
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

8-1991

Explicit Clock Temporal Logic in Timing Constraints for Real-Time Explicit Clock Temporal Logic in Timing Constraints for Real-Time

Systems Systems

S. Ramanna

J. F. Peters III

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ramanna, S. and Peters, J. F. III, "Explicit Clock Temporal Logic in Timing Constraints for Real-Time
Systems" (1991). Electrical Engineering and Computer Science - Technical Reports. 107.
https://surface.syr.edu/eecs_techreports/107

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/107?utm_source=surface.syr.edu%2Feecs_techreports%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-26

Explicit Clock Temporal Logic in Timing
Constraints for Real-Time Systems

S. Ramarma and J.P. Peters m

August1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Explicit Clock Temporal Logic in Timing
Constraints for Real-Time Systems*

S. RAMANNA and J.F. PETERS Ill

Syracuse University
School of Computer & Information Science

4-116 CST, Syracuse, NY 13244-4100 USA

Abstract. A form of explicit clock temporal logic (called Tlrt) useful in
specifying timing constraints on controller actions, a real-time database (rtdb)
items, and constraints in a real-time constraint base (rtcb), is presented.
Timing as well as other forms of constraints are stored in the rtcb. A
knowledge-based approach to ensure the integrity of information in an rtdb is
given. The rtcb is realized as a logic program called Constrainer, which is a
historyless integrity checker for a real-time database. The consistency and
integrity issues for an rtcb and rtdb are investigated. The formal bases for a
temporally complete rtdb and knowledgeably complete controller are presented.
A partial Tlrt specification of a knowledgeable controller for a Gas Burner is
given. An illustration of a rtdb and rtcb in the context of the sample real-time
system is also given.

Keywords. Artificial intelligence; computer control; constraint theory;
delays; monitoring; safety; system integrity.

INTRODUCTION

Considerable work has been done on describing the behavior of hard, real-time

systems (Aiur, 1990; Cronhjort, 1988; Harel, 1990; Hankley, 1990a, 1990b;

Henzinger, 1991a, 1991b; Kopetz, 1988, 1989a, 1989b; Ostroff, 1989, 1990;

Peters, 1990a, 1990b, 1991a, 1991b, 1991c, 1991d; Ramanna 1991). A

hard, real-time system (rts) is a computer system where the validity of results

produced by the rts depend on both logical correctness and timeliness (Kopetz,

1989a). An rts consists of two main parts: controller and plant. The controller is

a computer which processes input from the environment as well as plant and

supplies control information to the plant (hardware). The controller relies on

* Research supported in part by the School of Computer and Information Science,
Syracuse University, Syracuse, NY 13244-4100 USA, by the Research &
Development Laboratories, Culver City, CA 90230-6608 USA. To appear in the
IFAC AIRTC'91 Proceedings, Sept. 1991.

ECTL in Timing Constraints 2

information provided by a real-time database to carry out its control functions.

Informally, a real-time database (rtdb) is a collection of data items needed for

instantaneous control, operator display, alarm monitoring, and other real-time

system applications and which are invalidated by the passage of real-time (Kopetz,

1989a). The focus of this article is on a knowledge-based approach to ensure the

integrity of the information in a real-time database. A knowledge-base is a

database of facts about some application domain; these facts are refined by the

acquisition of knowledge (Levesque, 1981}. A knowledge-base can be realized as a

logic program (Guessoum, 1990; Ramanna, 1990a, 1990b). In the context of

real-time databases, a knowledge base containing constraints on items in the rtdb, is

realized as a logic program called Constrainer. The term knowledge base is used

synonymously with constraint base in this article. Each data item of the rtdb is a

set of (attribute, value) pairs such that

data item = { (attribute, value} 1 attribute : string; value : pending }

The first pair (attribute, value} in the set serves as a key (or criterion) in

identifying a data item. The term pending that the value of an attribute is context

sensitive. Let x E rtdb, (Ax. Ax'value) E x, where Ax is an attribute of data item x

and Ax'value is the value of the attribute. Let TAx (point of observation) be the

reading of the external clock when (Ax. Ax'value) is first entered into the rtdb; let k

be the number of ticks (beyond TAx} during which (Ax. Ax'value) is valid. Then

TAx + k (point of validity) is the upper limit on the validity of the information

which (Ax. Ax'value) represents. Let q.time (t_use) be the time in state q of a

controller when (Ax. Ax'value) is used. Then a current observation is one which is

made at time t_use where TAx < t_use < TAx + k. The notion of current observation

provides the basis for a formal definition of a rtdb (Kopetz, 1989b).

Def. 0.1 o A real-time database is a set of data items each of whose (attribute,

value) pairs can serve as current observations needed for instantaneous

control of a real-time system.

Def. 0.2° A rtdb is temporally complete if every (Ax. Ax'value) pair of every

x E rtdb has a timing constraint.

ECTL in Timing Constraints 3

A timing constraint is a predicate which specifies the duration over which a (Ax,

Ax'value) pair of x e rtdb is valid. The "knowledge" in rtcb is in terms of particular

real-time applications, which provides a basis for computing the value of k (the

point of validity); in this paper, we do not address the issue how the rtcb can be used

to compute k. This issue is addressed in (Peters, 1991 b; Ram anna, 1991). In this

paper, we are interested in establishing a formal basis for a knowledge-based

framework for guaranteeing the integrity of items in a temporally complete rtdb.

EXPUCIT CLOCK TEMPORAL LOGIC

The behavior of a real-time system can be specified with Real-Time Temporal Logic

(RTTL) given in (Ostroff, 1989, Harer 1990, Henzinger, 1991). RTTL is an

explicit clock logic which uses data variables to reference an external clock in

assertions. When temporal logic is applied to the study of processes, the formulas of

temporal logic are interpreted as predicates over sequences of process states

(Alpern, 1986). Each state occurs at some instant in time in which the values of

process variables can be inspected. During a succession of states, changing values of

state variables may entail changing truth values of predicates about state variables.

Temporal formulas can be used to enumerate state transitions (transformations of

one state into a new state) in a behavior as well as the order in which transitions are

made.

RTTL provides a concise means of prescribing a property of a behavior of a rts

controller or plant; such prescriptions are assertional. RTTL also provides a

means of specifying constraints on values of data items over a sequence of rtdb states

or timing restrictions on rtcb constraints. This form of temporal logic is essentially

the same as the original temporal logic introduced by Manna and Pnueli (1981,

1983) with the addition of data variables such as T (for timing constraints)

suggested by (Hare I 1990, Henzinger, 1991). Except for some additional derived

temporal operators taken from (Peters, 1990a), the temporal logic used in this

article is the same as RTTL. For simplicity, we limit the presentation of RTTL to a

discussion of the U (until) and temporal operators derived from U. We also

introduce the derived temporal operators before, 0 w (infinitely often), and

seq(p1, P2. p3, ... , Pn) (a temporally quantified sequence of state predicates where

P1 holds before P2. which holds before p3, ... , before Pn). For the subset of RTTL

(named TLrt) we have chosen, the temporal language TLrt is defined as follows:

ECTL in Timing Constraints 4

Alphabet

• A denumerable set of variables: x, ...

• A denumerable set of n-ary functions: f, g, ...

• A denumerable set of n-ary predicate symbols: p, q, ...
• Symbols ..., , or, 'tl, (,), U

Well-formed formulas of Tlrt have the following syntax:

• Every atomic formula is a formula.
• If x is a variable and A is formula, then 'tl x A is a formula.

• If A and B are formulas, then .., A, (A or B), (A U B) are formulas.

Semantics of Temporal Operators

The .., (not), or, and 'tl (all) symbols have the usual semantics. In addition, the

implication symbol ====+ (i.e., p ====+ q = .., p or q) is used. In defining the following

semantics, the notation

(qo, ... ,qx) F p for x >= 0

asserts that each of the states in the sequence (q0 , ... ,qx) satisfy predicate p. In what

follows, let qo represent the current state in a behavior. Let p, q be first-order

predicates. The semantics of U as well as the operators derived from u are as

follows:

p U q = 3 k, x: 0 <= x <= k: (q0 , ... ,qx) F p and qk F q

p before q = 3 k: 1 <• k: q0 F p and (q1 , ... ,qk) F p u q

Op =true Up

qk F seq(p) = qk F p

seq(P1, (seq(p2, ... ,pn))) = p1 before seq(p2, (seq(p3, ... ,pn))

ow p "= seq(p, ow p)

c P = ..,o..,p

The predicate 'p U q' asserts that the predicate q eventually holds (either in the

current or in some future state) and that the predicate p holds in the current state

and in each of the states until the state when q holds. By contrast, 'p before q'

ECTL In Timing Constraints 5

asserts that p is guaranteed to hold initially and sometime later q will hold. For this

reason, before is called a precedence operator (KrOger, 1985). These powerful

temporal operators provide the basis for the semantics of the remaining operators in

the above list. TLrt is used to specify timing constraints on controller actions, rtdb

data items, and rtcb constraints. The syntax for a well-formed constraint (wfc) is

given in Appendix A.

EXTERNAL CLOCKS AND TIMED BEHAVIORS

Timing constraints on items in a real-time database reference ticks of an external

clock (denoted by Clock). Two types of variables are used to formulate constraints

on rtdb items: rigid and flexible variables (Henzinger, 1991). A rigid variable r

can be assigned a value in a particular rts state and r retains its value across state

changes. By contrast, a flexible variable value can change with state changes. For

example, the rigid variable T records the Clock value. We assume that the value of T

can be changed when needed (this is analogous to resetting the external clock in a

timed BOehl Automaton (Aiur, 1991)). The flexible variable time gives the value

of Clock in the current state. Clock readings are non-negative, real numbers.

Each time an event occurs, a reading of Clock is associated with that event.

Semantics of Delay

Responsiveness of a system is measured in terms of actual values of delays. The

duration predicate delay(k) asserts that the external clock is allowed to run for k

ticks before a timeout occurs. Delay(k) can be used to specify a lower bound on the

number of ticks before an action is performed; delay(k) can also be used to specify

an upper bound on the duration of an action, duration of validity of a constraint in an

rtcb or the value of an attribute of a data item in an rtdb. A similar technique for

specifying timing constraints on actions is used by Handelman and Stengel (1988).

Lower Time Bound on System Actions

We can express a lower bound on the number of ticks before a system action begins.

If we let ACT be the action to be performed in state q. We can express the fact that

we let the external clock run for k ticks before performing ACT by writing

informally "delay(k) before ACT." To see this, let T record the time in state q.

ECTL in Timing Constraints 6

Assume action ACT is performed in state q. Written by itself, "ACT" is shorthand

for the assertion "the action ACT is performed." Let sat(q I (q'), P) mean that

predicate P is satisfied in state q of the state sequence (q, q'), and sat(q', Q) mean

that predicate a is satisfied in state q'. The double turnstile I= reads "forces" or

"satisfies." Then satisfaction of "delay(k) before ACT" over a state sequence (q, q')

is expressed in clausal form as follows:

sat(q 1 (q'), delay(k) before ACT) :­

q I= delay(k) and T <= time < T + k,

q' I= ACT and time = T + k.

This says that the duration predicate is satisfied in state q and k ticks later the

predicate ACT is satisfied in state q' .

Upper Bound on Constraints, Attributes & Actions

To specify an upper bound of k ticks on the timeliness of a constraint Pred in the

rtcb, we write delay(k) Pred (or simply k Pred). To specify the upper bound of k

ticks on the value of an attribute A in an rtdb, we write lsValid(A, k) within a

constraint in the rtcb; this a timing constraint on an rtdb attribute. We can also

express an upper bound on the number of ticks during a system action using

delay(k). This is expressed rather simply by writing "ACT; delay(k)," which

asserts that ACT cannot be continuously enabled for more than k ticks of the external

clock. The predicate timeout is an enabling condition, which evaluates to true at the

kth tick of the clock (i.e., an action which must be performed within k ticks times

out, and a transition to the next state occurs). The meaning of this upper bound

constraint can be explained concisely by using the satisfaction clause sat(q, P).

Then the upper bound timing constraint can be defined as follows:

sat(q, ACT; delay(k))

q I= ACT,

q I= time < T + k;

q t= time = T + k and timeout.

/* reads "or" */

ECTL in Timing Constraints 7

A CONSTRAINER FOR A REAL-TIME DATABASE

The constraint base rtcb maintains knowledge about a controller application. In this

paper, we have restricted this knowledge to timing constraints. The rtcb is realized

as a logic program called Constrainer, which determines the admissibility of a

controller operation requiring a data item in a real-time database. A controller

hardware interacts with the Constrainer to determine the integrity of needed rtdb

control information. A Yes/No response from the Constrainer is contingent upon its

subrules reporting success/failure of their subfunctions. A No answer prompts the

Constrainer to declare the usage of a data item by the controller as inadmissible.

Let q be a state of the Constrainer; let q 1 tail be a sequence of Constrainer states with

q being the current state, tail being futures states, and op the name of an operation.

Let rtcb be the constraint base managed by the Constrainer. The runtime system for

the Constrainer maintains a state record used to store state variable values. This

Constrainer state record has the following form:

type state record is

time: real; /* current clock time */

Pred: string;

other: OtherType;

end record;

The constraints processed by the Constrainer are TLrt formulas. The Constrainer is

given in clausal form in Fig. 1.

Constrainer(q I tail, Ask, attrib, ,) :­
Constrainer(q I tail, Verify, attrib, ,).
Constrainer (tail, op, , ,) .

Constrainer(q 1 tail, Tell, criterion, , constraint)
Extract(constraint, delay, criterion, formula) ,
Accept(delay, criterion, constraint, q.time, q.db) ,
Constrainer (tail, op, , ,) .

Constrainer(q I tail, Add, attrib, value,) :­
lsAdmissible (Add, attrib, q.cb, value),
Constrainer (tail, op, , ,) .

Constrainer(q I tail, Update, attrib, value,)
lsAdmissible (Update, attrib, q.cb, value),
Constrainer (tail, op, , ,) .

Constrainer(q 1 tail, Delete, attrib, ,)
lsAdmissible (Delete, attrib, q.cb,),
Constrainer (tail, op, , ,) .

Constrainer(q 1 tail, Verify, attrib, ,)

/* Rule ls.1 */

ECTL in Timing Constraints

lsAdmissible (Verify, attrib, q.cb,) ,
Constrainer (tail, op, , ,) .

Constrainer(q I tail, Read, attrib, value,)
Constrainer(q I tail, Verify, attrib, ,).
Constrainer (tail, op, , ,) .

Fig. 1 Constrainer Program

8

The Constrainer is used in the interpretation of constraints on data items which a

controller wishes to utilize. The Constrainer rules take on a functional form where

parameters from one rule can be passed on to the others, which is a deviation from

pure Prolog. The Constrainer is defined in terms of four types of operations: Ask,

Tell, Verify, and real-time database operations (Add, Update, Delete, Read). The

Accept subrule for the Tell operation of the Constrainer is needed when we add a

constraint to the constraint base. The acceptance of a Tell operation on a rtcb

requires a check on (i) whether the duration on a new constraint is valid (it uses the

current clock time, which it compares with a previous reading of the clock used in

establishing a timing constraint on a knowledge sentence) [AcceptDuration]; (ii}

whether the data Items referenced by the new constraint exist in the rtdb

[AcceptCriterion]; and (iii) whether the constraint itself is refuted by other

constraints in the constraintbase [AcceptConstraint].

Accept (delay, criterion, know, q.time, q.db) :­
AcceptDuration (delay , q.time),
AcceptCriterion (criterion, q.db) ,
AcceptConstraint (criterion, know, q.time).

AcceptDuration (delay, q.time) :­
q.time <= T +delay.

AcceptCriterion (criterion, db) :­
Collectltems (criterion, itemlist, db),
member (itemlist, db).

AcceptConstraint (criterion, know,q.time):­
FindSentence(criterion, q.cb, knowset) ,
Decompose (q 1 tail, know),
lsConsistent (knowset, know, q.time, q.Pred).

I* Rule A.1 */

I* T is rigid variable * 1

I* Rule lsC */

For a constraint on a data item to be accepted, one must ensure that the constraint is

not refuted by any knowledge sentence in the knowledge set associated with the data

item. In AcceptConstraint, the set of all knowledge sentences about the same items

are returned by the FindSentence rule. The refutation mechanism of

AcceptConstraint is expressed in lsConsistent (knowset, know, q.time. q.Pred). By

contrast, the lsAdmissible (see Rule ls.1) subrule for Add, Update, Delete, Read, and

ECTL in Timing Constraints 9

Verify of the Constrainer determines the admissibility of an operation on the items

in the rtdb.

lsAdmissible (op, attrib, q.cb, value)
Find(attrib, q.cb, knowset) ,
Check (attrib, know 1 knowset, value) .

where

Find (attrib 1 attribset, know 1 q.cb, knowset):­
ExtractCriterion (know, criterion),
Match (criterion, attrib) ,
Find (attribset, q.cb, know I knowset);
Find (attribset, q.cb, knowset).

Match (" X " 1 criterion, X) .
Match (" Y " 1 criterion, X) :­

Match (criterion, X).

Check(attrib, know 1 knowset, value) .
Extract(know, delay, criterion, formula) ,
Accept (delay, criterion, know, q.time, q.db),
Admissible(q, op, attrib, formula,value) ,
Check (attrib, knowset, value) .

The subrule

Find (attrib I attribset, know 1 q.cb, knowset)

/* match found */
/* match not found */

/* Rule C.1 */

obtains all the constraints associated with the data items of the operation. The

sub rule

Check (attrib, know 1 knowset, value)

determines (i) whether the constraints are valid with respect to the constraint base,

(ii) whether the substitution of values in each constraint associated with the items

results in a valid formula. The subrule

Admissible(q,op,attrib, formula, value) :­

Substitute (attrib, formula, value, eval).

ECTL in Timing Constraints 1 0

deals with the admissibility of an operation on the data items, by grounding the

variables of a constraint with the new data values that are provided by the operation.

The Extract, FindSentence, lsConsistent, ExtractCriterion, and Admissible subrules

are given in the Appendix B.

Note on Acceptance of Timing Constraint

The Accept Duration subrule (see Rule A.1) checks the validity of the duration of

timing constraints. This rule "accepts" a timing constraint with upper bound k,

provided that the current time given by q.time is within k ticks of the external clock

(this is measured by comparing q.time with T + k, where T is a rigid variable which

stores the old clock reading at the Instant when the constraint was first established).

The Items in a rtdb age with time (Kopetz, 1989a). Hence, an important form of

timing constraint is a duration associated with (attribute, value) pairs of each data

item. Let (Ax. Ax'value) be a pair associated with a data item x in the rtdb, and let

TAx be a rigid variable which stores the reading of the external clock in the

Constrainer state when (Ax, Ax'value) was last modified. Let pname identify a

timing constraint on Ax'value. The timing constraint on (Ax, Ax'value) is expressed

as constraints in the rtcb with predicates of the form pname((Ax, Ax'value), b),

which asserts that (Ax, Ax'value) has a lifespan of TAx + b ticks of the external

clock.

Decomposition of a Temporal Formula

The AcceptConstraint (criterion, know, q.time) rule checks the validity of a

constraint expressed as a TLrt formula. This entails the decomposition of a

constraint, which is a temporal formula. A temporal formula specifies a finite,

directed, labeled graph. Each node in the graph is labeled with a non-temporal

predicate which is evaluated with respect to data item values. Using a technique

similar to the one suggested by (Wolper, 1981; Lipeck, 1987), each of the

following temporal formulas is decomposed into a non temporal and a temporal

component. This technique constructs a directed graph. Let P be a temporal

formula, then

a p • seq(P, a P)

0 P • true UP

--graph with nodes P, D P

--graph with nodes true, ... ,P

ECTL in Timing Constraints 1 1

seq (P1, P2, ... Pn) = P1 before seq (P2, ... Pn)

--graph with nodes P1, seq(P2, ...)

This decomposition technique is utilized by the Constrainer. The state variable

q.Pred stores the non-temporal component of a constraint. The decomposition of a

real-time, temporal formula is performed by the Decompose subrule:

Decompose (q 1 tail, formula) :-
q.Pred is formula.

Decompose (q 1 tail, " seq (P 1 tail) ") :­
Decompose (q , P) ,
Decompose (tail, " seq (tail) ").
Decompose (q I tail, " IJ " I formula) :-

q.Pred is formula,
Decompose (tail, formula).
Decompose (q 1 tail, " 0 " 1 formula) :-

not((not Decompose(q 1 tail, formula)),
q is " ")).

The reason for decomposing and storing the non-temporal portion of a constraint in

q.Pred is one of efficiency. Since, q.Pred would possibly be checked subsequently for

consistency with respect to other constraints, it would be inefficient to decompose

the original temporal constraint each time along with other constraints in the rtcb

constraint base.

Historyless Integrity checking

The Constrainer provides historyless integrity checking. That is, the Constrainer

does not rely on a state history. The only state record it relies on is the record for

the current state. Instead, past values of selected state variables are stored in rigid

variables such as TAx. which saves the time of the last modification of a data item x

with attribute Ax in the rtdb. This form of historyless integrity checking is in

terms of the future fragment, which improves on the minimal history checking in

Lipeck (1987, 1990), intended for conventional rather than real-time databases.

The historyless checking of the Constrainer also contrasts with the form of

historyless integrity checking in Chomicki (1990), which is in terms of the past

fragment of temporal logic and which is designed for conventional, non-real-time

databases.

ECTL in Timing Constraints 1 2

CONSISTENCY, INTEGRITY, AND KNOWLEDGEABIUTY ISSUES

This section examines the consistency issues relative to a rtcb, rtdb, and design of a

controller. As will be shown, it is possible to incorporate what is best called a

knowledge-discipline in the design of the controller. This knowledge-discipline

requires a controller to limit its usage of rtdb values only to those values which

satisfy each of their constraints in the rtcb.

Consistency of rtcb constraints

The Constrainer guarantees that every new constraint added to the rtcb is consistent

with existing constraints. Let p and q be constraints, then p and q are consistent if q
::J:. p.

Fact 1.1 o (Asking) Let p be a constraint to be added to the rtcb. The

lsConsistent subrule of the Constrainer returns Yes if p is consistent with

each constraint in the rtcb; otherwise, the lsConsistent subrule returns a No.

Fact 1.20 (Telling) The Tell operation of the Constrainer succeeds if Fact

1.10 holds.

The lsConsistent subrule (see Rule lsC) is used by the Constrainer to check the

consistency of new constraints relative to existing constraints in the rtcb and is

given as follows:

lsConsistent (know 1 klist, constraint, q.time, q.Pred) :­
CheckTime (know, constraint, q.time),
CheckCriterion (know, constraint),
CheckFormula (know, constraint, q.Pred),
lsConsistent (klist, constraint, q.time, q.Pred).

The subrule CheckTime (see Appendix B) checks the compatibility of the duration of

the new constraint with each of the constraints in the rtcb relative to the current

time. The subrule CheckCriterion ensures that both the sentences are about the same

data item. The subrule CheckFormula looks for contradiction between a new

constraint and an existing constraint. From Facts 1.1 o and 1.20, we know that if the

lsConsistent subrule returns Yes, the Constrainer adds the constraint p to the rtcb.

Otherwise, in the case where lsConsistent returns No, the Constrainer rejects the

constraint p. Hence

ECTL in Timing Constraints

Proposition 1 o (Consistency of rtcb).

Each constraint added to the rtcb is consistent with every other constraint in

the rtcb at the time it is added.

13

The maintenance of the rtcb relative to timing constraints which have expired, is not

addressed in this article (expired timing constraints are ignored). Proposition 10

points to the fact that all current timing constraints in the rtcb are consistent with

each other.

Integrity of rtdb Items

The rtcb provides a set of dynamic constraints associated with each rtdb data item. A

dynamic constraint on a data item x in an rtdb constrains values of x over a sequence

of rtdb states. Let (Ax. Ax'value) E x, and let (Ax. Ax'value)'constraint be a set of

constraints on (Ax, Ax'value) in rtcb. Every item in the real-time database has at

least one rtcb constraint on it. This fact is expressed formally in Fact 20.

Fact 20 (minimum constraints)

1::::1 ('V x E rtdb, (Ax. Ax'value) E x I (Ax. Ax'value)' constraint I >= 1)

Let q0 be the initial rtdb state, q0 ' be the initial rtcb state, q0 " be the initial state of

a real-time controller which will rely on the use of the rtdb in controlling the

behavior of a plant, and the initial real-time system state be 0 0 = (q0 , qo', qo"). Let

Ax 'value be the value of the attribute Ax of data item x in the rtdb and let q" .action be

the name of the action being performed by the controller in state q". To express the

satisfaction of a predicate P in a state q, we write sat(q, P). Before any item in the

rtdb is instantiated (i.e., assigned any value), at least one constraint associated with

that item must be added to the rtcb. This last assumption is expressed formally in

Fact 30 relative to the initial integrity system state 0 0 .

Fact 30 (constraintbase initialization)

('V x E rtdb, (Ax, Ax'value) E x, (Ax, Ax'value)'constraint E rtcb:

sat(Constrainer (0 0 , Tell, , , (Ax, Ax'value)'constraint

and (Ax, Ax'value) = (,) and q".action = idle)

ECTL in Timing Constraints 1 4

This anchors the integrity system in state 0 0 . From Facts 20 and 30, we know that

every (attribute, value) pair (Ax. Ax'value) of each item x in the rtdb is

constrained with a timing constraint and/or other forms of constraints. In the case

where each (Ax. Ax'value) has a timing constraint using Def. 0.20, we can prove

Proposition 20
If there is a (Ax. Ax'value)'constraint for every x in the rtdb, and 3 c E (Ax.

Ax'value)'constraint which is a timing constraint, then the rtdb is temporally

complete.

All instantiations of data items are made by the Constrainer, which is invoked either

by the controller or by a human operator. This idea is expressed in Fact 40.

Fact 40 (item addition)

(V x E rtdb :sat(Constrainer (q, Add, Ax. Ax'value,) =Yes

and rtdb'OUT =rtdb'IN U { (Ax. Ax'value) }). --side effect

If the Ax'value to be added to the database satisfies all the constraints in (Ax,

Ax'value)'constraint, then the Constrainer returns a "yes" and the (Ax. Ax'value) is

added to the rtdb, otherwise the Constrainer returns a "no" and the new value is

rejected. There is a similar requirement for all updates to data items in the rtdb

expressed by Fact so

Fact so (item updation)
(V x E rtdb : sat(Constrainer(q , Update, Ax. Ax'value,) =Yes

and rtdb'OUT = rtdb'IN U {Ax'value I Ax'oldvalue }). --side effect

Facts 40 and so say that every instantiation of a constrained data item requires a

"yes" answer from the Constrainer. We define a data item x in the rtdb has integrity

in the current system state a as follows:

Def. 10 (data integrity)

Let q be a state of the Constrainer.

Haslntegrity (q, x) = V Ax : Constrainer (q, Verify, Ax. ,) =Yes.

ECTL in Timing Constraints 1 s

The only modifications to the database is through an update or an add operation, since

the Con strainer is the sole manager of the rtdb. By appealing to Facts 4° and so, and

examining the actions of the update and add operations of the Constrainer, the

following propositions can be proved constructively:

Proposition 30 (Constrainer Update)

From 'V Ax : Constrainer (q, Update, Ax. Ax'value,) infer Haslntegrity (q, x) .

Proposition 40 (Constrainer Addition)
From 'V Ax : Constrainer (q , Add, Ax. Ax'value,) infer Haslntegrity (q, x) .

Facts 1 o through so and Props. 30 and 40 make it possible to prove that every data

item in the rtdb has integrity in all database states.

Proposition so (Integrity)

From 'V Ax , x e rtdb: q0 , ... , Qi I= (Ax. Ax'value)'constraint

infer q0 , ... , Qi I= Haslntegrity(qoc I q, x), ex in (qo.···· Qi).

Knowledgeably Complete Controller

A key issue in designing a controller for a real-time system is the extent to which

accesses by the controller to a real-time database are constrained.

Fact so (access)

An access to the rtdb is either through either a read, an Add, or Update of the

Constrainer.

From Fact so, we can prove

Proposition so (access)

'V (Ax. Ax'value)'constraint in rtcb, sat(q, (Ax. Ax'value)'constraint) infer

Constrainer (q, Update, Ax, Ax'value,)

or Constrainer (q , Add, Ax, Ax'value,)

or Constrainer (q , Read, Ax. Ax'value,)

This design issue leads to the characterization of a controller in Def. 20.

ECTL in Timing Constraints

Def. 20 A knowledgeable controller is a controller in which at least one of its

accesses to a constrained item x E rtdb is a result of determining that x

satisfies all of its constraints.

1 6

That is, a controller is knowledgeable if it Asks the Constrainer about the integrity of

needed information in the rtdb and/or it relies on the Constrainer to read a data item

in the rtdb. From Def. 20 and an analysis of the read operation for the Constrainer,

we can prove

Proposition 70 If a controller invokes the Read operation of the Constrainer

when it wishes to access a data item in the rtdb, then the controller is

knowledgeable.

To guarantee that every data item x in rtdb accessed by a controller has integrity, it

is necessary to enforce the discipline in the design of the controller reflected in Def.

30.

Def. 30 A controller is completely knowledgeable if each of its accesses to an

item x in the rtdb is a result of determining that x satisfies all of its

constraints.

In the case where each controller access to the rtdb is through the Constrainer, then

we know from Def. 30 and Propositions so and 70 that the following Proposition

holds:

Proposition so If all accesses of a controller are through the Constrainer,

then the controller is completely knowledgeable.

In summary, we have formally defined consistent rtcb, a basis for the integrity

of items in the rtdb, and the notion of a knowledgeably complete controller.

ECTL in Timing Constraints 17

EXAMPLE CONTROUER

This section illustrates an explicit clock, temporal specification of a knowledgeable

controller, rtdb, rtcb in terms of a variation of the gasburner control system

described by Nordahl (1989). The purpose of the controller is to guarantee safe

operation of the gas burner.

Description of Behavior of the Controller for the Burner

The components of a controller for the gas burner are shown in Fig. 2. The

controller shown in Fig. 2 starts by turning on the CU (control unit), which turns

the pilot (small gas source). Then the CU fires the spark plug, which ignites the

gas coming from the pilot. Once the flame from the ignition of the pilot gas by the

spark plug has started (the mirror sends a message to the CU that the flame is on),

then the CU turns the main gas line on. The ignition of the gas from the main

prompts the CU to turn the blower on (the blower supplies oxygen for combustion,

blows the heat out of the combustion chamber to the object to be heated, and evacuates

carbon monoxide from the combustion chamber). A temporal specification of the

controller behavior written in Tlrt is given in Fig. 3. The specification in Fig. 3

gives the initialization checks performed by the controller to ascertain that the

individual plant components are usable. This behavior is specified as a temporal
formula which asserts that infinitely often (0 w) the controller performs a

sequence of operations. In Figure 3, the controller repeatedly consults the

Constrainer concerning the appropriate sequence of timed settings for the safe

operation of the gas burner. This specification also refers to another rtdb entity

called Unit, which stores the settings (on, off) for all of the hardware being

controlled (main, pilot, CU, spark, and so on). The notation CU: Unit.setting

indicates that the CU reads the setting of Unit (in the rtdb) and sends this

information to the hardware identified by Unit. The controller in Figure 2 depends

on the Constrainer to determine acceptable control values to communicate to the

hardware. For example, the controller Asks the Constrainer if the CU is usable

before it turns the CU on. Hence, from Def. 20, we know that the controller for the

gas burner is knowledgeable.

ECTL in Timing Constraints

spark
plug

flame

~----~~---++---~

ow seq (start,

blower
t--lf+---+--+--;:::.

.,/ p1ot
tube

QJ

/
ma1n r--__._....,

/ o­
o­
o-

Fig. 2 Diagram of Gas Burner

Constrainer(q0 ,Ask,CU.name,H11 0) = Yes ~ CU: H11 O.on
or
seq(Constrainer(q0 , Ask,CU.name, H11 0) = No ~

Constrainer(q1,Tell, CU.name = H115, lsValid{H115, 100)),
Constrainer(q2. Update, Unit.id 1 Unit.setting, H115 1 on)),

Constrainer(q3. Ask, Pilot.name,a) = Yes ~ CU: a.on,

18

Constrainer(q4, Ask, Spark.id, JU13) =Yes ~ CU: JU13.on; delay(3 sec),
(Constrainer(q7, Ask, Main.name, X) =Yes
and Unit.name = flame and Unit.setting = on) ==+ CU: X.on , ... , CU: X.off)

Fig. 3 Temporal Specification of Controller for Gas Burner

Real-Time Database for Gas Burner Controller

Let gb = gas_burner and rtdbgb be the real-time database for the controller for the

gas burner (see Table 1). Let Spark, Main, Pilot, CU, and Unit be names of

entities in the rtdbgb. Then rtdbgb is defined as follows:

rtdbgb = {Spark, Main, Pilot, CU, Unit}

ECTL in Timing Constraints 1 9

where each entity is specified as a set of (attribute, value) pairs, which define the

rows of the rtdb entity table.

TABLE 1. REAL-TIME DATABASE FOR GAS BURNER CONTROLLER

Spark = { ((id, JU13), (upper, 500), (lower, 450)),
((id, JU15), (upper, 600), (lower, 350))}

Main = { ((name, X), (gas_flow, g1)),
((name, Y), (gas_flow, g2))}

Pilot = { ((name, a), (capacity, c1)),
((name, b), (capacity, c2))}

CU = { ((name, H11 0), (brand, HW)),
((name, H115), (brand, HW})}

Unit = { ((name, Power),(setting,on)),
((name, X),(setting,on)),
((name, Y),(setting,off)),
((name, a),(setting,on)),
((name, b),(setting,off)),
((name, JU13),(setting,on)),
((name, JU15),(setting,off)),
((name, Blower),(setting,on)),
((name, CU),(setting,on)),
((name, ignition) ,(setting,on)),
((name, flame),(setting,on)),

}

Constraint Base for Gas Burner Controller

Let rtcbgb be the real-time constraint base for the controller for the gas burner

(see Table 2). The constraints in the rtcbgb have time limits placed on them (i.e.,

these constraints have time limits on their validity). For example, the constraint

(in Table 2) with selection criterion CU.name = H110 has an upper bound of 300

ticks after its installation (point of observation) in the constraint base. For

convenience, the name of the attribute has been omitted from column 2 of Table 2.

The timing constraint (i.e. duration for the entire constraint) indicates the lifespan

of the constraint. After the expiration of a timing constraint, it must be refreshed

(reset, possibly modified) before the constraint can be used by the controller. In

addition, there is a timing constraint on the attribute itself of the rtcb. For

example, CU.brand = HW has an upper time bound of 50 ticks after its last

modification. This value is its t_val (point of validity). That is, after 50 ticks, the

ECTL in Timing Constraints 20

value for CU.brand will no longer be valid. There are some timing constraints in

Table 2 with no upper bound on the duration of their validity (i.e., duration for the

constraint = oo).

TABLE 2. REAL-TIME CONSTRAINT BASE FOR GAS BURNER CONTROLLER

Clock Select Constraint

Ticks Criterion

300 H11 0 lsValid(CU.brand = HW, 50)

250 H115 lsValid(CU.brand = HW, 30)

110 X lsValid(Main.name = X, 40)

90 y lsValid(Main.name = Y, 80)

9 a lsValid(Pilot.name = a, 2)

1 9 b lsValid(Pilot.name = b, 5)

50 JU13 lsValid(Spark.id = JU13, 30)

60 JU15 lsValid(Spark.id = JU15, 20)

00 a and JU13 and seq(lson(a) and ls0n(JU13),
ignition and flame lsOn(ignition, b), lsOn(flame, b '))

00 X and flame and a (lsOff(X) and lsOff(flame)
blower before lsOn(blower, b).

00 X and a and a (lsOff(X) and lsOff(a)
flame before lsOff(flame, b ')

In addition to timing constraints on the attributes, the last three rows of Table 2

provide examples of constraints which specify a precise temporal ordering of the

changes to values of the real-time database. Such constraints are specified as

temporal predicates (see Appendix A). For example, the rtcb constraint on the gas

burner ignition sequence is given as

delay(oo)• Unit.name = a and Unit.name=JU13 and Unit.name = ignition
Unit.name = flame •
seq(lson(a) and ls0n(JU13), lsOn(ignition, b), lsOn(flame, b '))

ECTL in Timing Constraints 21

The timing component delay(oo) of this constraint asserts that this constraint is not

refreshed (i.e., there no upper bound on the duration of their validity). The

selection criteria specifies all of the Unit attributes referenced by this constraint.

The assert portion of this constraint specifies an ordering on the evaluation of

predicates where

(Pilot a is turned on (lsOn(a))

and Spark Plug JU13 is turned on (ls0n(JU13)))

before ignition is turned on
within b ticks of the external clock (lsOn(ignition, b))

before flame is on within b · ticks (lsOn(flame, b '))

This rtcb constraint constrains rtdb values over a sequence of rtdb states. The

realization of such a constraint is made possible by an interaction of the controller

and the Constrainer in instantiating the rtdb items.

CQ\JCLUSION

A knowledge-based approach to overseeing the timing as well as other constraints on

items in a real-time database ensures the integrity of the information. In addition

to making a provision for timing constraints on items in the rtdb, the well-formed

presumptions of the real-time constraint base can also have timing constraints.

Explicit clock temporal logic is useful in writing hard, real-time constraints on

items in the rtdb, presumptions in the rtcb, and on the behavior of a controller.

All three forms of timing constraints have been illustrated in this paper. Finally,

the foundation for establishing a temporally complete rtdb and knowledgeably

complete controller has been presented.

ACKNOWLEDGEMENT

We would like to thank Gideon Frieder and the other members of the School of

Computer & Information Science at Syracuse University for providing an

excellent environment for this research.

ECTL in Timing Constraints 22

Alur, R., and D. Dill (1990). Automata for modeling real-time systems. Automata,
Languages and Programming. Lecture Notes in Computer Science 443, Springer
Verlag, NY. Pp. 322-335.

Alpern, B.L. (1986). Proving Temporal Properties of Concurrent Programs: A
Non-Temporal Approach. Ph.D. dissertation, Cornell University, TR-86-732.

Chomicki, J. (1990). History-less Checking of Dynamic Integrity Constraints.
Report TR-CS-90-19, Dept. of Computing & Information Sciences, Kansas State
University.

Cronhjort, B. (1988). Specification and Quality Assurance of Real-Time Software.
IFAC/IFIP Symposium on Software for Computer Control, pp. 9-14.

Guessoum, A. and Lloyd, J.W. (1990). Updating Knowledge Bases. New Generation
Computing, vol. 8, pp. 71-89.

DoD (1983) U.S. Dept. of Defense, Reference Manual for Ada Programming
Language, ANSI/MIL STD 1815A-1983. Springer-Verlag, NY.

Handelmann, D.A. and Stengel, R.F. (1988). Perspectives on the Use of Rule-Based
Control. Proceedings of the IFAC Workshop on Artificial Intelligence in Real­
Time Control, pp. 27-32.

Hankley, W., and J.F. Peters (1990a). Temporal Specification of Ada Tasking.
Proceedings of the 23rd Hawaii International Conference on System Sciences:
Software Track, Vol. II, pp. 410-419.

Hankley, W., and J.F. Peters (1990b). A Proof Method for Ada/TL. Proceedings of
the 8th ACM-IEEE Annual National Conference on Ada Technology, pp. 392-399.

Harel, E., et al (1990). Explicit Clock Temporal Logic. Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science, pp. 402-413.

Henzinger, T.A., et al (1991 a). Temporal Proof Methodologies for Real-Time
Systems. Proceedings of the 18th Annual ACM Symposium on Principles of
Programming Languages, pp. 353-366.

Henzinger, T.A. (1991b). The Temporal Specification and Verification of Real-
Time Systems. Ph.D. Dissertation, Computer Science Department, Stanford
University, 1991.

Kopetz, H., and K. Kim (1988). Consistency constraints in distributed real time
systems. Proceedings of the 8th IFAC Workshop on Distributed Computer Control
Systems, pp. 29-34.

Kopetz, H. (1989a). Real-Time Systems. Research Report Nr. 12189, lnstitut
fur Technische lnformatik, Technische Universitat, Wien, Austria.

Kopetz, H. (1989b). Design of Real-Time Computing System. Proceedings of Joint
Univ. of Newcastle Upon Tynellnternational Computers Limited Seminar, pp.
IV.25-IV.58.

KrOger, F. (1985). Temporal Logic of Programs Lecture Notes. Report TUM-
18521, lnstitut fur lnformatik, Technische Universitat Munchen.

Levesque, H.J. (1981). A Formal Treatment of Incomplete Knowledge Bases.
Ph.D. Dissertation, Department of Computer Science, University of Toronto.

Lipeck, U. (1987). Monitoring dynamic integrity constraints based on temporal
logic. Information Systems, vol. 12, no. 3, pp. 255-269.

Lipeck, U. (1990). Transformation of Dynamic Integrity Constraints into
Transaction Specifications. Theoretical Computer Science, vol. 76, no. 1, pp.
115-142.

Manna, Z. and Pnueli, A. (1981). Verification of Concurrent Programs, Part 1: The
Temporal Framework. Report No. STAN-CS-81-836, Dept. of Computer Science,
Stanford University.

ECTL in Timing Constraints 23

Manna, Z. and Pnueli, A. (1983). Verification of concurrent programs: a temporal
proof system. Technical Report, Dept. of Computer Science, Stanford University,
June, 1983.

Nordahl, J. (1989). A Real-Time Temporal Logic Specification of a Safety Critical
System. ID/DtH JNo2, Dept. of Computer Science, Technical University of
Denmark.

Ostroff, J.S. (1989). Temporal Logic for Real-Time Systems, John Wiley & Sons,
Inc., New York.

Ostroff, J.S. and Wenham, W.M. (1990}. A Framework for Real-Time Discrete
Event Control. IEEE Transactions on Automatic Control, vol. 35, no. 4, pp. 386-
396.

Peters, J.F. (1990a) Constructive Specification of Communicating Processes
Using Temporal Logic. Ph.D. dissertation, Computing & Information Sciences,
Kansas State University.

Peters, J.F., and W. Hankley (1990b). Proving Specifications of Tasking Systems
Using AdafTL. Proceedings of ACM Tri-Ada'90, pp. 4-13.

Peters, J.F. and Ramanna, S. (1991 a). Modelling Timed-Behavior of Real-Time
Systems with Temporal Logic. To appear in Cybernetics and Systems: An
International Journal.

Peters, J.F. and Ramanna, S. (1991b). Constructing Real-Time Systems from
Temporal 1/0 Automata. Report No. SU-CIS-91-22, School of Computer &
Information Science, Syracuse University.

Peters, J.F. (1991c). Prototyping Provably Correct Real-Time Systems. Report
No. SU-CIS-91-23, School of Computer & Information Science, Syracuse
University.

Peters, J.F. (1991d). RTS Prototyper's Workbench: A Tool for Rapid Prototyping
Provably Correct Real-Time Systems. Research Report, Research &
Development Laboratories, Culver City, CA, U.S.A.

Ramanna, S. (1990a). Temporal Logic in the Design of Integrity Systems. Ph.D.
Dissertation, Dept. of Computing & Information Sciences, Kansas State University.

Ramanna, S. et al. (1990b). Designing a Dynamic Integrity ConstJaint
Checker with Nonmonotonic Logic. Proceedings of the 14th Annual
International Computer Software & Applications Conference (COMPSAC-90},
Chicago, Illinois.

Ramanna, S. and Peters, J.F. (1991) Explicit Clock Logic in Timing Constraints for
Real-Time Systems. Report No. SU-CIS-91-26, School of Computer &
Information Science, Syracuse University.

Wolper, P. and Manna, Z. (1981). Synthesis of Communicating Processes from
Temporal Logic Specifications. LNCS 131. Springer-Verlag, N.Y. Pp. 253-
281.

APPENDIX A

Note: the italicized terms in the following grammar are taken directly from Ada

(DoD 1983).

wfc ::=
const .. =
SelectionCriteria ::=

Attribute ::=
Value ::=

[delay(const)] • SelectionCriteria • (assert)
real
Attribute relationa/_operator Value
{logica/_operator SelectionCriterion}
identifier
numerica/_literal 1 character_literal

ECTL in Timing Constraints

string_ literal
assert ::= T emporai_Predicate
Temporal Predicate

.. _
UT em pOp [(] predicate [)] .. -
Seq Predicate

predicate ··- V x.P I 3 x. P .. -
q and r I q or r I -. p I q ==> r
qBTempOpr
P(T [, T]), where n >= 0

T ::= identifier
F(T [, T]), where n >= 0

Seq Predicate seq (Predlist)
Predlist

.. _
predicate [, Predlist] .. -

UTempOp ::= DIO
BTempOp

.. _
U I before .. -

APPENDIX B

/* Extract interval, criterion, formula */

Extract(constraint,delay ,criterion, formula)
ExtractTime (constraint, delay),
ExtractCriterion (constraint, criterion },
ExtractFormula (constraint, formula }.

ExtractTime (constraint, delay } :­
FrontToken(constraint, first, next),
FrontToken(first, delay , next }.

ExtractCriterion (constraint, criterion } :­
FrontToken(constraint, first, second),
FrontToken(second, criterion , next }.

ExtractFormula (constraint, formula) :­
FrontToken(constraint, first, second },
FrontToken(second, third , [] }.

/* consistency checking */

CheckTime (know, constraint, q.time) :­
ExtractTime (know, oldtime),
ExtractTime (constraint, newtime),
CompareTime (oldtime, newtime).

CheckCriterion (know, constraint) :­
ExtractCriterion (know, oldcriterion },
ExtractCriterion (constraint, newcriterion },
CompareCriterion(oldcriterion, newcriterion}.

CheckFormula (know, constraint, q.Pred } :­
ExtractFormula (know, oformula),
ExtractFormula (constraint, nformula },
CompareOp (oformula, nformula },
not lsRefuted(oformula, nformula, q.Pred).

CompareTime (oldtime, newtime) :­
oldtime <= newtime.

24

ECTL in Timing Constraints

Com pareC rite rion (oldcrite rion In ewcrite rion) :-
oldcriterion = newcriterion.

CompareOp(" a " I oformula," a " I nformula) .
CompareOp(" 0 " 1 oformula," 0 " 1 nformula).
CompareOp("seq" I oformula,"seq" I nformula).
CompareOp(" a "I oformula,"seq" I nformula):­
CompareOp("a " 1 oformulal op 1 nformula).
CompareOp("seq" I oformulal H a " I nformula).
CompareOp (op 1 nformulal II a II 1 oformula).
lsRefuted (oformula, nformula, q.Pred) :-

split(oformula, oldnontemp),
oldnontemp and not q.Pred.

/* admissibility of an operation */

Admissible (ql opl attrib, formula, values) :­
substitute (attribl formula, values, eval).

I* formula substitution */

substitute (sub, term, sub1, term1
term = .. [F I Args],
sublist (sub, Args, sub1, Args1),
term1 = .. [F I Args1].

sublist (_, [], _, []).
sublist (sub, [term! terms], sub1, [term11 terms1)) .

substitute (sub, term, sub11 term1) I
sublist (sub, terms, sub11 terms1).
eval is term1.

I* accept criterion */

AcceptCriterion (criterion, db) .
collect_items (criterion, itemlist)~
member (itemlist, db).

member (item I itemlist, item 1 db) :­
member (itemlist, db).

member (item I itemlist, data 1 db) :­
member (item 1 itemlist, db).

I* find constraint set */

r item found */

r item not found */

r match found */

25

FindSentence (criterion, know! q.cb, knowset):­
ExtractCriterion (know, newcriterion),
CompareCriterion (criterion, newcriterion),
FindSentence(criterion, q.cb, know I knowset);
FindSentence (criterion, q.cb, knowset) /* match not found */

	Explicit Clock Temporal Logic in Timing Constraints for Real-Time Systems
	Recommended Citation

	SU-CIS-91-26_001c
	SU-CIS-91-26_002c
	SU-CIS-91-26_003c
	SU-CIS-91-26_004c
	SU-CIS-91-26_005c
	SU-CIS-91-26_006c
	SU-CIS-91-26_007c
	SU-CIS-91-26_008c
	SU-CIS-91-26_009c
	SU-CIS-91-26_010c
	SU-CIS-91-26_011c
	SU-CIS-91-26_012c
	SU-CIS-91-26_013c
	SU-CIS-91-26_014c
	SU-CIS-91-26_015c
	SU-CIS-91-26_016c
	SU-CIS-91-26_017c
	SU-CIS-91-26_018c
	SU-CIS-91-26_019c
	SU-CIS-91-26_020c
	SU-CIS-91-26_021c
	SU-CIS-91-26_022c
	SU-CIS-91-26_023c
	SU-CIS-91-26_024c
	SU-CIS-91-26_025c
	SU-CIS-91-26_026c

