker

and one accelerating walker that annihilate upon crossing verify this.

Now to address the N = 3 mixed case. We use the ”A” to denote an accel-

erating walker and ”R” to denote a normal one in the present discussion. The

two pure states ”RRR” and ”AAA” are trivial with the former following Fisher’s
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Figure 1.6: Log-log plot of the survival probability distribution for the N = 3
mixed cases of vicious accelerating walkers (A) and vicious random walkers (R).
The line denotes a first passage time probability exponent of β = 3

2
.

general solution and latter demonstrated by our numerical simulation described

earlier in the paper. The combination with two normal walkers and one accelera-

tor can have two forms, namely ”RRA” and ”RAR”. The former can be treated as

one absorbing random walker and one absorbing accelerating acting independently

such that α = 3/4. The latter is an accelerating walker sandwiched between two

random walkers, i.e. a bounded domain, and hence the survival probability decays

instead exponentially in time. A detailed analysis can be found in Ref.[33]. Sim-

ulations support both results. See Figure 1.6. For ”ARA”, there is an absorbing

wall in between two accelerating walkers, i.e. a pair of decoupled accelerator-wall

systems, hence α = 1/2. The last possible configuration, ”AAR”, is nontrivial in

that it can be reduced to one accelerating walker in a π
4
wedge geometry, just as

two vicious random walkers in the presence of an absorbing wall can be mapped

to one random walker in a π
4
wedge geometry. We measure a nontrivial survival

probability exponent of α = 0.89± 0.01 for this case, which is consistent with our

wedge measurements.
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1.4 N > 3 vicious accelerating walkers

Now, we numerically address N > 3 vicious accelerating walkers. To compare with

ordinary vicious walkers, based on the method of images, Fisher [5, 7] considered

one compound walker in N dimensions that cannot cross any of the x1 = x2, x2 =

x3, ..., or xN−1 = xN linear manifolds. Using the method of images, as long as the

initial positive and negative weights (corresponding to unrestricted positive and

negative walkers) are chosen such that probability distribution is antisymmetric

under reflection within each linear manifold, then the distribution will satisfy

the absorbing boundary conditions for all future times. These weights can be

represented as a Vandermonde determinant, which can be factorized to yield a

product of 1
2
N(N − 1) pairings such that α(N) = N(N − 1)/4, where α(2) = 1/2.

Previous and the current simulations verify this prediction. See Figure 1.7. By the

same argument, if the survival exponent for two (one pair of) vicious accelerating

walkers is 1/4, the survival exponent for N vicious accelerating walkers system

should be N(N − 1)/8. However, for vicious accelerating walkers, the method of

images fails.

Based on the N = 2 and N = 3 results, combined with the fact that N

vicious accelerating walkers can be mapped to one accelerating walker in N − 1

dimensions in an unbounded domain, we expect the power-law survival probability

distribution extends to N > 3. In Figure 1.7 we present the simulation results

of survival probability exponents for vicious accelerating walkers system up to

N = 10, as well as the too trivial prediction, α = N(N − 1)/8. The deviation is

apparent at large N . We find that N(N − 1)/8 is clearly an upper bound for the

measured N . The non-Markovian nature of the accelerating walker enables the

system to survive longer and in a way that cannot be accounted for by individual

pairings.
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Figure 1.7: Survival probability exponent α for vicious accelerating walkers (solid
squares) and vicious Gaussian walkers (solid circles) systems up to N = 10. The
simulation results for vicious Gaussian walkers agree very well with theory predic-
tion α = N(N − 1)/4 (black curve). However, the results for vicious accelerating
walkers deviate from a method of images prediction of α = N(N − 1)/8 (blue
dashed curve).

1.5 Vicious Lévy flights

As mentioned previously, vicious Gaussian walkers problem is closely related to

the Gaussian random matrix theory. A matrix with random entries falls into this

category as long as the entries are independent and identically distributed (iid)

variables with a finite second moment of the corresponding distribution. A gen-

eralization of the random Gaussian matrix is the random Lévy matrix [34], where

the entries are drawn from a broader distribution, namely a Lévy distribution.

The most important characteristic of Lévy distribution is a heavy power-law tail

step-size S distribution, P (S) ∼ S−1−µ for large S. When µ ≥ 2, the variance of

the distribution is finite and, hence, the central limit theorem holds for the distri-

bution of the sum of independently drawn Lévy variables. Similarly, the random

Lévy matrices reduce to random Gaussian matrices. However in the regime µ < 2,

the variance of the distribution diverges and hence random Lévy matrices behave

qualitatively different from random Gaussian matrices. For example, the famous
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for N = 2 and N = 3 vicious Lévy flights as a function of the Lévy index. For
µ > 2, we obtain the vicious random walker results.

Wigner-Dyson semicircular law is replaced with a density of states that extends

over the entire eigenvalue axis [34].

Inspired by the connection between vicious Gaussian walkers and random

Gaussian matrices as well as the connection between Lévy flights and random

accelerating walkers, we study the problem of vicious Lévy flights. Given N Lévy

flights in one-dimension, we define the vicious interaction between pairs. Because

Lévy flights are nonlocal, two Lévy flights jump over each other without meeting

at some exact point. Hence, there could be two ways to define the vicious inter-

action, to prohibit the jump-overs or to allow for jump-overs and the annihilation

occurs upon intersection within some range, irrespective of the ordering. The lat-

ter has been recently studied [35]. However, we are more interested in the former

case, in which the set of Lévy flights annihilate whenever a crossing occurs. In

other words, a surviving system strictly maintains the initial ordering of all flights,

which is the same as for the vicious Gaussian walkers.

The Fokker-Planck equation for a system of N one-dimensional vicious Lévy
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flights is described as

N∑
j=1

∂µ

∂|xj|µ
p(X, t) =

∂

∂t
p(X, t), (1.27)

where the normal Laplacian is replaced by the Riesz-Feller derivative of fractional

order 2 > µ > 0 [36, 37]. This derivative has an integral representation, which

more easily reveals its nonlocal nature, or

dα

d|x|α
f(x) = − 1

2 cos ((m− a)π/2)
(Dα

+ −Dα
−), (1.28)

where

Dα
+ =

1

Γ(α)

∫ x

a

dy(x− y)m−α−1f (m)(y)

Dα
− =

1

Γ(α)

∫ b

x

dy(y − x)m−α−1f (m)(y), (1.29)

with α ∈ (m − 1,m),m integer, and x ∈ Ω = [a, b] [36]. The initial condition is

still p(X, t = 0) =
∏N

j=1 δ(x − xj,i), with xj,i < xk,i for all j < k. The boundary

condition for the non-crossing vicious interaction as we described above is then

p(xj, t) = 0, if xj ≥ xk for any j < k.

The N = 2 case is, again, equivalent to the first-passage problem of a single

Lévy flight via a transformation to relative coordinates (and integrating out the

center of mass coordinate). The only difference with a random walker is that

the absorbing boundary condition at the origin has to be modified to an absorb-

ing region occupying the positive x-axis to preserve the non-crossing property.

The first-passage property of a Lévy flight is governed by the Sparre-Andersen

theorem[28, 29, 30], which implies that the first-passage time distribution for any

symmetric step size distribution in one-dimension asymptotes to the same as that

of a Gaussian walker. Thus, the survival probability exponent forN = 2 is α = 1/2
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independent of µ. We verify this result in our simulation. See Figure 1.8. Note

that this result is very different from the result obtained in Ref. [35] where α

depends on µ for N = 2 and higher.

We also simulate N = 3 vicious Lévy flights. Because of the linearity of frac-

tional derivatives, the mapping of two vicious Lévy flights to a single Lévy flights

in an absorbing plane holds. However, due to the lack of rotational invariance of

the Riesz-Feller derivative, the wedge mapping that holds for vicious walkers and

now for vicious accelerating walkers, does not apply to vicious Lévy flights. In

order to make progress, since for N = 2 there exists a power-law distribution, we

conjecture that the survival probability distribution scales as a power-law at long

times for N > 2 and measure α. Figure 1.8 plots the survival probability expo-

nents for N = 3 vicious Lévy flights for several different Lévy indices. For N = 2

all values of µ yield the same survival probability exponent of 1/2, in agreement

with the Sparre-Andersen theorem. However, the N = 3 exponents appear to

vary with µ. For instance, for µ = 1, α = 1.31 ± 0.03. While the 0.19 difference

between µ = 1.0 and µ = 2 is small, the difference grows with N . For example,

for N = 4 and µ = 1, α = 2.3± 0.1 and for µ = 2, α = 2.91± 0.09. Based on this

data, we speculate that for N > 2, α depends on µ.

A few comments on the technical aspects of the simulations are in order. We

implement an upper cut-off on the Lévy steps so that at long enough times, the

survival probability distribution approaches the random walker result [38]. The

convergence also depends on the Lévy index. For example, for µ = 1 and stepsize

cut-off Sc = 10 − 100, the convergence to the random walker result is fast such

that the asymptote to a power-law beyond t ≈ 102 is in agreement with the

random walker result to within one standard deviation. In contrast for µ = 1.6,

Sc = 109, and time scales beyond t ≈ 108, convergence to the random walker result

is observed. Secondly, for µ = 1 we also generated Cauchy distributed numbers
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directly and found good agreement with the power-law generated µ = 1 result.

1.6 Discussion

To summarize, we have generalized the vicious walker problem in two different

ways: (1) vicious accelerating walkers and (2) vicious Lévy flights as defined by

non-crossing. For both generalizations, the typical analytical technique of the

method of images fails. Analytical results for N = 2 are readily obtainable since

both problems can be mapped to the first passage problem of a single accelerat-

ing walker or Lévy flight with the appropriate absorbing boundary or region. We

demonstrate that the N vicious walker mapping to one walker in N − 1 dimen-

sions in a wedge geometry generalizes to vicious accelerating walkers. We also

conjecture, based on our numerical data, that there exists an upper bound on

the survival probability exponent of α = 1
8
N(N − 1) for N vicious accelerating

walkers. An analytical calculation for the N = 3 case corresponding to one acceler-

ating walker in a two-dimensional wedge geometry would be the next logical step.

The heuristic argument for the absorbing accelerating walker in one-dimension

using a new time counter and Lévy flights may eventually become useful for an-

alyzing the two-dimensional wedge problem. However, the non-locality of the

Riesz-Feller derivative makes the inclusion of boundary conditions rather difficult.

There also exists a recent numerical result for the survival probability distribution

for the two-dimensional Fractional Browian motion process, originally introduced

by Kolmogorov [39], in a wedge [40]. We anticipate more study of non-Markovian

processes in dimensions higher than unity in the near future. Indeed, a non-

Markovian extension of Dyson’s Brownian motion model to, for example, include

inertia, may be related to N vicious accelerating walkers to arrive at a new class

of random matrices. It may also be interesting to investigate other ordering prob-
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lems of randomly accelerating walkers on a line such as the Gaussian equivalent

of the ”leader” and the ”laggard” problem [41].

Finally, given our numerical results, we speculate that the survival probability

exponent for N vicious Lévy flights (as defined by no-crossing) depends on µ

for fixed N > 2. We also refer to a new result where vicious Lévy flights are

defined as annihilating when any two Lévy flights come within some range of each

other and α depends on µ even for N = 2 [35]. While the survival probability

exponent in one-dimension is independent of the Lévy index, as a consequence of

the powerful Sparre-Andersen theorem, we anticipate that this superuniversality

may be broken in dimensions higher than unity and the universality of each Lévy

index becomes exposed. In light of our results, a higher dimensional generalization

(or modification) of the Sparre-Andersen theorem should be on the forefront of at

least several statistical physicists and mathematicians minds.



Chapter 2

Particle-conserving interacting

stochastic processes in crowded

environments

2.1 Background

2.1.1 Directed percolation

Consider making coffee. To make coffee, water passes through coffee grinds ab-

sorbing the grind’s chemical compounds that give coffee its taste, color, and smell.

If the coffee grinds are compacted so tightly, then water cannot pass through them

anymore. To understand this clogging transition, one can model the coffee grinds

as a lattice with randomly-diluted bonds. The probability of a bond to be open is

denoted as p and so clogged is 1−p. Two limiting cases are, p = 0 where no water

can flow across the lattice, and p = 1 where the lattice is fully connected and water

easily flows. In other words, there are two phases: the non-percolating (clogged)

26
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Figure 2.1: Directed percolation as an interacting stochastic process. The filled
(hollow) circles denote active (inactive) sites.

phase and the percolating (flowing) phase. There exists a critical threshold value

of pc below which the system becomes clogged [42]. This transition is purely a

geometric process and the value of pc depends on the structure of the underlying

lattice.

Coffee percolating is a particularly interesting example since it demonstrates a

special case of percolation that is directed. Due to gravity, the liquid (water) only

flows downward through the coffee grinds, but not upward. The directed percola-

tion transition is quantitatively different from isotropic case. Directed percolation

is important because it potentially explains a wide range of non-equilibrium phase

transitions as explained below.

Let us return to the main theme of interacting stochastic processes. Even

though percolation and directed percolation are both determined by geometry,

they can be interpreted as stochastic processes [43]. Sites on the lattice with

water are denoted as active (A) and sites without water are labeled inactive (ø).

The percolation process then contains the following possible dynamics. An active

site may continue to transfer water via open channels (occupied bonds on the

lattice). For a directed percolation on an oriented square lattice, the number of

possible out-channels (lower bonds) is 2 for every site and the number of possible

in-channels (upper bonds) is also 2. If no out-channel bonds are occupied, the

active site ends its trip and turns inactive (A → ø). If both lower bonds are

occupied, the water will continue to flow through both channels and generate 2
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Figure 2.2: Pictorial representation of diffusion and reaction processes in directed
percolation.

new active sites (A→ 2A). If only one out-channel is available (one lower bond is

occupied), water will continue to flow and possibly diffuse from side to side. Plus,

if a site gets water from both of 2 in-channels, those 2 in-channels can generate

only 1 new active site (2A→ A). In summary, the directed percolation process can

be interpreted as a combination of diffusion and three possible reaction processes

A → ø

A → 2A

2A → A. (2.1)

See Figs. 2.1 and 2.2 for a pictorial representation of the above discussion.

Figure 2.3: Directed percolation realizations below, at, and above the transition.

As mentioned previously, directed percolation has two possible steady state
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phases, an active phase (a finite fraction of active sites survive and so the system

flows) and an inactive phase (all sites are inactive and the system is clogged).

See Fig. 2.3. Therefore, the order parameter is chosen to be the fraction of

active sites ρA. The inactive phase is an absorbing state because the system

cannot spontaneously generate active sites and, thus, possibly leave the inactive

state. The absorbing state phase transition does not thus obey detailed balance

and it is a non-equilibrium phase transition. Similar to continuous equilibrium

phase transitions, absorbing state phase transitions can be characterized by scaling

exponents and then grouped into universality classes. Close to, but above, the

transition into the active phase, the order parameter should scale as a power-law

with the distance from transition, i.e.,

ρA ∼ (p− pc)
β, (2.2)

where β is the order parameter exponent. In addition, the correlation time ξ∥ and

length ξ⊥ both diverge approaching transition but with different exponents, or

ξ∥ ∼ (p− pc)
−ν∥ (2.3)

ξ⊥ ∼ (p− pc)
−ν⊥ . (2.4)

The time evolution is also important in these stochastic processes. In particular,

the order parameter ρA at the transition scales as a power-law in time, or

ρA ∼ t−θ, (2.5)

and the correlation length grows as

ξ⊥ ∼ t1/z, (2.6)
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where the exponents have scaling relations, θ = β/ν∥ and z = ν∥/ν⊥. In a finite

system of linear length L, since the correlation length cannot exceed L, the time, t,

it takes to reach the absorbing state at the transition is proportional to Lz. These

exponents are all accessible via numerical simulation. For directed percolation on

a square lattice, β = 0.58, ν∥ = 1.30, and ν⊥ = 0.73 [43].

If we introduce a set of interaction rates for the reaction processes used to

describe directed percolation, namely the removal process A → ø with rate k1,

the offspring process A → 2A with rate k2, and the coalescence process 2A → A

with rate k3, it is possible to set up a mean-field dynamical equation for the order

parameter, ρA [43]. The equation is

∂ρA
∂t

= −k1ρA + k2ρA − k3ρ
2
A. (2.7)

We can look for a steady-state solution to the dynamical equation above. Set

the left hand of the equation to zero and we have

0 = ((k2 − k1)− k3ρA)ρA. (2.8)

The solution ρA = 0 corresponds to the absorbing state when no active sites

survive. But, as we can see, there is another possible non-zero solution, ρA =

(k2 − k1)/k3 (if k2 ̸= k1). This non-zero steady-state value of ρA corresponds

to the active state. Since all ki’s must be positive and so is ρA, the transition

occurs at k2 = k1. For k2 < k1, the active state solution is negative and hence

non-physical. The only physical solution is the absorbing one. For k2 > k1, the

active solution is physical, and from ρA ∼ (k2−k1) we observe that the mean-field

order parameter exponent β = 1. At the critical point k2 = k1, the solution to the

dynamical equation is ρA(t) ∼ 1/k3t, and we get the mean-field scaling exponent

θ = 1.
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A Langevin-type field-theoretic approach for directed percolation can be set

up using the above dynamic equation [43]. We have to include the diffusion term

for active sites as well as an appropriate noise term. The Langevin equation is

then

∂

∂t
ρA(r⃗, t) = D∇2ρA(r⃗, t) + (k2 − k1)ρA(r⃗, t)− k3ρ

2
A(r⃗, t) + η(r⃗, t), (2.9)

where η(r⃗, t) is the usual multiplicative Gaussian noise field satisfying the corre-

lations,

< η(r⃗, t) > = 0

< η(r⃗, t)η(r⃗′, t′) > = κρA(r⃗, t)δ(t− t′)δ(r⃗ − r⃗′), (2.10)

where κ is the amplitude of the noise. The right-hand side of the second equation is

proportional to ρA(r⃗, t) so that there is no fluctuation in the absorbing ρA(r⃗, t) = 0

phase to ensure that the system cannot escape to an active phase. The upper

critical dimension of the field theory is dc = 4, above which the mean-field results

should hold, while below the critical dimension fluctuations become relevant.

It is worth mentioning that the universality class of directed percolation is very

robust. In other words, a wide range of stochastic processes combining diffusion

and reactions similar to the dynamical rules explained above fall into the same

universality class (yielding the same set of scaling exponents). To be more specific,

an interacting stochastic process belongs to the directed percolation universality

class if it satisfies the famous Janssen-Grassberger conditions [44],

1. The model exhibits a continuous transition from a fluctuating active phase

to a unique absorbing phase,

2. The model is characterized by a non-negative, one-component order param-

eter,
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3. The model has only short-ranged dynamic rules,

4. There is no additional symmetry such as conservation laws or quenched

disorder in the system.

2.1.2 Conserved directed percolation

According to the above Janssen-Grassberger criteria [44], one can construct a

model that does not fall into the directed percolation universality class by intro-

ducing additional symmetries. A conservation law in the total number of particles

would do the trick, thereby yielding a new universality class of conserved directed

percolation. Models that belong to this universality class include the Manna

model [45], the conserved lattice gas model [46], and the particle-conserving inter-

acting stochastic process that we will discuss in detail [47].

2.1.3 Caging and kinetically constrained models of the glass

transition

Let us now discuss a seemingly unrelated topic, namely the glass transition. The

glass transition is presumably related to a wider set of phenomena collectively

termed, dynamical arrest, or the process by which many particles in a liquid

dramatically slow down in a concerted manner. One interpretation is an follows:

for simple repulsive interactions, with increasing density, the progress loss of space

around a typical particles leads it to become effectively trapped by its neighbors.

This phenomenon is often dubbed caging. Occasionally, the particle can escape

from the cage and make larger movements before becoming trapped in another

cage. Caging has been observed in experiments near the colloidal glass transition

where directly imaged poly-(methylmethacrylate) particles in solution at a packing

fraction of 0.56 spent most of the time in their cages and only made significant
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Figure 2.4: Map of a typical trajectory of a particle in solution at packing fraction,
ϕ = 0.56. The trajectory is imaged over 100 minutes and it took the particle ap-
proximately 500 seconds to go from one cage to the other. Adapted from Ref. [48].

displacements during quick cage rearrangements [48]. See Fig. 2.4.

Kinetically constrained models, such as the one introduced by Kob and Ander-

sen, represent the intra-cage behavior of glassy systems on a lattice to presumably

produce blocked, nonergodic states [49]. The Kob-Andersen model is defined sim-

ply by rendering a particle mobile if the number of occupied neighbors is equal to

or less than some number m before and after the hop to a neighboring empty site.

We say empty site because there is no multiple occupancy on any site. Numerical

simulations for m = 3 on the cubic lattice initially indicated that there was a

dynamical phase transition from particles being able to diffuse on the lattice to a

spanning cluster of caged (stuck) particles as the density increased. This transition

presumably occurred at a density of around 0.88. However, it was later proven that

in the infinite system limit, the transition occurs only in fully occupied lattices,

i.e. no transition at a finite fraction of occupation [50]. Another kinetically con-

strained model, the Frederick-Andersen model also does not exhibit a dynamical
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transition [51]. These results have been somewhat discouraging for such models.

It would be interesting to find an example of a kinetically-constrained model that

indeed yielded a dynamical phase transition from an ergodic to a nonergodic state

space, if you will.

2.2 Inquiry

A recent experiment of colloidal suspensions under shear at low Reynolds num-

ber [6] can be viewed as a realization of an interacting stochastic process in a

colloidal system. Plastic beads are suspended in a very viscous fluid and the sys-

tem is periodically sheared in a Couette geometry. The viscosity of the fluid is

about 3000 times that of water and makes the dynamics of the beads over-damped

(inertialess). Upon one cycle of shearing, some particles become displaced and

may collide with others. If no collision happens, the particle will arrive back at

its original place after a full shear cycle. Any collision will displace the partic-

ipating colloids and may trigger an avalanche of collisions. After a number of

shearing cycles, the system either organizes itself into a state where every particle

will not meet others upon shearing, or that collisions are unavoidable, depending

on the strain amplitude. See Fig. 2.5 for a two-dimensional schematic of the

three-dimensional experiment.

It has been argued that the dynamics of periodically sheared colloids in sus-

pension can be modeled as an absorbing state phase transition. The particles

displaced from their initial positions during shearing will either relax into the

highly viscous fluid (become inactive) or turn other inactive particles into active

particles via collisions. As the strain amplitude is increased, the system goes from

an inactive phase to an active phase with some fraction of particles getting al-

ways displaced from their initial positions during a shear cycle. See Fig. 2.6. It
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Figure 2.5: A two-dimensional schematic of the three-dimensional experiment
presented in Ref. [6]. The red circles denote active particles and the blue denote
inactive ones.

is thought that this dynamical phase transition resembles the conserved directed

percolation universality class.

Figure 2.6: Plot of the fraction of active particles as a function of time for two
different strain amplitudes. Adapted from Ref. [6].

Now, this experiment was conducted at low packing fraction such that most col-

lisions are presumably two-body collisions. We pose the following question: What

happens to the dynamics of the colloids as the packing fraction is increased? What

happens when the packing fraction is increased towards the colloidal glass tran-

sition? Increasing the packing fraction increases the possibility of three or more

particle collisions, thereby justifying the study of higher-order contact processes.

Of course, from a renormalization group perspective, higher-order interactions are

less relevant and so one may not expect the scaling near the absorbing state phase
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transition to differ from the lowest-order interaction case unless the rate of two-

body collisions was tuned to zero. While this may be difficult in an experiment,

it is not the case for simulations.

In addition to studying the role of higher-order interactions on the absorbing

state phase transition, we study the effect higher density has on the diffusion of

the active particles. If the active particles are prevented from diffusing due to

surrounding particles via caging then the active particles are rendered inactive.

In the highly dense limit, the system will ultimately become inactive due to this

additional deactivation rate. We will study the properties of this presumably new

absorbing state phase transition.

2.3 The model

Consider a lattice model with two types of particles–particle type A to denote the

active members and particle type B for inactive ones. The inactive particles are

”inactive” because they do not diffuse, while the active particles diffuse. More-

over, the particles obey an excluded volume rule implemented on the lattice by

not allowing more than one particle per lattice site. We consider the following

transformation rules:

A
k1→ B

cA+ dB
k2→ (c+ d)A,

where k1 denotes the inactivation rate and k2 denotes activation rate. Note that

these rules conserve particle number no matter which order of interaction (values

of c and d) is present. We will also consider a nearest neighbor density-dependent

inactivation rate, i.e. the caging effect, where the inactivation rate is unity (in

time units of the simulation) if an active particle is fully surrounded by either
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active or inactive particles (the local total density). In other words, the active

particle has no empty neighboring site to diffuse to and so becomes inactive.

In the absence of the caging effect, if we consider the dynamics of the individual

particles to be diffusive (as is usually done), the dynamical equations for the space-

time density of active particles, ρA, and inactive particles, ρB, are

dρA
dt

= DA∇2ρA − k1ρA + k2dρ
c
Aρ

d
B

dρB
dt

= DB∇2ρB + k1ρA − k2dρ
c
Aρ

d
B, (2.11)

where we have included a diffusion term for the A particles with a diffusion con-

stant DA and a diffusion constant DB for the inactive particles.

To date, there has been no field theory analysis of the above problem even in

the absence of excluded volume and a constant diffusion constant. However, if one

allows for the inactive particles to diffuse (and both diffusion constants are indeed

constant), for the lowest-order interaction (c = d = 1) there exists analytical

(renormalization group) analysis [52]. It turns out that the ratio DA/DB affects

the phase diagram. In particular, in the regime of DA/DB ≥ 1 (active particles

diffuse faster or at least as fast) and the absorbing phase transition is second-

order, while the regime of DA/DB < 1 remains unsolved with the possibility of a

first-order transition. In social networks, it is reasonable to consider two different

diffusion constants. For example, infected people may have lower mobility than

healthy people. However, in Brownian particle systems, the diffusion constant is

inversely proportional to the radius of the particle, therefore, particles of the same

size have the same diffusion constant. In the experiment above, the suspension

prevents the particles from diffusing individually. Only colliding particles diffuse

via the random nature of their collisions. Therefore, the inactive particles (non-

colliding particles) do not diffuse, DB = 0. As pointed out in Ref. [47], the limit
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of DB → 0 in the field theory is non-analytic, hence we expect a different critical

behavior in this driven colloidal system.

2.4 Mean field analysis

We first analyze the mean field limit of the model (in the absence of caging). Mean

field theory is simple and sheds light on the nature of the phase transition—is it

continuous or discontinuous? Typically, a transition that is continuous in mean

field is also continuous in finite-dimensions (though there are exceptions to the

“rule” [53]). The lowest-order stochastic process studied previously follows the

dynamical rules of

A
r→ B

A+B
s→ A+ A, (2.12)

where s is the activation rate upon contact between an active particle and an in-

active one, and r is the spontaneous deactivation rate of active particles regardless

of its neighborhood. This model yields a dynamical equation of

dρA
dt

= DA∇2ρA − rρA + sρAρB, (2.13)

where we have included a diffusion term for the active particles. For mean field

analysis, we first average over space such that the diffusion term vanishes, and set

the time derivative to be zero for steady state analysis to arrive at

dρAs

dt
= −rρAs + sρAsρBs = 0. (2.14)
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Figure 2.7: Mean-field phase diagram for the two-body activation process.

We set the conserved total particle density to be ρ = ρA + ρB, and the above

equation can be rearranged as

ρAs(ρ−
r

s
− ρAs) = 0. (2.15)

We observe two solutions for the steady state active particle density, ρAs,

ρAs =


0, ρ < ρc =

r
s
,

ρ− ρc, ρ ≥ ρc,

(2.16)

predicting a continuous phase transition with linear scaling, ρA = (ρ − ρc)
β for

ρ ≥ ρc with order parameter exponent β = 1. See Fig. 2.7 for a mean-field phase

diagram.

As the particle density is increased, it is reasonable to consider three-or-more

body interactions such that an active particle can collide with more than one

inactive particles in its path. The pure next-lowest-order contact process thus
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obeys

A
r→ B

A+ 2B
s′→ A+ 2A. (2.17)

Following the same steps as above to set up a mean field, steady state equation

for the active particles, we have

dρAs

dt
= −rρAs + 2s′ρAsρ

2
Bs = 0

ρAs((ρ− ρAs)
2 − r

2s′
) = 0, (2.18)

with the solution

ρAs =


0, ρ < ρc =

√
r
2s′
,

ρ− ρc, ρ ≥ ρc.

(2.19)

We see the same type of continuous transition with a shift in the transition loca-

tion.

If we have a mixture of the two lower order interactions (and this is presumably

closer to what happens in reality), then the dynamical rules are

A
r→ B

A+B
s→ A+ A (2.20)

A+ 2B
s′→ A+ 2A.

These rules correspond to a steady state equation of

dρAs

dt
= −rρAs + sρAsρBs + 2sρAsρ

2
Bs = 0

ρAs(2s
′(ρ− ρAs)

2 + s(ρ− ρAs)− r) = 0, (2.21)
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with the solution

ρAs =


0, ρ < ρc =

√
s2+8rs′−s

4s′

ρ− ρc, ρ ≥ ρc.

(2.22)

The solution does not appear that intuitive. Let us examine the condition under

which the transition occurs, that is 0 < ρc < 1. Since both the numerator and

the denominator are positive for any positive values of the transition rates r, s, s′,

the condition ρc > 0 is always satisfied to guarantee an absorbing phase. On the

other hand, the upper bound ρc < 1 can be shown to be equivalent to r < s+2s′.

It simply says that, in a mean field system, close to the absorbing transition, all

active particles are exposed to a continuum background of inactive particles, and

the net production of active particles is proportion to s + 2s′ − r. In summary,

a combined lowest-order and next-lowest-order contact process exhibits, again,

a continuous absorbing phase transition with order parameter exponent β = 1.

This conclusion is also in agreement with field theory calculations, since close to

transition, the higher-order interaction terms are generally less relevant and do

not change the critical behavior. However in finite-dimensional simulations, we

might expect different behavior since the DB = 0 limit of the field-theory is not

well-behaved.

As the density of particles in the system is increased, there will eventually be

no space for the active particles to displace to and, thus, they become inactive. In

a lattice model, we model this effect with an active particle becoming an inactive

one when all of its neighboring sites are occupied (by active or inactive particles).

For a lattice with coordination number z and in mean field, this is equivalent to

adding another deactivation process with probability, ρz. If we consider only the

lowest-order contact process with this new ”caging” effect, the dynamical rules
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are now

A
r+ρz→ B

A+B
s→ A+ A, (2.23)

with corresponding steady state equation,

dρAs

dt
= −(r + ρz)ρAs + sρAsρBs = 0

ρAs(r + ρz − sρ+ sρAs) = 0. (2.24)

The solutions are

ρAs =


0,

ρ− ρz

s
− r

s
.

(2.25)

In general, the absorbing transitions occur at the roots of equation: −ρz/s+ ρ−

r/s = 0. We denote the roots as ρc, and within a vicinity of ρc, say ρ = ρc + δρ

where δρ≪ ρc, we have

ρAs = ρ− ρz

s
− r

s

= ρc + δρ− (ρc + δρ)z

s
− r

s

= ρc + δρ− 1

s
ρzc(1 +

δρ

ρc
)z − r

s

= ρc + δρ− ρzc
s
(1 + z

δρ

ρc
)− r

s

= δρ− z

s
ρz−1
c δρ

= (1− z

s
ρz−1
c )δρ

∼ (ρ− ρc)
β, (2.26)

where β = 1. It shows that for any value of z, as long as the absorbing transitions
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Figure 2.8: Mean field phase diagram with caging effect with z = 2.

occur (in a certain volume of {z, r, s} phase space), the transition is continuous

with order parameter exponent β = 1. As an example, for a 1D lattice z = 2, the

active phase solution is

ρAs = −ρ
2

s
+ ρ− r

s
, (2.27)

and we see an active phase ρAs > 0 when ρc− < ρ < ρc+ where ρc± = 1
2
(s ±

√
s2 − 4r). The condition for an active phase to exist is s2−4r ≥ 0. The transition

at ρc− is the usual absorbing phase transition at low density, and the reentrant to

absorbing phase at higher density represents the second transition due to caging.

See Fig. 2.8.

For the ”caging effect”, one may think that if an active particle is caged by

other active particles, the active particle might actually be unjammed from the

boundary and then it is able to move. Based on this argument, one can also let an

active particle turn inactive by caging only if its neighboring sites are all occupied

by inactive particles. That is

A
r+ρzB→ B

A+B
s→ A+ A. (2.28)
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The corresponding mean-field steady-state rate equation is

dρAs

dt
= 0 = −(r + ρzBs)ρAs + sρAsρBs. (2.29)

There is still an absorbing state solution ρAs = 0. The active state solution

corresponds to the solution of s(ρ−ρAs)− r− (ρ−ρAs)z = 0. If one assumes that

the transition occurs at ρAs = 0, then the critical value of ρ = ρc is the root of

equation sρ− r− ρz = 0, and it is clear that ρAs = ρ− ρc, which indicates, again,

a continuous transition with order parameter exponent β = 1.

There is another type of three-body contact process in the form of

A
r→ B

2A+B
s→ 2A+ A. (2.30)

In the experiment described above, this process corresponds to the activation of

an inactive particle occurringv when two active particles impact it at the same

time. The mean field, steady state equation for this particular process is

dρAs

dt
= −rρAs + sρ2AsρBs = 0

ρAs(r − sρAsρBs) = 0. (2.31)

The absorbing state solution ρAs = 0 is still valid. For an active state solution,
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Figure 2.9: Mean field phase diagram for the three-body activation process with
via two active particles.

given that ρBs = ρ− ρAs, we arrive at

r − sρAs(ρ− ρAs) = 0

sρ2As − sρρAs + r = 0

ρAs =
sρ±

√
s2ρ2 − 4rs

2s

ρAs =
ρ

2
± 1

2

√
ρ2 − 4r

s
. (2.32)

This solution is physical only when ρ ≥ ρc =
√
4r/s, and at the critical point

ρ = ρc, ρAs = ρ/2 =
√
rs ̸= 0. We have thus generated a first-order absorbing

phase transition at the mean field level. This activation process is very different

from the one driven by a single active particle, which is continuous. See Fig. 2.9

for a mean-field phase diagram for this process.
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2.5 Two-dimensional simulations

2.5.1 Simulation protocol

We begin with a square lattice of linear size L. For initialization, the particles are

distributed on sites according to a preset probability/density, p. The initial ratio

of active to inactive particles is denoted by q. Data suggest that the steady state

dynamical phase transition behavior does not depend on the value of q, however q

affects the initial transients. Each site is occupied by at most one particle at any

time (fermionic interaction). Periodic boundary conditions are also implemented.

At every time step,

(1) Each active particle hops to one of its empty neighboring sites with equal

probability, i.e. diffusion. Active particles must hop as long as they have at least

one empty neighboring site. If no empty neighbor is available, the active particle

does not hop and becomes inactive (caging effect).

(2) Each active particle can activate one nearest inactive neighbor at random

choice with probability s. As for three-body interactions, one active particle can

activate two neighboring inactive particles with probability u, two active particles

can activate one commonly neighboring inactive particle with probability v.

(3) Each active particle has probability r to become inactive independent of

its neighborhood.

The simulation is carried out until steady state is reached defined by the num-

ber of active particles on average not changing. From the steady state mean-field

analysis, the ratio of now r to s, for example, alters the competition between
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activation and deactivation and, therefore, determines the usual absorbing state

transition point. In lattice simulations, however, due to finite size effects, the

actual values of r and s are also important, in addition to the ratio.

2.5.2 Results

We are primarily interested in how the system responds to a change in the occupa-

tion probability of particles since it is this parameter, ρ, which is proportional to ρ

that drives the transition. The lowest-order contact process with conserved total

particle number and one non-diffusive particle type is already known to fall into

the universality class of conserved lattice gas model [46] and the Manna model [45].

See Ref. [47]. Though the scaling relations mentioned above were initially thought

to be violated numerically, recent work claims to have resolved the inconsistencies,

with the key factor being distinguishing averaging over all samples and averaging

over survival samples [54].

For the next-lowest order contact process c = 1, d = 2, presumably occurs

at a higher occupation probability. Recall that the mean-field analysis shows a

similar continuous absorbing phase transition to c = d = 1. If one keeps both

A+ B and A+ 2B processes in the system, the former would dominate and it is

more difficult to determine the effects of the latter. Therefore, we tune s = 0 and

u = 0.5 to better identify the dynamical behavior of the pure next-lowest order

contact process. The spontaneous deactivation probability is fixed at r = 0.25.

The simulation results for ρA(t) at different total densities are plotted in Fig. 2.10.

If the transition is indeed continuous, one would expect a series of scaling

relations similar to the ones presented in the discussion on directed percolation.

In particular, the density of active particles at the critical point would decay as

a power-law in time, or ρA ∼ t−θ. Also, the correlation time would scale by the

distance to transition, or τ ∼ |ρ − ρc|ν∥ . Thus, one expects a scaling function in
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Figure 2.10: The dynamical behavior for the active particles for the A+2B contact
process at different total occupation probabilities.

the form of

ρA(t) = t−θF (t/τ) = t−θF (t/|ρ− ρc|ν∥), (2.33)

where F (x) is the universal off-critical scaling function. Moreover, the steady state

density should follow ρAs ∼ (ρ − ρc)
β in the long time limit, t ≫ τ . Hence, the

scaling relation β = θν∥ should hold similar to the one for directed percolation. For

L = 256, the data collapses nicely according to the scaling function (see Fig.2.11).

We measure the values of θ and ν∥ to be θ = 0.43(1) and ν∥ = 1.45(2), which

agrees well with the corresponding exponents of conserved directed percolation

universality class [54]. Therefore, our results suggest a continuous transition with

corrections to the mean field exponents.

In addition, due to the finite-size fluctuations involved in the lattice simula-

tions, the system will eventually reach the absorbing state in some finite time at

the critical density. This is explicitly shown in Fig.2.12. Power-law decays at early

times are clear with a universal power. At late times the finite size effect drives

the exponential fall-off of the order parameter. The correlation length near the

critical point scales as the linear system size L as ξ ∼ |ρ − ρc|ν⊥ ∼ L and, thus,

|ρ − ρc| ∼ L−1/ν⊥ as pointed out for directed percolation transition. The scaling
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Figure 2.11: Log-log plot of the off-critical scaling collapse, ρAt
θ vs. t|ρ − ρc|ν∥

with ρc = 0.450(2).

functions described above can be rewritten as

ρA(t) = t−θG(t/Lz), (2.34)

where z = ν∥/ν⊥ is the dynamic exponent and G(x) is the universal finite-size

scaling function. Again, the data are very well collapsed according to the scaling

function as shown in Fig. 2.13. We found that z = 1.35(4) in our simulation.

All exponents measured are in agreement with the values of conserved directed

percolation universality class, which is consistent with the mean-field result that

the next-lowest-order interaction does not generate a different transition. It is also

consistent with the fact that the inactive particles are “enslaved” to the active

ones. In other words, they cannot move around without the help of the active

ones so that fact that changing the number of inactive particles activated does

not change the universality class (as it may with usual higher-order interactions),

while changing the number of activated should change the universality class. A

check on this claim is borne out not only in mean-field but in finite-dimensions

where the ρA(t) curves for different ρs look qualitatively different from the A+2B

case such that a standard scaling collapse is not possible. See Fig. 2.14.
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vs. t/Lz.

The caging mechanism (an active particle becomes inactive if no empty neigh-

boring site is present at any given time step) introduced in our simulation protocol

does not change the absorbing phase transition behavior discussed above occurring

at “low” densities (for the single active particle processes). Close to the first dy-

namical transition, the density of particles is low enough such that there is almost

always at least one available empty site for an active particle to diffuse.

However, as we increase the occupation probability, or density, the caging effect

becomes more significant. We should observe a second absorbing phase transition
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Figure 2.14: The dynamical behavior for the active particles for the 2A+B contact
process at different total occupation probabilities.

at high densities back to an inactive (or stuck) state where active particles turn

inactive due to the local geometrical constraint. Recall that the cage mechanism

brings in a local density dependent deactivation rate in addition to the spontaneous

deactivation in conventional contact process description.

In our simulation, since this second transition occurs at high particle density

for a given set of parameters. If one allows the caging effect to take place only

with inactive particles occupying the neighboring sites of an active particle, for

the chosen parameter set s = 0.5 and r = 0.25, the second transition never occurs.

Of course, one could increase the uniform inactivation rate, but then the first

transition would not necessarily be observed. On the other hand, the caging effect

brought by having both types of particles in the cages exhibits an absorbing phase

transition for the chosen parameter set.

According to the mean-field analysis, this transition is a continuous transition

with order parameter exponent β = 1, i.e. the same type as the first absorbing

state phase transition at low density. Thus, the scaling functions F (x) and G(x)

derived above should apply and data should show the same type of scaling behav-

ior. However, the off-critical scaling collapse does not look as satisfactory for the



52 Chapter 2. Particle-conserving interacting stochastic processes in crowded environments

Figure 2.15: Log-log plot of the off-critical scaling collapse for the caging transi-
tion. The scaling parameters used are θ = 0.29(2) and ν∥ = 1.37(3).

branch above the caging transition where system ends up in absorbing state (see

Fig.2.15). We do not have an explanation for this currently, but are investigating

several avenues. In any event, the measured values of θ and ν∥ are reasonably

different from the convserved directed percolation universality class, suggesting a

new universality class. For example, θ = 0.41 in the latter case and θ = 0.28(2)

in the former.

We also tried finite-size scaling at the caging transition. The trial scaling

collapse is presented in Fig. 2.16 with a measured value of z = 2.35(2). Here,

the scaling collapse is reasonable. This z is rather different from the conserved

directed percolation of z = 1.35(4).

In order to clarify the nature of the transition, we must also determine if

the transition actually exists. This question is prompted by the fact that some

kinetically constrained models claimed to exhibit a transition, as suggested by

lattice simulations, but eventually it was proven that the transition occurs at

ρc = 1 in the thermodynamic limit. We tried to fit the measured transition point

ρc(L) against the system size L to see if the transition density approaches some

finite value in the infinite system size limit. The fit is presented in Fig. 2.17. It
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Figure 2.16: Log-log plot of finite size scaling collapse for different system sizes at
the caging transition. Inset: unscaled data.

suggests that as L → ∞, the value of ρc approaches a constant less than unity.

However, we have no proof at this time. The fact that our model contains a

uniform inactivation rate may “save” us from the absence of a transition in the

thermodynamic limit as compared to previously explored caging models.

Assuming that the transition occurs at a total occupation probability less than

unity, we have gone one step further to look for more evidence of a continuous

transition as suggested by the mean-field analysis. We analyze the relation between

system size and the magnitude of the jump in the order parameter (steady state

density) at the transition due to finite-size fluctuations. See Fig. 2.18. The scaling

relation involved is ρA(t) = t−θG(t/Lz), and we can rewrite it using zθ = β/ν⊥ to

arrive at

ρA(t) = L−β/ν⊥H(t/Lz). (2.35)

The slope as seen in the inset of Fig. 2.18 should correspond to −β/ν⊥. However,

the measured exponents do not follow the scaling relations. In particular, the

scaling relations, β = θν∥ and ν⊥ = ν∥/z, would suggest β = 0.4 and ν⊥ = 0.58.

Then, β/ν⊥ = 0.69 is not consistent with this measurement suggesting β/ν⊥ =

0.96. A similar broken scaling relation has been reported to exist in the conserved
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lattice model. However, it was resolved in the work by Lee and Lee [54]. We

have followed this more recent analysis protocol used in Ref. [54] and still get the

inconsistency. Our result might suggest that the absorbing phase transition due

to caging has some special features, presumably from the highly local inactivation

mechanism.

2.6 Discussion

We introduce novel higher-order interactions in contact processes with conserved

total particle number to understand how a periodically sheared colloidal system

may undergo a dynamical phase transition at even higher densities than previ-

ously explored in experiments. We find that a simple three-body collision of one

active (diffusing) particle activating two inactive (nondiffusing) particles does not

change the nature of the absorbing phase transition found at lower densities due to

a two-body collision. This is due to the fact that the inactive particles are enslaved

to the active particles such that the inactive particles simply form a continuous

background that an active particle can always access. In other words, the differ-
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ence between activating one inactive particle (A+B) and activating two inactive

particles (A+2B) is effectively a change in the activation rate and not the funda-

mental mechanism of activation. In square lattice simulations, the two processes

yield same values for the set of scaling exponents, and the scaling relation derived

for two-body contact process holds.

On the other hand, further investigation regarding the collective activation

process 2A+B → 3A would be promising in terms of looking for a new transition

of a very different nature as indicated by mean-field calculations and by numerical

simulations on the square lattice. Close to the critical point, the fraction of active

particles might be very small, and the 2A + B process requires that the active

particle community must be clustered to maintain the possibility to generate more

active particles, so that to stay in the active phase. On the other hand, those

isolated active particles would be eliminated very fast for they cannot reproduce.

The possibility of having a first-order transition in the collective activation model

may be comparable to a recent modification of the asymmetric exclusion process

where a particle can hop to its right only if its left neighbor is occupied to arrive

at very different features from the usual asymmetric exclusion process [55].
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The caging mechanism may be responsible for dynamical arrest in glasses. We

incorporate this mechanism in our model for the dynamics of periodically sheared

colloidal suspensions to search for such a transition. We numerically observe in

two-dimensions, a “caging” transition at high densities where the active state be-

comes inactive though we cannot yet exclude the possibility that the transition oc-

curs at full density in the infinite system limit as it does in, say, the Kob-Andersen

model [50]. However, the caging here is different from the Kob-Anderson model

in that it does not obey detailed balance. A uniform spontaneous deactivation

rate helps keep the critical density below unity. We measured the usual scaling

exponents, and the transition appears to belong to some new universality class

other than conserved directed percolation. It would be very interesting to exam-

ine more fully the effect of this highly localized inactivation mechanism and better

determine how robust this potentially new universality class is.



Chapter 3

Force network analysis of

amorphous solids near the onset

of rigidity

3.1 Background

The jamming phase diagram depicts a plausible scenario for a unified description

of the phase change/crossover from a liquid to an amorphous solid in nonequilib-

rium systems ranging from granular particles to colloidal particles to molecular

particles [57, 58]. These phase changes can be driven by temperature changes,

packing fraction changes, and/or changes in applied shear stress. See Fig. 3.1.

Whether or not the boundaries of the jamming phase diagram are sharp in the

equivalent equilibrium sense is still a matter of debate, particularly for molecular

particles in the presence of temperature changes [59]. However, numerical studies

of repulsive, soft particles at zero-temperature indicate the potential of a transi-

57
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Figure 3.1: Jamming phase diagram. Adapted from Ref. [56]

Figure 3.2: Contact force distribution in an experiment. Adapted from Ref. [83]

tion in the equivalent thermodynamic sense as the packing fraction of the system

is increased [60, 61].

The numerics of the zero-temperature repulsive, soft particle system suggest

that the transition from liquid to amorphous solid is somewhat of an unusual na-

ture [60, 61, 62]. For example, the average coordination number jumps from zero to

some finite value at the transition, followed by a square root increase as a function

of distance from the transition, i.e. ϕ− ϕc, where ϕ denotes the packing fraction

and ϕc, the critical packing fraction above which the system behaves as a solid.

The square root behavior begs for a mean-field description. However, why would

a two-dimensional amorphous solid near the onset of rigidity behave mean-field-

like? Moreover, the jump in the average coordination number only depends on the



59

Figure 3.3: Contact force distribution from simulations. Adapted from Ref. [87]

dimension of the system. Both properties are observed in experiments [63]. The

latter property is due to isostaticity where the number of contacts equals the num-

ber of degrees of freedom on average such that the system is not overconstrained

or underconstrained, but minimally rigid in an average sense. The “universality”

is the magnitude of the jump in the average coordination number is reminiscent

of the universality of the value of the jump in the spin-wave stiffness in the two-

dimensional Kosterlitz-Thouless transition [64]. While there exists a jump in a

possible order parameter at the transition, the square root scaling demonstrates

that the transition is not the typical first-order transition with no diverging cor-

relation lengths. In fact, there are several diverging correlation lengths above and

below the transition. For example, the fraction of jammed configurations as a

function of ϕ becomes increasingly sharper as the system size is increased. This

sharpening can be tied to an increasing lengthscale below which the system acts

as uncorrelated subsystems each with their respective critical packing fractions.

As for the jammed phase itself, it exhibits various interesting properties. While

the scaling of the bulk modulus with packing fraction is the same as ordered elastic

solids, the scaling of the shear modulus with packing fraction shows an anomalous

response [60, 61]. In addition, the vibrational modes are of a “swirly” nature
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and appear to be quasi-localized as the jamming transition is approached from

the solid side [65, 66]. Similar behavior has been observed in other amorphous

solids [67, 68, 69, 70]. Both of these observations may be related to the non-affine

displacements of the particles, which become more pronounced near the jamming

transition. There is also an excess in the vibrational density of states beyond the

Debye prediction at the transition. This excess has been likened to the Boson

peak [71, 72, 73] in glassy systems.

3.2 Inquiry

There have been a number of approaches to understand some of the above proper-

ties, including a statistical mechanics approach [74], a field theoretic approach [75],

and a phenomenological approach [76, 77, 78]. The phenomenological approach

examines the consequences of the isostatic nature of the transition by establish-

ing a lengthscale below which the system behaves as an isostatic solid and above

which the system behaves as an ordinary elastic solid. This lengthscale has been

inferred from the numerical simulations by relating the frequency below which

there exists an excess in the density of states (beyond the Debye prediction) to a

lengthscale via a linear dispersion relation [79]. However, a direct measurement

of the elasticity of the system via a local perturbation shows the system to re-

spond on average as an ordinary elastic solid at all lengthscales at the jamming

transition [80, 81]. On the other hand, the study of fluctuations in the response of

all contacts some radial distance from the local perturbation demonstrates a clear

crossover lengthscale where the root-mean-squared fluctuations go from one type

of power-law dependence on radial distance to another type further away from the

perturbation. This crossover lengthscale appears to scale with distance from the

transition.
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One would like to understand, for example, why the averaged response of the

system behaves as ordinary two-dimensional elastic solid at the transition and

why a potential isostatic lengthscale may be showing up only in fluctuations to a

response in position space. The two-dimensional averaged elastic behavior is also

counter to the mean-field behavior observed in the contact geometry near jamming.

To begin to investigate such mysteries, we numerically study the contact force

network of a two-dimensional system of repulsive, soft particles as the jamming

transition is approached from above. The contact force network, with its forces

and its contact geometry, dictates the properties of an amorphous solid.

Until now, most numerical studies using repulsive soft spheres (the standard

one now used to simulate jamming) have focused on the distribution of forces with-

out regard to their spatial location. This is because the contact forces in highly

packed granular material are rather heterogeneous. The heterogeneity is mostly

studied in terms of the probability distribution of the contact force magnitude

p(f). There has been some controversy about the shape of p(f). Does it have an

exponential tail or a Gaussian tail? An initial experiment measuring the forces on

the boundary of a granular system obtained an exponential decay in p(f) for large

forces [82], while later experiments producing bulk measurements suggested that

p(f) has a closer to Gaussian tail [83]. See Fig. 3.2. The difference between mea-

surements done in bulk and on the boundaries is not yet understood. Computer

simulations on frictionless repulsive soft sphere systems confirm the Gaussian tail

p(f) ∼ exp{−f 2} in two-dimensions (see Fig. 3.3) and a tail slightly different

from Gaussian in the three-dimensions since p(f) ∼ exp{−f 1.7} [87]. Given the

previous focus on p(f), we will look for spatial correlations in the magnitude of

the forces in the contact force network.

In addition, we will also analyze the contact geometry, the second important

ingredient of the force contact network, in a novel way. We propose a mapping
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of the contact/coordination number to a spin state in order to potentially better

understand some of the properties of the jammed solid from what will turn out

to be a spin glass perspective. Therefore, we will be able to draw direct links

between spin glasses and amorphous solids. Our mapping should further open the

door for other amenable analytical techniques used in spin glasses with quenched

disorder for studying amorphous solids where the disorder is not quenched. We

note that there exists very interesting work on a replica-inspired approach to the

glass transition for hard spheres as approached from the liquid side (as opposed

to the solid side) [85].

3.3 Force bonds and spatial correlations

To study the force network of a two-dimensional jammed solid of repulsive, soft

particles, jammed configurations are generated using the algorithm introduced by

O’Hern and collaborators [60, 61]. More specifically, the system consists of 50:50

mixture of N particles with a diameter, σ, ratio of 1.4. The packing fraction sets

the radii for a system of length unity. The particles interact via the following

two-body potential:

V (rij) =
ϵ

λ
(1− rij

σij
)λ Θ(1− rij

σij
), (3.1)

where rij is the distance between the centers of the two particles i and j, σij =

(σi + σj)/2, and ϵ sets the energy scale for the system. The particles are placed

randomly in the system with periodic boundary conditions and the conjugate

gradient algorithm is invoked until the system reaches its nearest local minimum.

We use an energy tolerance per particle of 10−16 in units of ϵ.

In the repulsive, soft particle system, there are several known properties of the

forces between overlapping particles: (1) the shape of the distribution of forces [86,
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87] and (2) the distribution of forces demonstrates a lack of self-averaging [60, 61].

As for the shape of the distribution, the distribution is not long-tailed. Recent

simulations in two- and three-dimensions have determined the shape of the tail

down to normalized force values of 10−45 [87]. In two-dimensions, the tail is

Gaussian. In three-dimensions, the tail falls off slightly more slowly than Gaussian,

i.e. P (f) ∼ e−f1.7(1)
, where f is the magnitude of the force between two overlapping

particles. As for the lack of self-averaging, the distribution of forces takes on one

form if the forces in each sample are normalized via the average force per sample

or if the forces from all samples are pulled and normalized by the average force

from all samples. Therefore, one cannot consider a large sample to be comprised

of many smaller samples. A lack of self-averaging is also found in configurations

of spin glasses.

While the distribution of forces is a very useful quantity, it does not encode any

spatial information. Motivated by the recent work of Zhou and Dinsmore [88], we

search for spatial correlations in the magnitude of forces. To do this, we measure

the angle between any two force bonds emanating from a particle in the jammed

packing at a particular packing fraction, ϕ. We denote this angle as θ. See the

schematic in Figure 3.4. The probability distribution for θ, P (θ), is plotted in

Figure 3.4 for all coordination numbers greater than 2 for ϕ = 0.841 with λ = 3/2

and N = 512. The lower bound on the coordination number is determined by the

principle of local mechanical stability. For this particular ϕ and system size, the

average coordination of the jammed configurations, < z(ϕ) >= 4.076(2) such that

we are not far from the jamming transition where < z(ϕ) >≈ 4 in two-dimensions.

Also, the fraction of jammed configurations is approximately two-thirds. So we

are in the jammed phase. We should point out that earlier work extrapolated to

a critical value of ϕc in the infinite system limit of approximately 0.842. However,

there exists a body of recent work suggesting that ϕc depends on the protocol
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for obtaining jammed configurations such that “Point J” should be modified to

“Segment J” [89, 90, 91, 92]. Implications of these findings have not been fully

fleshed out to date. Figure 3.4 also depicts P (θ) for a particular z, or Pz=4(θ).

We then compare P (θ) with P (θlg), where θlg is the angle between the two

largest force bonds on a particle. We observe that the probability distribution in

the latter case is more heavily biased towards the larger angles. In other words,

there exists a suppression of the smaller angles between the two largest force bonds

on a particle giving rise to chain-like correlations in the locally largest force bonds.

Defining W =
∫ 180◦

120◦
(P (θlg)− P (θ))dθ as a measure of the bias, W = 0.434(1) for

ϕ = 0.841 and N = 512.

Let us compare P (θ) and P (θlg) with the equivalent distributions for a more

ordered packing. To do this, we use a monodisperse distribution of repulsive, soft

particles in two-dimensions at a higher packing fraction. For a hexagonal packing

of hard particles in two-dimensions, the packing fraction is equal to approximately

0.907. We choose a slightly larger packing fraction to ensure overlaps. See Figure

3.5. We observe three dominant peaks at 60◦, 120◦, and 180◦ degrees indicating

a hexagonal packing. We also note a bias in P (θlg) towards the larger angles for

the ordered case as well.

In the disordered case, there are a number of dominant peaks in P (θ) at θ =

54◦, 60◦, 64◦, and 70◦. There are also some subdominant peaks, many of them

separated by intervals of 6◦. See, for example, the range of θ = 102◦ to θ = 114◦.

These subdominant peaks are due to the bidispersity in particle radii. If the 1.4

ratio is increased, the spacings between the subdominant peaks increases. To

see this, consider a particle surrounded by all “small” particles. If we replace

one of the small particles by a larger particle, the larger particles will push its

neighbors away due to insufficient space and therefore change the contact angle.

We can calculate this change given the ratio between the two different radii in
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the just-touching case. For a radius ratio of 1.4, the change in contact angle is

approximately 5.4◦, the interval between the subdominant peaks.

For N = 512 and λ = 3/2, as ϕ is increased from ϕ = 0.841 to ϕ = 0.843,

the bias towards the larger angles remains robust. More specifically, W remains

constant. See Figure 3.6. For even larger ϕ, W decreases. For example, W =

0.424(2) for ϕ = 0.846. This trend also agrees with the findings of Zhou and

Dinsmore [88] where larger z suppresses chain formation. Since < z(ϕ) > increases

with ϕ, this trend is expected. Figure 3.7 also demonstrates this effect where

Pz=3,4,5(θlg) are plotted individually for ϕ = 0.843. As z is increased from 4 to

5, W decreases from 0.454(2) to 0.413(2). Finally, the trend of the suppression

of smaller contact angles for larger force bonds persists for larger system sizes

indicating that the suppression is not a finite system effect. We have also checked

that the suppression persists for λ = 5/2 and λ = 2 as well, the more studied

cases.

To contrast our results with those of Zhou and Dinsmore [88], we do not observe

a peak in Pz(θlg) at 180 degrees for all z. Rather the peak in Pz(θlg) for z = 3,

for example, is closer to 160◦. Only for z = 4, is the peak at 180◦. Therefore, the

large force bond propagation is not as “straight” as in Zhou and Dinsmore [88]

simulations where a peak at 180◦ is observed for all z. Their protocol generates

stable configurations by demanding force balance on each particle given that some

of the forces on each particle are randomly generated. Zhou and Dinsmore argue

that the finding of chain-like correlations is simply a consequence of Newton’s

third law. The peaks in their Pz(θlg) may be an indication of this. However, since

our equivalent distributions are not all peaked at 180 degrees, a more complicated

mechanism may be at work.

Our results suggest a possible spatial correlation in the force bond strength.

Given that larger angles between the locally largest forces persist, perhaps locally
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Figure 3.4: Top: P (θ) and P (θlg) for ϕ = 0.841, N = 512, and λ = 3/2. Bottom:
Pz=4(θ) and Pz=4(θlg) for the same parameters. The bin size is 2◦.

large force bonds can persist/percolate across the sample. To test for this, we

construct a force chain by traversing along largest and second largest local force

bonds and determining whether the chain of particles spans the system or not.

The algorithm for this task is the following:

(1) Identify the largest force bond in the system.

(2) Traverse from one of the particles on either side of the largest force bond to

the another overlapping particle along the second largest force bond.

(3) Traverse to the next overlapping particle along either the largest force bond
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Figure 3.5: P (θ) and P (θlg) for ϕ = 0.91, N = 512, and λ = 3/2 for a monodisperse
system.

or the second largest force bond (if the largest force bond has already been tra-

versed).

(4) Repeat (3) until reaching an overlapping particle where both the largest and

second largest force bonds have already been traversed.

(5) Go back to the largest force bond in the system. Pick the other particle not

initially chosen. If its second largest force bond has not been traversed, repeat

steps (4) and (5).

Note that the largest force bond of one particle is not necessarily the largest force

bond of the other particle associated with the bond. This algorithm constructs

the largest force chain in the sample. We also construct the weakest force chain

in the sample by replacing largest with smallest, etc. Finally, we also study force

chains beginning from any force bond in the system.

In Figure 3.8 we present an example of the largest force chain. Loops make up

some fraction of the “chain”. This is due to fluctuations in the forces. The larger

force bonds exhibit chain-like structures, while smaller force bonds form local

loops. We have checked this in the simulations by constructing the equivalent
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Figure 3.6: Top: P (θ) and P (θlg) for ϕ = 0.843, N = 512, and λ = 3/2. Bottom:
Pz=4(θ) and Pz=4(θlg) for the same parameters.

weakest force chain. Since the largest local force bond between two particles may

be one of the smaller force bonds, as compared to the rest of the force bonds in the

system, chains can end in loops. Note that, at least for this example, the largest

force chain spans the system in the vertical direction.

How typical is this spanning for the largest force chains? Figure 3.9 shows the

probability of spanning in either direction, Ps, as a function of N for a particular

ϕ. We see that Ps decreases with increasing N . While for small N , Ps appears

to decay linearly with N , the larger particle number data makes this candidate
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Figure 3.7: Left: Pz=3(θlg) for ϕ = 0.843, N = 512, and λ = 3/2. Right: Pz=4(θlg)
for the same parameters. Bottom: Pz=5(θlg) for the same parameters.

function less likely. We also observe that Ps increases as ϕ → ϕc, particularly for

the largest particle number data, which is consistent with the increase in small

angle suppression as ϕ→ ϕc for the locally largest forces. As for the infinite system

limit, it may be that the conditions to generate spanning chains need to be relaxed

to generate spanning chains with nonzero probability. Also, if we start from any

force bond in the system and generate a force chain moving along the locally

largest two force bonds for each particle, the probability for spanning decreases.

To be specific, for ϕ = 0.841, N = 1024, and λ = 3/2, Ps ≈ 0.563 starting at any

force bond as compared to the largest force chain spanning of probability, where

Ps ≈ 0.688.

At this point, we must comment on the relation of our results to those of Makse

and collaborators [93] performing dynamical simulations of deformable grains.

They construct spanning force chains by starting with a grain at one end of the
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system and traversing the maximum force bond at every particle such that they

reach the other side of the system. They find fewer spanning force chains closer

to the transition than further away. They argue that this observation is due to

an increasingly homogeneous distribution of forces far away from the transition.

We should also contrast our results with work by Ostojic and collaborators [94].

They study the spatial extent of force bonds exceeding some threshold force. The

threshold force is lowered until the force bonds exceeding the threshold force span

the system. They observe a percolation transition of a new universality class. We,

instead, investigate the local, largest forces. Also, we do not have spanning as a

criterion, but rather as an “afterthought”.

To better understand the spatial properties of the largest force chain, we mea-

sure its fractal dimension. Presumably, the fractal dimension is unity, though one

should check this. To do so, we count the number of particles participating in

the largest force chain. To relate this number with a length, in two-dimensions,

L ∼
√
N . Figure 3.10 plots the average number of particles participating in the

largest force chain, NFC , as a function of system size, N . On the log-log scale,

there is some curvature to the data. If we assume a fractal form, for λ = 3/2

and ϕ = 0.843, we measure a fractal dimension of 1.10(5)–very close to unity.

Comparing our largest force chain data to the Ostojic formulation [94], we mea-

sure the number of particles participating in the largest force spanning cluster,

NLF . The fractal dimension of the spanning cluster of largest forces is 1.62(2).

We then measure the number of particles participating in the smallest force span-

ning cluster, NSF , where we replace “exceeding a threshold force” in the Ostojic

formulation [94] with “below a threshold force”, the fractal dimension is 1.68(2).

The fractal dimension of the spanning cluster at the ordinary percolation tran-

sition is about 1.89 [42], which is somewhat larger than the value measured for

the spanning cluster of largest forces (and smallest forces). This discrepancy may
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Figure 3.8: Jammed configuration for ϕ = 0.841, N = 1024. The particles partic-
ipating along the largest force chain (dark blue) as distinguished from the other
particles (light blue).

be due to the chain-like correlations in the largest, local force bonds, though one

cannot discount the possibility of an eventual crossover to ordinary percolation.

3.4 Contact number and spins

The forces are not the only information encoded in the force network. The contact,

or coordination, number is another piece of information. Figure 3.11 is the same

jammed configuration as depicted in Figure 3.8. Each color now represents a

different coordination number. If all pairs of neighboring particles were of different

colors, the graph would represent a proper vertex coloring. However, note that

there are some vertices sharing an edge that do have the same color. So Figure

3.8 does not represent a proper vertex coloring.

But let us, for the moment, address proper vertex colorings. A proper vertex

coloring using at most p colors exists if there exists a zero energy solution of zero-

temperature antiferromagnetic Potts model with p states. In other words, the
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p-coloring problem maps to a zero-temperature antiferromagnetic Potts model

with p states. Now, if one were to consider the jamming problem, the number of

possible colors participating in the jammed clusters is 5 (z = 3 through z = 7, for

this particular two-dimensional bidisperse system) which leads to a p = 5 state

Potts model. At ϕ = ϕc, the isostatic condition would bias one of the colors—for

example, the color associated with coordination number four dominates for two-

dimensional frictionless discs. This bias can be encoded via a magnetic field. The

isostatic condition also imposes other weights on the other colors as well such that

the average coordination number is four. In particular, recent work shows that at

the jamming transition in two-dimensions, the coordination numbers range from 3

to 5 such that z = 4 particles make up about half the system and z = 3, 5 particles

make up the other half [95]. As the packing fraction increases, the weights for each

color changes. For a hexagonal packing, all couplings are ferromagnetic.

Both the antiferromagetism and the competing magnetic field (to account for

the average coordination number of four in two-dimensions) contribute to frustra-

tion of the spin system. Moreover, there exists randomness in the system due to

(1) the fact that not all particles are participating in the jammed configuration

and (2) the randomness of the forces. The combination of frustration and disorder

should lead to a spin glass phase [96, 97]–a spin glass phase with no quenched disor-

der. In fact, the couplings and dilutions (particles not participating in the jammed

configurations) are dynamically generated. However, the lack of self-averaging in

the forces is characteristic of quenched disordered system. Indeed, there are sys-

tems with no disorder that can be mapped to quenched disorder and there are

systems with unquenched disorder that can also be mapped to quenched disorder.

For the former, consider an Ising spin system whose interaction fluctuates in sign

with distance between sites [98]. For the latter, consider a liquid of hard spheres

as described by hypernetted chain equations [85].
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The potential for a jamming-spin glass correspondence provides motivation to

analyze the jamming system in terms of a spin glass. If we compute the ratio

of antiferromagnetic couplings (different coordination numbers (colors) between

contacts) to ferromagnetic couplings (same coordination numbers (colors) between

contacts), for ϕ = 0.841, N = 1024, for example, the ratio is approximately 2.5.

We could ignore the random variation in the magnitude of the forces (interactions

between spins) and set the coupling to be a constant using the measured ratio

of antiferromagnetic spins to ferromagnetic spins to simulate a two-dimensional

p = 5 Potts glass system at zero-temperature. While there exists a number of

ground state algorithms for two-dimensional Ising spin glasses [99, 100, 101], we

do not know of an exact ground state algorithm for the 5-state Potts glass and so

we leave this avenue for future work.

Instead, to further the possible connection between jammed solids and spin

glasses, we compute the spin glass equivalent of bond chaos in the repulsive, soft

particle system [102]. Chaos in mean-field spin glasses is presumably due to the

fact that the spin glass phase is a marginal phase such that a perturbation in

the energy of the system is sufficient to alter the weights of different equilibrium

configurations [103]. More specifically, in mean-field, the Hessian associated with

Parisi’s ansatz for the structure of the matrix order parameter contains all non-

negative eigenvalues [104]. In finite-dimensions, the marginality is presumably due

to the slowly decaying correlation functions [105]. It is interesting to note that

jammed solids at the jamming transition are marginally rigid and, therefore, may

also exhibit similar chaotic features.

So, we use this notion of chaos in spin glasses to look for a quantitative measure

of chaos in the jamming system. To do this, we first assign a list of random

numbers as the initial position of particles in a system and use conjugate gradient

algorithm to generate a jammed state. Next, we use the same initial positions
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and perturb them by a given strength, then apply the same conjugate gradient

algorithm to generate another jammed state. Specifically, for particle i with initial

position (xi, yi) in the unperturbed system, the corresponding particle i in the

perturbed system has an initial position of

x′i = xi + δ ci

y′i = yi + δ di, (3.2)

where δ is the magnitude of perturbation strength, and ci and di are randomly

generated numbers chosen from the same distribution used to generate xi and yi.

If the two sets of initial positions both lead to a jammed state, we calculate

the overlap between the two states as defined by

r(δ,N, ϕ) =<

∑M
j=1 cos

2(Sj − S ′
j)

M2
>, (3.3)

where Sj is the spin state of the unperturbed system (using the Domb representa-

tion), S ′
j is the spin state of the perturbed system, and M is the number of spins

in both systems with z > 2, which grows with N . The brackets denote ensemble

averaging. For δ = 0, r = 1. The system is chaotic when

lim
δ→0

lim
N→∞

r(δ,N, ϕ) < 1. (3.4)

It may be that the limit of ϕ → ϕc may also have to be taken to observe chaos

given that only at the jamming transition is the system marginally rigid.

In Figure 3.12 we present results for r as a function of N for different values

of δ and ϕ. For fixed ϕ, we observe that r initially decreases with increasing N

and then begins to level off (though one cannot rule out an small increase in r for

the largest N studied). Moreover, r increases with decreasing δ for fixed N , as
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Figure 3.11: Jammed configuration (same as above) colored via coordination num-
ber. Light blue denotes z = 0, magenta denotes z = 3, red denotes z = 4, blue
depicts z = 5, orange depicts z = 6, and purple denotes z = 7 (possible for 1.4
diameter ratio bidisperse system).

expected. Since it is not clear that r reaches a limit as a function of N for fixed

δ, we cannot easily extrapolate to the zero perturbation limit. However, it is clear

from the data that as ϕ decreases towards unjamming, r decreases, indicating

that as the jamming transition is approached from above, the system is becoming

increasingly chaotic.

3.5 Jammed solids, spin glasses, and some spec-

ulation

Let us summarize our numerical findings:

(0) There is a suppression of the smaller angles subtending locally larger force

bonds. This suppression increases as ϕc is approached from above.

(1) The probability for spanning of the largest force chain increases as ϕc is ap-
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Figure 3.12: Plot of r as a function of N for several δs. Inset: Plot of r for N = 128
as a function of δ. The error bars are smaller than the symbols.

proached from above.

(2) The coordination number-spin state mapping suggests that the jammed solid

becomes increasingly chaotic as ϕc is approached from above.

Keeping the above findings in mind, we recall one of the traditional models

of an amorphous solid via a randomly dilute network of springs with probabil-

ity p, the model otherwise known as rigidity percolation [106]. While the nature

of the rigidity percolation transition remains contentious [107, 108], an impor-

tant concept has emerged in terms of constraint counting, a concept initially pre-

sented by Maxwell back in 1864 [109]. Below the rigidity percolation threshold,

there are only underconstrained bonds, above the threshold, there exists overcon-

strained bonds. At the transition, on average, the system is not overconstrained

or underconstrained—it is isostatic. This condition should then determine the

location of the transition. For central force interactions, pr = 2d/z, where d is

the dimension of the system and pr is the occupation probability above which the

system is rigid. For the triangular lattice, pr = 2/3. Numerical studies find a

result close to this estimate. However, the Maxwell argument does not take into
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account redundant bonds and the possibility of a fractal set of overconstrained

bonds participating in a rigid cluster.

Jacobs and Thorpe have numerically extended Maxwell’s argument by iden-

tifying those overconstrained bonds via an algorithm implemented on a two-

dimensional bar-joint network [110], which makes uses of a theorem from Laman [111].

They demonstrate that at the transition, the overconstrained bars make up a frac-

tal subset of the bonds. As more bars are added, the fraction of overconstrained

bars increases such that they make up a finite fraction of the bars. It turns out

that the fraction of overconstrained bars can be viewed as the order parameter for

the rigidity percolation transition.

Indeed, it would be interesting to extend some of these ideas of rigidity percola-

tion more concretely to the repulsive, soft particle system, such as trying to identify

the overconstrained bonds via use of the pebble game algorithm. However, use of

the pebble algorithm takes into account only fixed connectivity information and it

does not take into account the force information. Of course, there have been sev-

eral recent works drawing a more intimate connection between rigidity percolation

and jamming. Ellenbroek and collaborators map the jammed solid to a network

of stretched springs [112]. Study of the stretched spring network demonstrates

anomalous scaling of the bulk modulus as opposed to the shear modulus. Even

more recent work investigates a square lattice occupied by springs [113]. Such a

lattice is isostatic with a frequency-independent density of states. As next-nearest

springs are occupied, the system undergoes a rigidity percolation transition for an

infinitesimal occupation of next-nearest neighbor springs. This system exhibits

the kind of transition proposed by the phenomenological framework put forth by

Wyart and collaborators [76, 77, 78]. There exists a clear lengthscale below which

the system behaves isostatically and above which it does not, which is not so read-

ily apparent in the disordered packing, at least in terms of a direct measurement.
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While working within the more traditional spring framework is certainly useful,

coupling the coordination number-spin state mapping with the force information

via interaction strengths between the spins and the dilution information provides

one with an alternate description of a jammed solid—a spin description to be

compared to the traditional framework. For example, overconstrained bonds in

rigidity percolation may correspond to frozen spins—spins that take on the same

state in every configuration—in the spin picture. From the numerical information

obtained so far, there are more antiferromagnetic interactions than ferromagnetic

interactions. As for the magnitude of the interactions between the spins, recall the

chain-like correlations observed in the locally larger force bonds. This information

can be also be encoded into a Potts spin Hamiltonian via chain-like correlations

in the spin interaction strengths.

How does the Potts spin Hamiltonian change with increasing packing fraction?

The amount of dilution decreases. Moreover, the ratio of antiferromagnetic to

ferromagnetic interactions also decreases. What about the force information?

We observe that the probability of spanning increases with decreasing ϕ for the

largest system sizes. Based on this observation, the chain-like correlations in the

spin interaction strengths decrease as the packing fraction increases. All of these

properties can be encoded into a Potts spin Hamiltonian.

Given the interplay of frustration and randomness, we conjecture that a Potts

spin analog of the jammed solid should exhibit spin glass behavior. A possible

spin glass/jammed solid correspondence may help to explain the ordinary elastic-

ity findings of Ellenbroek and collaborators at all lengthscales when measuring the

system’s averaged response to inflation of a central particle [80, 81]. For both the

paramagnet and the spin glass, the average magnetization is zero, i.e. one cannot

distinguish between the two phases. To observe the spin glass phase, one must

measure higher order quantities such the Edwards-Anderson order parameter. El-
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lenbroek and collaborators did observe a deviation from ordinary elasticity when

measuring fluctuations in the forces averaged over all contacts within a distance

from the perturbation [80, 81]. The lengthscale beyond which the fluctuations level

off may correspond to a finite-dimensional spin glass phase, which exhibits very

different properties than a mean-field spin glass. The replica, or mean-field, sce-

nario [114, 115] gives evidence for infinite number of pure thermodynamic states,

while the low-dimensional, or droplet scenario [116, 117], at least in the Ising case,

argues for two groundstates, the same ones occurring in the Ising ferromagnet—all

spins up or all spins down. In the droplet picture, an applied magnetic field is a

relevant perturbation driving the system to a ferromagnetic phase, while in the

replica scenario, an infinitesimally applied magnetic field does not destroy the spin

glass phase. How such a lengthscale separating mean-field and low-dimensional

behavior could come about is demonstrated in a somewhat technical calculation

that we have placed in Appendix A.

3.6 Discussion

The existence of force chains have been demonstrated both experimentally [118]

and numerically [93]. We numerically demonstrate the existence of chain-like

correlations in the locally large forces in the repulsive, soft particle system. This

finding may call for an updated effective force chain description with the non-

force chain particles providing for long-range interactions along the force chains

as the basis of the description. One can test for these long-range interactions by

perturbing a force chain locally and observing the response further along the force

chain.

Experiments by Majumdar and Behringer [119] have shown an ordering of force

chains in the presence of shear. In the absence of shear, the network of locally large
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force chains is isotropic. In the presence of shear, the force chains align along the

shear direction. A reordering of the force chain network structure via non-affine

displacements such that the system is inherently anisotropic may account for the

anomalous shear modulus exponent found in the repulsive, soft particle system.

One can test for this reordering in the repulsive, soft particle system by checking

for spanning of the locally large forces in the direction along and perpendicular to

the shear separately.

We also propose a coordination number-spin state mapping. With this map-

ping, we find that the repulsive, soft particle system becomes increasingly chaotic

as the the jamming transition is approached from above. More testing of this

mapping is needed. For example, one can investigate the response of the system

to shear and see how the coordination number changes throughout the system. A

changing coordination number corresponds to a changing spin state. It may be

that the framework of random spin wave theory (or some alteration thereof) can

be used to understand the response of the jammed solid to various perturbations.

Based on the fact that jamming and glass transition share some commonali-

ties, via transitivity, one suspects that the spin glass transition should be related

to the jamming transition. A particle (graph) coloring with non-trivial biasing to

enforce the isostaticity condition at the onset of jamming may provide us with

the third missing link. Whether or not the equivalent spin glass is mean-field

or low-dimensional remains to be seen. Of course, both the marginality and the

massless, or replicon, modes found in mean-field spin glasses make for a tantaliz-

ing match [120, 121]. A link between jammed solids and spin glasses also provides

a connection to constraint satisfaction problems. This connection has recently

been explored by Mailman and Chakraborty [122] and also by Krazkala and Kur-

chan [123, 124]. Constraint satisfaction problems are at the heart of attempting

to understand what makes problems solvable.
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While the phenomenological isostatic framework provides insight into the jam-

ming transition, its success hinges on the measured exponents for system sizes

ranging up to approximately 10000 particles currently. History teaches us that

the reliance on numerical results for support may ultimately reveal oversimplified

assumptions [125]. Hence, the importance of constructing well-defined, calculable

toy models of jamming transition cannot be underestimated. Such is the case for

k-core percolation, the simplest model of rigidity percolation [126]. If one allows

the k-core percolation transition to take place as soon as a non-zero spanning

k-core cluster is allowed, i.e. minimal rigidity, then the mean-field exponents are

presumably in the same category as those measured for the finite-dimensional re-

pulsive, soft sphere system. Note that minimal rigidity here does not translate

to an average bond occupation of four per site. While the k-core constraint is

indeed a local one, it contains the nonlocal feature of rigidity percolation–that

the removal of a single bond can trigger the removal of an entire occupied cluster.

Other spin systems, such as the dilute 3-state Potts antiferromagnet on the tri-

angular lattice, also exhibit a similar nonlocal property [127]. There exists other

work towards calculable models of jammed solids that should be pursued further.

For example, see Refs. [128, 129, 130].

In closing, given the connection between spin systems and repulsive, soft par-

ticle systems, we expect that construction and study of new spin models with

constraints inspired by jamming will pave the way for further insights into the

mysteries of jammed solids.



Chapter 4

On the non-locality of the

fractional Schrödinger equation

4.1 Background

A wide variety of stochastic processes are more general than the familiar Brow-

nian motion, but presumably can still be described by modifying the diffusion

equation using a fractional Laplacian operator [131, 132]. Such “fractional diffu-

sion” is now a large and active field, and a number of books have been written on

the mathematics and physics of fractional diffusion operators [36, 133, 134]. As

mentioned in Chapter 1, stochastic processes such as fractional diffusion can be

described by Lévy flights. More specifically, the diffusion equation can be modified

by replacing the ordinary Laplacian with the fractional Laplacian. The fractional

Laplacian generates non-local effects as observed in Lévy flights. The suitable

83
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fractional Laplacian, the Feller-Riesz derivative operator, is defined as

∇αf(x, t) = − 1

2π

∫ ∞

−∞
dkeikx|k|αf̃(k, t), (4.1)

where α is the fractional index and f̃(k, t) is the Fourier transform of f(x, t). It

is easy to see that when α = 2, the Feller-Riesz derivative operator is equivalent

to the ordinary Laplacian. Note that the Lévy index denoted by µ in Chapter 1

is now denoted by α for this chapter.

It is well established that the diffusion process is related to quantum mechan-

ics through the path integral representation where the Schrödinger equation is

derived via an integral over Brownian paths. Given the generalization of anoma-

lous diffusion or Lévy paths, N. Laskin extended the idea of the path integral to

Lévy paths and, thus, formulated fractional quantum mechanics [135, 136, 137].

By using the quantum Feller-Riesz derivative,

(
−~2△

)α/2
ψ(x, t) ≡ 1

2π~

∫ ∞

−∞
dpeipx/~ |p|α ϕ(p, t), (4.2)

where ϕ(p, t) =
∫
dx ψ(x, t) e−ipx/~ is the Fourier-transformed wavefunction, Laskin

derived the fractional Schrödinger equation as (Dα is the corresponding ”diffusion”

constant)

i~
∂ψ(x, t)

∂t
= Dα

(
−~2△

)α/2
ψ(x, t) + V (x, t)ψ(x, t). (4.3)

Since then, mathematical physicists have constructed solutions to this equation

for various potentials. In particular, a number of familiar potentials, including the

free particle, the harmonic oscillator, the delta potential and the infinite square

well, have been revisited and exact solutions were claimed to be obtained. In these

works, the traditional boundary-matching technique in solving piecewise potentials

in ordinary quantum mechanics was applied despite the fact that the quantum
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Feller-Riesz derivative, or the fractional Schrödinger operator, is highly non-local

thereby invalidating the boundary-matching technique. We have explicitly proved

this and will discuss it later. Meanwhile, the free particle solution and delta

potential solution are valid and are obtained as follows.

4.1.1 Free particle

The fractional Schrödinger equation for a free particle is

i~
∂ψ(x, t)

∂t
= Dα

(
−~2△

)α/2
ψ(x, t). (4.4)

The Fourier transform yields

i~
∂ϕ(p, t)

∂t
= Dα|p|αϕ(p, t), (4.5)

and this equation is solved via plane waves, or

ϕ(p, t) = Ce−iDα|p|αt/~, (4.6)

where C is a constant. This solution mimics the solution of the ordinary free

particle Schrodinger equation. From this solution, Laskin derived the uncertainty

relation for fractional quantum mechanics, which is expressed as

< |△x|µ >1/µ< |△p|µ >1/µ>
~

(2α)1/µ
, (4.7)

for µ < α and 1 < α ≤ 2.
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4.1.2 Dirac δ potential

The attractive Dirac δ potential is given by V (x) = −γδ(x). The fractional

Schrödinger equation is, therefore,

i~
∂ψ(x, t)

∂t
= Dα

(
−~2△

)α/2
ψ(x, t)− γδ(x)ψ(x, t). (4.8)

The steady state equation would be (with system energy, E)

Dα

(
−~2△

)α/2
ψ(x)− γδ(x)ψ(x) = Eψ(x). (4.9)

Its Fourier transform is

Dα|p|αϕ(p)−
γ

2π~

∫ ∞

−∞
dpϕ(p) = Eϕ(p). (4.10)

Let
∫
dpϕ(p) = C be a constant and the solution is in the form of

ϕ(p) =
γ

2π~
C

Dα|p|α − E
. (4.11)

An inverse Fourier transform yields the solution in real space.

4.2 Inquiry

In 2000, Laskin introduced the fractional Schrödinger equation, in which the nor-

mal Schrödinger equation is modified in analogy with fractional diffusion [135,

136, 137]. Laskin claimed to exactly solve this equation in the case of the one-

dimensional infinite square well [135]. A more recent (2006) work claimed to

find solutions again for the infinite one-dimensional square well (agreeing with

Laskin’s original solution), and for one-dimensional scattering off of a barrier po-
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tential [138]. A 2007 work used a different method of analysis to claim solutions

for the linear, delta function, and Coulomb potentials in one dimension [139].

Laskin also recently built on the same claimed solution to derive properties of the

quantum kernel [140]. Laskin [135, 136, 137] has conjectured that physical real-

izations of Levy quantum mechanics may be limited to 1 < α < 2 where averaged

quantities are finite. One could have made a similar conjecture in the classical

case, however, there are indeed physical realizations of Levy classical mechanics

with 0 < α ≤ 1. Therefore, we consider 0 < α < 2 in analogy with the classical

case.

The purpose of this chapter is to point out that of the many purported exact

solutions presented in the literature, only the one for the delta function potential

is correct.

We focus on the case where the potential is independent of time, so we are

interested in solutions of the following equation:

Dα

(
−~2△

)α/2
ψ(x) + V (x)ψ(x) = Eψ(x). (4.12)

The fractional diffusion operator is a nonlocal operator except when α = 0, 2, 4, . . ..

This means that (−~2△)
α/2

ψ(x) depends not just on ψ(y) for y near x, but on

ψ(y) for all y. This nonlocality, in turn, means that when solving Eq. (4.12), the

form of the wavefunction in a given region depends not just on the potential in

that region, but on the potential everywhere. Because of this, for a piecewise-

defined potential, we cannot follow the normal strategy of solving separately for

the wavefunction in each piecewise region, and then using conditions of continuity

and differentiability to match up the solutions. However, this is precisely the

strategy used in the papers cited above, and the solutions obtained in those papers

are thus invalid. We illustrate the problem by looking in some detail at the case
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of the one-dimensional infinite square well in Sec. 4.2. The problems with the

purported solutions for other potentials are similar, and are discussed in Sec. 4.3.

Section 4.4 presents an exact solution for the one-dimensional fractional harmonic

oscillator with α = 1, followed by discussion in Sec. 4.5.

4.3 Infinite one-dimensional square well

Consider Eq. (4.12) in the limit of the potential becoming an infinite square well

V (x) =

 0 if |x| < a

∞ if |x| ≥ a.
(4.13)

We first note that for the case of free space, where the potential V is zero ev-

erywhere, it is easy to see that plane waves are eigenfunctions of the quantum

fractional Hamiltonian:

(
−~2△

)α/2
eipx/~ = |p|α eipx/~. (4.14)

However, Eq. (4.14) is only valid if the function operated on is eipx/~ everywhere;

it is not a local equation that can be applied just in a restricted region. Because

the quantum Riesz fractional derivative is a nonlocal operator, the wavefunction

in the well knows about the wavefunction and potential outside of the well. Pre-

vious works looking at the one-dimensional infinite square well incorrectly applied

Eq. (4.14) only inside the well, and concluded that the solution inside the well

would be a simple linear superposition of left- and right-moving plane waves of

the same energy [135, 138].

Although these papers use an invalid assumption, could their end results be

correct nevertheless? Both papers claim that the solutions for the one-dimensional
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square well are the same for the fractional case as for the standard non-fractional

case, only with modified energies. So, they obtain for the ground state

ψ0(x) =

 A cos
(
πx
2a

)
for |x| ≤ a

0 otherwise.
(4.15)

The Fourier transform of this is

ϕ0(p) :=

∫ +∞

−∞
dx e−ipx/~ψ0(x),

= −Aπ~
2

a

cos (ap/~)
p2 − (π~/2a)2

. (4.16)

From ϕ0(p) we can calculate the fractional Riesz derivative:

(
−~2△

)α/2
ψ0(x) = −2A

π

(
π~
2a

)α ∫ ∞

0

dp
pα

p2 − 1
cos

(
1

2
πp

)
cos

(πpx
2a

)
. (4.17)

We see here how the nonlocality manifests itself in the mathematics. If we only

looked at the wavefunction inside the square well, then ψ0(x) would appear to

consist of plane waves of just two wavevectors, ±π/(2a). However, in reality, ψ0(x)

is 0 outside the well, making it a wave packet, rather than just a combination of

two plane waves, and so it contains a continuous range of wavevectors, as seen in

Eq. (4.16). The fractional Riesz derivative thus sees all these wavevectors.

Now we shall show that ψ0(x) is not a solution of the infinite square well via

a proof by contradiction. First, assume that ψ0(x) is a solution of the fractional

Schrödinger equation. Then the fractional Riesz derivative (−~2△)
α/2

ψ0(x) must

be proportional to ψ0(x) on the open interval, |x| < a, where V (x) = 0. Since,

ψ0(x) is continuous and ψ0(a) = 0, this implies that the limit x → a− of (4.17)

should also vanish. However, this condition is not equivalent to (4.17) vanishing

at x = a because the Hamiltonian includes the potential and so we cannot rely on
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continuity of ψ0(x) at x = a.

A Fourier transform such as (4.17) is continuous if the integral is absolutely

convergent. The integrand in (4.17) is bounded by pα for small p and by (1+ϵ)pα−2

for large p. Therefore, (4.17) is indeed a continuous function for all x for −1 <

α < 1. Thus, for −1 < α < 1, we can take the limit x → a− (4.17) by setting

x = a, and if ψ0(x) is a solution, this should give zero:

f(α) :=

∫ ∞

0

dp
pα

p2 − 1
cos2

(
1

2
πp

)
= 0. (4.18)

Taking the derivative with respect to α, we see

df

dα
=

∫ ∞

0

dp
pα ln p

p2 − 1
cos2

(
1

2
πp

)
. (4.19)

The integrand in Eq. (4.19) is everywhere positive, so df/dα > 0, and we cannot

have f(α) = 0 for all α. The ground state (4.15) claimed in Refs. [135] and [138]

thus cannot be an solution of the fractional Schrödinger equation for all α. It can

only be a solution once in the interval −1 < α < 1—namely when α = 0.

The above argument does not hold for 1 ≤ |α| and in fact for some values of α,

(4.17) is not continuous at x = a. However, a related argument to one presented

above shows that this ψ0 cannot be a solution at least for 1 < α < 2. For α = 2, on

the other hand, ψ0(x) actually is a solution. Indeed it is a solution whenever the

fractional Riesz derivative is an ordinary derivative—that is, for α = 0, 2, 4, . . ..

It may seem counterintuitive that Eq. (4.15) is not the correct ground state.

The standard (α = 2) Schrödinger equation for an infinite potential well is equiv-

alent to the Schrödinger equation on an interval with the Dirichlet boundary con-

ditions ψ(−a) = ψ(a) = 0. By raising that Hamiltonian to the power α/2 we get

a plausible fractional Laplacian and Eq. (4.15) is indeed a solution. However, this

is not the Riesz fractional derivative. In other words, the fractional Schrödinger
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equation for an infinite potential well is not equivalent to the fractional Schrödinger

equation on an interval.

At this point, we do not know what the true solutions are for values of α other

than 0, 2, 4, . . . . In Ref. [141], Zoia et al. find numerical solutions for the ground

state. The solutions depend on α and differ from the simple sine wave solution in

Eq. (4.15).

4.4 Other systems

While we have only discussed the infinite one-dimensional square well in detail,

the comments here equally invalidate the other claimed solutions of the fractional

Schrödinger equation. For example, in Section II of Ref. [139], the linear potential,

V (x) =

 Fx if x ≥ 0

∞ if x < 0
, (4.20)

is studied. The authors of Ref. [139] treat this equation in a piecewise approach

by solving the equation for the potential V (x) = Fx and applying a boundary

condition at x = 0. This is invalid for the same reasons stated above for the

square well potential. Similar comments apply to the analysis of the Coulomb

potential in section IV of that same paper.

Our comments, however, do not invalidate the analysis of the delta function po-

tential in Section III of Ref. [139], which did not implement a piecewise approach,

but instead worked with the Fourier transform of the delta function potential.

However, the authors of Ref. [139] fail to note that the bound state for the delta

function potential is valid only for α ≥ 1. For α ≤ 1, there is no bound state

since the integral in Eq. 33 of Ref. [139] diverges. In more recent work, Dong and

Xu [142] attempt to solve the same problem again, using a piecewise approach.
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They then compare this to their initial correct solution and derive an incorrect

identity for the H-function.

4.5 The fractional harmonic oscillator

Consider the fractional Schrödinger equation with the potential

V (x) =
1

2
kx2. (4.21)

Fourier transforming Eq. (4.12) gives

1

2
k~2

d2ϕ

dp2
= (Dα|p|α − E)ϕ(p). (4.22)

In momentum space, the equation maps to the ordinary Schrödinger equation with

a positive α power law potential and k = 1/m. In other words, the kinetic and

potential energies have reversed roles.

4.5.1 WKB approximation

Given the mapping to ordinary quantum mechanics, in the limit ~ → 0, one

can use the WKB approximation in momentum space to approximate the energy

eigenvalues, with p replacing x. The quantization condition in momentum space

is

∫ p2

p1

λ(p)dp = (n+
1

2
)π~, n ∈ {0} ∪ Z+ , (4.23)

where λ(p) =
√

2
k
(E −Dα|p|α), and p1 and p2 are the classical turning points, i.e.
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p1,2 = ±(E/Dα)
1/α. The above condition leads to

En =

(
(n+ 1

2
)~π

√
k(Dα)

1/αΓ(3
2
+ 1

α
)

2
√
2Γ(3

2
)Γ(1 + 1

α
)

) 2α
2+α

. (4.24)

This agrees with Laskin’s more general WKB result [143] for an arbitrary power-

law potential. However, by the argument we have just given, this special case is

better justified than Laskin’s general claim. It is unclear whether there is any

reason to believe the WKB approximation to be valid for systems other than

the harmonic oscillator, since for other potentials, the Fourier transform of the

fractional Schrödinger equation will not be an ordinary Schrödinger equation.

4.5.2 An exact solution for α = 1

When α = 1, Eq. (4.22) becomes

1

2
k~2

d2ϕ

dp2
= (D1|p| − E)ϕ(p) . (4.25)

Restricting to p > 0 or p < 0, this differential equation is equivalent to the Airy

equation (by a rescaling transformation). For a normalizable wavefunction, we

must have ϕ(p = ∞) = ϕ(p = −∞) = 0. This condition rules out Airy functions

of the second kind (Bi(z)) as solutions. Because of the symmetry of the potential,

the solutions are alternately symmetric or antisymmetric. More precisely,

ϕ(p) = (sgn p)nAi(κ|p| − rn) , (4.26)

where κ ≡ (2D1/(k~2))
1/3

, and the rn’s are the successive roots of Ai
′ (for n even),

or of Ai (for n odd). The energy eigenvalues are

En = −
(
k

2
~2D2

1

)1/3

rn. (4.27)
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Note that rn < 0, so En > 0.

Using the asymptotic expansion of the Airy function, we find that the roots

are well approximated by

rn ≈ −
(
3π

4

(
n+

1

2

))2/3

, n ∈ {0} ∪ Z+ (4.28)

in the limit of large n. This approximation reproduces the result of the WKB

approximation above. This approximate formula is off by 8.7% for n = 0, 0.77%

for n = 1, and 0.41% for n = 2, and rapidly becomes more accurate for larger n.

Inserting Eq. (4.28) into Eq. (4.27) thus gives a very good approximate formula

for the energies of the simple harmonic oscillator for α = 1.

4.6 Discussion

It would be useful to know the correct groundstate of the one-dimensional infinite

square well or harmonic oscillator for general α, but this is a difficult problem.

In Ref. [144], Bañuelos et al. needed a lengthy proof merely to show that the

groundstate solution for the infinite square well in the region (−1, 1) is concave

on the interval (−1
2
,+1

2
).

Similar technical issues regarding nonlocality have arisen in the statistical me-

chanics community as well. For example, in Ref. [145], the authors claimed to

analytically determine the mean first passage time for a Lévy flight with absorbing

boundary conditions on the interval [0, 1]. They did so by imposing the standard

absorbing boundary conditions for the probability density at x = 0 and x = L.

However, a subsequent publication [146] pointed out that due to the nonlocal

nature of the Lévy flight, the correct boundary condition is for the probability

density to vanish for all x ≤ 0, and for all x ≥ L, rendering the analysis in

Ref. [145] invalid.
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Finally, one must also ask about possible physical realizations of the fractional

Schrödinger equation. In Ref. [141], Zoia, Rosso, and Kardar constructed a lattice

model whose continuum limit is described by fractional diffusion using symmet-

ric Toeplitz matrices. A quantum representation of this model via a mesoscopic

network of long range connections whose hopping amplitudes are described by

the entries of these matrices may be a realization of the fractional Schrödinger

equation. Further modification could lead to experimental tests of the problems

we have discussed here.



Appendix A

Long-range, one-dimensional

Potts glass

Here we analyze the one-dimensional, long-range interacting p-state Potts glass

with Gaussian distributed quenched bond randomness. There exists previous anal-

ysis of the one-dimensional, long-range interacting Ising spin glass. In light of our

coordination number-spin state mapping, we extend these results to the Potts

glass case.

Why study a model with long-range interactions? The chain-like correlations

in the forces may call for an effective theory centered on these chains with the

non-force chain bonds providing for long-range forces along the chain. In fact, the

existence of these chain-like correlations is reminiscent of a picture proposed ear-

lier by Cates and collaborators [147] where the jammed solid is comprised of linear

force chains and a sea of spectator particles modeled as an incompressible solvent.

Instead of considering the force chain as a linear object supporting loads only along

its own axis, consider the force chain as a polymer—a polymer embedded in solu-

tion, i.e. the other particles. Just as the hydrodynamics of the solution couple one
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part of the polymer with a distant part, resulting in long-range interactions along

the polymer, the force chain would also experience long-range interactions [148].

We note that the polymer-in-solution analogy has its shortcomings. A more ac-

curate analogy might be a polymer embedded in another polymer-type medium.

Also, resumably the particles participating in the largest force chain would no

longer be part of the largest force chain upon shearing or other perturbations. In

other words, there is particle conversion between the force chain and non-force

chain particles.

How would this effective force chain framework depend on the packing frac-

tion? At the onset of jamming, presumably there exists an isotropic, fractal net-

work of larger force spanning chains. As the packing fraction is increased, the

larger force chains become shorter such that eventually there is no distinction be-

tween the chains and the other particles since the definition of a force chain would

have to be relaxed in order to achieve spanning. So the lengthscale of the chain

lattice shrinks as packing fraction is increased and the long-ranged interactions be-

come screened out just in the case of many polymers in solution. At a particular

packing fraction; while for lengthscales smaller than “chain” lattice, the system

behaves long-ranged, or mean-field-like; for lengthscales larger than “chain” lat-

tice, the long-range interactions are screened out and the system behaves as a

low-dimensional system. Therefore, within one system, one can interpolate be-

tween mean-field and finite-dimensions due to the correlated heterogeneity in the

forces/interactions.

While a precise formulation of an effective force chain theory is not yet within

reach, we discuss the possible ramifications of long-range interactions in a conven-

tional spin glass system. We begin with the p-state Potts glass Hamiltonian in

d-dimensions,

H = −
∑
i,j

Jij
|i− j|σ

p−1∑
a=1

SiaSja, (A.1)
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where Si is a p-state Potts spin in the simplex representation [149] at site i and

σ denotes the interaction range. The distribution of the coupling constant Jij is

given by

P (Jij) =
1√
2πJ2

e−(Jij−J0)2/2J2

.

The replica trick is applied to the Hamiltonian to compute the free energy

averaged over disorder by considering n identical replicas of the original system.

The averaged free energy, F , is then given by

F = −kBT lim
n→0

Zn − 1

n
, (A.2)

where

Zn =

∫
(
∏
i,j

P (Jij)dJij)Tr{Sα
i } exp

{
n∑

α=1

∑
i,j

Jij
kBT |i− j|σ

p−1∑
a=1

Sα
iaS

α
ja

}
.

After integrating over the disorder and applying the Hubbard-Stratonovich

transformation,

Zn =

∫ ∏
α̸=β
a,b

dQαβ
i,ab exp

{
−1

2
K−1

ij Q
αβ
i,abQ

αβ
j,ab

}
Tr{Sα

i } exp
{
Sα
iaS

β
ibQ

αβ
i,ab

}
, (A.3)

where the matrix K is defined by

Kij =
J2

(kBT )2
1

|i− j|2σ
(A.4)

and J0
J
< 4−p

2
with J = kBTg such that we set the ferromagnetic order parameter

to zero.

To perform the trace over the spins, we recall that the simplex representation

of the p-state Potts model requires
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∑
s

esae
s
b = pδab,∑

a

esae
s′

a = pδss′ − 1, (A.5)∑
s

esa = 0,

where in the replicated partition function each Sia is represented by one of the

ea’s. We also define vabc =
∑

s e
s
ae

s
be

s
c for convenience [150]. We expand the second

exponential term in Eq. 7 to order Q3, and after computing the trace and re-

exponentiation, we obtain

Tr{Sα
i } exp

{
Sα
iaS

β
ibQ

αβ
i,ab

}
=

1

4

∑
α ̸=β

(Qαβ
i,ab)

2 +
1

6

∑
α ̸=β ̸=γ

Qαβ
i,abQ

βγ
i,bcQ

γα
i,ca

+
1

12

∑
α ̸=β

vabcvdef
p2

Qαβ
i,adQ

αβ
i,beQ

αβ
i,cf +O((Qαβ

i,ab)
4). (A.6)

After taking the continuum limit, we rewrite Zn in momentum space as

Zn =

∫ ∏
(α,β)
a,b

dQαβ
ab (q⃗) exp(−

∫
ddq⃗ H{Qαβ

ab (q⃗)}) (A.7)

with

H =
1

4

∫
q

∑
α ̸=β

(r + q2σ−d)Qαβ
ab (q⃗)Q

αβ
ab (−q⃗)

−1

6
v

∫
q1q2q3

∑
α ̸=β ̸=γ

(2π)dδ(q⃗1 + q⃗2 + q⃗3)Q
αβ
ab (q⃗1)Q

βγ
bc (q⃗2)Q

γα
ca (q⃗3)

−1

2
u

∫
q1q2q3

∑
α ̸=β

(2π)dδ(q⃗1 + q⃗2 + q⃗3)Q
αβ
ad (q⃗1)Q

αβ
be (q⃗2)Q

αβ
cf (q⃗3)v

α
abcv

β
def , (A.8)

where r, u, and v are the coupling constants and
∫
q
=

∫
ddq⃗
(2π)d

. We have omitted a
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q2Qαβ
ab (q⃗)Q

αβ
ab (−q⃗) term.

Performing the momentum shell renormalization group with one-loop correc-

tions using the usual notation [151], we obtain

r′ = ζ2b−d
(
r − (−2(p− 1)v2 + 18p4(p− 2)2u2)C(b)

)
v′ = ζ3b−2d

(
v + (−3p+ 4)v3D(b)

)
u′ = ζ3b−2d

(
u+ 36u3p4(p− 3)2D(b)

)
ζ = b1+d/2−η/2

(A.9)

where C(b) =
∫ 1

1/b
ddq⃗

(2π)d(q(2σ−d)+r)2
and D(b) =

∫ 1

1/b
ddq⃗

(2π)dq3(2σ−d) . Since the renor-

malization group does not generate new long-range terms, η = 2 + d − 2σ to all

orders. Therefore, for σ < 2d
3
, both cubic couplings are irrelevant and the critical

behaviour is mean-field [152] with Gaussian fluctuations. For σ > 2d
3
, the cubic

terms become relevant and different critical behaviour is observed.

The modified value of η = 2 + d− 2σ is a general feature of long-range inter-

actions. The v and u terms are irrelevant at σ < 2/3 in the one-dimensional case.

Thus, the system behaves mean-field-like when 1/2 < σ < 2/3, where the lower

bound σ < 1/2 assures the convergence of free energy. This result is a simple

generalization of the previous p = 2 case [153, 154] and the short-range case [155].

Modifying the range of the interaction corresponds to modifying the effective spa-

tial dimension of the system from low-dimensional to mean-field. This property

has been numerically verified in the p = 2 case and the 3-spin spin glass [156, 157].

In the jammed solid, the interaction range is presumably tuned by the presence

of other spanning force chains (Potts chains). On lengthscales smaller than the

chain lattice, the long-range interaction dominates and above this lengthscale, the

short-range interaction dominates.
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