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Twin-Boundary Pinning
of Superconducting Vortex Arrays
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We discuss the low-temperature dynamics of magnetic flux lines in high-temperature

superconductors in the presence of a family of parallel twin planes that contain the c axis.

A current applied along the twin planes drives flux motion in the direction transverse to

the planes and acts like an electric field applied to one-dimensional carriers in disordered

semiconductors. As in flux arrays with columnar pins, there is a regime where the dynamics

is dominated by superkink excitations that correspond to Mott variable range hopping

(VRH) of carriers. In one dimension, however, rare events, such as large regions void of

twin planes, can impede VRH and dominate transport in samples that are sufficiently

long in the direction of flux motion. In short samples rare regions can be responsible

for mesoscospic effects. The phase boundaries separating various transport regimes are

discussed. The effect of tilting the applied field out of the twin planes is also considered.

In this case the resistivity from flux motion is found to depend strongly on the tilt angle.
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1. Introduction

The static and dynamical properties of magnetic flux lines in copper-oxide supercon-

ductors are strongly affected by pinning by point, linear and planar disorder [1]. Twin

boundaries are an example of planar disorder that is generally present in superconducting

Y Ba2Cu3O7−x and La2CuO4, where they are needed to accomodate the strains produced

by a crystallografic tetragonal-to-orthorhombic transition. Twins most often occurs in two

orthogonal families of lamellae forming a mosaic [2]. It is also possible to prepare samples

that contain a single family of parallel twin planes [3,4]. Columnar or linear defects can be

produced by bombardment of the crystal with energetic heavy ions [5] or are embodied in

forests of screw dislocations parallel to the crystal growth direction [6]. Both twins [7,3,4]

and columnar defects [8] constitute examples of macroscopic correlated disorder that can

be responsible for a sharp decrease in the resistivity for specific field orientations.

Extensive investigations of twin-boundary pinning have been carried out by Kwok and

coworkers[4]. These authors studied a variety of YBCO single crystal samples containing

single families of parallel twins lying in planes spanned by the c axis, with spacings ranging

from microns down to several hundred Angstroms. As indicated by earlier decoration

experiments [9], the order parameter is suppressed at a twin boundary at low temperatures

and the twin attracts or pins the vortices. Transport experiments show clear evidence of

strong twin-boundary pinning even in the flux liquid phase [7]. The pinning is most

effective when the external field is applied along the c axis and the driving current lies in

the ab plane and is parallel to the plane of the twins, resulting in a Lorentz force normal

to the twin planes (Fig. 1a). In this case twin planes act like strong pinning centers

and the linear resistivity as a function of temperature drops sharply at a characteristic

temperature that marks the onset of twin-boundary pinning [7]. In samples with only a few

widely spaced twin planes this drop in the resistivity is followed by an abrupt shoulder at

a lower temperature, corresponding to the first order freezing transition into an Abrikosov

lattice. The abrupt shoulder is not observed in heavily twinned samples where the freezing

transition is apparently suppressed by disorder. Additional experimental evidence for twin-

boundary pinning comes from the observation of a sharp downward dip in the resistivity

as a function of angle as the external field is rotated out of the twin plane through the

c direction [4] (see Fig. 1b). This strong angular dependence is a clear signature of

anisotropic pinning by twin planes since point disorder in the form of oxygen vacancies,

while certainly present in all these samples, can only yield a weak dependence of the

resistivity on the tilting angle.
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Another experimental probe of flux-line dynamics that has been recently used to study

the effect of correlated disorder is real-time imaging of flux profiles [10,11]. Imaging ex-

periments of the field penetrating into single crystals with families of twins lying in planes

spanned by the c axis (for fields directed along the c axis) show strong pinning by twin

planes for flux motion in the direction normal to the planes, confirming the strong twin-

boundary pinning seen by transport measurements for Lorentz forces applied normal to

the twin planes. Imaging of flux motion along the twin planes have, however, given con-

tradictory results. Durán and coworkers [10] argued that flux penetrates more easily in

the twin regions than in the channels between the twin planes, in apparent contrast with

the observation of a lowered flux-flow resistivity by twin-boundary pinning by the Argonne

group for the parallel geometry, where the Lorentz force is applied along the plane of the

twins [12]. A more recent imaging experiment by Vlasko-Vlasov and collaborators [11]

shows, however, that the twin planes act as planar pinning barriers for all directions of

flux flow, giving rise to guided vortex motion. In this paper we are only concerned with

transport with flux motion in the direction transverse to the twin planes. For this geom-

etry all experimental probes of flux dynamics confirm that twin planes provide attractive

potential wells for the vortices. A detailed theoretical understanding of the imaging ex-

periments and their relationship to transport transport in the parallel geometry remains,

however, an open question.

The static and dynamical properties of flux line assemblies in the presence of a random

array of columnar pins have been studied in detail by mapping the physics of magnetic flux

lines onto the problem of localization of quantum mechanical bosons in two dimensions

[13]. This mapping exploits methods developed to understand the behavior of He4 films

on disordered substrates [14] and to decribe electronic transport in disordered supercon-

ductors [15]. At low temperatures there is a “Bose glass” phase, with flux lines localized

on columnar pins, separated by a phase transition from an entangled flux liquid of delocal-

ized lines. In the Bose glass phase the linear resistivity vanishes and the current-voltage

characteristics are nonlinear. Transport in this regime closely resembles the variable-range

hopping (VRH) of electrons in disordered semiconductors in two dimensions [15].

In this paper we employ similar methods to study flux-line dynamics in the presence of

a single family of parallel twin boundaries lying in planes containing the c axis. For ~H ‖ ĉ,
the flux lines are localized by the pinning potential in the direction normal to the planes.

At low temperatures, when the average vortex spacing a0 ≈ (φ0/B) exceeds the average

distance d between twin planes, all flux lines are localized on the twins, progressively
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“filling” the planar pins as the field is increased. We only consider vortex arrays that

are sufficiently dilute (B << Bf ≈ φ0/d
2) that transport is controlled by single-vortex

creep. This regime is experimentally relevant and has in fact been probed in flux arrays

with columnar defects [16]. Flux motion in this regime is dominated by thermally activated

jumps of the vortices over the relevant pinning energy barriers U(L, J), yielding a resistivity

ρ = E/J , given by [1],

ρ(T ) ≈ ρ0e
−U(L,J)/T , (1.1)

where ρ0 is a characteristic flux-flow resistivity. Here we focus on flux motion transverse to

the twin planes at low fields and temperatures, which resembles the hopping of electrons

in one-dimensional disordered superconductors. The energy barriers U corresponding to

the various low-lying excitations that can contribute to transport are evaluated and are

summarized in Table 1. Typical phase diagrams in the (J, L) plane displaying the regions

where the different transport mechanisms dominate are shown in Fig. 2. There is a

characteristic current scale JL ∼ 1/L, where L is the sample thickness in the field direction,

that separates the regions of linear and nonlinear response. As L → ∞ the response is

always nonlinear. For large enough current the dominant excitations are the half-loop

configurations shown in Fig. 3a, of transverse width smaller than the average separation

d between twin planes. For currents below J1 the width of a typical half-loop excitation

exceeds the mean distance between pins. In this case standard VRH arguments [15,13],

where an electron hops larger and larger spatial distances to find “good” traps of low energy

(Fig. 3c), suggest a nonlinear current-voltage characteristic V ∼ exp[−(Ek/T )(J0/J)1/2]

in the localized phase, where Ek and J0 are characteristic energy and current scales given

below. The phase diagrams shown in Fig. 2 are qualitatively similar to the phase diagrams

one would obtain for vortex arrays in the presence of columnar pins. In that case one finds a

nonlinear current-voltage characteristic at low currents typical of VRH in two dimensions,

with V ∼ exp[−(Ek/T )(J0/J)1/3].

The main difference between flux motion in the presence of columnar defects and flux

motion transverse to an array of parallel twin planes is that in the latter case the low

temperature transport is one-dimensional. In one dimension VRH can be impeded by the

presence of large rare regions void of energetically favorable pins [17,18]. These rare regions

free of localized states are exponentially rare, but have a very large resistance and can sup-

press VRH or even dominate transport (Fig. 4) in one dimension since the vortices cannot

get around them. For samples that are sufficiently long in the direction of flux-line motion
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so that they contain a large number of such rare regions, this mechanism yields a nonlin-

ear current-voltage characteristic of the form V ∼ (T/Ek)(J/J0)
1/2 exp[−(Ek/T )2(J0/J)].

Shorter samples will typically contain only a few rare regions and these will determine the

sample’s resistance. In sufficiently short samples there will be a spread of values of the

resistance between different samples resulting in reproducible sample-to-sample resistance

fluctuations.

Finally, the model presented here is also relevant to the dynamics of Josephson vor-

tices in artificially structured “giant” Josephson junctions. Consider for instance a planar

junction of in-plane dimensions large compared to the Josephson penetration length at the

contact of two superconductors (the plane of the junction is the xz plane). A magnetic field

applied in the plane of the junction (say, in the z direction) penetrates into the junction as

a chain of Josephson vortices which lie in the contact plane [19,20]. The intervortex spac-

ing along the x direction is determined by the strength of the applied field. The vortices

are localized in the plane of the junction and form therefore a (1 + 1)-dimensional vortex

array in this plane. If the junction is not uniform, the vortices are pinned independently at

low fields, as indicated by the fact that the critical current does not depend on magnetic

field. Additional defects can be artificially introduced in the junction. The junction can

be artificially structured by the introduction of an array of defects along the x direction

spanning the field axis (z) and the junction thickness (y). At low temperature vortex

motion along the junction plane will then occur via thermally activated jumps between

these defects and will be described by the one-dimensional tight-binding model introduced

below.

In Section 2 we first review the simple model of interacting flux lines in the presence

of correlated disorder introduced by Nelson [21] and by Nelson and Vinokur [13]. The

analogy with quantum mechanics of two-dimensional bosons and the reduction of the low

temperature dynamics transverse to an array of parallel twin planes to a tight binding

model in one dimension are then discussed. In Section 3 we estimate the pinning energy

barriers associated with the low-lying excitations from the ground state and the corre-

sponding contributions to the resistivity. The phase boundaries separating the regions

of the (L, J) plane where the various contributions dominate are also discussed. A brief

summary of these results has been presented elsewhere [22]. In section 4 we consider the

case where the external field is tilted at an angle θ away from the c axis and out of the

twin planes. The resistivity displays a strong angular dependence with a sharp downward

dip at θ = 0. Finally, in Section 5 we discuss the role of rare fluctuations in this one

dimensional geometry.
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2. Vortex Free Energy and Tight-binding Model

We are interested in transport at low fields and temperatures where each flux line is

localized on one or more twin planes. In this regime dominated by single-vortex dynamics

a detailed description of transport can be developed. Our starting point is a model-free

energy for flux lines in a sample of thickness L in the presence of a family of parallel

twin planes [13]. The field is along the c axis, chosen as the z direction, and the flux

lines are parametrized by their trajectories {ri(z)} as they traverse the sample. The twin

boundaries are parallel to the zx plane. The model free-energy for a single flux line at

(r1(z), z) is given by

F1 =

∫ L

0

dz

[

ǫ̃1
2

∣

∣

∣

dr1(z)

dz

∣

∣

∣

2

+ VD(y1(z))

]

, (2.1)

with

VD(y) =

M
∑

k=1

V1(|y − Yk|). (2.2)

Here VD is the random potential arising from a set of M x- and z-independent pinning

potentials V1(|y−Yk|) centered at the locations {Yk} of the twin planes. The first term on

the right hand side of Eq. (2.1) is the first term in a small angle expansion of the elastic

energy of a nearly straight vortex line, with ǫ̃1 ≈ (M⊥/Mz)ǫ0 ln(λab/ξab) the tilt modulus

and λab and ξab the penetration and the coherence lengths in the ab plane, respectively.

The effective mass ratio M⊥/Mz << 1 incorporates the material anisotropy and ǫ0 ≈
(φ0/4πλab)

2 is a characteristic energy scale. For simplicity we model VD(y) as an array of

identical one-dimensional square potential wells of depth U0, width 2b0 and average spacing

d, passing completely through the sample in the x and z directions [23]. Assuming the

potential wells are centered at uniformly distributed random positions {Yk} and b0 << d,

we find VD ≈ U0

(

2b0
d

)

, while the random potential fluctuations δVD(y) = VD(y) − VD

satisfy

δVD(y)δVD(y′) = ∆δ(y − y′), (2.3)

with ∆ ≈ U2
0

(2b0)
2

d
[1+O(2b0/d)]. The interaction between vortex lines and a twin boundary

has been studied by Geshkenbein in the context of the Ginzburg-Landau theory [24].

In this paper we assume that the twin planes are randomly located along the y direc-

tion and that the separations between neighboring twins are Poisson-distributed (see also

Section 5 below). This appears to be the case in some of the samples employed by the Ar-

gonne group [25]. On the other hand, the twin structures that form naturally in YBCO to
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accomodate the strains arising from a tetragonal-to-orthorhombic transformation, which

take place around 1000K as a result of oxygen vacancy ordering, are often quite different

[2]. They consists of lamellae or colonies of parallel twins oriented in either the (110)

or (110) directions. Orthogonal twin colonies form a mosaic-type structure, containing

colonies of various size. The colony size scales with the square of the average twin spacing

d, while the latter remains rather uniform within a given colony[2]. There is a repulsive

interaction between the twin planes of a given colony arising from the stress produced

by one twin plane in the region of another. This interaction leads to the regular spacing

of the twins within a colony which resembles an approximately regular one-dimensional

lattice of twin planes. Vortex dynamics in the presence of such a twin structure will not

be described by the model presented in this paper. On scales shorter than the typical twin

colony size vortices are pinned by a regular array of planar defects, while on scales larger

than the colony size the theory developed to describe vortex dynamics in the presence of

columnar defects should apply. In contrast, the twin structures observed in the samples

used by the Argonne group consist of a single colony of parallel twins with large variations

in the twin spacing. A twin structure of this type may arise if the sample is annealed

and the twins “fall out of equilibrium” arranging themselves in one-dimensional liquid-like

structure within a given colony.

The free energy for an assembly of N flux lines is given by

F(N) =

N
∑

i=1

Fi +
1

2

∑

i6=j

∫ L

0

V (|ri(z) − rj(z)|)dz, (2.4)

where V (r) is the pair interaction potential, assumed local in z. It can be shown [13] that

both higher order terms in the small angle expansion of the elastic energy and nonlocality

in z in the pair interaction are negligible provided |dri/dz|2 << Mz/M⊥ for the most

important vortex configurations. In the following we will simply use the form of the pair

interaction for nearly straight flux lines,

V (r) ≈ 2ǫ0
[

K0(r/λab) −K0(r/ξab)
]

, (2.5)

where K0(x) is a modified Bessel function.

At low temperatures, when the average vortex spacing a0 ≈ (φ0/B) exceeds the

average distance between twin planes, all flux lines are localized on the twins, progressively

“filling” the planar pins as the field is increased. Any real sample will, however, also
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contain point defects, which are known to promote flux-line wandering. Recent analytical

and numerical work has shown that in the case of planar pins a single flux line remains

localized on the pinning plane even in the presence of additional weak point disorder in

the bulk, which is always present in real samples [26]. The stability of the localized

Bose glass phase in 1 + 1 dimensions - the case relevant to the model considered here -

in the presence of point disorder has been studied recently by Hwa et al. [27]. These

authors considered a model where flux lines directed along the z direction and confined

to the zy plane are pinned by the competing action of randomly distributed linear defects

spanning the plane in the z direction and point defects described by a random potential

with variance ∆0. They showed that in 1 + 1 dimensions the low temperature phase is

of the Bose glass type with flux lines localized on the linear pins when point disorder

is weak. The localized phase is marginally unstable to point disorder, but only beyond

an astronomically large crossover length scale. Point disorder will in general lower the

energy barriers associated with the various low-lying excitations discussed here. It does

not, however, have a significant effect on the energy barriers in the rigid flow (or half-loop)

regime where Urf ∼ L (or Uhl ∼ 1/J). This is because the energy gain δF∆ associated

with the pinning of a fluctuation of length L by point defects only grows as L1/2 (or as

J−1/2 in the nonlinear regime), with δF∆ ∼ (∆0L)1/2. Sufficiently strong point disorder

can, however, lower considerably the barriers for variable range hopping à la Mott since

both the barrier UMott and δF∆ grow like L1/2. In this case to assess whether point or

correlated disorder dominates one needs to compare quantitatively the relative strengths

of these two types of crystal defects. This comparison involves unknown parameters and

is beyond the scope of the present paper.

The problem of one flux line localized near a single twin plane has been studied by

Nelson by exploiting the mapping of the statistical mechanics of magnetic flux lines onto

the quantum mechanics of two-dimensional bosons [21]. At zero temperature the twin

provides a binding energy U0 per unit length for trapping the flux line. In the presence of

thermal fluctuations U0 is replaced by a smaller binding free energy per unit length U(T ),

to account for the entropy lost by confining the flux line near the twin plane. In infinitely

thick samples (L → ∞) this binding free energy is determined by the zero-point energy

of a fictitious two-dimensional quantum mechanical particle confined to a one-dimensional

potential well, or U(T ) = −E0(T ), where E0(T ) is the ground state eigenvalue of a two-

dimensional “Schrödinger” equation,

[

− T 2

2ǫ̃1
∇2

⊥ + V1(y)
]

ψ0(x, y) = E0ψ0(x, y), (2.6)
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and the twin plane is centered at y = 0, i.e., V1(y) = −U0 for |y| ≤ b0, V1(y) = 0 for |y| > b0.

In the quantum mechanical analogy T plays the role of Planck’s constant h̄, ǫ̃1 that of the

mass m of the fictitious particle and L−1 that of the particle’s temperature. The x and

y degrees of freedom are decoupled in Eq. (2.6) and the ground state wavefunction is the

product of a free-particle wavefunction in the x direction and the ground state wavefunction

φ0(y) of a one-dimensional particle in a well [28], ψ0(x, y) = 1√
D
eiqxxφ0(y) [21,13]. Here

D is the system size in the x direction and qx the wavevector. The corresponding ground

state energy is E0(T ) =
T 2q2

x

2ǫ̃1
+ E0w. The first term is the free particle contribution

describing the energy cost associated with localizing a flux line within a distance ∼ 2π/qx

and E0w < 0 is the ground state energy of a one-dimensional particle in a well [28]. If no

other flux lines are present and the sample is infinite in the x direction, we can take qx=0

and U(T ) = −E0w = U0f(T/T ∗) [21]. Here T ∗ =
√

2U0ǫ̃1b0 is a crossover temperature

above which thermal fluctuations delocalize the flux line, and f(x) ≈ 1− π2

4
x2 for x << 1

and f(x) ≈ 1/x2 for x >> 1. The probability of finding a point on the vortex at a

transverse displacement r⊥ is proportional to |ψ0(r⊥)|2 and depends only on the transverse

displacement y relative to the center of the twin plane. This corresponds to the fact that

the flux line is “free” and therefore completely delocalized in the direction parallel to the

twin plane (x), while it is localized by the pinning potential in the direction transverse to

the twin plane (y). The corresponding transverse localization length ly(T ) can be defined

as

[2ly(T )]2 =

∫ +∞

−∞
dyy2|φ0(y)|2, (2.7)

where the wavefunction is assumed to be normalized. As shown in [21], one finds ly(T ) ≈
b0[1 +O(T/T ∗)], for T << T ∗. At high temperature thermal wandering is important and

the localization length can become larger than b0, with ly(T ) ≈ T√
2ǫ̃1U(T )

∼ b0(T/T
∗)2,

for T >> T ∗.

When many vortices are present, the repulsive intervortex interaction tends to confine

each flux line to a “cage” provided by the surrounding vortices in a triangular lattice [29].

For fields below the “filling” field Bf ≈ φ0/d
2, defined as the field where the flux lines

fill the twin planes, forming a triangular lattice of spacing
√

3d/2 [30], the additional

confining potential provided by the repulsive interaction does not change qualitatively the

fluxon states in the direction transverse to the twins, since in this direction flux lines are

also localized by the pinning potential. Interactions with neighbors do, however, change

qualitatively the behavior along the x direction. Following Ref. [29], a simple description
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of the role of interactions can be obtained by considering a representative fluxon localized

near a single twin plane centered at y = 0 and subject to the additional confining potential

provided by the surrounding vortices. If the position of all the other vortices is assumed

to be fixed, the confining potential can be approximated by a one-body effective potential

Veff (r1(z)),

Veff (r1(z)) =
1

N

∑

j 6=1

V (|r1(z) − r0
j |), (2.8)

where V (r) is the pair potential given in Eq. (2.5) and r1(z) denotes the position of

the representative fluxon. The sum is over all the other vortices that are fixed at their

equilibrium positions r0
j , corresponding to the sites of the triangular lattice. The free

energy of the representative fluxon is then given by,

F eff
1 =

∫ L

0

dz

[

ǫ̃1
2

∣

∣

∣

dr1(z)

dz

∣

∣

∣

2

+ Veff (r1(z)) + V1(|y1(z)|)
]

, (2.9)

where V1(|y|) is the single-twin pinning potential discussed earlier. If we expand the

effective potential Veff (r1) about its minimum at r1 = 0, we find

Veff (r1) ≈ Veff (0) +
1

2
Cr21, (2.10)

where, neglecting logarithmic corrections and constants of order unity,

C ≈ 2ǫ0
a2
0

, (2.11)

for λab >> a0, where the pair interaction V (r) is logarithmic (K0(x) ≈ − lnx, for x << 1),

and

C ≈ 2ǫ0
λ2

ab

√

πλab

2a0
e−a0/λab , (2.12)

for λab << a0, where the pair interaction decreases exponentially with distance. Again,

following Ref. [29], in the limit L→ ∞ the partition function of this representative fluxon

is written in terms of the ground state eigenfunction and eigenvalue of the “Hamiltonian”

operator of a fictitious quantum mechanical particle. Dropping the constant term in Eq.

(2.10), the corresponding “Schrödinger” equation is given by

[

− T 2

2ǫ̃1
∇2

1 +
1

2
Cr21 + V1(|y1|)

]

Ψ0(r1) = E0Ψ0(r1). (2.13)
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The x and y degrees of freedom are decoupled and the “Schrödinger” equation (2.13) can

be separated into two one dimensional equations (to simplify the notation, we drop the

subscript 1 on the location of the representative fluxon),

[

− T 2

2ǫ̃1

d2

dx2
+

1

2
Cx2

]

gx(x) = Exgx(x), (2.14)

and
[

− T 2

2ǫ̃1

d2

dy2
+

1

2
Cy2 + V1(|y|)

]

gy(y) = Eygy(y), (2.15)

with Ψ0(r) = gx(x)gy(y) and E0 = Ex +Ey. In the x direction the vortex line is described

by the ground state of a one-dimensional harmonic oscillator of frequency ω0 =
√

C/ǫ̃1 ≈
(1/a0)

√

2ǫ0/ǫ̃1. The ground state energy is Ex = Tω0 and the corresponding eigenfunction

is

f(x) =
1

(
√

2πx∗)1/2
e−(x/2x∗)2 , (2.16)

where x∗ = (T 2/2ǫ̃1C)1/4 is the characteristic length scale for vortex fluctuations along the

x direction. In the absence of the twin plane, the ground state in the y direction is also that

of a harmonic oscillator of frequency ω0 and the vortex is confined by interactions within

a region of radius r∗ =
√

x∗2 + y∗2, with y∗ = x∗, centered at its equilibrium position,

r = 0. The presence of the twin boundary modifies the potential in the y direction, leading

to an additional square well near the center of the harmonic potential, as in Eq. (2.15).

The range of the wavefunction g(y) controls the localization length l⊥ in the direction

transverse to the twin plane. This is determined by the interplay of the length scale

y∗(T ) for harmonic fluctuations and the localization length ly(T ) defined in Eq. (2.7)

associated with the pinning potential. These two length scales are sketched in Fig. 5

as functions of temperature. For T << T ∗, ly ≈ b0. If the temperature is so low that

y∗ < ly ≈ b0, the range of the wavefunction g(y) is controlled by interactions and l⊥ ≈ y∗.

The characteristic temperature Tx1 where y∗ = b0 is given by Tx1 = (b0/a0)
√

2ǫ0/U0T
∗ <<

T ∗, as shown in Fig. 5. For T >> T ∗, ly(T ) ≈ b0(T/T
∗)2 grows more quickly than

y∗ with temperature. There is therefore a second crossover temperature Tx2, as shown

schematically in Fig. 5. For T > Tx2, ly > y∗ and the vortex line is confined only by

the harmonic well from intervortex interactions. A lower bound for Tx2 can be obtained

from y∗(Tx2) ≈ ly ≈ b0(Tx2/T
∗)2, with the result Tx2 = [(a0/b0)

√

U0/2ǫ0]
1/3T ∗ > T ∗.

For the parameters of interest here Tx2 is somewhat smaller than the clean lattice melting

temperature Tm, defined by y∗(Tm) ≈ cLa0, with cL ≈ 0.15 − 0.3 the Lindeman constant,
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and is comparable to the isolated vortex depinning temperature, defined by ly(Tdp) ≈ d.

In this paper we only consider the situation where all vortices are pinned in the ground

state and T << min(Tdp, Tm). We therefore restrict ourselves to T < Tx2 and we then find

l⊥ ≈ y∗ for T < Tx1 and l⊥ ≈ ly for Tx1 < T < Tx2. In short, the ground state of a single

vortex confined by the pinning potential of a twin plane along the y direction and by the

isotropic “cage” provided by the repulsive interaction with the other vortices is localized

in all directions, with localization lengths l⊥ ≈ ly in the direction transverse to the twin

(for Tx1 < T < Tx2) and l‖ ≈ x∗ in the direction parallel to the twin plane. The total

binding free energy renormalized by interactions is of order UR(T ) ≈ U(T ) − Tω0. For

T << Tx2 the harmonic oscillator zero point energy is always negligible compared to the

pinning energy U(T ) and UR(T ) ≈ U(T ).

In the presence of a family of parallel twin planes the flux line can “tunnel” between

different localized states [29,13]. In this paper we are interested in studying the response

of a flux array pinned by a family of parallel twin planes to a Lorentz force normal to

the twin planes for B << Bf . In the ground state the flux lines are all localized on

the attractive twin planes. The transverse driving force promotes motion of the vortices

between different twin planes, corresponding to “tunneling” between different localized

states along the y direction, while the repulsive interaction confines the vortices in the

direction parallel to the twin planes. At low temperature the flux lines will move along

the direction of the driving force (y direction) within one-dimensional channels of width

∼ 2x∗. Using elementary quantum mechanics it can be shown [21,29] that the rate of

tunneling between localized states on different twin planes separated by a distance dij is

tij ∼ 2U(T )e−Eij/T , with Eij =
√

2ǫ̃1U(T )dij . The energy Eij is the energy of a “kink”

configuration shown in Fig. 3b, connecting two pins at a distance dij .

To study the low-lying excitations from this ground state arising from thermal fluctu-

ations one needs to sum over vortex trajectories by evaluating appropriate path integrals.

As discussed in [13] and [21], these configuration sums closely resemble the imaginary time

path integral formulation of quantum mechanics of two-dimensional particles in a static

random potential VD(y). Many relevant results regarding the statistical mechanics of flux

lines can then be obtained from elementary quantum mechanics.

The dynamics of flux lines driven by a Lorentz force transverse to the twin planes can

then be described by a tight-binding model for one-dimensional bosons [13]. The lattice
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sites in the model are defined by the M positions {Yi} of the twin planes and the tight

binding Hamiltonian governing the dynamics in each one-dimensional channel is given by

H = −[µ+ U(T )]
∑

i

a
†
i ai +

∑

i6=j

tij(a
†
i aj + a

†
j ai) +

V0

2

∑

i

a
†
i ai(a

†
i ai − 1). (2.17)

Here µ ≈ φ0(H − Hc1)/4π is the chemical potential which fixes the flux line density, a
†
i

and ai are boson creation and annihilation operators at site Yi, tij is a tunneling matrix

element connecting localized states i and j and V0 represents a typical energy cost for

double occupancy of a site of the one-dimensional tight-binding lattice. As flux lines move

in the transverse direction along the one-dimensional channels, the repulsive intervortex

interaction provides an energy cost for an additional flux line occupying an already filled

twin. The corresponding on-site repulsion V0 can be estimated as

V0 ≈ V (b0) − V (d)

≈ 2ǫ0
[

ln(λab/ξab) −K0(d/λab)
]

,
(2.18)

where V (r) is the pair interaction given in Eq. (2.5) and we assumed b0 ≈ ξab. If d >> λab,

we find V0 ≈ 2ǫ0 ln(λab/ξab), while for d << λab, we obtain V0 ≈ 2ǫ0 ln(d/ξab). This

estimate assumes that the various one-dimensional channels are completely decoupled.

The first two terms of the tight-binding Hamiltonian determine a noninteracting den-

sity of states g(ǫ) (here ǫ is an energy per unit length and g(ǫ) has units of 1/energy), such

that N (ǫ) =
∫ ǫ

−∞ g(ǫ′)dǫ′ is the number of localized states per unit length with energy less

than ǫ. Note that g(ǫ) is normalized so that N (+∞) = 1/d. Even if the pinning sites

are all identical in size and well depth, dispersion of energy levels arises because vortices

can tunnel between nearby twin planes. The width γ of the impurity band should then be

of order γ ≈ t(d), where t(d) is the tunneling matrix element evaluated at a typical twin

spacing d. Interactions will further broaden the band and one can estimate,

γ ≈ max{t(d), V0}. (2.19)

This bandwidth is practically always dominated by V0. In particular for the case d << λab

one finds γ ≈ V0 ≈ 2ǫ0 ln(d/ξab) for all temperatures T < T ∗d/b0. If the localized states

are filled up to a chemical potential µ such that about half of the twins are occupied by at

least one vortex, we can approximate the density of states g(µ) corresponding to the most

weakly bound flux lines with energy ǫ ∼ µ as g(µ) ≈ 1/dγ, i.e.,

dg(µ) ≈ min{1/t(d), 1/V0}. (2.20)

From our discussion of the bandwidth γ we find that the second term generally dominates

for all temperatures of interest. Then g(µ) is approximately temperature independent,

with dg(µ) ≈ 1/V0.
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3. Vortex Dynamics at Low Temperatures

We consider vortex transport in the presence of a driving current J ⊥ H parallel to

the twin planes, i.e., J = −J x̂. The applied current exerts a Lorentz force per unit length

on the vortices (see Fig. 1a),

fL =
φ0

c
ẑ × J = ŷfL, (3.1)

with fL = φ0J/c, and drives the vortices to move in the direction transverse to the twin

planes, leading to an additional term,

δF1 = −fL

∫ L

0

y1(z)dz, (3.2)

in the single-vortex free energy, Eq. (2.1). In the context of the analogy with boson

quantum mechanics, this term represents a fictitious “electric field” E = 1
c ẑ × J = ŷJ/c

acting on particles with “charge” φ0. The correspondence between the problem of carrier

dynamics in disordered semiconductors and vortex dynamics in the presence of correlated

linear or planar disorder is summarized in Table 2.

Up to numerical constants and logarithmic corrections, the critical current at low

temperatures can be obtained by equating the Lorentz force to U0/b0, with the result

Jc(0) ≈ cU0/φ0b0 [13]. Thermal fluctuations renormalize the critical current and one can

estimate Jc(T ) ≈ cU(T )/φ0l⊥(T ). For T >> T ∗, Jc(T ) ≈ Jc(0)(T ∗/T )4. The crossover

temperature T ∗ is itself a function of temperature. We can define the temperature T1 above

which the entropy from flux-line wandering is important in renormalizing the binding free

energy U(T ) by the self-consistency relation T ∗(T1) = T1[21]. At low temperature the

interaction between a vortex line and a twin plane is always attractive and U0 ≈ αbǫ0τ ,

where αb < 1 is a dimensionless parameter related to the barrier transparency and τ =

1−T/Tc[24]. Using a mean field parametrization of the critical fields, we find T ∗(T )/Tc =
√

αb ln κ
4Gi

τ , where κ = λab/ξab and Gi = (λ2
c/2λ

2
ab)(Tc/H

2
c0ξ

3
ab0)

2 is the Ginzburg number,

with Hc0 the thermodynamic critical field at T = 0 and ξab = ξ0abτ
−1/2. Using κ ≈ 102,

Gi ≈ 10−2 and αb ≈ 0.1 [31] for YBCO, we find T1 ≈ 0.77Tc.

At low temperatures and fields well below Bf , vortex dynamics is determined by the

competition between pinning by the one-dimensional array of twin planes and thermal

fluctuations of the vortices. In analogy with the case of columnar pins that was discussed

in detail in [13], the boson mapping reduces single vortex dynamics to a problem of hop-

ping conductivity of localized particles in one dimension. The current density in the usual
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hopping conductivity problem corresponds to the vortex velocity (i.e., voltage) and the

electrical conductivity maps onto the resistivity from vortex motion (see Table 2). The

low temperature dynamics of vortices driven transverse to an array of parallel twin planes

presents the same rich variety of hopping conductivity phenomena that occur in semicon-

ductors, as pointed out by Nelson and Vinokur for the case of columnar pins [13]. What is

new here is that vortex dynamics maps onto the problem of hopping conductivity in one

dimension. In this reduced dimensionality rare events, such as large regions voids of twin

planes, can dominate the transport at low currents leading to new mesoscopic phenomena,

as discussed in Section 5.

Here we are interested in the low temperature regime where transport is dominated

by single-vortex dynamics. In this case the dominant contribution to dissipation can be

described in terms of the low-lying excitations from the ground state that correspond to

thermally activated jumps of vortex lines over the relevant pinning energy barriers. The

resistivity takes the form given in Eq. (1.1). In the following we determine the barrier

heights U(L, J) corresponding to various transport regimes and the boundaries between the

various regimes in the (L, J) plane. In samples of finite thickness L in the field direction the

typical pinning energy barriers U(L) grow with L but are independent of current, yielding

a linear resistivity. In thick samples there is a nonlinear resistivity associated with barriers

U(J) that grow at low currents. We assume that in the ground state all the flux lines are

localized on twin planes. We then study the low lying excitations from the ground state

that can be nucleated by a finite temperature T or by a driving current J . The largest

contribution to the resistivity from each class of excitations is assumed to be inversely

proportional to the shortest time for the nucleation of a given excitation. The latter is

determined by the typical energy barrier U for the formation of the low-lying excitations,

which is identified with the saddle point in the single-flux line free energy. The discussion

in this section follows closely that of Ref. [13], where the corresponding results for votices

pinned by columnar defects were obtained.

Linear response

Consider a fluctuation that extends a length z along the twin and a distance y in

the direction of the Lorentz force. The free energy of this fluctuation relative to the case

fL = 0 is

δF (y, z) ≈ ǫ̃1
y2

z
+ Uz − fLyz. (3.3)
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Optimization of Eq. (3.3) with repsect to z for fL = 0 yields the shape of the optimal low

temperatute fluctuation,

y ∼
√

U/ǫ̃1 z. (3.4)

At low currents in samples of very small thickness L there is a linear resistivity due to the

flow of rigid flux-line segments of length L and typical transverse width yrf ≈
√

U(T )/ǫ̃1L

obtained by letting z ∼ L in Eq. (3.3). The corresponding saddle point energy is Urf (L) ∼
U(T )L, resulting in a linear “rigid-flow” resistivity,

ρrf (L) ≈ ρ0e
−U(T )L/T . (3.5)

At larger currents the contribution from the Lorentz force to the single-line free energy

(3.3) becomes comparable to the typical energy barrier Urf . When fLyrfL > Urf or

J > JL = c
√
ǫ̃1U/(φ0L), the response becomes nonlinear. In the thermodynamic limit

JL → 0 and the IV characteristic is nonlinear at all currents. The characteristic current

JL is also conveniently expressed in terms of the energy of a kink configuration connecting

neighboring pins separated by the distance d (see Fig. 3a). The typical thickness wk

of a kink along the z direction is obtained from Eq. (3.4) for y ∼ d, with the result

wk = d
√

ǫ̃1/U . The kink energy is the corresponding saddle-point free energy, Ek =

wkU =
√

ǫ̃1U(T )d. The energy barrier associated with the “rigid-flow” resistivity can

then be written as Urf = Ek(L/wk) and the current scale for nonlinear transport is JL =

cEk/(φ0Ld).

The line J = JL(L) defines the boundary in the (L, J) plane that separates the regions

of linear (J < JL(L)) and nonlinear (J > JL(L)) response (see Fig. 2). The details of

the (L, J) phase diagram are controlled by the dimensionless parameter α = g(µ)dU(T ).

Typical phase diagrams for α < Ek/T are shown in Fig. 2. The rigid flow mechanism

dominates the linear resistivity only in very thin samples. When wk < L < L1, where

L1 = Ek/γ is the length below which dispersion from tunneling and interactions can be

neglected, transport occurs via the hopping of vortices between nearest neighbor (nn)

pinning sites. This region of the phase diagram is only present if L1 > d
√

ǫ̃1/U , or γ < U .

For L > L1 dispersion is always important and the relevant excitations are superkinks

(Fig. 3c), which correspond to the tunneling of vortices between remote pinning sites

analogue to Mott’s electronic conductivity in disordered semiconductors. For J > JL(L)

the resistivity is nonlinear. At large currents the typical transverse displacement is smaller

than the average spacing d between twin planes and transport is dominated by “half-loop”

15



excitations (Fig. 3a), characterized by an energy barrier that grows linearly as the current

decreases, Uhl ∼ 1/J . Finally, at the smaller current flux motion takes place via VRH,

characterized by a diverging energy barrier, UV RH ∼ 1/J1/2. We now discuss in more

detail the origin of the various contributions summarized in Table 1 and the estimate of

the energy barriers.

We first consider the linear portion of the phase diagram (J < JL) in samples of

increasing thickness L. When the typical transverse width yrf ∼
√

U/ǫ̃1)L of a rigidly

flowing flux segment becomes comparable to d, transport occurs via nucleation of double

kink configurations (Fig. 3b) of energy ∼ 2Ek. The double kink then separates to z = ±∞,

resulting in the hopping of vortices from one pin to a neighboring one. As discussed in [13],

this transport mechanism will dominate only if the sample is so thin that the width γ of

the impurity band arising from tunneling and interactions is negligible (L < L1 = Ek/γ).

In this case flux motion will occur via hopping between nearest neighbor pins, resulting

in a linear resistivity ρnnh ∼ exp(−aEk/T ), with a a numerical constant. In extremely

thin samples this transport mechanism will ultimately be suppressed. In fact for L < wk

transport via the flow of rigid flux segments described above is energetically favorable over

nn hopping. As a result, a necessary condition for observing a linear nearest neighbor

hopping resistivity ρnnh is L1 > wk, or γ < U . If we estimate the density of states as

dg(µ) ∼ 1/γ, the condition γ < U requires α = g(µ)dU > 1. The Lorentz force term in

Eq. (3.3) will modify the kink energy and thickness. By optimizing Eq. (3.3) with respect

to z for y ∼ d and fL 6= 0, we find that a finite current increases the thickness of a typical

kink, according to w̃k(J) = wk(1 − J/J1)
−1/2, where J1 = cU/(φ0d). This result only

applies for J < J1. At higher currents simple nn hopping cannot occur.

In thick samples (L > L1) the dispersion of energies between different pinning sites

makes motion by nearest neighbor hopping energetically unfavorable (the energy barrier

diverges with the sample thickness L). Tunneling occurs instead via the formation of

“superkinks” (Fig. 3c) that throw a vortex segment onto a spatially remote pin connecting

states which optimize the tunneling probability. The free energy of a superkink excitation

shown in Fig. 3c relative to the case fL = 0 is then [13,27],

δFsk ≈ 2Ek(y/d) + ∆ǫz −−fLyz. (3.6)

We assume all states up to a chemical potential µ are filled. The states available to a weakly

bound flux line about to hop a distance y are those within an energy ∆ǫ determined by

16



requiring that there is at least one localized state within a region (y,∆ǫ) of configura-

tion space, i.e., g(µ)y∆ǫ ≃ 1. The shape of the most important superkink excitations is

obtained by minimizing Eq. (3.6) for fL = 0 and is given by

y ∼
√

dz

Ekg(µ)
. (3.7)

In finite thickness samples the saddle point free energy corresponding to superkink fluc-

tuations of width given by Eq. (3.7) for z ∼ L yields a linear Mott resistivity, given

by

ρMott(L) ≈ ρ0e
−Ek(L/αwk)1/2

, (3.8)

with α = U(T )g(µ)d.

Nonlinear response

In the nonlinear regime (J > JL(L)) the contribution to the free energy from the

Lorentz force cannot be neglected when estimating the energy of the dominant excitations.

For J1 < J < Jc, with J1 = cU(T )/φ0d, flux motion occurs via thermally activated “half-

loop” configurations identical to those discussed in [13] for the case of columnar pins. The

length and width of an unbound line segment for the lowest-lying half-loop excitations are

obtained by minimizing the free energy (3.3) for fL 6= 0, with the result zhl ∼ (U0ǫ̃1)
1/2/fL

and yhl ∼ (U0/ǫ̃1)
1/2zhl ∼ U(T )/fL, respectively. The saddle point energy of a half-loop

excitation is Uhl ≈
√

ǫ̃1U3(T )/fL, yielding a nonlinear resistivity,

ρhl ≈ ρ0 exp[−(Ek/T )(J1/J)]. (3.9)

In the context of the mapping of flux-line dynamics onto the problem of hopping conduc-

tivity, the nucleation of half loops corresponds to tunneling of a carrier from a localized

state directly into conduction band, as shown in Fig. 6.

For J < J1 the size of the transverse displacement of the liberated vortex segment

exceeds the average distance d between twin planes and transport occurs via variable range

hopping (VRH) which generalizes the Mott mechanism to the nonlinear case. Again a flux

line hops to a state within a region (y,∆ǫ) of phase space, with g(µ)y∆ǫ ∼ 1. The size of

the most important excitations is determined by minimizing Eq. (3.6) with fL 6= 0, with

the result yV RH ∼ (g(µ)fL)−1/2 and zV RH ∼ Ek/dfL. One then obtains a non-Ohmic

VRH behavior with

ρV RH ≈ ρ0e
−UV RH(J)/T = ρ0 exp[−(Ek/T )(J0/J)1/2], (3.10)
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with J0 = J1/α. The crossover to the linear Mott resistivity resistivity takes place when

zV RH ∼ L, or J ∼ JL, consistent with the result obtained above when discussing half-loop

excitations. The VRH contribution to the resistivity dominates that from half loop only

if if UV RH < Uhl, or J < J2 = J1α.

The above results are summarized in Table 1. The corresponding phase diagrams

are shown in Figs. 2 for α < Ek/T . There are three relevant current scales, J0 = J1/α,

J1 = cU/φ0d and J2 = J1α, all much smaller than the pair breaking current Jpb =

4cǫ0/(3
√

3φ0ξab). For α > 1 one can have L1 > wk and there is a region of the phase

diagram where transport occurs via nn hopping (Fig. 2a). For α < 1 nn hopping can

occur only if the chemical potential µ falls in the tails of the impurity band, so that

g(µ)d < 1/γ. If µ falls well within the impurity band, so that g(µ)d ∼ 1/γ, then α < 1

requires γ > U and nn hopping is always suppressed in this case. The Mott and the rigid

flow regimes are separated by a horizontal line above which UMott < Urf . Similarly, the

condition UV RH = Uhl yields the vertical line separating the VRH and half loop regions.

Collective effects

At very low currents and in thick samples collective effects are always important

and flux motion takes place via the creep of vortex bundles, rather than single vortices.

The region where collective effects dominate is shown schematically in Figs. 2 and 4. It

corresponds to the upper left portion of the (L, J) phase diagram. As discussed in Ref.

[1], the crossover from single vortex creep to creep of vortex bundles occurs when

Lz = a0, (3.11)

where Lz is the size of a typical single-vortex fluctuations along the z direction and a0

the intervortex spacing. The condition (3.11) is simply obtained by equating the tilt

energy Etilt of a single disorted vortex to the elastic energy Eint of interaction of with

its neighbors. The elastic energy associated with displacing a length Lz of vortex line at

an average distance a0 from its neighbors a distance u out of its equilibrium position in

the xy plane is Eint ∼ c66u
2Lz, where c66 ∼ ǫ0a

2
0, and grows with Lz. In contrast, the

corresponding single-vortex tilt energy, Etilt ∼ ǫ0(u/Lz)
2Lz, decreases as Lz increases.

Consequently when the longitudinal size of the typical fluctuation is sufficiently large, or

Lz > a0, then Eint > Etilt and collective effects are important.

In the VRH regime the relevant length scale is the width wsk of a superkink excitation,

shown schematically in Fig. 3c, where wsk ≈
√

ǫ̃1/Uysk, with ysk the typical size of a
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superkink in the direction of flux motion. Collective effects dominate when wsk ≥ a0. In

the linear regime (J < JL) ysk is given by Eq. (3.7) with z ∼ L, or wsk ≈ √
wkL, with

wk = Ek/U the width of a kink (see Fig. 3d). Dissipation is then dominated by creep

of vortex bundles for L ≥ Lb = a2
0/wk. In the nonlinear regime (J < JL) the size of the

superkinks grows with decreasing current and wsk ≈ wk(J0/J)1/2. Transport is always

dominated by collective effects at sufficiently low currents, i.e., for J ≤ Jb = J0(wk/a0)
2.

The crossover from single-vortex creep to creep of vortex bundles is marked by the dashed

lines L = Lb and J = Jb in Figs. 2 and 4. For α > 1 this crossover takes place well into

the VRH region, as shown in Fig. 2a, provided Lb > L1 and Jb < J1, which corresponds to

B < (Bf/α)(U/2ǫ̃1) (here and below we assume the chemical potential falls in the middle

of the impurity band and dg(µ) ∼ 1/γ). For α < 1 (Fig. 2b) this crossover occurs within

the VRH region provided Lb > wk/α and Jb < J2, or B < Bfα(U/2ǫ̃1)

4. Transport in the Presence of Tilt

We now consider another transport geometry investigated in some of the experiments

by Kwok et al [4]. Here the external field H is tilted at an angle θ away from the c axis

and out of the twin planes (see Fig. 1b). The transport current is still applied along

the twin planes, which contain the c axis, J = −x̂J , and the resulting Lorentz force,

fL = (φ0/c)[ẑ cos θ + ŷ sin θ] × J, has components both normal to the twin planes and

along the c axis. Only the y component of the Lorentz force is effective at driving flux

motion normal to the twin planes and therefore determines the voltage in the direction

of the applied current. The experiments by Kwok et al. [4] have been mostly carried out

at high fields for flux arrays in a liquid state, in a regime where intervortex interactions

are believed to be important. Here in contrast we neglect intervortex interactions and

investigate the dependence of transverse transport on tilt angle in the regime where single-

line dynamics dominate. Even though our result are therefore not directly relevant to the

experiments by the Argonne group, the strong angular dependence that we predict for the

resistivity is qualitatively similar to that reported in the experiments.

The free energy of a fluctuation that extends a length z along the twin and a distance

y in the direction of average motion is obtained by adding the tilt energy Eq. (3.3), with

the result,

δF (y, z, θ) ≈ ǫ̃1
y2

z
+ Uz − fL cos θy z − φ0

4π
H⊥y, (4.1)
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where H⊥ = H sin θ is the component of the field along the y direction and fL = φ0J/c,

as in the preceeding sections. Optimizing Eq. (4.1) with respect to z for fL = 0, we find

that the shape of the optimal low temperature fluctuation is still given by Eq. (3.4) and

does not depend on the angle θ. As shown by Hwa et al. [27], the energy Ẽk(θ) of a kink

fluctuation in the presence of tilt, corresponding to the saddle point of the free energy

(4.1) with fL = 0 for y ∼ d and z ∼ d
√

U/ǫ̃1, is reduced compared to its value for θ = 0,

according to,

Ẽk(θ) = Ek − φ0H⊥
4π

d

= Ek

(

1 − sin θ

sin θc

)

.
(4.2)

Here we have introduced a critical angle θc defined by sin θc = H/Hc, withHc = 4πEk/φ0d.

For θ > θc, the kink energy becomes negative and kinks proliferate, as discussed in [27].

We now consider the angular dependence of transport for θ < θc.

As in the case θ = 0, at high enough currents flux motion will occur via the nucleation

of half loops. By identifying the typical energy barrier Ũhl(θ) for a half loop excitation in

the presence of tilt with the saddle point energy found by minimizing Eq. (4.1) for fL 6= 0,

we obtain,

Ũhl(θ) =
Uhl

cos θ

(

1 − a
sin θ

sin θc

)

, (4.3)

with a a numerical constant of order one and Uhl = Ek(J/J1) the half loop energy barrier

for θ = 0. The energy for nucleating a half loop excitation is reduced by the tilt. The

angular dependence of the resulting flux-flow resistivity is very strong, since the angle

appears in the argument of the exponential. Flux motion will occur via half loop excitation

provided the typical transverse size of the half loop does not exceed the average distance

between twin planes. This imposes a lower bound on the values of the current where

half loop excitation dominates transport, given by J > J1(1 + a′ sin θ/ sin θc), with a′ a

numerical constant of order one. Tilt decreases the range of currents where half-loops

dominate.

At lower currents transport will take place via VRH. The angular dependence simply

replaces the kink energy Ek by the smaller kink energy Ẽk(θ) in the presence of tilt given

in Eq. (4.2). Carrying then through the standard VRH argument described in the previous

section, one obtains a nonlinear angle-dependent resistivity given by Eq. (1.1), with

ŨV RH(θ) = Ek(J1/αJ)1/2 1 − sin θ/ sin θc√
cos θ

. (4.4)
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Again the corresponding resistivity is a rapidly varying function of angle, as observed in

experiments. On the other hand, a simple estimate using typical parameters for Y BCO

gives a very small value for the critical angle, sin θc ≈ 0.1Hc1/H. The transport experi-

ments probe, however, linear transport in the flux-liquid phase, where collective effects in

the flux-line dynamics are important. The present dimensional analysis is useful in that it

shows that even in the regime of single-line dynamics, the presence of twin planes naturally

introduces a very sharp dependence of the resistivity on tilt angle.

5. Rare Fluctuations

The results described in the Section 3 are qualitatively similar to those discussed in [13]

for the case of flux arrays in the presence of columnar pins. The most important difference

for samples with parallel arrays of twin planes is that due to the one-dimensional nature

of vortex transport at low temperature, a new regime can arise at low current, where flux-

line dynamics is dominated by rare fluctuations in the spatial distribution of twin planes.

The vortex line can encounter a rare region where no favorable twins are available at the

distance of the optimal jump. The vortex will then remain trapped in this region for a

long time and the resistivity can be greatly suppressed. Rare fluctuations can also occur

in samples with columnar pins, but in that case because of the two-dimensional nature of

the problem, they will dominate transport and suppress the resistivity only at extremely

small fields, when the number of rare regions exceeds the number of vortices.

At a given temperature and for applied currents below JL, a vortex can jump from

one twin plane to another at a distance y only if the energy difference per unit length

between the initial and final configuration is within a range ∆ǫ ∼ Eky/Ld. A trap is then

a region of configuration space (y, ǫ) void of localized states within a spatial distance y and

an energy band ∆ǫ around the initial vortex state. A vortex that has entered such a trap

or “break” will remain in the trap for a time tw ≈ t0 exp(2y/l⊥), where l⊥ is the transverse

localization length and t0 is a microscopic time scale. The probability of finding such a

break is given by a Poisson distribution, P (y) ≈ P0(y) exp[−Ag(µ)y∆ǫ], where P0(y) is

the concentration of localized states in the energy band ∆ǫ, P0(y) ≈ 2Ag(µ)∆ǫ and A ∼ 1

is a numerical constant. The mean waiting time between jumps is given by

tw ≈
∫ ∞

0

dyP (y)t0e
2y/l⊥(T ). (5.1)
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For L >> L∗ = αwk(T/Ek)2, the integral can be evaluated at the saddle point, corre-

sponding to the situation where the mean waiting time is controlled by “optimal breaks”

of transverse width y∗l ≈ l⊥L/L∗, with the result,

tw ∼ t0
√

L∗/LeL/L∗

. (5.2)

The optimal breaks are those that correspond to the longest trapping time and will there-

fore be most effective at preventing flux motion and dissipation. The inverse of the trapping

or waiting time determines the characteristic rate of jumps, i.e., the velocity. The vortex

velocity corresponding to the optimal hopping rate of Eq. (5.2) yields a linear resistivity

in finite-thickness samples, given by

ρbl ≈ ρ0
T

UMott
e−(UMott/T )2 , (5.3)

where UMott is given in Table 1 and we have used L/L∗ = (UMott/T )2.

For currents above JL, the typical energy per unit length available to a flux line

for jumping a distance y is ∆ǫ ∼ fLy. The corresponding nonlinear contribution to the

resistivity from traps of extent (y,∆ǫ) in configuration space is again proportional to the

inverse of the average waiting time defined in Eq. (5.1). Again, for l2⊥g(µ)fL << 1 or

J << J∗ = αJ1(Ek/T )2, the integral can be evaluated at the saddle point, corresponding

to an optimal break width y∗b ≈ [g(µ)l⊥fL]−1, with the result,

ρb ≈ ρ0
T

UV RH
exp[−(UV RH/T )2]. (5.4)

It is clear by comparing Eqs. (3.9) and (3.10) to Eqs. (5.3) and (5.4), respectively, that the

contribution to the resistivity from tunneling à la Mott (both in the linear and nonlinear

regimes) would always dominate that from hopping between rare optimal traps if both

mechanisms of transport can occur. On the other hand, in one dimension if the sample is

wide enough in the direction of flux-line motion to contain optimal traps, tunneling à la

Mott simply cannot take place because flux lines cannot get around the traps. These rare

traps with large waiting times will then control the transport. If W is the sample width

in the y direction, the condition for having optimal traps of width y∗l,b is P (y∗l,b)W > 1.

Optimal traps will therefore be present only if J > Jw = J∗/ ln(2W/l⊥) for J > JL and if

L < Lw = L∗ ln(2W/l⊥) for J < JL.

These are, however, only necessary conditions for the sample to contain many optimal

breaks. They do not guarantee that these breaks will dominate transport. A flux line can in
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fact escape a break by nucleating a half-loop excitation or, in the language of semiconductor

transport, by tunneling directly from a localized state into conduction band (see Fig. 6).

This will occur if the transverse size of a typical half loop exceeds the size of the optimal

break, i.e., if yhl > y∗b , or α < Ek/T . In the context of the analogy with boson quantum

mechanics this condition translates into the requirement that the spatial distance between

the occupied localized state and the conduction band edge in the presence of the applied

current is shorter than the size of the trap (see Fig. 6). If the flux line can escape the trap

by half-loop nucleation, breaks will never dominate transport and their only effect will

be that of possibly suppressing VRH in a region of the phase diagram and extending to

lower currents the region where transport occurs via half-loop nucleation. This can occur

if Jw is smaller than the scale setting the high current boundary of the VRH region, or

Jw < min(J1, J2). For instance if Jw < J2, or ln(2W/l⊥) > (Ek/αT )2, with α < 1, rare

fluctuations will modify the phase diagram of Fig. 2b by pushing the high current boundary

of the VRH region down to Jw. Similar considerations apply to the linear response. On

the other hand, if yhl < y∗b , or α > Ek/T , there will be a portion of the (L, J) phase

diagram where breaks dominate transport, as shown in Fig. 4.

For YBCO, we estimate Ek ∼ 1KÅ−1d. Assuming α ∼ U/γ, the condition α > Ek/T

can only be satisfied at low fields (B < 1KG for d ∼ 200Å). The sample will contain

optimal breaks if W > 30Å exp(J∗/J), with J∗ ∼ 4 × 105Amp/cm2 at 80K.

If the sample is too short to contain optimal breaks, i.e., WP (y ∼ y∗l,b) < 1, the

dynamics is controlled by the trap with the longest waiting time, t(yf ) ∼ exp(yf/l⊥), with

yf determined by the condition WP (yf) ∼ 1. The corresponding resistivity is proportional

to this smallest hopping rate,

ρW ≈ ρ0e
−yf /l⊥ . (5.5)

In this case the relevant physical quantity is the logarithm of the resistivity,

ln(ρW /ρ0) = −yf/l⊥ ≈ −UV RH

T

{

ln
[2W

l⊥

T

UV RH

(

ln(2W/l⊥)
)1/2]}1/2

. (5.6)

The leading dependence of Eq. (5.6) on current and temperature is the same as that

of the VRH contribution. Equation (5.6) also contains, however, logarithmic terms that

in sufficiently short samples will give a random spread of values of the resistivity from

sample to sample. These effects have been discussed for semiconductors [18]. In this case

a more relevant physical quantity rather than the resistivity itself is the distribution of the
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logarithms of the resistivity over different samples. The expression (5.6) determines the

position of the maximum of this distribution.
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Linear Nonlinear

Urf = UL = Ek(L/wk) Uhl = Ek(J1/J)

Unnh = Ek(1 − J/J1)
−1/2

UMott = Ek(L/αwk)1/2 UV RH = Ek(J1/αJ)1/2

Table 1. Energy barriers determining the various contributions to the resistivity of Eq.

(1.1), with α = U(T )g(µ)d.
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CARRIERS VORTICES

m ǫ̃1

h̄ kBT

βh̄ L

single impurity level ED(EA) U(T )

µ (φ0/4π)(H −Hc1)

~E 1
c
ẑ × ~J

carrier velocity ∼ current density vortex velocity ∼ voltage

conductivity σ resistivity ρ

conduction-band transport flux flow

tunneling from impurity levels to conduction band half-loop

VRH superkink

Table 2. Correspondence between carrier dynamics in disordered semiconductors and

vortex dynamics in the presence of correlated disorder.
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Figure Captions

Fig. 1. Geometry of the transport experiment corresponding to strong pinning by twin

boundaries. In (a) the external field is aligned with the c axis and lies in the

plane of the twins. In (b) the external field is tilted at an angle θ out of the plane

of the twin. In this case only the y component fL cos θ of the Lorentz force is

effective at driving flux motion transverse to the twins.

Fig. 2. The (L, J) phase diagram for α = g(µ)dU ≈ U/γ < Ek/T . The curved phase

boundaries between the Mott and VRH regimes and between the rigid flow and

half loop regimes are determined by JL = cEk/φ0dL. For currents below the

characteristic current scale J1 the typical transverse size of a fluctuation in the

nonlinear portion of the diagram exceeds the average distance d between pins.

The corresponding length scale wk = Ek/U is the width of a kink connecting

pins at the distance d. The crossover from half-loop to VRH is determined by

min(J1, J2), with J2 = αJ1. Figure 2a is for α > 1, corresponding to L1 > wk,

where L1 is the sample thickness above which level dispersion is important. In

this case flux motion can take place via nn hopping for wk < L < L1 and J < J1.

Figure 2b is for α < 1, when L1 < wk and nn hopping is suppressed. The typical

energy barriers determining the resistivity in the various regimes are given in

Table 1. The dashed lines in the upper left corner of the plane delimit the region

where collective effects are important (see text).

Fig. 3. Schematic representation of the various low-lying excitations discussed in the

text: (a) half-loop excitation, (b) double-kink configuration, with wk = d
√

ǫ̃1/U ,

and (c) double-superkink configuration required for VRH.

Fig. 4. The (L, J) phase diagram for α = g(µ)dU > Ek/T . In this case there is a region

where the TAFF resistivity is controlled by rare regions, both above and below

JL. The width of this region is controlled by the sample size W in the direction

of flux motion.

Fig. 5. The localization lengths in the direction transverse to the twin planes: ly(T )

is determined by the pinning potential of the twin and y∗(T ) is determined by

intervortex interactions. The various temperature scales are discussed in the text.

Fig. 6. Schematic skecth in configuration space (ǫ, y) illustrating that a half-loop ex-

citation corresponds to tunneling of the fictitious quantum mechanical particle

directly into conduction band. The straight line of slope −fL/U(T ) is the con-

duction band edge in the presence of the fictitious electric field due to the Lorentz

force. A carrier occupying a localized state at y = 0 near the center of the im-

purity band, i.e., at an energy ∼ U(T ) below conduction band edge, is brought

directly into conduction band by a hop of transverse size yhl ≈ U(T )/fL.
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