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Explicit Clock Temporal Logic in Timing 
Constraints for Real-Time Systems* 

S. RAMANNA and J.F. PETERS Ill 

Syracuse University 
School of Computer & Information Science 

4-116 CST, Syracuse, NY 13244-4100 USA 

Abstract. A form of explicit clock temporal logic (called Tlrt) useful in 
specifying timing constraints on controller actions, a real-time database (rtdb) 
items, and constraints in a real-time constraint base (rtcb), is presented. 
Timing as well as other forms of constraints are stored in the rtcb. A 
knowledge-based approach to ensure the integrity of information in an rtdb is 
given. The rtcb is realized as a logic program called Constrainer, which is a 
historyless integrity checker for a real-time database. The consistency and 
integrity issues for an rtcb and rtdb are investigated. The formal bases for a 
temporally complete rtdb and knowledgeably complete controller are presented. 
A partial Tlrt specification of a knowledgeable controller for a Gas Burner is 
given. An illustration of a rtdb and rtcb in the context of the sample real-time 
system is also given. 

Keywords. Artificial intelligence; computer control; constraint theory; 
delays; monitoring; safety; system integrity. 

INTRODUCTION 

Considerable work has been done on describing the behavior of hard, real-time 

systems (Aiur, 1990; Cronhjort, 1988; Harel, 1990; Hankley, 1990a, 1990b; 

Henzinger, 1991a, 1991b; Kopetz, 1988, 1989a, 1989b; Ostroff, 1989, 1990; 

Peters, 1990a, 1990b, 1991a, 1991b, 1991c, 1991d; Ramanna 1991). A 

hard, real-time system (rts) is a computer system where the validity of results 

produced by the rts depend on both logical correctness and timeliness (Kopetz, 

1989a). An rts consists of two main parts: controller and plant. The controller is 

a computer which processes input from the environment as well as plant and 

supplies control information to the plant ( hardware ). The controller relies on 

* Research supported in part by the School of Computer and Information Science, 
Syracuse University, Syracuse, NY 13244-4100 USA, by the Research & 
Development Laboratories, Culver City, CA 90230-6608 USA. To appear in the 
IFAC AIRTC'91 Proceedings, Sept. 1991. 
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information provided by a real-time database to carry out its control functions. 

Informally, a real-time database (rtdb) is a collection of data items needed for 

instantaneous control, operator display, alarm monitoring, and other real-time 

system applications and which are invalidated by the passage of real-time (Kopetz, 

1989a). The focus of this article is on a knowledge-based approach to ensure the 

integrity of the information in a real-time database. A knowledge-base is a 

database of facts about some application domain; these facts are refined by the 

acquisition of knowledge (Levesque, 1981}. A knowledge-base can be realized as a 

logic program (Guessoum, 1990; Ramanna, 1990a, 1990b). In the context of 

real-time databases, a knowledge base containing constraints on items in the rtdb, is 

realized as a logic program called Constrainer. The term knowledge base is used 

synonymously with constraint base in this article. Each data item of the rtdb is a 

set of (attribute, value) pairs such that 

data item = { (attribute, value} 1 attribute : string; value : pending } 

The first pair (attribute, value} in the set serves as a key (or criterion) in 

identifying a data item. The term pending that the value of an attribute is context 

sensitive. Let x E rtdb, (Ax. Ax'value) E x, where Ax is an attribute of data item x 

and Ax'value is the value of the attribute. Let TAx (point of observation) be the 

reading of the external clock when (Ax. Ax'value) is first entered into the rtdb; let k 

be the number of ticks (beyond TAx} during which (Ax. Ax'value) is valid. Then 

TAx + k (point of validity) is the upper limit on the validity of the information 

which (Ax. Ax'value) represents. Let q.time (t_use) be the time in state q of a 

controller when (Ax. Ax'value) is used. Then a current observation is one which is 

made at time t_use where TAx < t_use < TAx + k. The notion of current observation 

provides the basis for a formal definition of a rtdb (Kopetz, 1989b). 

Def. 0.1 o A real-time database is a set of data items each of whose (attribute, 

value) pairs can serve as current observations needed for instantaneous 

control of a real-time system. 

Def. 0.2° A rtdb is temporally complete if every (Ax. Ax'value) pair of every 

x E rtdb has a timing constraint. 



ECTL in Timing Constraints 3 

A timing constraint is a predicate which specifies the duration over which a (Ax, 

Ax'value) pair of x e rtdb is valid. The "knowledge" in rtcb is in terms of particular 

real-time applications, which provides a basis for computing the value of k (the 

point of validity); in this paper, we do not address the issue how the rtcb can be used 

to compute k. This issue is addressed in (Peters, 1991 b; Ram anna, 1991 ). In this 

paper, we are interested in establishing a formal basis for a knowledge-based 

framework for guaranteeing the integrity of items in a temporally complete rtdb. 

EXPUCIT CLOCK TEMPORAL LOGIC 

The behavior of a real-time system can be specified with Real-Time Temporal Logic 

(RTTL) given in (Ostroff, 1989, Harer 1990, Henzinger, 1991 ). RTTL is an 

explicit clock logic which uses data variables to reference an external clock in 

assertions. When temporal logic is applied to the study of processes, the formulas of 

temporal logic are interpreted as predicates over sequences of process states 

(Alpern, 1986). Each state occurs at some instant in time in which the values of 

process variables can be inspected. During a succession of states, changing values of 

state variables may entail changing truth values of predicates about state variables. 

Temporal formulas can be used to enumerate state transitions (transformations of 

one state into a new state) in a behavior as well as the order in which transitions are 

made. 

RTTL provides a concise means of prescribing a property of a behavior of a rts 

controller or plant; such prescriptions are assertional. RTTL also provides a 

means of specifying constraints on values of data items over a sequence of rtdb states 

or timing restrictions on rtcb constraints. This form of temporal logic is essentially 

the same as the original temporal logic introduced by Manna and Pnueli (1981, 

1983) with the addition of data variables such as T (for timing constraints) 

suggested by (Hare I 1990, Henzinger, 1991 ). Except for some additional derived 

temporal operators taken from (Peters, 1990a), the temporal logic used in this 

article is the same as RTTL. For simplicity, we limit the presentation of RTTL to a 

discussion of the U (until) and temporal operators derived from U. We also 

introduce the derived temporal operators before, 0 w (infinitely often), and 

seq(p1, P2. p3, ... , Pn) (a temporally quantified sequence of state predicates where 

P1 holds before P2. which holds before p3, ... , before Pn). For the subset of RTTL 

(named TLrt) we have chosen, the temporal language TLrt is defined as follows: 
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Alphabet 

• A denumerable set of variables: x, ... 

• A denumerable set of n-ary functions: f, g, ... 

• A denumerable set of n-ary predicate symbols: p, q, ... 
• Symbols ..., , or, 'tl, (, ), U 

Well-formed formulas of Tlrt have the following syntax: 

• Every atomic formula is a formula. 
• If x is a variable and A is formula, then 'tl x A is a formula. 

• If A and B are formulas, then .., A, (A or B), (A U B) are formulas. 

Semantics of Temporal Operators 

The .., (not), or, and 'tl (all) symbols have the usual semantics. In addition, the 

implication symbol ====+ (i.e., p ====+ q = .., p or q) is used. In defining the following 

semantics, the notation 

(qo, ... ,qx) F p for x >= 0 

asserts that each of the states in the sequence (q0 , ... ,qx) satisfy predicate p. In what 

follows, let qo represent the current state in a behavior. Let p, q be first-order 

predicates. The semantics of U as well as the operators derived from u are as 

follows: 

p U q = 3 k, x: 0 <= x <= k: (q0 , ... ,qx) F p and qk F q 

p before q = 3 k: 1 <• k: q0 F p and (q1 , ... ,qk) F p u q 

Op =true Up 

qk F seq(p) = qk F p 

seq(P1, (seq(p2, ... ,pn))) = p1 before seq(p2, (seq(p3, ... ,pn)) 

ow p "= seq( p, ow p ) 

c P = ..,o..,p 

The predicate 'p U q' asserts that the predicate q eventually holds (either in the 

current or in some future state) and that the predicate p holds in the current state 

and in each of the states until the state when q holds. By contrast, 'p before q' 
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asserts that p is guaranteed to hold initially and sometime later q will hold. For this 

reason, before is called a precedence operator (KrOger, 1985). These powerful 

temporal operators provide the basis for the semantics of the remaining operators in 

the above list. TLrt is used to specify timing constraints on controller actions, rtdb 

data items, and rtcb constraints. The syntax for a well-formed constraint (wfc) is 

given in Appendix A. 

EXTERNAL CLOCKS AND TIMED BEHAVIORS 

Timing constraints on items in a real-time database reference ticks of an external 

clock (denoted by Clock). Two types of variables are used to formulate constraints 

on rtdb items: rigid and flexible variables (Henzinger, 1991 ). A rigid variable r 

can be assigned a value in a particular rts state and r retains its value across state 

changes. By contrast, a flexible variable value can change with state changes. For 

example, the rigid variable T records the Clock value. We assume that the value of T 

can be changed when needed (this is analogous to resetting the external clock in a 

timed BOehl Automaton (Aiur, 1991 )). The flexible variable time gives the value 

of Clock in the current state. Clock readings are non-negative, real numbers. 

Each time an event occurs, a reading of Clock is associated with that event. 

Semantics of Delay 

Responsiveness of a system is measured in terms of actual values of delays. The 

duration predicate delay(k) asserts that the external clock is allowed to run for k 

ticks before a timeout occurs. Delay(k) can be used to specify a lower bound on the 

number of ticks before an action is performed; delay(k) can also be used to specify 

an upper bound on the duration of an action, duration of validity of a constraint in an 

rtcb or the value of an attribute of a data item in an rtdb. A similar technique for 

specifying timing constraints on actions is used by Handelman and Stengel (1988). 

Lower Time Bound on System Actions 

We can express a lower bound on the number of ticks before a system action begins. 

If we let ACT be the action to be performed in state q. We can express the fact that 

we let the external clock run for k ticks before performing ACT by writing 

informally "delay(k) before ACT." To see this, let T record the time in state q. 
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Assume action ACT is performed in state q. Written by itself, "ACT" is shorthand 

for the assertion "the action ACT is performed." Let sat(q I (q'), P) mean that 

predicate P is satisfied in state q of the state sequence (q, q'), and sat(q', Q) mean 

that predicate a is satisfied in state q'. The double turnstile I= reads "forces" or 

"satisfies." Then satisfaction of "delay(k) before ACT" over a state sequence (q, q') 

is expressed in clausal form as follows: 

sat(q 1 (q'), delay(k) before ACT) :­

q I= delay(k) and T <= time < T + k, 

q' I= ACT and time = T + k. 

This says that the duration predicate is satisfied in state q and k ticks later the 

predicate ACT is satisfied in state q' . 

Upper Bound on Constraints, Attributes & Actions 

To specify an upper bound of k ticks on the timeliness of a constraint Pred in the 

rtcb, we write delay(k) Pred (or simply k Pred). To specify the upper bound of k 

ticks on the value of an attribute A in an rtdb, we write lsValid(A, k) within a 

constraint in the rtcb; this a timing constraint on an rtdb attribute. We can also 

express an upper bound on the number of ticks during a system action using 

delay(k). This is expressed rather simply by writing "ACT; delay(k)," which 

asserts that ACT cannot be continuously enabled for more than k ticks of the external 

clock. The predicate timeout is an enabling condition, which evaluates to true at the 

kth tick of the clock (i.e., an action which must be performed within k ticks times 

out, and a transition to the next state occurs). The meaning of this upper bound 

constraint can be explained concisely by using the satisfaction clause sat(q, P). 

Then the upper bound timing constraint can be defined as follows: 

sat(q, ACT; delay(k)) 

q I= ACT, 

q I= time < T + k; 

q t= time = T + k and timeout. 

/* reads "or" */ 
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A CONSTRAINER FOR A REAL-TIME DATABASE 

The constraint base rtcb maintains knowledge about a controller application. In this 

paper, we have restricted this knowledge to timing constraints. The rtcb is realized 

as a logic program called Constrainer, which determines the admissibility of a 

controller operation requiring a data item in a real-time database. A controller 

hardware interacts with the Constrainer to determine the integrity of needed rtdb 

control information. A Yes/No response from the Constrainer is contingent upon its 

subrules reporting success/failure of their subfunctions. A No answer prompts the 

Constrainer to declare the usage of a data item by the controller as inadmissible. 

Let q be a state of the Constrainer; let q 1 tail be a sequence of Constrainer states with 

q being the current state, tail being futures states, and op the name of an operation. 

Let rtcb be the constraint base managed by the Constrainer. The runtime system for 

the Constrainer maintains a state record used to store state variable values. This 

Constrainer state record has the following form: 

type state record is 

time: real; /* current clock time */ 

Pred: string; 

other: OtherType; 

end record; 

The constraints processed by the Constrainer are TLrt formulas. The Constrainer is 

given in clausal form in Fig. 1. 

Constrainer(q I tail, Ask, attrib, , ) :­
Constrainer(q I tail, Verify, attrib, , ). 
Constrainer (tail, op, , , ) . 

Constrainer(q 1 tail, Tell, criterion, , constraint) 
Extract( constraint, delay, criterion, formula ) , 
Accept(delay, criterion, constraint, q.time, q.db ) , 
Constrainer ( tail, op, , , ) . 

Constrainer( q I tail, Add, attrib, value, ) :­
lsAdmissible (Add, attrib, q.cb, value ), 
Constrainer ( tail, op, , , ) . 

Constrainer( q I tail, Update, attrib, value, ) 
lsAdmissible ( Update, attrib, q.cb, value ), 
Constrainer ( tail, op, , , ) . 

Constrainer( q 1 tail, Delete, attrib, , ) 
lsAdmissible ( Delete, attrib, q.cb, ), 
Constrainer ( tail, op, , , ) . 

Constrainer( q 1 tail, Verify, attrib, , ) 

/* Rule ls.1 */ 
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lsAdmissible ( Verify, attrib, q.cb, ) , 
Constrainer ( tail, op, , , ) . 

Constrainer( q I tail, Read, attrib, value, ) 
Constrainer(q I tail, Verify, attrib, , ). 
Constrainer ( tail, op, , , ) . 

Fig. 1 Constrainer Program 

8 

The Constrainer is used in the interpretation of constraints on data items which a 

controller wishes to utilize. The Constrainer rules take on a functional form where 

parameters from one rule can be passed on to the others, which is a deviation from 

pure Prolog. The Constrainer is defined in terms of four types of operations: Ask, 

Tell, Verify, and real-time database operations ( Add, Update, Delete, Read ). The 

Accept subrule for the Tell operation of the Constrainer is needed when we add a 

constraint to the constraint base. The acceptance of a Tell operation on a rtcb 

requires a check on (i) whether the duration on a new constraint is valid (it uses the 

current clock time, which it compares with a previous reading of the clock used in 

establishing a timing constraint on a knowledge sentence) [AcceptDuration]; (ii} 

whether the data Items referenced by the new constraint exist in the rtdb 

[AcceptCriterion]; and (iii) whether the constraint itself is refuted by other 

constraints in the constraintbase [AcceptConstraint]. 

Accept ( delay, criterion, know, q.time, q.db ) :­
AcceptDuration ( delay , q.time ), 
AcceptCriterion ( criterion, q.db ) , 
AcceptConstraint ( criterion, know, q.time ). 

AcceptDuration ( delay, q.time ) :­
q.time <= T +delay. 

AcceptCriterion ( criterion, db ) :­
Collectltems ( criterion, itemlist, db ), 
member ( itemlist, db ). 

AcceptConstraint (criterion, know,q.time ):­
FindSentence( criterion, q.cb, knowset ) , 
Decompose ( q 1 tail, know), 
lsConsistent ( knowset, know, q.time, q.Pred ). 

I* Rule A.1 */ 

I* T is rigid variable * 1 

I* Rule lsC */ 

For a constraint on a data item to be accepted, one must ensure that the constraint is 

not refuted by any knowledge sentence in the knowledge set associated with the data 

item. In AcceptConstraint, the set of all knowledge sentences about the same items 

are returned by the FindSentence rule. The refutation mechanism of 

AcceptConstraint is expressed in lsConsistent ( knowset, know, q.time. q.Pred ). By 

contrast, the lsAdmissible (see Rule ls.1) subrule for Add, Update, Delete, Read, and 
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Verify of the Constrainer determines the admissibility of an operation on the items 

in the rtdb. 

lsAdmissible ( op, attrib, q.cb, value ) 
Find( attrib, q.cb, knowset ) , 
Check ( attrib, know 1 knowset, value ) . 

where 

Find (attrib 1 attribset, know 1 q.cb, knowset ):­
ExtractCriterion (know, criterion ), 
Match ( criterion, attrib ) , 
Find (attribset, q.cb, know I knowset ); 
Find ( attribset, q.cb, knowset ). 

Match (" X " 1 criterion, X ) . 
Match (" Y " 1 criterion, X ) :­

Match (criterion, X ). 

Check( attrib, know 1 knowset, value ) . 
Extract( know, delay, criterion, formula ) , 
Accept ( delay, criterion, know, q.time, q.db ), 
Admissible( q, op, attrib, formula,value ) , 
Check ( attrib, knowset, value ) . 

The subrule 

Find ( attrib I attribset, know 1 q.cb, knowset ) 

/* match found */ 
/* match not found */ 

/* Rule C.1 */ 

obtains all the constraints associated with the data items of the operation. The 

sub rule 

Check ( attrib, know 1 knowset, value ) 

determines (i) whether the constraints are valid with respect to the constraint base, 

(ii) whether the substitution of values in each constraint associated with the items 

results in a valid formula. The subrule 

Admissible(q,op,attrib, formula, value) :­

Substitute (attrib, formula, value, eval). 
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deals with the admissibility of an operation on the data items, by grounding the 

variables of a constraint with the new data values that are provided by the operation. 

The Extract, FindSentence, lsConsistent, ExtractCriterion, and Admissible subrules 

are given in the Appendix B. 

Note on Acceptance of Timing Constraint 

The Accept Duration subrule (see Rule A.1) checks the validity of the duration of 

timing constraints. This rule "accepts" a timing constraint with upper bound k, 

provided that the current time given by q.time is within k ticks of the external clock 

(this is measured by comparing q.time with T + k, where T is a rigid variable which 

stores the old clock reading at the Instant when the constraint was first established). 

The Items in a rtdb age with time (Kopetz, 1989a). Hence, an important form of 

timing constraint is a duration associated with (attribute, value) pairs of each data 

item. Let (Ax. Ax'value) be a pair associated with a data item x in the rtdb, and let 

TAx be a rigid variable which stores the reading of the external clock in the 

Constrainer state when (Ax, Ax'value) was last modified. Let pname identify a 

timing constraint on Ax'value. The timing constraint on (Ax, Ax'value) is expressed 

as constraints in the rtcb with predicates of the form pname((Ax, Ax'value), b), 

which asserts that (Ax, Ax'value) has a lifespan of TAx + b ticks of the external 

clock. 

Decomposition of a Temporal Formula 

The AcceptConstraint ( criterion, know, q.time ) rule checks the validity of a 

constraint expressed as a TLrt formula. This entails the decomposition of a 

constraint, which is a temporal formula. A temporal formula specifies a finite, 

directed, labeled graph. Each node in the graph is labeled with a non-temporal 

predicate which is evaluated with respect to data item values. Using a technique 

similar to the one suggested by (Wolper, 1981; Lipeck, 1987), each of the 

following temporal formulas is decomposed into a non temporal and a temporal 

component. This technique constructs a directed graph. Let P be a temporal 

formula, then 

a p • seq(P, a P) 

0 P • true UP 

--graph with nodes P, D P 

--graph with nodes true, ... ,P 
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seq ( P1, P2, ... Pn ) = P1 before seq ( P2, ... Pn ) 

--graph with nodes P1, seq(P2, ... ) 

This decomposition technique is utilized by the Constrainer. The state variable 

q.Pred stores the non-temporal component of a constraint. The decomposition of a 

real-time, temporal formula is performed by the Decompose subrule: 

Decompose ( q 1 tail, formula ) :-
q.Pred is formula. 

Decompose ( q 1 tail, " seq ( P 1 tail ) " ) :­
Decompose ( q , P ) , 
Decompose ( tail, " seq (tail) "). 
Decompose ( q I tail, " IJ " I formula ) :-

q.Pred is formula, 
Decompose ( tail, formula ). 
Decompose ( q 1 tail, " 0 " 1 formula ) :-

not( ( not Decompose( q 1 tail, formula )), 
q is " ")). 

The reason for decomposing and storing the non-temporal portion of a constraint in 

q.Pred is one of efficiency. Since, q.Pred would possibly be checked subsequently for 

consistency with respect to other constraints, it would be inefficient to decompose 

the original temporal constraint each time along with other constraints in the rtcb 

constraint base. 

Historyless Integrity checking 

The Constrainer provides historyless integrity checking. That is, the Constrainer 

does not rely on a state history. The only state record it relies on is the record for 

the current state. Instead, past values of selected state variables are stored in rigid 

variables such as TAx. which saves the time of the last modification of a data item x 

with attribute Ax in the rtdb. This form of historyless integrity checking is in 

terms of the future fragment, which improves on the minimal history checking in 

Lipeck (1987, 1990), intended for conventional rather than real-time databases. 

The historyless checking of the Constrainer also contrasts with the form of 

historyless integrity checking in Chomicki (1990), which is in terms of the past 

fragment of temporal logic and which is designed for conventional, non-real-time 

databases. 
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CONSISTENCY, INTEGRITY, AND KNOWLEDGEABIUTY ISSUES 

This section examines the consistency issues relative to a rtcb, rtdb, and design of a 

controller. As will be shown, it is possible to incorporate what is best called a 

knowledge-discipline in the design of the controller. This knowledge-discipline 

requires a controller to limit its usage of rtdb values only to those values which 

satisfy each of their constraints in the rtcb. 

Consistency of rtcb constraints 

The Constrainer guarantees that every new constraint added to the rtcb is consistent 

with existing constraints. Let p and q be constraints, then p and q are consistent if q 
::J:. .... p. 

Fact 1.1 o (Asking) Let p be a constraint to be added to the rtcb. The 

lsConsistent subrule of the Constrainer returns Yes if p is consistent with 

each constraint in the rtcb; otherwise, the lsConsistent subrule returns a No. 

Fact 1.20 (Telling) The Tell operation of the Constrainer succeeds if Fact 

1.10 holds. 

The lsConsistent subrule (see Rule lsC) is used by the Constrainer to check the 

consistency of new constraints relative to existing constraints in the rtcb and is 

given as follows: 

lsConsistent ( know 1 klist, constraint, q.time, q.Pred ) :­
CheckTime ( know, constraint, q.time ), 
CheckCriterion (know, constraint ), 
CheckFormula (know, constraint, q.Pred), 
lsConsistent ( klist, constraint, q.time, q.Pred ). 

The subrule CheckTime (see Appendix B) checks the compatibility of the duration of 

the new constraint with each of the constraints in the rtcb relative to the current 

time. The subrule CheckCriterion ensures that both the sentences are about the same 

data item. The subrule CheckFormula looks for contradiction between a new 

constraint and an existing constraint. From Facts 1.1 o and 1.20, we know that if the 

lsConsistent subrule returns Yes, the Constrainer adds the constraint p to the rtcb. 

Otherwise, in the case where lsConsistent returns No, the Constrainer rejects the 

constraint p. Hence 
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Proposition 1 o (Consistency of rtcb). 

Each constraint added to the rtcb is consistent with every other constraint in 

the rtcb at the time it is added. 

13 

The maintenance of the rtcb relative to timing constraints which have expired, is not 

addressed in this article (expired timing constraints are ignored). Proposition 10 

points to the fact that all current timing constraints in the rtcb are consistent with 

each other. 

Integrity of rtdb Items 

The rtcb provides a set of dynamic constraints associated with each rtdb data item. A 

dynamic constraint on a data item x in an rtdb constrains values of x over a sequence 

of rtdb states. Let (Ax. Ax'value) E x, and let (Ax. Ax'value)'constraint be a set of 

constraints on (Ax, Ax'value) in rtcb. Every item in the real-time database has at 

least one rtcb constraint on it. This fact is expressed formally in Fact 20. 

Fact 20 (minimum constraints) 

1::::1 ( 'V x E rtdb, (Ax. Ax'value) E x I (Ax. Ax'value)' constraint I >= 1 ) 

Let q0 be the initial rtdb state, q0 ' be the initial rtcb state, q0 " be the initial state of 

a real-time controller which will rely on the use of the rtdb in controlling the 

behavior of a plant, and the initial real-time system state be 0 0 = (q0 , qo', qo"). Let 

Ax 'value be the value of the attribute Ax of data item x in the rtdb and let q" .action be 

the name of the action being performed by the controller in state q". To express the 

satisfaction of a predicate P in a state q, we write sat(q, P). Before any item in the 

rtdb is instantiated (i.e., assigned any value), at least one constraint associated with 

that item must be added to the rtcb. This last assumption is expressed formally in 

Fact 30 relative to the initial integrity system state 0 0 . 

Fact 30 (constraintbase initialization) 

( 'V x E rtdb, (Ax, Ax'value) E x, (Ax, Ax'value)'constraint E rtcb: 

sat( Constrainer ( 0 0 , Tell, , , (Ax, Ax'value)'constraint 

and (Ax, Ax'value) = ( , ) and q".action = idle) 
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This anchors the integrity system in state 0 0 . From Facts 20 and 30, we know that 

every (attribute, value) pair (Ax. Ax'value) of each item x in the rtdb is 

constrained with a timing constraint and/or other forms of constraints. In the case 

where each (Ax. Ax'value) has a timing constraint using Def. 0.20, we can prove 

Proposition 20 
If there is a (Ax. Ax'value)'constraint for every x in the rtdb, and 3 c E (Ax. 

Ax'value)'constraint which is a timing constraint, then the rtdb is temporally 

complete. 

All instantiations of data items are made by the Constrainer, which is invoked either 

by the controller or by a human operator. This idea is expressed in Fact 40. 

Fact 40 (item addition) 

( V x E rtdb :sat( Constrainer ( q, Add, Ax. Ax'value, ) =Yes 

and rtdb'OUT =rtdb'IN U { (Ax. Ax'value) } ). --side effect 

If the Ax'value to be added to the database satisfies all the constraints in (Ax, 

Ax'value)'constraint, then the Constrainer returns a "yes" and the (Ax. Ax'value) is 

added to the rtdb, otherwise the Constrainer returns a "no" and the new value is 

rejected. There is a similar requirement for all updates to data items in the rtdb 

expressed by Fact so 

Fact so (item updation) 
( V x E rtdb : sat( Constrainer(q , Update, Ax. Ax'value, ) =Yes 

and rtdb'OUT = rtdb'IN U {Ax'value I Ax'oldvalue } ). --side effect 

Facts 40 and so say that every instantiation of a constrained data item requires a 

"yes" answer from the Constrainer. We define a data item x in the rtdb has integrity 

in the current system state a as follows: 

Def. 10 (data integrity) 

Let q be a state of the Constrainer. 

Haslntegrity ( q, x ) = V Ax : Constrainer ( q, Verify, Ax. , ) =Yes. 
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The only modifications to the database is through an update or an add operation, since 

the Con strainer is the sole manager of the rtdb. By appealing to Facts 4° and so, and 

examining the actions of the update and add operations of the Constrainer, the 

following propositions can be proved constructively: 

Proposition 30 ( Constrainer Update ) 

From 'V Ax : Constrainer (q, Update, Ax. Ax'value, ) infer Haslntegrity ( q, x ) . 

Proposition 40 ( Constrainer Addition) 
From 'V Ax : Constrainer ( q , Add, Ax. Ax'value, ) infer Haslntegrity ( q, x) . 

Facts 1 o through so and Props. 30 and 40 make it possible to prove that every data 

item in the rtdb has integrity in all database states. 

Proposition so (Integrity) 

From 'V Ax , x e rtdb: q0 , ... , Qi I= (Ax. Ax'value)'constraint 

infer q0 , ... , Qi I= Haslntegrity(qoc I q, x), ex in (qo.···· Qi ). 

Knowledgeably Complete Controller 

A key issue in designing a controller for a real-time system is the extent to which 

accesses by the controller to a real-time database are constrained. 

Fact so (access) 

An access to the rtdb is either through either a read, an Add, or Update of the 

Constrainer. 

From Fact so, we can prove 

Proposition so (access) 

'V (Ax. Ax'value)'constraint in rtcb, sat( q, (Ax. Ax'value)'constraint) infer 

Constrainer (q, Update, Ax, Ax'value, ) 

or Constrainer ( q , Add, Ax, Ax'value, ) 

or Constrainer ( q , Read, Ax. Ax'value, ) 

This design issue leads to the characterization of a controller in Def. 20. 
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Def. 20 A knowledgeable controller is a controller in which at least one of its 

accesses to a constrained item x E rtdb is a result of determining that x 

satisfies all of its constraints. 

1 6 

That is, a controller is knowledgeable if it Asks the Constrainer about the integrity of 

needed information in the rtdb and/or it relies on the Constrainer to read a data item 

in the rtdb. From Def. 20 and an analysis of the read operation for the Constrainer, 

we can prove 

Proposition 70 If a controller invokes the Read operation of the Constrainer 

when it wishes to access a data item in the rtdb, then the controller is 

knowledgeable. 

To guarantee that every data item x in rtdb accessed by a controller has integrity, it 

is necessary to enforce the discipline in the design of the controller reflected in Def. 

30. 

Def. 30 A controller is completely knowledgeable if each of its accesses to an 

item x in the rtdb is a result of determining that x satisfies all of its 

constraints. 

In the case where each controller access to the rtdb is through the Constrainer, then 

we know from Def. 30 and Propositions so and 70 that the following Proposition 

holds: 

Proposition so If all accesses of a controller are through the Constrainer, 

then the controller is completely knowledgeable. 

In summary, we have formally defined consistent rtcb, a basis for the integrity 

of items in the rtdb, and the notion of a knowledgeably complete controller. 
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EXAMPLE CONTROUER 

This section illustrates an explicit clock, temporal specification of a knowledgeable 

controller, rtdb, rtcb in terms of a variation of the gasburner control system 

described by Nordahl (1989). The purpose of the controller is to guarantee safe 

operation of the gas burner. 

Description of Behavior of the Controller for the Burner 

The components of a controller for the gas burner are shown in Fig. 2. The 

controller shown in Fig. 2 starts by turning on the CU (control unit), which turns 

the pilot (small gas source). Then the CU fires the spark plug, which ignites the 

gas coming from the pilot. Once the flame from the ignition of the pilot gas by the 

spark plug has started (the mirror sends a message to the CU that the flame is on), 

then the CU turns the main gas line on. The ignition of the gas from the main 

prompts the CU to turn the blower on (the blower supplies oxygen for combustion, 

blows the heat out of the combustion chamber to the object to be heated, and evacuates 

carbon monoxide from the combustion chamber). A temporal specification of the 

controller behavior written in Tlrt is given in Fig. 3. The specification in Fig. 3 

gives the initialization checks performed by the controller to ascertain that the 

individual plant components are usable. This behavior is specified as a temporal 
formula which asserts that infinitely often ( 0 w ) the controller performs a 

sequence of operations. In Figure 3, the controller repeatedly consults the 

Constrainer concerning the appropriate sequence of timed settings for the safe 

operation of the gas burner. This specification also refers to another rtdb entity 

called Unit, which stores the settings (on, off) for all of the hardware being 

controlled (main, pilot, CU, spark, and so on). The notation CU: Unit.setting 

indicates that the CU reads the setting of Unit (in the rtdb) and sends this 

information to the hardware identified by Unit. The controller in Figure 2 depends 

on the Constrainer to determine acceptable control values to communicate to the 

hardware. For example, the controller Asks the Constrainer if the CU is usable 

before it turns the CU on. Hence, from Def. 20, we know that the controller for the 

gas burner is knowledgeable. 
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Fig. 2 Diagram of Gas Burner 

Constrainer(q0 ,Ask,CU.name,H11 0) = Yes ~ CU: H11 O.on 
or 
seq( Constrainer(q0 , Ask,CU.name, H11 0) = No ~ 

Constrainer(q1,Tell, CU.name = H115, lsValid{H115, 100)), 
Constrainer(q2. Update, Unit.id 1 Unit.setting, H115 1 on) ), 

Constrainer(q3. Ask, Pilot.name,a) = Yes ~ CU: a.on, 

18 

Constrainer(q4, Ask, Spark.id, JU13) =Yes ~ CU: JU13.on; delay(3 sec), 
(Constrainer(q7, Ask, Main.name, X) =Yes 
and Unit.name = flame and Unit.setting = on) ==+ CU: X.on , ... , CU: X.off) 

Fig. 3 Temporal Specification of Controller for Gas Burner 

Real-Time Database for Gas Burner Controller 

Let gb = gas_burner and rtdbgb be the real-time database for the controller for the 

gas burner (see Table 1 ). Let Spark, Main, Pilot, CU, and Unit be names of 

entities in the rtdbgb. Then rtdbgb is defined as follows: 

rtdbgb = {Spark, Main, Pilot, CU, Unit} 
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where each entity is specified as a set of (attribute, value) pairs, which define the 

rows of the rtdb entity table. 

TABLE 1. REAL-TIME DATABASE FOR GAS BURNER CONTROLLER 

Spark = { ( (id, JU13), (upper, 500), (lower, 450)), 
((id, JU15), (upper, 600), (lower, 350))} 

Main = { ( (name, X), (gas_flow, g1 )), 
( (name, Y), (gas_flow, g2))} 

Pilot = { ( (name, a), (capacity, c1)), 
( (name, b), (capacity, c2))} 

CU = { ( (name, H11 0), (brand, HW)), 
( (name, H115), (brand, HW})} 

Unit = { ((name, Power),(setting,on)), 
((name, X),(setting,on)), 
((name, Y),(setting,off)), 
((name, a),(setting,on)), 
((name, b),(setting,off)), 
((name, JU13),(setting,on)), 
((name, JU15),(setting,off)), 
((name, Blower),(setting,on)), 
((name, CU),(setting,on)), 
((name, ignition) ,(setting,on)), 
((name, flame),(setting,on)), 

} 

Constraint Base for Gas Burner Controller 

Let rtcbgb be the real-time constraint base for the controller for the gas burner 

(see Table 2). The constraints in the rtcbgb have time limits placed on them (i.e., 

these constraints have time limits on their validity). For example, the constraint 

(in Table 2) with selection criterion CU.name = H110 has an upper bound of 300 

ticks after its installation (point of observation) in the constraint base. For 

convenience, the name of the attribute has been omitted from column 2 of Table 2. 

The timing constraint (i.e. duration for the entire constraint) indicates the lifespan 

of the constraint. After the expiration of a timing constraint, it must be refreshed 

(reset, possibly modified) before the constraint can be used by the controller. In 

addition, there is a timing constraint on the attribute itself of the rtcb. For 

example, CU.brand = HW has an upper time bound of 50 ticks after its last 

modification. This value is its t_val (point of validity). That is, after 50 ticks, the 
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value for CU.brand will no longer be valid. There are some timing constraints in 

Table 2 with no upper bound on the duration of their validity (i.e., duration for the 

constraint = oo ). 

TABLE 2. REAL-TIME CONSTRAINT BASE FOR GAS BURNER CONTROLLER 

Clock Select Constraint 

Ticks Criterion 

-----------------------------------------------------
300 H11 0 lsValid(CU.brand = HW, 50) 

250 H115 lsValid(CU.brand = HW, 30) 

110 X lsValid(Main.name = X, 40) 

90 y lsValid(Main.name = Y, 80) 

9 a lsValid(Pilot.name = a, 2) 

1 9 b lsValid(Pilot.name = b, 5) 

50 JU13 lsValid(Spark.id = JU13, 30) 

60 JU15 lsValid(Spark.id = JU15, 20) 

00 a and JU13 and seq(lson(a) and ls0n(JU13), 
ignition and flame lsOn(ignition, b), lsOn(flame, b ')) 

00 X and flame and a (lsOff(X) and lsOff(flame) 
blower before lsOn(blower, b). 

00 X and a and a (lsOff(X) and lsOff(a) 
flame before lsOff(flame, b ') 

In addition to timing constraints on the attributes, the last three rows of Table 2 

provide examples of constraints which specify a precise temporal ordering of the 

changes to values of the real-time database. Such constraints are specified as 

temporal predicates (see Appendix A). For example, the rtcb constraint on the gas 

burner ignition sequence is given as 

delay(oo)• Unit.name = a and Unit.name=JU13 and Unit.name = ignition 
Unit.name = flame • 
seq(lson(a) and ls0n(JU13), lsOn(ignition, b), lsOn(flame, b ')) 
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The timing component delay(oo) of this constraint asserts that this constraint is not 

refreshed (i.e., there no upper bound on the duration of their validity). The 

selection criteria specifies all of the Unit attributes referenced by this constraint. 

The assert portion of this constraint specifies an ordering on the evaluation of 

predicates where 

(Pilot a is turned on (lsOn(a)) 

and Spark Plug JU13 is turned on (ls0n(JU13))) 

before ignition is turned on 
within b ticks of the external clock (lsOn(ignition, b)) 

before flame is on within b · ticks (lsOn(flame, b ')) 

This rtcb constraint constrains rtdb values over a sequence of rtdb states. The 

realization of such a constraint is made possible by an interaction of the controller 

and the Constrainer in instantiating the rtdb items. 

CQ\JCLUSION 

A knowledge-based approach to overseeing the timing as well as other constraints on 

items in a real-time database ensures the integrity of the information. In addition 

to making a provision for timing constraints on items in the rtdb, the well-formed 

presumptions of the real-time constraint base can also have timing constraints. 

Explicit clock temporal logic is useful in writing hard, real-time constraints on 

items in the rtdb, presumptions in the rtcb, and on the behavior of a controller. 

All three forms of timing constraints have been illustrated in this paper. Finally, 

the foundation for establishing a temporally complete rtdb and knowledgeably 

complete controller has been presented. 
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APPENDIX A 

Note: the italicized terms in the following grammar are taken directly from Ada 

(DoD 1983). 

wfc ::= 
const .. = 
SelectionCriteria ::= 

Attribute ::= 
Value ::= 

[delay( const )] • SelectionCriteria • ( assert ) 
real 
Attribute relationa/_operator Value 
{logica/_operator SelectionCriterion} 
identifier 
numerica/_literal 1 character_literal 
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string_ literal 
assert ::= T emporai_Predicate 
Temporal Predicate 

.. _ 
UT em pOp [ ( ] predicate [ ) ] .. -
Seq Predicate 

predicate ··- V x.P I 3 x. P .. -
q and r I q or r I -. p I q ==> r 
qBTempOpr 
P(T [, T]), where n >= 0 

T ::= identifier 
F(T [, T]), where n >= 0 

Seq Predicate seq ( Predlist ) 
Predlist 

.. _ 
predicate [, Predlist ] .. -

UTempOp ::= DIO 
BTempOp 

.. _ 
U I before .. -

APPENDIX B 

/* Extract interval, criterion, formula */ 

Extract( constraint,delay ,criterion, formula) 
ExtractTime ( constraint, delay ), 
ExtractCriterion ( constraint, criterion }, 
ExtractFormula ( constraint, formula }. 

ExtractTime ( constraint, delay } :­
FrontToken( constraint, first, next ), 
FrontToken( first, delay , next }. 

ExtractCriterion ( constraint, criterion } :­
FrontToken(constraint, first, second ), 
FrontToken( second, criterion , next }. 

ExtractFormula ( constraint, formula ) :­
FrontToken( constraint, first, second }, 
FrontToken( second, third , [] }. 

/* consistency checking */ 

CheckTime (know, constraint, q.time ) :­
ExtractTime ( know, oldtime ), 
ExtractTime (constraint, newtime ), 
CompareTime ( oldtime, newtime ). 

CheckCriterion ( know, constraint) :­
ExtractCriterion ( know, oldcriterion }, 
ExtractCriterion ( constraint, newcriterion }, 
CompareCriterion( oldcriterion, newcriterion}. 

CheckFormula (know, constraint, q.Pred } :­
ExtractFormula ( know, oformula ), 
ExtractFormula ( constraint, nformula }, 
CompareOp (oformula, nformula }, 
not lsRefuted( oformula, nformula, q.Pred ). 

CompareTime ( oldtime, newtime) :­
oldtime <= newtime. 

24 
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Com pareC rite rion ( oldcrite rion In ewcrite rion) :-
oldcriterion = newcriterion. 

CompareOp(" a " I oformula," a " I nformula) . 
CompareOp(" 0 " 1 oformula," 0 " 1 nformula ). 
CompareOp("seq" I oformula,"seq" I nformula). 
CompareOp(" a "I oformula,"seq" I nformula):­
CompareOp( "a " 1 oformulal op 1 nformula ). 
CompareOp("seq" I oformulal H a " I nformula ). 
CompareOp ( op 1 nformulal II a II 1 oformula ). 
lsRefuted ( oformula, nformula, q.Pred ) :-

split( oformula, oldnontemp ), 
oldnontemp and not q.Pred. 

/* admissibility of an operation */ 

Admissible ( ql opl attrib, formula, values ) :­
substitute ( attribl formula, values, eval ). 

I* formula substitution */ 

substitute ( sub, term, sub1, term1 
term = .. [ F I Args ], 
sublist ( sub, Args, sub1, Args1 ), 
term1 = .. [ F I Args1 ]. 

sublist ( _, [], _, [] ). 
sublist ( sub, [term! terms], sub1, [term11 terms1) ) . 

substitute ( sub, term, sub11 term1 ) I 
sublist ( sub, terms, sub11 terms1 ). 
eval is term1. 

I* accept criterion */ 

AcceptCriterion ( criterion, db ) . 
collect_items ( criterion, itemlist )~ 
member ( itemlist, db ). 

member ( item I itemlist, item 1 db ) :­
member ( itemlist, db ). 

member ( item I itemlist, data 1 db ) :­
member ( item 1 itemlist, db ). 

I* find constraint set */ 

r item found */ 

r item not found */ 

r match found */ 

25 

FindSentence (criterion, know! q.cb, knowset):­
ExtractCriterion ( know, newcriterion ), 
CompareCriterion ( criterion, newcriterion ), 
FindSentence(criterion, q.cb, know I knowset); 
FindSentence ( criterion, q.cb, knowset ) /* match not found */ 
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