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Abstract

The time domain method of moment has been propfusea long time. The marching-
on-in-time solver suffers from late time instalyjitwhile the marching-on-in-degree

technique can avoid this problem.

This thesis introduces a new temporal basis funaiod a new Green’s function
form that improves the computation speed of thectiag-on-in-degree technique. This
method can be used for the perfect conductor andals® be applied to conductors with

loss or dielectric.

As a method of moment solver, this marching-onagrée technique must solve
a dense matrix equation and it may be time consynfithe objects are very large.

Therefore, parallelization and a hybrid methodase proposed to handle large objects.

This thesis will cover all my improvements to th@eé domain marching-on-in-

degree method.
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Chapter 1.

Introduction

This thesis introduces thmarching-on-in-degregMOD) method, which is a time
domain method of moment (MoM) solver, as a waydieesthe transient electromagnetic
response from conducting and dielectric objectse Tethod of moment is a general
method for solving linear systems that is widelplegd to electromagnetic radiation and
scattering systems. [1] It usually contains integ current or other parameters to set
up equations in terms of fields. Unlike other kimafssolvers, such as finite element
method (FEM) or finite difference time domain meth@&DTD) that compute the field in
the whole volume, Mom only needs to perform the potation on the surface of the
objects and does not need a boundary to includth@lcomponents. Therefore, it can

greatly reduce the number of unknowns, especiatigmthe components are far away.

Researchers have applied the MoM to time domaiblenas for a long time.[2]
The conventional methodology to solve this probtakes the form of enarching-on-in-
time (MOT) algorithm, which splits the entire time damanto many time samples and
calculates sample by sample [2]-[8]. However, th®@ Mmethod may suffer from a late
time instability and may not provide reliable résuh some cases [5]-[14]. Therefore, an
alternative MOD technique has been proposed tocowee this instability [15]-[17]. In
the MOD method, the transient response is apprdeithiy a set ofssociated Laguerre
polynomials which are a set of causal orthogonal functiori;dd in the interval [0, <)

[18][19]. By choosing the associated Laguerre poiyials to represent the transient part



of the response, the time domain integral can kaytcally analyzed and temporal
variables can be eliminated from the final compatet! equations. In the computation of
the unknowns, the equation does not rely on thedeah variables and purely relies on
the unknowns of lower degree. After obtaining thes&nowns of lower degree, the
unknowns of the next higher degree can be compditad.is why it is called marching-

on-in-degree method.

The current and potential on the object surfaceseapanded by both temporal
and spatial basis functions. The procedure forisglthe integral equations using the
MOD method is based on application of Galerkin'stitey method, twice, for separate
temporal and spatial testing. In the spatial exipenand testing, piecewise triangular
basis functions are used for wires and Rao-WiltdissBn (RWG) basis functions are
used for surfaces. The time variation in the MODesuoe is approximated by a set of
orthogonal temporal basis functions associated Laguerre functions- which are
derived from thd.aguerre polynomialsThese basis functions are also used for temporal

testing.

In previous work in this field, only one associatejuerre polynomial is used in
each temporal basis function. It is a complete arlkdogonal basis function set and can
represent all the transient processes. However aghproach has a drawback in that the
derivative of the associated Laguerre polynomiah isummation of its lower degrees.
Consequently, the final equations that are progradhmontain many summations.
Therefore, | proposed a new basis function setclviis a combination of associated

Laguerre polynomials. This basis function set nsaill the advantages of the associated



Laguerre polynomials while its derivative is anathembination of polynomials instead

of a summation; this reduces the computation tigna factor about 10 to 20.

This thesis includes six chapters. This first ceapttroduces the background of
the research. The remaining five chapters cover M@D method with different

applications.

Chapter 2 is a summary and brief introduction te MOD method for time

domain electromagnetics problems.

Chapter 3 contains my improvements to the MOD nuaghéor conducting
surfaces. It includes the new temporal basis foncand an organization of Green’s
function. The new temporal basis function contamscombination of Laguerre
polynomials so that it can automatically satisfg thitial condition. In addition, Green’s
function can be combined so that the computation ba much faster. These
improvements speed up the computation 10-20 ti@ases of unperfected conducting
objects such as skin effect loss or other typeslotrary loss with a definition in time or

frequency domain are also included.

Chapter 4 introduces the application of MOD methoddielectric surfaces. |
apply the MOD method to the PMCHW (Poggio, Mill&hang, Harrington, and Wu)

eqguation so that it can solve the dielectric olgj@etime domain.

Chapter 5 contains the method of parallelizatiotheftime domain MOD method.
The popular existing parallelization setups arstfsummarized and an explanation is
given to justify why MPI is chosen to implement tjab. | also explain the way |

distribute the matrix into different machines awdnpute the problem in detail.



Chapter 6 describes a hybrid method of MOD and iphlsptics. The MOD can
solve the problem quickly with the improvements,t dthe memory usage and
computation time still increase as a square andbe,crespectively, of the number of
unknowns. This reaches the limit of computers vguyckly. Physical optics is an
asymptotic technique and the memory usage and datnmutime increase linearly with
the number of unknowns. However, it cannot handfe fand small components
accurately. A hybrid method between these two nuths developed that can solve

some of these problems both rapidly and accurately.



Chapter 2.
Time-Domain Electric Field Integral Equation

for Conducting Object

2.1 The Time-Domain Electric Field Integral Equation

The objective of this section is to introduce hanobtain the current distribution in time
domain on structures with conducting thin wires aodfaces when illuminated by an
incident electromagnetic pulse, as shown in Figeue For method of moment, the
current on the object surfaces are solved. Theesedtwave is then computed from the

time domain Green’s function.

A
jf
Scattered wave

e
AN

-
)
Y

Is
J

S
" 7__;‘_\
> o
//./’_..---r ™
iy ) / I f //,_-’ \\
RN |E |'“  Current |
\/ U |
q /
) Object  /
Incident wave .
\1 o

Figure 2.1 The MoM scatfe_ring problem.
For a perfect electric conductor (PEC), the shdpth@ objects comes into the
picture by enforcing the boundary condition, whishhat the tangential electric field on

the boundary is zero. Therefore, one has

E'(r,)+ES¢ 1)) =0, forrOs 2.1)

tan



whereE' is the incident electric field anBS is the scattered electric field due to the
induced currenl. The subscript ‘tan’ denotes the tangential conepbnThe scattered

electric field is also expressed in terms of thedaacand vector potentials as

ES(r,t) = —%A(r -0 t) (2.2)

whereA and® are the magnetic vector and the electric scaléenpal, respectively.

They are given by

A(r,t):ﬁjs“"(r—;)ds (2.3)
o= [ 2L:0as (2.4)

and R =|r -r ' [represents the distance between the arbitrary wéosem pointr and the

source point' located on the surface. The retarded time defined asr=t - R/ c,
where ¢ is the velocity of the electromagnetic wave praison in that space. The
parameterg ande are the permeability and permittivity of free spaespectively, ana
is the surface-charge density. The electric curramtl the electric charge density

described in Eg. (2.3) and (2.4) can be expresse@rims of a Hertz vectar(r, t)

defined by
J(r t)=2u t,t) (2.5)
et '
p(r,t)y=-0.u(,t) (2.6)

Substitution of Eqgs. (2.2) to (2.6) into Eq. (2ré3ults in



o 9% ¢ ur',7) O ¢ Owu(',7) (i
[ZTO'[_ZJ.S R ds_477‘E‘J.S R dsjtan_(E r, ))tan (2.7)

Here, one obtains an integral equation with an anknvalue of Hertz potential.
Using the Hertz potential instead of current disegrovides the advantage that the
charge density is a time integral of current; drentneeds a time derivative on the whole
equation to remove this integral. When the exatatis a non-continuous wave, the
derivative will have problems, whereas the Hertzeptial does not suffer from this

drawback.

In order to solve the time-domain electric fieldeigral equation (TD-EFIE) of Eq.

(2.7) using Galerkin’s method, the basis functionsst first be defined.

2.2 Spatial Basis Functions

The potential on the wire is expanded with a pieaseviriangular basis function and on
the surface it is expanded with an RWG basis fonctirhe thin-wire structure to be
analyzed is approximated by straight wire segmexst$ljustrated in Figure 2.2. The wire
is divided intoN segment pairs. The piecewise triangular basistiom@ssociated with

the Hertz potential at theth common node at, is defined by
fo)=f 7€)+ () (2.8)

where



fa@)=q a7 (2.9)
o, r0OL;
+ + |2 2
Al =4[|r,—T,| +a (2.10)
I =r -, (2.11)

In the above equationd| is the length of the segmetif, I+ is the local position

vector, anda is the radius of the wire.
/Segment L

Segment L, \/n
I

Figure 2.2 An arbitrarily-shaped conducting wire with a segta¢ion scheme.

Assuming that the surface of the structure is tonimshed by many planar
triangular patches, consider a pair of trianglgsand T, connected with the-th non-

boundary edge, as illustrated in Figure 2.3.



area a:

Figure 2.3 A pair of triangular patches associated with a-bhoandary edge.

In Figure 2.3, is the length of the non-boundary edge (edge camtadboth

triangles) andg, and a, are the areas of the triangl€5 andT,, respectively. Vectors
p, andp, are the position vectors defined with respechtoftee vertices (vertices not
connected to the common edge)TgfandT,, respectively. The position vectpf is
oriented from the free vertex @f to any point inside the triangle. Similar remades
be applied to the position vectp}, except its direction is toward the free vertexnir
any point inT, . The plus or minus designation of the triangledefined based on the

assumption that the positive direction of the auiridow is from the triangld,’ to T .

Applying the RWG basis [2], the expansion funct@ssociated with the-th edge is

defined on the pair of adjacent triangular patdses

o) =f 0 €)4 () (2.12)
. '”+ pr, rOTy
fi(r)=12a, (2.13)
0, rQOT;



The surface divergence of the above basis funateom then be calculated as

follows. [2]
Oge fo@)=0gf 1€)+0 of () (2.14)
. J_rl—”+, rOT;
Oee fXr)={ &, (2.15)
0 rOT;

! n

2.3 Temporal Basis Functions

The Hertz vector can now be expressed in termseoRWG basis function for the spatial

variable. Hence,
N
u(r, t) = u, (tF € ) (2.16)
n=1

whereuy(t) is the transient part and needs to be expandeeiyyoral basis function.

The associated Laguerre function set is defined by

e2Li(1) (t20)
0 (t<0)

@ (t) :{ (2.17)

whereL;(t) is the Laguerre polynomial of ordef18][19]. Using it to represent the causal

temporal basis functions, the transient variatidroduced in Eq. (2.17) can be expanded

as

10



U, (t) = i U, i@ (sY (2.18)
i=0

whereu,; are the unknown coefficients to be solved amla scaling factor. Controlling
the factors allows the support provided by the expansion fienst to be increased or
decreased. The expression of the first and secendatives of the transient variations

for the solution can be given analytically as

00 j—]_
gUn(t)ZSZ{1 INEDS Lh,kJ(ﬂj( s} (2.19)
dt 2o\ 2 k=0
d? > (1 =
_zun(t)ZSZZ(_ Y+ (i- k)Lh,k]qﬂj(SI (2.20)
dt j=0 4 k=0

This assumes that the functiomg0) = 0 anddu,(0)/dt= 0 as the time response

have not started dt=0 because of causality.

In summary, five characteristic properties of tlesaziated Laguerre functions

derived from Laguerre polynomials have been usedignew formulation:

1. Causality The Laguerre polynomials are defined oQett < +oco. Therefore, they
are quite suitable to represent any natural timealo responses as they are
always causal.

2. Recursive computationThe Laguerre polynomials of higher orders can be
generated recursively using the lower orders thnoagstable computational

process.

11



3. Orthogonality With respect to a weighting function, the Lageepolynomials
are orthogonal to each other. One can construcktaof orthonormal basis
functions, which is called the weighted Laguerrdypomials or associated
Laguerre functions. Physical quantities that arefions of time can be spanned
in terms of these orthonormal basis functions.

4. ConvergenceThe associated Laguerre functions decay to zsrbnae goes to
infinity; therefore, the solution does not diveifge late times. Also, because the
associated Laguerre functions form an orthonorme| any arbitrary time
function can be spanned by these basis functior the approximation
converges.

5. Separability of the space and time variablBsie to the additive property of the
weighted Laguerre functions, the spatial and thapteal variables can be
completely separated and the time variable carob®letely eliminated from all
the computations except the calculation of the takon coefficient, which is
determined by the excitation waveform only. Thisng@lates the interpolation that
is necessary to estimate values of the currertte@charge at time instances that
do not correspond to a sampled time instance. Térerehe values of the current

can be obtained quite accurately at any time.

2.4 Testing of the Integral Equation

Substituting Egs. (2.8)—(2.20) into the TD-EFIHEHQ. (2.7) results in
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2 N o -1 f '
(ﬂzz[gun,j 20 -k)un,ijS—” AT s
N o e f (' .
-iZZUn,JsD[%(ST) R ! )deJ :(El(r’ D)tan
tan

(2.21)

Next, Galerkin’'s method is employed to solve tmtegral equation. First is the
temporal testing, where another temporal basistimmés multiplied to both sides of Eq.
(2.21) and integrated over the whole domain of 4®),+which eliminates the transient

variable. One then has

2 N o j-1
£Zz[iun,,- +z(j—k)un,kjj 21,(sR of, ) dS
4 5o 4 k=0 SR
1 N o 1 (222)
where
iR/ =], #(5)g (st sRx @ Ht
G- (SRI Q=g 4(sR ¥ F (2.23)
=1 6R Ic) j= |
0 j>i
Vi(r)= [ @ (SE' €. () (2:24)

Because of this orthogonality condition in Eg. 8,2he upper limit of the sum in
Eg. (2.22) can be changed framto i. The spatial testing can then be performed with

different f(r) (m = 1,2,...N). In this spatial testing, another basis functigfr) is

13



multiplied to both sides of Eq. (2.22) and integsathe equation for the whole surface.

One obtains

N 2 N i-1
Z[%amn-'-%lgmr}un i— Qmi_luszzz(i_ k)UmQ'mn

n=1 N .n—lk—(s) (2.25)
_IUSZZZZ(J_k)LhkAnmJ Zzo[luﬂr Annu Bnnij] Unj
n=1 j=0k=0 n=1j=
where
ol sFWc))
@ = [0 )+ [ ——F o S d (2.26)
o(-sR(29) - ' 0 27
jmfm(r)jT f £)dS dS (2.27)
; (2.28)
Aui = [ofm®)+[ J( R ¢ds as
2.29
B = jmfm()j ‘(WQD-fn(’)deS (2:29)
Qi = [ () V€ )dS. (2.30)
Finally, Eq. (2.25) can be written into a matriuatjon as
[Zo)[ U i ][ V] =223, 0 (2.31)

where
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_us? 1

Zmn _Tamn"_zlgmr (2'32)
5 N i-1 )
Vi =Qni—Us ZZ(l_ k)un,kamn_
n=1k=0
) N i-1j-1 . N i-1 /jsz 1 (233)
HUs ZZZ (=K .k Avni _ZZ(T Annijt— Bnnij] W
n=1 j=0k=0 n=1j=0 3

The matrix elemen®,, is not a function of the order of the temporaltites
functions. Eq. (2.31) indicates that the unknowaefficient of a temporal degrdecan be
characterized by its lower degrees; this leadsrieching-on-in-degree algorithm. This
can start from temporal degree 0 and solve Eqlj20Be degree at a time up to the
maximum degree. Solving the matrix equation in tmarching-on-in-degree manner
allows the unknown coefficients,; to be found for all the degrees. The electriceniris

expressed using unknown coefficients

15






Chapter 3.
The Improvements of the Temporal Basis

Function

In the previous work in this field, the associatedjuerre functions were chosen as the
temporal basis functions. However, this choice baslrawback; namely, that the
derivative of the associated Laguerre function ®arsummation over its lower degrees.
Consequently, the final equations that are congeatly used contain many summations.
Therefore, the use of a new basis function setchvig a combination of associated
Laguerre functions, is proposed here. This new sbd&gnction set retains all the
advantages of the associated Laguerre functionsewts derivative now is another
combination of associated Laguerre functions imst#faa summation, which reduces the

computation time by a factor of about 10 to 20.

In addition, in Eq. (2.23) of the previous chaptbBe lower degree temporal basis
functions with different retarded times were no den orthogonal to each other.
Calculation of the coefficients for each degreeuneql integration over the previous
polynomial orders to eliminate the components efltbwer degree basis functions. This
takes significant CPU time and results in a comjally inefficient procedure.
Therefore, a new computational form of the Gredéuwgtion is used to treat the retarded
time component associated with the basis functadre lower degree in order to reduce
the operation count. This results in an increasténcomputational efficiency over the

original formulation.
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In this chapter, the novel transient basis funcisofirst described and a form of the
new Green’s function in the MOD method is introddic&lumerical results are then
presented to show the efficiency and accuracy & improved formulas. The
improvement in efficiency gives ordinary PCs thepatality to calculate transient

responses from full-sized aircraft and their ressale shown in this chapter.

3.1 New Combination of Temporal Basis Functions

In order to improve the computational efficiencyettemporal basis function is
represented by a combination of three associatepidree functions with successive

degrees multiplied by some unknown constants fer tthnsient coefficienti, (t), as

described in [21]

10 =3t (#,(5) - 20 ()+@.2( 9)) 3.1)

j=0

Referring to the property of the Laguerre polyndmia9], the derivative of the

Laguerre polynomials can be expressed as a suis lofner-order components as

j-1
%Lj (s =-12y(sh=-3 L,(s) (3.2)
p=0

From Eqg. (3.2), the derivative of the associategueare function is written as

d s i1
Y =2 (sh- S @ (st (3.3)
p=0
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Using the property given by Eqg. (3.3), the firsdasecond derivatives of the

transient coefficienti, (t) of Eq. (3.1) can be derived and represented asrdioation

of associated Laguerre functions of different degray:

%Un(t) =Z§un,j(¢j(sb—<q+z(s)) (3.4)
j=0
d2 00 SZ
Sz O0=2 Uy (4 (50 + 20,4 ()4 ¢.2(9)) (3.5)
t =" 4

In contrast to the conventional MOD method [16][1Where the transient

variable is expanded by a single associated Lagdenction sey (st), as depicted by

Eq. (2.18), the new temporal basis function presgbhere is formed by a combination of

three associated Laguerre functiog(st), @.4(st), and@.,(st), for each degreg.

The use of this combinational temporal basis fumctet means that the first and second
derivatives of the transient variahlg(t) expressed in Egs. (3.4) and (3.5) contain fewer
terms in the summation compared to those usingdneentional MOD. This is due to

cancellation of the lower-degree components indésvatives of the three associated

Laguerre functionsg (st), ¢1.1(st), andg.,(sh). This cancellation leads to fewer terms

to be computed and a shorter time for the compartati

Substituting Egs. (3.1), (3.4) and (3.5) into E{j16), the TD-EFIE are expressed

by the spatial vector functiof (r) and the temporal functiog (St) =24, (s +¢..(s)

as
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[4ﬂjszz niR 4 ( (sr)+ 2§0+1(3')+{@+2($))f ') ds
n=1 j=0
(3.6)

4,75!322 i =(B()-28.0(3) 23T+, ) dSJ =E'¢. ),
tan

n=1 j=0

After expanding the terms inside the summation r@edmbining the terms with

the same degree of associated Laguerre functiogs,(E6) can be rewritten by

introducing two temporary parametegs; and dn,j as

(Izien, ()1, ds

n=1j=0

(3.7)
jz_;%dnj @ () O+, () dSlan:(Eif , p)tan
where
€= thij2T2W 1t W (3.8)
o j =t o2 =20 o1t Wy (3.9)

whereu, ; =0 is assumed fgr< 0.

3.2 Testing Procedure and the Matrix Equation

Similar to the testing procedure described in trevipus chapter, Galerkin’s method is
used in temporal and spatial testing. Applyingtgraporal testing with a testing function

@(st) yields

20



( JZZ%J]-S ||J(SRI()f(r)dS

n=1 j=0
(3.10)

IZZdnJ 1 (SR 9 O™, (r)ds,] =(v'6)
tan

n=1 j=0
wherel;j(sRc) andV'(r) are given in Egs. (2.23) and (2.24).

It is important to note that the basis function;itamm a combination of three
associated Laguerre functions, while only one isdufor testing. Further, applying

spatial testing to Eq. (3.10) with a testing fuantf (1) yields

HZZ% 'ij(SRIQfm(f)'fn(') ds ds
n=1 j=0
- J-f (U J. zzdnj Ij SR/C)D'f (" )dS d: (3.11)
n=1 j=0

= Isfm €)' ()ds

Equivalently, Eqg. (3.11) can be written as

SZ,U N i
Tzzen,j'afnnu zzdn Bﬂnlj m,i (3.12)
n=1 j=0 €= 1j=0
where
Auij = [ () J —13(sR 9f o€ ) dSa (3.13)
Broni jmf (r)j |,J(ng/o O ¢ ") dS d (3.14)
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Qi = [ fm()V'€) dS (3.15)

Using Eg. (2.23), Egs. (3.13) and (3.14) fori can be written as

1 (- ,
G = A 1= [l < sﬁe( SRk ¢ dS ds (3.16)

1 - I I
Bron = anij‘ Fi :ISD'fm(r)Isme( sR@9) ) dS ds (3.17)

Finally, transforming the variables; andd,; back intou,; according to Eq. (3.8)
and (3.9), and moving the terms associated wjtlof degrees smaller thario the right-

hand side, yields

A i 1 U
zun,i [STluamn"'zﬂmnj=Qmi_7ﬂ2(un+2+2un1’-l)amn
n=1 n=1
1 N 2 N i-1
- (un,i—2_ ZJn,i—l):an_MZZ(un,j—Z-'- Ay gt l41,1') Annij (3.18)
€ =1 4 3%
1 N i-1
_ZZZ(U”J‘Z_ A, jqt Un,j) Brnij
n=1 j=0

If the unknown coefficientsi,; lower than degreeare known, then the coefficients

un; of degrea can be solved by Eqg. (3.18) in a marching-on-igrde manner.

3.3 Property of Green’s Function Terms

Note that the ternkyj(sRC)/R, which is the Green’s function after testing, &is all the
calculations 0fAynj andBmyj. In Eq. (3.13) and (3.14), the associated Laguermetions
are not orthogonal, due to the involvement of tee@nded time factor; therefore, the

computations cannot be simplified using the ortmadity between the functions. This
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results in a need for a much longer CPU time topdeta the computation of the Green’s

function. Therefore, a new Green’s function is geed that groups the retarded-time

terms, in order to minimize the repetitive compiotasg for the Laguerre polynomials of

different degrees and the floating-point numberisiims for R. Defining the two

parameter&m, andhmn associated with the new Green’s functions as

i—1

kmni = (un, -2 + 2l'In,i—l) amn+ Z( l'In, j—2+ 2un, j—1+ uﬂ]) Afnnij
j=0

-
:J.sfmf )J.J n€ )R{(Un 2t 2Jn,i—l) li SR ©) (3.19)
i-1
+Z(un,j—2+ Uy gt Un,j) l; 6R c)| dSdS
j=0
and
i-1
ni = (Un,i—z _2un,i—1):3mn+2( Uy 272Uy 1t un,j) Buni
j=0
! I l
:J.SD‘fmf )J.SD *faf )ﬁ((unm - mn,i—l) li 6R ©) (3.20)
i-1
+Z(un,j—2_ Y, -t Un,j) lj 6F )| dSdS
j=0
Eqg. (3.18) can be expressed as
N 2 1 82# N 1N
nzziun,i [Tﬂamn+zlgmn :Qmi_Tékmni_gnZ:‘ihmn (3-21)
wherem=1,2,....N andi =0,1,2,...] . This can further be represented in a matrix fagn
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[Zawnl o L iy =[] (3.22)

where

s? 1
Zmn = 4,U amn+;:8 mn (3-23)
_o _SUR
Ymi= Qm,i - 4 Z kmnl Z hmnl (3.24)
n=1

For any temporal degreig, the coeffi(:ientsunliO can be computed by a MOD

procedure using Eq. (8.23), providing that all tlmver-degree coefficients for

i=0,12,...i, — Thave already been computed. Using the computatsmhame outlined,

the computation time can be significantly reducgdalfactor of more than ten for most

applications, when contrasted against the useeotdinventional MOD.

3.4 Improvement of the Computation Time

The improvement of the computation time for solvthg TD-EFIE with the new MOD
scheme outlined in this chapter can be quantize@gproximating the computational
efficiency in terms of the order of magnitude (called bigO notation) of the total
number of operations, which mainly depends upon rtfeximum number of spatial
unknownsN and the maximum temporal degreelhe TD-EFIE formulations given by
Eqg. (2.31) and Eq. (3.22) allow determination e ttumber of operations needed for the
floating-point divisions and the calculations ofetlhaguerre polynomials using the

conventional MOD and the new MOD, as listed in Eabll.

24



Table 3.1.The number of operations for the conventional &ednew MOD methods

The conventional MOD in Eq.  The new MOD in Eq.

(2.31) (3.22)
Floating point divisions O(N?1?) O(N?I)
Laguerre polynomial (9(N2I 3) (9(N2I 2)

computations

These two computation tasks are the most time-comguin the MOD solution
procedures because the number of floating-pointsidins involves many instruction
cycles and the calculation of the Laguerre polyradsnrequires a recursive algorithm.
Table 3.1 also shows that the a relatively small@mber of operations is needed for
these two computation tasks in the new MOD whenpared to the conventional MOD.
This achieves a significant reduction in time folving the TD-EFIE. The improvement
in the efficiency of the new MOD is better illuged by numerical examples in this

chapter that compare the computation time for tiheseVlOD methods.

3.5 Solution for the Unperfected Metal Surface

The objective of this chapter is to present a smumethodology for the analysis of
arbitrary frequency dependent losses on condudiingtures in a time domain electric
field integral equation. An implementing methodpi®posed whereby the convolution
between these two functional variations — namegyldss factor and the current density
— can be treated in an analytical fashion, resgiliman accurate and efficient solution

methodology.

The parameters of the loads, such as resistodsiciors, capacitors, or skin

effects are usually specified in the frequency dom@herefore, if one transforms this
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functional variation into time domain, this resuits a convolution between these
temporal functional variations of the loads witle ttransient current densities on the
structures. In this section, both of these tempweaaktions are expanded in terms of the
associated Laguerre functions. Hence, in this sitna this convolution can be
analytically performed in an efficient and accuratay, thereby simplifying the

calculation.

The concentrated or distributed loads appliedaiedacting structures are often
described in the frequency domain as a functioftemfuency, byZ(w). Therefore, when
transferred into the time domain, this represen&rgporal response characterizedzy.
On the surface of the objects, the boundary cantirelated to the tangential

components of the electric fields are given by
i _9 _ _
(Feo),,+(-sAto-00cn)] =20aro (3.2

where [ denotes the convolutiorA(r,t) and @(r,t) are the magnetic vector and the
electric scalar potentials, respectiveB/(r.t) is the incident wave. The subscrifatn

implies the tangential components. Furtherméyg,t) and @(r,t) can be expressed in
terms of the current densifyand the charge densjty as indicated in previous chapter in
Eq. (2.3) and (2.4), and can be further expressashe Hertz potential, as in Eq. (2.5)

and (2.6).

The time varying loads are also expanded by thecated Laguerre polynomials

as
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201)=Y 2,6 a(s) (3:26)
k=0
where

Z,(r) = j: Z(r Hg. (s dt (3.27)

By applying the same expansion procedure as intediun Section 3.1, the TD-

EFIE is then expressed in terms of these basidianscas

N 1 &2 '
[%TISZZUM E%(% () +2¢ 4 (F)+ ¢ .o( sr))fn (') ds

n=1j=0
0 ¢ 1 o
_ﬁjs;;)“n.j5(4"1(9)—2@+1(9)+¢f+2($)) O'+f, ¢') dS - (3.28)
o N o |
+3 2N ASIOTY Y G2 (@ -aa( ) O =€)
k=0 n=1j=0

This equation is almost the same as Eq. (3.6),pxXoe the additional term for the
loads. In Eg. (3.28), a convolution must be perfednbetween two associated Laguerre

functions. This can be analytically calculated 2 [

st-9

a(sHOp(sh=[e? k(s e ? st d

st
e 2L &), 65 )XE)

st

=€ 2[ L, j(S) = Lesjua( Y (3.29)
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The temporal testing is applied first and thengpatial testing. As in Section 3.2,

multiplying with the testing functiog(st)to Eq. (3.29) and then integrating over the
domain [0, +o) yields

( Izz(unl 2+2unl 1t Uy 1 'u(SR/Qf ') dS-

n=1 j=0

fZZ(Un, 272Uy it Uy ) l., (SR QO-f, (' )dSJ (3.30)
tan

n=1 j=0

s ioj (1) =% 40)-
550 -0,

n=1j=0 | i- 2(r)+Z - 3(r)

whereV'(r) andlj(sRc) are same as previously defined in Eq. (2.23)(ariz4).

Furthermore, application of a spatial testing ¢p 6.30) with the testing function

f,(r) and then integrating it over the surf&®gelds

2 N
S_/Jzz nj 2 n,j—1+q~|,j)Annu ZZ(LH] 2" 2”\] 1+ Lﬁ )%nu

4 n=1 j=0 n=1 j=0 (3 31)
s&, Zmn,i—j_zmn,i—j—l_ .
+_ZZ Un, j :Qm,i
2 n=1j=0 Zmn, i-j—-2 + Zmn,i— -3
whereAmni;, Bmnij, Qm,i are defined in Eq. (2.28) — (2.30), and
Zoneic = [ (20 T off )+ £ ) S (3.32)

Finally, the above equations are written in a foiat is now amenable to the MOD
method by moving all the terms associated withto the left hand side and the terms

associated withu,; (j<i) to the right side of Eq. (3.32). Once the coeffits un;
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(=0,1,2,...i-1) are evaluated, the unknown coefficient of tegtrdegreau,; can easily

be accomplished as

N 2
s u 1 S _
nzz‘icn,i (T AmnOO +E er00+5 ZmnO} -

N

2 N
Qi -2H (Cn,i—2+2Cn,i—1) AnnOO_%Z( Caf 2™ 2an—]) Brnoo

4 n=1 n=1
NS 1N i (3.33)
_TZZ(Cn,j—Z"'ZCn,j—l"'qu) %nij‘EZZ(%,j—z_z‘ﬁ,j—lJ’ 94‘) Bhnij
n=1j=0 n=1j=0
—EZN:i_lC [ Zmni-j = Zmii-j1
215355 "N Zoni- -2t Zoni-j-3

Not surprisingly, Eq. (3.33) is the same as Eql8B which is the perfect
conductor case, except for two terms of loads. Wten loads are zero, Eq. (3.33)
changes back to Eq. (3.18). This equation can apjdysame marching-on-in-degree

technique and all the other improvements.

3.6 Numerical Examples for the Improved Time Domain MoM

In this section, some numerical examples are ptedeto illustrate the methods
introduced in the previous sections. The resultsiobd in the time-domain are then
compared with the IDFT of the frequency domain gohs to validate the accuracy. In
addition, the results are also compared with theTMi@ethod to assess the performance
of these numerical methods in terms of accuraeyildy, and computational efficiency.
The comparisons are made realistic by using theesaurface mesh for the MOD
approach, the frequency-domain method, and the M@ihods for the analysis of the

conducting and dielectric structures.
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3.6.1 Use of Various Excitation Sources
Two types of transient plane waves used to illuterithe scatterers are presented in this
chapter: the Gaussian pulse dngdulse. The temporal electric field shaped by asS&un

pulse is given by

E(r,t) =E, v (3.34)

4 &
JnT
where

_4 »
y-?(ct—clb -r -k) (3.35)

The parametek is the unit vector along the direction of wavepgagation,T is

the pulse width of the Gaussian pulse, anés the time delay, which represents the time

from the origin at which the pulse reaches its peak

TheT-pulse is a discrete time signal, with most opitsscribed energy focused in
a given bandwidth [22][23]. It is a strictly timarited pulse with the added stipulation
that 99% of its signal energy is concentrated maerow band. Hence, effectively, the
pulse is also approximately band limited. In addhtithe pulse can be designed to be
orthogonal with its shifted version as well and ¢&ave a zero DC bias if required. By
interpolating this discrete pulse, a continuouseuan be generated while its bandwidth
remains approximately the same. The mathematigargéon of al-pulse is described
in [24][25]. Figure 3.1 shows the transient andjfrency responses ofTapulse that is 6
light-meters (Im) in duration. Most of its energydoncentrated in the band from 0—-200

MHz and only less than 0.008% of the energy is afuthis band; therefore, this time
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limited pulse is also practically band limited atidus is very convenient for system

applications.

Next, responses of the system to these pulsessaesded.

Normalized Amplitude
°© o o o o o
N 1% o N @ O

Normalized Magnitude
o
w

0 50 100 150 200 250 300
Frequency (MHz)

(a) Temporal response. b)(Spectrum.
Figure 3.1 The T-pulse.

Time (Im)

3.6.2 Improved Performance in Accuracy and Stability

Example 3-1: A Pair of Conducting Plates

The first example deals with a pair of Imx1m pdfjeconducting (PEC) plates
forming a narrow angle (5°), as shown in Figure 32 objective is to demonstrate that
the shortcomings of the conventional MOD in [15htturacy and stability are alleviated
in this new MOD formulation. The surfaces of theotwlates are discretized into
triangular patches, as shown in Figure 3.2. Thexe2@4 patches and 435 edges. Some of
the patches along the connected edge of the twal mlettes are in very close proximity
to each other; this results in strong coupling leetvthem. Hence, a highly accurate

computation is required for the spatial integralerdhe patches.
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The incident wave is &polarized Gaussian wave arriving frogn= 0° and

@ =0° with a pulse width of 8 Im and delayed by 12 Inerél 1 Im is 3.33 nanoseconds.
The wave has an approximate bandwidth of 120 MHze induced current on this
conducting structure is calculated by the frequesh@yain MoM, the new MOD, and the
conventional MOD method in [15]. The current acrties edge connecting the nodes (0,
0, 0) and (0.0375, 0, 0) are plotted in Figure 8Bh the three plots marked as IDFT,
Improved MOD, and conventional MOD, respectivelfeTIconventional MOD in Figure
3.3 is obviously completely unstable, whereas e mproved MOD method is stable

and its results agree with the IDFT of the freqyedemain solution.

When the conventional MOD method in [15] is use@mnalyze this structure, the
spatial integrals over the patch are tested atéiméer of the patch only. This leads to an
error, which may result in an unstable solution. fBgt employing the temporal testing
followed by the spatial testing, the retarded tierens can be handled analytically in the
new MOD scheme, as opposed to the conventionalTmne.example illustrates that the
approximations used in the conventional MOD mayl leathe failure of the method for
some types of scatterers. However, this shortcormamgbe eliminated by using the new

MOD methodology.
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Figure 3.2 Triangular patch model for a pair of 0.64%.6 m conducting plates

connected at an angle of 5°.

Conducting Plates

e IDFT
Improved MOD
-~ ~ Conventional MOD

0.5f

Current (mA/m)
o

-0.5¢

0 5 1I0 1I5 2I0 2I5 30
Time (Im)
Figure 3.3 Current on the conducting plates computed byrttpgoved MOD method

plotted against the results from the convention@D/and the IDFT of the frequency-

domain MoM solution.

3.6.3 Improvement in Computational Efficiency of the NewMOD Method
The utilization of a combination of associated Laxga functions as temporal basis
functions, as well as the introduction of a new heatatical form of the Green’s

functions, leads to a simplified formulation in thmeew MOD method. This also
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significantly reduces the computation time by aistea factor ofen, thereby making this
new method as competitive as the MOT algorithm.séhelaims are illustrated through

some examples.

Example 3-2. A Dipole

Consider a 1 meter long dipole placed alongxtais and illuminated by &-
pulse of width 6 Im, starting at 8 Im. The pulses lzan approximate bandwidth of 200
MHz. It is incident from the-axis and is polarized along tleaxis. Figure 3.4 plots the
current at the central point of the dipole, caltedausing the conventional MOD, the new
MOD described in Chapter 8, and the IDFT of theg@iency-domain solution. The
highest temporal order of the Laguerre polynomigeasted is 50 in the two MOD
calculations. The computation time needed fortal time-domain methods are listed in
Table 3.2. Figure 3.4 shows that the results ofcthreventional MOD and the new MOD
completely overlap, and they agree well with th&TDof the frequency-domain solution.
However, the computation time for the new MOD meétlwer the conventional one is
less by a factor of eighteen (46.3s as opposed4tasp Figure 3.4 also shows that the
conventional MOT method becomes unstable at atiate (after 15 Im), although it

takes the least amount of computation time.
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Figure 3.4 Transient response at the central point of tpeldidue to an incidefit

pulse.

Table 3.2 Comparison of the computation time forlie analysis of the dipole using
different time-domain methods

Methods Total Calculation Time (S)

The conventional MOD 46.30
The new MOD 2.45
The MOT 2.04

Example 3-3: A Helix

Next, consider the analysis of a helix with a heigh8.8 meters and a radius of 2
meters, which contains 100 spatial unknowns. lis &« oriented along the-axis. A

plane wave consisting of &polarizedT-pulse is incident fronp = 0°and8=0°. The

T-pulse has a pulse width of 6 Im and starts at.8tifmas a bandwidth of 200 MHz. The
transient current near the end of the structureomputed using the improved MOD

method. This is plotted in Figure 3.5, along whk tesults from the IDFT of a frequency
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domain MoM solution, the conventional MOD, and th&OT techniques. The
computational time required by all the methodsistetl in Table 3.3 for comparison.
Figure 3.5 shows a very good agreement betweensthations obtained by the
conventional MOD, the new MOD, and the IDFT of thequency-domain solution. The
computational time required by the conventional M@Dwenty-two times greater than
that of the new MOD (326.2s and 14.23s, respegfivélhe MOT can solve the problem

much faster, but its result starts oscillatingraearly time, as shown in Figure 3.5.

Helix

0.8

% IDFT
0.6f * MOD
Improved MOD
0.4f -~~~ Mmor
< 0.2
£
c
o
5
O -0.2
-0.4f
06011
by
by
.0.8 g 1 L L L L L
0 20 40 60 80 100 120

Time (Im)

Figure 3.5 Transient response at a point near the end dfiéhie

due to an incident-pulse.

Table 3.3 Comparison of computation time for the malysis of the helix using
different time-domain methods

Methods Total Calculation Time (min)
The conventional MOD 326.20
The new MOD 14.23
The MOT 6.66

Example 3-4: A Loop Antenna

36



A loop antenna with a diameter of 0.5 meter is @bt theXoy plane. Ay-

polarizedT-pulse of duration 10 Im and delayed by 8 Im isdeat from thex-axis. It has
a bandwidth of 120 MHz. The highest temporal omlethe Laguerre polynomials used
is 100. In this example, the solution obtainedh®y ¢conventional and the improved MOD
are transformed into the frequency domain, and ewetp with the frequency-domain
MoM solution. Figure 3.6 plots the currents on khep at a point (0.25, 0, 0) m in the
frequency domain. The results from the two MOD rodthagree very well, along with
the frequency domain MoM solution, in both magnéuahd phase. The computation
time to obtain the time-domain solutions using tthe MOD and the MOT methods are
listed in Table 3.4. A much shorter computationetjrny a factor of 25, is required for the
improved MOD than for the conventional MOD methdtbr this structure, the new
MOD technique is faster than the MOT method, whaesailts are not shown because

they are highly oscillatory.

Loop Antenna Loop Antenna

X Frequency domain MoM X Frequency domain MoM
*  MOD | *  MOD
—— Improved MOD

0.9F 1
— Improved MOD

Magnitude of the current (mA)
Phase of the current (rad)

20 40 60 80 100 120 20 40 60 80 100 120
Frequency (MHz) Frequency (MHz)
(@) (b)

Figure 3.6 Current response in the frequency domain at iat jgoi the loop antenna

illuminated by ar-Pulse. § Magnitude. ) Phase.
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Table 3.4 Comparison of computation time for the malysis of the loop antenna
using different time-domain methods

Methods Total Calculation Time (s)
The conventional MOD 155.56
The new MOD 6.20
The MOT 6.90

In summary, the analysis of the four wire structudescussed so far reveals that
the computed results using the new MOD method ateonly accurate and stable, but
the computation time has been reduced at leastnbyprder of magnitude over the

conventional MOD method.

3.6.4 The Examples of Large Objects

In this section, results of scattering from variosisapes and sizes of conducting
structures with relatively large sizes are presénte demonstrate the improved
performance of this new time domain MOD algoritHaxample 3-5 is a simple sphere
with a large number of meshes. Comparing it to fileguency domain results will
illustrate the accuracy of the MOD method. The nexd examples are a sedan and a
plane, which show that the MOD can be used fortrantyi objects with a large number of

unknowns.

Example 3-5: A sphere with 1 meter radius

A sphere with 1 m radius is illuminated by#gpolarized incident T-pulse plane
wave. The back scattered wave is computed andethdtiis compared to the result of a
commercial frequency domain MoM solver HOBBIESested two T-pulse waves, one
with a bandwidth of 200MHz, as shown in Figure 3The other has a bandwidth of

400MHz, by scaling the T-pulse in time domain. R@MHz pulse results in a mesh
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with 14738 triangular patches and a number of unkisoof 22107. The 400MHz pulse
results in a mesh with 39810 triangular patchesaandmber of unknowns of 59715. The
d-component of the back scattered wave is plottefigure 3.7 and Figure 3.8 along
with comparisons with the HOBBIES results. Thesetpkhow that the MOD results

agree well with the frequency domain results ftarge number of unknowns.

0.5

HOBBIES
TDIE B

Farfield (V/m)

0.4 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec) x 10"

Figure 3.7 The 8-component of the back scattered wave from a lnusad sphere with

an incident pulse of 200MHz.
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Farfield (V/m)

_05 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec) % 10"

Figure 3.8 The 8-component of the back scattered wave from a lrnusad sphere with

an incident pulse of 400MHz.

Example 3-6: A sedan

The scattering from a conducting sedan with size wfx 1.8 m x 1.8 m is shown
Figure 3.9. A total of 15262 patches and 22893 gdge used for the triangular patch
model of this structure. It also has a small dipeith two piecewise sections on top of
the sedan. The transient current is computed omdhiele when the sedan is illuminated
by a &polarized 200MHz-bandwithed T-pulse, as shownigufe 3.1, incident head on
from ¢ = 0° andd=90". The transient current computed by the improvediM®ethod
is plotted in Figure 3.10. The current moves frdra head to the tail of the vehicle, as

expected.
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Figure 3.9 A sedan with triangular mesh.

@t=45Im

(b)t=6Im

41



(c)t=75Im

(d)t=9Im

(e)t=10.5Im
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(f) t=12Im

Figure 3.10 The current distribution at different time steps.

Example 3-7: A plane

In this section, a Boeing-737 aircraft with a s@e26 mx 26 mx 11 m is
analyzed. The surface is discretized using 472hgular patches with 7327 edges, as
shown in Figure 3.11. The structure is excited Byp@ulse coming from the head of the

plane @=90° andg=0°). The pulse has a pulse-width of 25 Im, a tirelag oft, =17.5

Im, and a bandwidth of 50 MHz. The transient curdistribution on the structure from

t =30Im to t =100Im is computed using the new MOD method and istgtbin Figure
3.12. The values of the current for all time inssamave been scaled. The darkest (blue)
color is defined as 0 mA/m, whereas the lightestiXicolor is used for all currents larger

than 0.3 mA/m.
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Figure 3.11 Triangular patch model for a Boeing-737 Aircnaith a size of

26 mx 26 mx11 m.

(& t=301Im ©) t=35Im

(c) t=40Im d) t=45Im
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(c) t=60 Im @d) t=100 Im

. E
0 1 2 3x107
Figure 3.12 Transient current distributions on the Boeing-ag¢ratft.

From these examples, the MOD method proposedtimsichapter can be seen to
speed up the computations by a factor of more ttanThe method retains all the
advantages of the conventional MOD method, whigedhlculation time is significantly
reduced. The numerical examples show that the teesigree well with the solutions

obtained from a frequency domain MoM and the oagMOD method.
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Chapter 4.
The Time Domain MoM Method for Dielectric
Objects

For dielectric objects, the equivalent principleds both electric and magnetic current to
represent the materials in the other domain. Sglioth currents requires the boundary

conditions for both electric and magnetic fields.

Suppose there is a dielectric object as shownguargi4.1. The region of outside
vacuum is called region 1 and the dielectric objgedalled region 2. No physical surface
current exists for a real dielectric object; howe\he equivalent principle allows us to
remove the dielectric object and define two elecand magnetic currents on the surface
so that the field in region 1 is the same as inathginal problem. In the same way, one
can replace the vacuum in region 1 with a diele@rnd define another set of electric and

magnetic currents so that the field inside regiosthe same as in the original problem.

_ Scattered

- wave
Incident /: J \\
wave \f/é‘ \
A2
\ Region2 /
\Qelectri/

Regionl ——

Figure 4.1 Problem for a dielectric object.
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Therefore, the boundary condition for dielectrigealts is given in Eq. (4.1) and

(4.2) for the case where the excitation locataggion 1

(—ES(J,I\/I))taln ={(Ei3ta”' ’ :2 (4.1)
, V=

(—HE(J,I\/I ))tan ={(Hio)ta”’ ’ :z (4.2)
1 V =

whereE;(J,M) andH>(J,M) are the scattered electric and magnetic fieldegionv.

Eq. (4.1) is called the Electric Field Integral Btjan (EFIE) and Eq. (4.2) is called the
Magnetic Field Integral Equation (MFIE). Adding Eg.1) to (4.2) gives the Combined
Field Integral Equation (CFIE). In addition to teethree equations, the PMCHW
(Poggio, Miller, Chang, Harrington, and Wu) equatis another method for solving this
problem. It adds the incident and scattered wavéa® domains up on the boundary, to

give the following equations

(-E5a.M))_+(E30 M) = E') . (4.3)

tan

(-riom),, +(Hz0 M) = ) (@.)

tar

4.1 Time Domain PMCHW Equation

The PMCHW equations given in Egs. (4.3) and (4a}) be used to handle time domain
problems. Unlike the EFIE, the electric vector pigEd and magnetic scalar potential are

also needed to formulate the scattered fieldshawis in Egs. (4.5) and (4.6).
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2 .
Z( AVE D+ 0D, € 0+ 0F ¢ t)J =E'( 1) (4.5)

v=1 v

2 1 )
> ( Fr,t)y+0%,¢,t)- IU—DXA L€ t)j :(—| ' ,t))tan (4.6)
tan

v=1 v

where A is the magnetic vector potentiaP, is the electric scalar potentidf, is the
electric vector potential, andl is the magnetic scalar potential= 1 or 2 identify the

regions of different materials. These potentials lsa calculated by

A, )= ”jSJ(rRT v) 4 @.7)
F,(r,t)= HJSM(rRT ) gs (4.8)
2,002 [ P as 4.9)
v, (r,t)= 4771% [ p’“(rF;’ ) gs (4.10)
r,—t R (4.11)

whereJ andM are the electric and magnetic current, respegtiaidp. andpn, are the
electric and magnetic charge density, respectiielyepresents the distance between the
observation point and the source poimt, the retarded time is denoted hy and the

velocity of the electromagnetic wave propagatethenspace with medium parametexs (

w) is 6, =11\g, 4, .
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The curl of the electric or magnetic vector potdrdan be expressed as

iDXFV(r,t):il'n M ¢ ,t)+IDXM(r \T,) S (whenv =1 it is positive and 4.12)
v 2 s 4R v = 2 is negative)
' h =1iti iti d
iDXAV(r,t):i}n xJ (, ’t)+IDXMdS' (whenv It IS positive an 4.13)
v 2 s 4R v = 2 is negative)
M(E',7,) 10 R R
Ox———Y2=——M( ", 7,)x—=+M ( ', 7, )x— 4.14
= ¢ ot €)M Ch) =2 (4.14)
Jr',r,) 190 R R
Ox———*2=——J(@",1,)x—=+I( " 1,)*x— 4.15
= ¢ ot (. z)xoH ) = (4.15)

The time derivative of the potentials is handledriyoducing Hertz vectors(r,t)

andv(r,t) for the electric and magnetic currents, defingd b

J(r,t) :%u t,t) (4.16)

M ,t)=%v( 1) (4.17)

and the relation between the Hertz vectors ancliwetric and magnetic charge densities

are given by

Pe(r,t)=—0eu(,t) (4.18)

Pm(r,t)==0ev (1) (4.19)

Substituting Eqs. (4.7) — (4.19) into Egs. (4.5 g4.6), the TD-PMCHW is

rewritten as
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2 2 ' ] '
M, 0 u(r',z,) O (', 7,)
Z( i -dS - [ v! dS

S\ amar? 47, R
1.(1d° R 9 R 429
+— | | ==—=v(' —+—vi' —|dS| =[E"r( ¢
4rr S(czatz G gt ! TV%RZJ Ln ( ( )tan
2 2 I 1 I
Z ia_zj' V(I’ ’Tv) ds - 0 J' 0 V(r ’Tv) ds
~| 4779t?’s R 4mu,’s R
1, (10? R 9 R @2
(=Lt x~+Zu 7 k= |dS | =[H'r( ¢t
47 S(c\,atz Crogtar TVYRZJ Ln ( ( )tan

4.2 Basis Functions of the Time Domain PMCHW Equations

These unknown Hertz vectougr t) andv(r,t) are spatially expanded by the RWG vector

function sef(r) as

N

u(r, )= u,(f o) (4.22)
n=1
N

v(r, 1) =2 o (O f ¢ ) (4.23)
n=1

and the transient coefficients in Egs. (4.22) ah@3) are further expanded by using the

new temporal basis functio} (st) =24, (s +¢..,(s). One obtains

(0=t (2,(0- 20, ()+@.( 9)) (4.23)
=0

V(=30 (450 -201( S0+ Gl ) 4.25)
=0
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Substituting Eq. (4.22) — (4.25) into Eqs. (4.260 §4.27) results in

2 N o
Z(MZL ;Zun, 4(<o,(sr)+2¢,+1(s )+ @2( %)) €) dS

=1

13|, RZum(w(sr) 201 (5,)+ 2(8,)) 01, €) dS

4778 o

2 N o 2
1 ( Ls ZZ ][40( )+2{01+1(S—v)+§01+2( S-v)]fn(r I) X%J dSJ
tan

n=1 j=0

[ ZZ qle(s) - ¢j+2(gv)]fn(r')x%] dS]
tan

n=1 j=0

= (Ei (r ,t))tan
and
2 N 00
Z[j—“ZIS %Zv -%(ca<st)+2cq+1(st)+<q+z(su)f ¢') ds
v=1 n=1 j=0
47% ZIIS RZvn,(w(st) 204 (sY+ ¢ .o(Y) T'+f, ') de
+i [ ZZunJ[qa(srmz(pﬂ(s)+¢+z(s)lf (r)x—} ds
CV 4 _1J 0 tan
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c L3S0 () g ) 2 | s
4777 S| 2 n, JL¥IN=v J+2\ <Fv/lin R2 t

n=1 j=0

=(H'¢ ) (4.27)

tan
4.3 Testing of the Time Domain PMCHW Equations
Following the testing procedures described in $eck.4 for applying the temporal
testing first and then the spatial testing, oneiist

2 S2 N i

Z('UVTZ Z U j (A\;mij +2 A0 1t Atni, i+ 2)

v=1 n=1j=0

N i

1
=22 Uy ( B = 2B jr2* B, jr 2)
&y n=1j=0
1 2 N i
+—S—Z D Vnj (CXmij +2Coni, jr1+ Conni, j+ 2)
¢ 4 n=1 j=0
S S \Y \Y E
+EZ Zvn,j (Dmnij ~ Dmni j+2) =Qn,i (4.28)
n=1j=0

and

2 2 N
Z(‘EVS 22 Vnj (A\:mij +2 Atni i1t A, j+2)

4 n=1j=0

N i

1
=2 2 Vo ( B ~2Bni j+1 B i 2)

Hy w21 j=0

. 12N . ( v oy e )
4 2 : z : n, j mnij mni, j+1 Cmni, i+2
& 4 haj=o
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N i
+§Z Z un,j ( mnij r\T/1n| J+2)J = Qr|n-|,i (4.29)

n=1 j=0

The integrals in Eqgs. (4.28) and (4.29) are given b

At = | fml®) J ~—1jlta,)T of )9S'dE (4.30)
By = [0 fm<r>j ~—Tylta, )T of )aS d (4.31)
Chni = [ n®) [ o S)fnr )><— ds d (4.32)
Dinni = [ () j lllCr R o6 )x— ds ds (4.33)
G = A = [Ful0)e] S#e('td'v/z)f £ dS de (4.34)
B = Bl =[O (r)j L dHwPmg ¢4 ds (4.35)
mn nlj FI m n .
[ SRJr
Vo= Cl| s = [ F o) = i £ )x ds d (4.36)
1 (;Rl R
an_D\r%nu J‘Sfm(r)'jsz_[e & n@l)x?deS (4'37)
Qri = [fm)V FE)ds (4.38)
Qi = [ fm) V') ds (4.39)
tay =SR ¢ (4.40)

Transforming Eqgs. (4.28) and (4.29) into a matrotnd, the TD-PMCHW

formulations are expressed as
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where

2 2
S 1
z:ﬁ%,=z{”V—a¥m+—ﬁ¥m]

v=1
2 2
1ls S
Zhi= Z{——%ngﬂm}

2 2
1s S
Zoon :Z{EZ V\r41n+_2/\/¥nn}

E E 2 /’II/SZ N & \Y \ \%
Vi :Qmi_z Tzzunj(Annij+2Anni i1t Amni j+2)
v=1 n=1j=0
1 N i-1 y y y
"'—Z z Un (anij = Bonijt Boni 2)
vV n=1j=0
12N i
+_S_ZZVn,j (Cr\:mij + z:r\‘r/mi, j+1+ Cr\1/mi, I 2)
Y 4 n=1 j=0
N -1
+gzzvn,j (Dr\wlmij ~ Dini j+2)
n=1 j=0
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(4.43)

(4.44)

(4.45)
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VH—QH.—2 &5 3§ (AN o N N
m T emi z 4 ZZVI’LJ(AT\I"IIJ Aﬂnlﬁ-l Anmrz)
v=1 n=1j=0
1 N i-1
+_szn,j (B;/nnij - Br\:mi, j+1+ Br\;mi, j+2)
MV n=1j=0 (4 47)
2 N i= '
+__zzun i (Cmnu 2-\’r\:mi, j+l+ C:r\;mi, j+2)
¢ 4 n=1j=0

s N i-1 y v
+§ZZU (Dmnlj Dmnl j+2)

n=1 j=0

Finally, the computational efficiency can furthex tmproved by using the new

formulations. Eqs. (4.46) and (4.47) are written as

ZZ K (4.48)

v=ln=1

=Qh, ZZ LY (4.49)

v=1n=1

where

U,S
Kni = Z[ V4 j(AYYnnij-"ZAYnni 1t A;Innl}l-Z)
j=0

1
+ = Un ( Bl\'/nnij - B 1t B j+ 2)
14

(4.50)

1¢?
"‘a Vi, | (Cmnu Zitni, o1+ G, 1 2)

+ Z ( Dr\:mu %ni, j+2)j
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v (&S v v v
Hmni = Z 4 Vn,j(Ah'nnij"'zAnnl it Anng }+2)
=0
1 V v v
+_,U Vi (anij Bt mai,j+2)
v (4.51)
1¢°

"‘aj U (Cr\T/mij + Zoni 1+ Cooni j+2)

S v v
+§un,j ( mnij Dmni, j+2)j

4.4 Numerical Examples

Example 4-1: A Dielectric Sphere

A dielectric sphere with a radius of 0.1 m, relatipermittivity ¢, =1, and
relative permeabilityy, = 0.5 is modeled by triangular patches containing 84escand

56 patches. The incident wave exciting the striectigr a ¢polarized T-pulse with a
duration of 10 Im, starting at 4 Im, and arrivesnirthe direction o =0° andg=0°. It

has a bandwidth of 120 MHz. Figure 9.28 plots ttegttered far field along the direction

of 8=180C andg=0°, as computed by the new MOD method. The computeditr

agrees well with the frequency domain solution.

Example 4-2: A Dielectric Cylinder
A dielectric cylinder with a radius of 0.1 m andh@ight of 0.2 m is radiated with
a @polarizedT-pulse with a duration of 10 Im, starting at 4 lamd coming from the

direction of #=0° and ¢=0°.It has a relative permittivitg, =-2 and permeability
4, =-1. 1t has a bandwidth of 120 MHz. The structure iscktized by triangular

patches containing 246 edges and 164 patches.chltiered far field along the direction
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6 =180 andg = 0° is computed using the new MOD method. The resutisplotted in
Figure 4.3 along with the IDFT of the frequency damsolution. The two results agree

well with each other.

Dielectric Sphere

0.2

* IDFT
Improved MOD|

0.15¢

0.1f

0.05f

Far field EQ(mV/m)

-0.05f

-0.1F

015 : : : : : : :
0 5 10 15 20 25 30 35 40
Time (Im)

Figure 4.2 Transient scattered far field from a dielectribege ofe, = 1 andu, = 0.5.

Dielectric Cylinder
0.3 T T :

* IDFT
Improved MOD| T

Far field EQ(mV/m)

04 . . . . . . .
0 5 10 15 20 25 30 35 40
Time (Im)

Figure 4.3 Transient scattered far field from a dielectritiyer ofe, = -2 andy, = —1.
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Example 4-3: Structures with Different Relative fagtivity

The dielectric sphere of Example 18 is studiedhiertusing different materials
with a relative permeability of;, =1 and relative permittivity of, =0.5 or 10. The
structure is excited with gpolarized T-pulse starting at 4 Im and is incident from
€ =0° andg=0°. Two versions of th@-pulse are considered, with pulse durations of
10 Im and 20 Im. These correspond to a bandwidthl20 MHz and 60 MHz,
respectively. Figure 9.30 plots the scattered id falong the directio =180° and

@ = 0° using the new MOD method. Both results gor=0.5 ande, =10 agree well with

the frequency domain solutions.

Permittivity = 0.5 Permittivity = 10

0.4 0.15
. IDFT
0.3 —— Improved MOD| 1 e IDFT
0.1 — Improved MOD| |

'g 0.2 ,E
~ ~
> >
£ o £
S S
w w
e} k)
e © 2
& &=
= =
£ o L

-0.2

03 . . . . . . . 0.1 . . . . . . .

5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (Im) Time (Im)
@ (b)

Figure 4.4 Transient scattered far field from a dielectribege withy, = 1:

(@) & =0.5. p) & = 10.

Example 4-4: Structures with Different Relative faeability
The same dielectric sphere of the previous exansp®nsidered with different

material parameters. The sphere has a relativeittierty ¢ =2, but it can have a
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different relative permeability of;, =1 or 2. The structure is excited withTgulse with

the same parameters used in Example 17. Figure@od the scattered far field along

the direction ofd =180° and ¢ = 0° computed by the improved MOD method. Both

results fory, =1 and g, =2 agree well with the frequency domain solutions.

Permeability = 1 Permeability = 2
0.8

0.6 © IDFT - 03 ° IDFT {
— Improved MOD —— Improved MOD

0.4

0.2

0.2 0.1

Far field EQ(mV/m)
Far field EQ(mV/m)

-0.2 -0.1

-0.4 1 -0.2

5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Time (Im) Time (Im)

-0.6
0

(@) (b)
Figure 4.5Transient scattered far field for a dielectric sgghwithe, = 2:

@uw=1.0)wu=2

The MOD approach has been presented to solve the domain PMCHW
equations to analyze the scattering from three-dsiwmal arbitrarily shaped dielectric
structures. The agreement is good between thei@mubbtained using the proposed

methods and the IDFT of the frequency domain smtuti
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Chapter 5.

Parallelization of the Time Domain MoM Code

This section introduces how to parallelize the rheng-on-in-degree (MOD) time

domain method of moment (MoM) code.

The major operations for a serial MOD time domaioMVicode, based on the
theories in Chapter 3 and 4, are to fill a matgua&tion and to solve that matrix equation.
These two steps are the most time consuming Stdhser operations, such as calculating
the far field or near field, take much less timarththese two. Therefore, this chapter

describes how to parallelize these two major steps.

The message passing interface (MPI) [26] is a wideded library for parallel
computing. It is a language-independent commuranagirotocol and it is standardized
and portable, so the same code can be easily cerngi different operation systems and

cluster setups.

In addition to MPI, | also used the ScalLAPACK (%dtd¢ Linear Algebra
PACKage) library.[27] This is a library that proeisl high-performance linear algebra
routines that support MPI protocol. The use of SdaACK allowed me to fill and solve

the matrix equation efficiently.

5.1 Parallelization Architecture of the Time Domain MoM

The MPI is a distributed memory system; the majffieence between it and a shared

memory system is that each CPU in MPI controlsome memory and the whole
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memory of the cluster or computer is distributetb iseveral parts, as shown in Figure
5.1. The use of a distributed memory system pravide® major advantages. First, some
of the clusters do not have one global memory;eshanemory has difficulties in these
types of cases. Second, a distributed memory systakes programing robust when
different CPUs attempt to read from and write ® same memory unit at the same time,

which often happens when solving a matrix equa{@8]

T

‘,/ \ CPU CPU CPU CPU
> Netwoiﬁi
A 4 A 4
‘ Bus, crossbar switch, or other technologies
CPU CPU CPU CPU L )

I T T g \
 Memory JMemo@ JMemo@ JMemo@ | emory |

(a) A distributed memory system. (b) A shared mensystem.

Figure 5.1 The difference between a distributed memory systeda shared memory

system.

5.2 Matrix Filling

When using MPI technology, the matrix needs to kriduted into different CPU

processes, and how the matrix is distributed &Sfeitte efficiency of the code.
ScaLAPACK routines use block partitioned algorithtosreduce data movements. It
partitions the matrix into many small blocks anstbutes those blocks into all the CPU

processes. [27]

The difference between serial and parallel matililng is how the matrix is

distributed into all the CPU cores. Serial code dmaly one working CPU core and that
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core owns all the matrix elements, while in pataltale, each CPU core owns part of the
matrix elements. The process to fill the valueghaf matrix elements is the same for
serial and parallel code, while solving the matiteeds some communication between

CPUs.

Load balance is a measurement of the balance otdhgoutation. If all the
processes start and stop simultaneously, the catipuithas a good load balance. On the
other hand, if some processes finish their jobtefathan others, they need to wait for
others to finish and this wastes CPU resourcesLARACK therefore uses a block
cyclic distribution to achieve a good load balaritelividesP processes into B=P;xP.
process grid and distributes the matrix on thid.gfhe following are three examples that

review the relationship of load balance betweemtioeess grid and block size.

For example, consider a 9x9 matrix and the progedgsand block size given in

Table 5.1.

Table 5.1.Examples for ScaLAPACK distributing the matrix fdifferent process grids
and block sizes.

Examples Number of CPU Process grid Block size
processes

Example 1 6 Pr=2,P.=3 2%2

Example 2 4 Pr=2,P.=2 2%x2

Example 3 4 Pr=2,P.=2 3x3

Example 1 has 6 CPU cores and they are allocatedai@x3 grid. The first step
is to partition the matrix into many blocks withbbock size of 2x2. The blocks are then
cylindrically allocated into the 2x3 process g@ag,shown in Figure 5.2. Finally, the data

of the matrix are stored in different CPU processes
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Figure 5.2 The distribution of matrix in Example 1.

Example 2 has 4 CPU cores and they are allocatedi@x2 grid. As in Example
1, the first step is to partition the matrix intany 2x2 blocks and then to cylindrically
allocate the blocks into the 2x2 process grid,hasve in Figure 5.3. A comparison with
Example 1lreveals that the load balance is bettn th Example 1. Many simulations
also show that when the number of CPU processag®wver of two, the calculation is

faster than for the cases where it is not.

Example 3 has the same number of CPU cores anégwagids as Example 2.
The difference is the block size, which is 3x3. Dacks are cylindrically allocated into
the 2x2 process grid, as shown in Figure 5.4. Apamson to Example 2 shows that
reducing the block size can improve the load baaitowever, a large block size can
reduce the data movement in the memory and imptioeeperformance. Therefore, a

balance is needed between the load balance anddatsment.
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In the parallel time domain code, each CPU processis to determine which
matrix elements are stored in its memory, usinglloek cyclic method. Once this is
known, then the process to calculate the valugbeimatrix elements is the same as a

serial code.

Grid columns
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Figure 5.3 The distribution of matrix in Example 2.
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Figure 5.4 The distribution of matrix in Example 3.

Data stored in CPU
process (1,1)

In method of moment, a matrix equation needs tblled in the form of Eq. (5.1),

in whichZ andV are computed from the structure and the excitatiois the unknown

current or potential to be solved. The way to stbeNxN Z matrix is already shown

above. The vectoisandV can be treat as &1 matrix and stored in the same way.

(2l e =V T

5.3 Solving the Matrix Equation

(5.1)

In my code, the matrix equation is solved by LU ateposition. Unlike the Gaussian

elimination method or iterative methods, when thextor V is changed and& is

unchanged, the LU decomposition does not need teefeated and the sarheandU

matrix can be reused. This is very useful for mexgton-in-degree method because for
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each different degree, the mat#éxis always the same; the only thing that changdéisels

vectorV.

ScalLAPACK provides an LU decomposition subroutiae solving the matrix
equation in parallel. This algorithm is based oa ttock operation mention above. If a
matrix equation as shown in Eq.(5.1) exists, thérimn& can be decomposed into two
multiplication matrixes, as shown Eq. (5.2), wheres a lower triangular matrix ard is
an upper triangular matrix. LU decomposition fortrixaelements is discussed in many
materials, but the same idea also works for bloEks.Example 3, in Figure 5.4, | can
divide the 9x9 matrix into nine 3x3 submatrixeseThJ decomposition can then be
done with submatrixes, as shown Eq. (5.3), in whighL;, andU; are submatrixes

divided by blocks, as shown in Figure 5.4.

[Z]jen =[L ] enlV ] e (5.2)
Zy 2y Zgg Ly O 0 U,,UuU U,
Zy Zgyy Loyl =Ly L 5 O 0 U U, (5.3)

Z31 232 ZSngg L31L 32L 39<90 0 U 33xg

The LU decomposition is a recursive algorithm. Téexomposition can be first
applied for the elements of the submatix to obtain its LU decomposition &f;; and
U;1 The submatrix ok 1, andL 13 in the first column of th& matrix can then be obtained
by inverting theU1; from Eq. (5.4). Inversion df 11 can also obtaitJ;, andU;3 in the
first row of theU matrix. After the submatrixes &f andU of the first column or row are
known, then the submatrixes of the second columroar can be calculated from Eq.

(5.4). This then continues for the next column eowd in a recursive way.
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le ZlZ ZlS Lllg 11 L H. 12 L Lh 13

Loy Ly Zog|=IL M L W L Y, 5 L UpHhk Uy o (5.4)

Ly ZLgp L) (L4 L B L W o Uy hk Uz tls Ugg

Solving the parallel LU decomposition requires ttteg CPU cores communicate

with each other because they need the resultdiéoprievious rows or columns. Therefore,
perfect load balance cannot occur when waitingttier data from other CPU cores. For
example, when one of the CPU cores is computind-th@ndU,,, other CPU cores are
idle because all the other operations rely on thkies of these two matrixes. The
communication also takes time and reduces the spéatimulation. ScaLAPACK is
optimized to improve the load balance in the wagtdres the matrix in memory and

reduces the communication.

5.4 Numerical Examples for the Parallelization

In this section, some numerical examples are peavid illustrate the performance of the
parallel time domain code. The first two examplesven the time domain results
computed from different platforms and are companeth the IDFT result from the
frequency domain code. They show the accuracy efparallel code from different
platforms. The third and fourth examples are sitedavith different numbers of CPU
cores. They show the time reduction for paralléiaraand the efficiency change. The
fifth example is the parallel code for handlinggervehicles. It shows that the parallel
time domain code is able to handle complex obj€eldte sixth example is a simulation

with a dielectric.

In Example 1, | compared the far field of the pl@tgime domain result with the

IDFT result from a frequency domain EM simulator BEEIES to show the accuracy of
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the parallel code. | simulated a sphere with ausdif 1 meter, where the incident wave
comes from the —z direction with polarization adirection. | calculated the x component
of the scattered far field at the +z direction awnpared the result to the frequency
domain IDFT result. The sphere is discretized itg738 triangular patches and results
in 22,107 RWG unknowns. The excitation is a T-pulséh a bandwidth of 200 MHz.

The parallel time domain code was run on two déifercomputers. The first computer is
a cluster with 10 compute nodes and 20 CPU coréssl a Linux operating system with
Intel MPI. The second computer is a desktop witlcBU cores. It has a Windows

operating system with MPICH2 MPI. The results a@tpd in Figure 5.5. The parallel

time domain code run on different computers gawe dkactly same results and they

agree well with the frequency domain result.

In Example 2, the object is the same as in thé dxample. The excitation pulse
is changed to a T-pulse with a bandwidth of 400 MHze higher frequency requires a
finer mesh. In this example, the sphere is disoedtinto 39,810 triangular patches and
resulting in 59,715 unknowns. The incident andtecatl direction are the same as the
previous example. The parallel time domain resa@iitsn different computers are
compared with the IDFT result from the frequencyndm solver HOBBIES. The results
are plotted in Figure 5.6. As with the previousuieghe parallel time domain results are

identical and they match well with the frequencyndin result.
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Figure 5.5.The far field comparison of the time and frequedoynain results for the

first numerical example.
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Figure 5.6 The far field comparison of the time and frequedoynain results for the

second numerical example.

Example 3 shows the parallel efficiency of the coldstill used a sphere with

radius of 1 meter, which was discretized into 1##hgular patches and 2160 unknowns.
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A plane wave with a bandwidth of 180 MHz comes fremdirection. | ran this project

on a Linux cluster with different number of CPU esrand compared the efficiency.
Parallel efficiency is a measurement of the quatityhe parallelization and is defined in
Eq. (5.5). The computation time and parallel e#iay are listed in Table 5.2. | can see
that the parallel efficiency decreases as | useer@®U cores. This is because, in the LU
decomposition, different CPU cores cannot be p#yféaad balanced and they also need
some communication time. As the number of CPU core®ases, more communication
time is needed and the load balance decreaseaufjlththe efficiency is reduced, using

more CPU cores is still faster.

- Time used of 1 CPU core
Parallel efficiency (5.5)

px(Time used op CPU cort

Table 5.2. Comparison of the parallel time domain code fofedént number of CPU
cores for a 2160-unknown problem.

Total time of the simulation

Number of CPU cores (sec) Parallel efficiency
1 531.42 100%
2 270.68 98.16%
4 141.27 94.04%
8 77.05 86.21%
16 44.87 74.02%

Example 4 is similar to the third one. The onlyfeliénce is that | used a finer
mesh and a greater number of unknowns. In this pkgnh discretized the sphere into
3966 triangular patches and 5949 unknowns. The aotatipn time and parallel
efficiency are listed in Table 5.3. When compaiethe previous example, | can see that

the parallel efficiency is improved. Because thare more unknowns in this example,
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the load balance is improved and the ratio of comoation time comparing to the

calculation time is also reduced. This comparisoal$o plotted in Figure 5.7.

Table 5.3. Comparison of the parallel time domain code fdfedent number of CPU
cores for a 5949-unknown problem.

Number of CPU cores Total time E)Sfetge simulation Parallel efficiency
1 4007.2 100%
2 2009.0 99.73%
4 1013.6 98.84%
8 525.14 95.38%
16 281.63 88.93%
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Figure 5.7 The comparison of parallel efficiency for diffeterumber of unknowns
Example 5 is a Chevrolet Impala sedan with a moleopatenna on its roof, as
shown in Figure 5.8. The size of the car is 5.09 in85 m x 1.50 m and the monopole is
0.21 m long. The monopole is excited by a genemaithr a Gaussian pulse voltage in the
form of Eq. (5.6), in whichly = 10 nanoseconds,= 2 nanoseconds, and the bandwidth is
300 MHz. Thez component of the far field to the direction, which is to the front of the
car, is computed. | simplified the problem in tleisample by assuming that the whole

vehicle is made of a perfect conductor. The vehildiscretized into 15,300 triangular
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patches and 22,952 unknowns. It was run on a Laluster with 32 CPU cores and the

result is compared to the IDFT result from the érerocy domain solver HOBBIES, as

shown in Figure 5.9. The results match well.

2
V(t)=exp[—(t2;°2) J (5.6)

Figure 5.8 A sedan with a monopole antenna on the roof.

T T T
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Figure 5.9 Comparison of the far field result in time andginency domain.
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Example 6 is a dipole inside a dielectric sphetes dlipole is located at the center
of the dielectric sphere and is placed alongztdeection, as shown in Figure 5.10. The
dipole is 0.1 meter long and the radius of the sp®e0.5 meter. The dielectric constant
of the sphere is = 2. The source is at the center of the dipole pnodides a Gaussian
pulse voltage, as shown in Eq. (5.6), in whigh 10 nanoseconds,= 2 nanoseconds,
and the bandwidth is 300 MHz. The sphere is dismdtinto 2128 triangular patches and
the dipole is divided into 4 subsections. Thereaisotal of 6390 unknowns. The
component of the far field to thextlirection is computed and is compared with an IDFT
result from the frequency domain solver HOBBIES, sk®wn in Figure 5.11. This

simulation was run on a Linux cluster with 20 CRJeas.

Figure 5.10A dipole inside a dielectric sphere.
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Figure 5.11Comparison the far field results in the time aredjfiency domain.

Parallelization is an accurate and efficient wayalving the time domain MoM
problems of large scale. MPI and ScaLAPACK are usedolve the MoM problems.

Numerical examples show that this parallelizaticethmod is efficient and accurate.

75






Chapter 6.
A Hybrid Method of Moment and Physical
Optics Method

The method of moment (MoM) is a widely used techeidor solving electromagnetic
problems. However, as the size of the problem amme, the matrix size and the
computation time increase as the square and cutie afnknown numbers, respectively.
Therefore, substantial resources are needed to wteniprge objects and this is not

affordable for many applications.

In many cases, these large objects are metallictlagid surfaces are relatively
smooth, so hybridization of MoM with asymptotic hedques is a reasonable
approach.[33][34] The small objects are analyzedvimM while the large and smooth
surfaces are analyzed by asymptotic methods. Cadpaith the ray-based methods, the
current-based physical optics (PO) method is prefetbecause the MoM is also a
current-based method.[35][36] Many researchers laneady used hybrid MoM-PO in

frequency domain problems. [35]-[37]
In this chapter, | extend the hybrid MoM-PO methoadhe time domain MoM.

First, the problem is divided into two regions. Osethe MoM region and the
other is the PO region. The currents in the MoMaegan be solved by electric field

integral equations (EFIE) by assuming that the B@eat is known. The PO current can
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then be analyzed with the known MoM current. Witistnew PO current, the original

MoM current can be updated. By repeating this fiena a final result can be obtained.

Numerical examples are provided at the end of Hapter to verify the accuracy
and the efficiency of this hybrid method. The nuicerresult shows that this iteration

method converges very rapidly.

6.1 Solving the Current in the MoM Region by EFIE

Suppose that the current in the PO region is ajrdambwn; the current in the MoM
region can then be solved by EFIE. The boundarydition on the perfect electric
conductor (PEC) MoM surface forces the tangentedtac field to be zero, as shown in

Eqg. (6.1).

|:_E|\/|O|V| (I’,t)] :[Eincident(r )+E PO( ,t)]

tan tan

(6.1)

where EM%®(r £ EMOM (1 t) ) andEPO(r,t) denote the incident wave, the scattered

wave from the MoM region, and the scattered waweenfthe PO region, respectively.
The subscriptan implies the tangential components. The scatteradewcan be obtain

from the magnetic vector potential(r,t) and the electric scalar potential(r,t) as

introduced in Chapter 2. and is expressed as.(6.3)

gMoM (r,t)=—%A MM t)-OpMM¢ 1) (6.2)

Epo(r,t)z—%A POE ty- Db PO ) 6.3)
whereA and @ are the magnetic vector and the electric scaltamnpial, respectively.
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As in the previous chapters, these two potentiaislze expressed in current and

charge density and then simplify by applying thetHe&ector potentiali(r,t). Similar

to EqQ. (2.7), the Eq. (6.1) can be changed to

u 62 MOM (r T) ey MoM (r r’ Z_)
£47T0t2 ISM°M R o I§“°M R 9
tan
Op 1
¢'.7) dsj

R

(6.4)

= [ d® uo(' ) o O O'eu®
~(E 00, gl 0 o

tan

The Hertz potentialu(r,t) is then expanded using spatial and temporal basis

functions.

N
u(r,t) = U, (tF ot ) (6.5)
n=1
(0=t (4,(50 - 20 ()+.2( 9)) (6.6)

j=0
wheref,(r) is the spatial basis function, axgj(st) is associated Laguerre function.

By substituting Eq. (6.5) and (6.6) into Eqg. (6.#)e scattered waves from the

MoM and PO region in Eq. (1) are then expressddrims of these basis functions as

Zw(sr)[ b 240+ G )

s = z ds -
4m 4 7 °S R

3 DI 2418 + e MoV )

j“’ = ds

NMM

tan
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e BN #2002, )

_| 4S =0
= E?zl SJ - ds + (6.7)
n=.
Moy 2B (SIS =242+ 210 6,7 r)
Loy ds
TE n=1 S R

dtan
whereNwvom andNpo are the number of spatial basis number.

Temporal testing is then applied by inner productiwith g(st) and spatial

testing is then applied by inner production wﬁmo'v' (r) . One can obtain Eq. (6.8)

S i
ILIT z Z nlj MOM +2L{"IM10|\;|. + l""IMjO,\g]
n=1 j=0 _
1NM0M
L S -2
n=1 j=0
i 2 Npg i ) T (6.8)
S
erﬁl_lncndent ,LI Z zamnu n J 1+ Un . 2]
n=1 j=0
1 Neo i
e Z IJ[UPO 2unJ at th 2]
L n=1 j=0 ]
where
MoM _ MoM |J( WQ MOM
Ay = Jf ) [ A ds ds (6.9)
o = [ O™ )] ”( R9 s v g g (6.10)
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A = [ fm )+ ] ”( wa 7o ") dS de (6.11)

|..
9 = [LCH N[ _'151 9 4 POf 1S d (6.12)
QE incident _ J‘ f MoM(r) RY, |nC|den&, ) ds (6.13)
VIiEncident(r) — .[:Q(St)E incident(r ,t)d(sh (6.14)

ljsR/9 = #(s)g (st sRx @ K
0 j>i
e(—SR/(ZC)) j:|

e TEN (1 (SR 9= Lja(sRY  §

(6.15)

In Eq. (6.8), the upper limit of the summation oy@r the amnj andbmy;j terms is

replaced by instead ofo because the integrg(sR/9 equals 0 whep>i.

Finally, the above equations can be written inranfthat is amenable to the MOD

method by moving all the terms associated WﬁfﬁM to the left hand side and the terms
associated Withl.ln'\{?M (j<i) to the right hand side. Once the coefficiem'\é?M

(=0,1,2,...i-1) are evaluated, the unknown coefficient of timdndegreeuﬂ'\f'io'v' can

easily be accomplished, as shown in Eq. (6.16).eQnhe unknown in the PO rations and
the unknown less thdrth degree in the MoM region are known, the unknofvdegred

in the MoM region can be computed with this equatio
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6.2 Solving the Current in the PO Region

If the current in the MoM region is already knovine current over the PEC PO
region is given by the boundary condition of Eg1@. In the PO region, the mutual
interaction with PO current at other positionsegllected. The total magnetic field can be
substituted by two times of the wave incident ® BO surface at the lit regid®), and 0

in the shadowed regio8

'shadow*

IPO(r,t)=AxH ¢ ,t) (6.17)

A x incident MoM )
Jpo(r,t)z{Zn (e £y Mo )OS, 618

0 ro Sshadow

where H'"®®" js the incident magnetic field and the°M is the scattered field from the

MoM current.
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As in the previous chapters, Eqg. (6.18) can beyaedl with Hertz vector

potential.
o & 5 PO_ PO 1 P
> §¢J(St)[l+l,j =Y o ) =
n=1 j=0
VoM ... (6.19)
20 % Hmmdent(r t)+J‘ DXJ (r ’T)dS
4R
The curl in Eq. (6.19) can be analyzed by Eq. (6.[33]
J(r',7) R . R
O x -——J r'r)x—+Jg¢ ', 7)x— 6.20
- (D)o €)X (6.20)
The equation then becomes
g S PO PO P ~ inciden
Zawj(st)[uh,,- = U Palfy ) =28 xH ", g+
n=1 j=0
R
- Z(ﬂ,(sr)[ 2+ ) x o (6.21)
2n x j R ds

n=1 MoM MoM MoM x
Z @ (sT)[ 4, —lfa T (r) =

The temporal testing is applied by inner productieith ¢(st) and then the

spatial testing is applied by inner production V\ﬁ,ﬁ?(r) . For the reason that no mutual

interaction is assumed to occur in the PO regiba,inner product of the two different

spatial basis functions is zero. One can obtain&g2).
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E[un um 2]r _ZQH incident

MoM | 5 ,MoM . MoM
Zcmnu[u T+ 2Un Tt Uyl
22

i
m=1 PO ,MoM MoM
+Z dmnu[u um,j—2
=02

where

Coe = [ fm )+ [ ”iﬂzo i MOVE R dS d

Coe = [ fm )+ [ ”iﬂzo i MOVE R dS d

dPo = jf ()j ”(R/)AfMOMQ)XR ds ds

mnij

QH incident _ J‘ f PO(r)E x\/ |_||nC|denE, )dS

V,i_?Cident(l’) — J‘: @ (stH incident(r ,t)d(sh

ro=[ It °0) Fds

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

The Eq. (6.22) can also be solved by a MOD metAdier the coefficientwﬁ?

(j=0,1,2,...i-1) are calculated, the unknown coefficient of thext degreeurlijQ can

easily be obtained without solving matrix equations

6.3 Solve the Hybrid MoM-PO Problem lteratively

The hybrid MoM-PO problem can be analyzed by araitee method.
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1. First let the initial guest of the PO unknown coménts to be zero.

PO _
Uni0) =0

2. The MoM unknown coefficients of th&-th iteration ur':f'iOM(k) can be
evaluated by substituting the PO coefficients eof IterationurF,? io(k_l) into
Eq. (6.16).

3. The PO unknown coefficients of theth iteration urT ?(k) can be evaluated

by substituting the MoM coefficients of last itecat ur':{'f’M(k) into Eq.

(6.22).

4. If not converged, goto step 2.

These steps can also be expressed by Eq. (6.2%)igunct 6.1.

Eq(r,1)=0 (6.29)-a
—EM ()] =[ETE 0 E G )] (6.29)-b
EGy ()] =[E™e 0+ 0] (6.29)-c
EG D] =[ETEE0E R D] (6.29)-
E ()] =[E™ e 0+E FM 0] (6.29)-¢
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Figure 6.1.The iterative method for analyzing a hybrid MoM-pBf@blem.

6.4 Numerical Examples

Numerical examples are presented to illustrate vitisatility of this method. In this
section, all the structures are excited using aul§q) which was introduced in Section
3.6.1. A T-pulse is a strictly time-limited pulsetlvmost of its energy concentrated in a

narrow band. Hence, the waveform by definitionassal.

Example 1 deals with the transient electromagmetication from a | meter long
dipole and a PEC circular plate with a 3 meterusgilaced 2 meters away, as shown in
Figure 6.2. The axis of the dipole is placed altmx-axis. The dipole is divided into 10

subsections and a piecewise triangular basis fumdfi applied, which is expressed as
fr(r)=47 /A7 ¢ OL}).[39] The PEC plate is divided into 3292 triangtesd 4813

RWG basis functions are applied. The dipole isd#diinto an MoM region and the plate
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is divided into a PO region. The duration of theUlse that the dipole radiates is 7 ks,
shown in Figure 6.3. The unit Im is a light-metghich is 3.33 nanoseconds, and equals
the time taken by light to travel one meter. Moktitee energy is concentrated in the
frequency band from 0 to 150 MHz, and only less1t@@®003% of the energy is outside
this band, as shown in Figure 6.4. The voltageets dt the center of the dipole, the

highest Laguerre degree is chosen as 150, anddliegfactors = 10°.

The far field at the direction of =¢ =0° is plotted in Figure 6.5 and the
direction of @=90°,¢ = 0° is plotted in Figure 6.6. The numbers of iterati@me one to

five, respectively. Figure 6.5 shows that the beaktered far field of an MoM-PO with
only one iteration differs significantly from thed method but the rest of them agree
well with the results generated by only the MoMhteique. In Figure 6.6, which is the
front scattered far field, the MoM-PO results da agree well with the MoM result. The
convergence of this method is measured by defigingariableA™ to measure the
change of the coefficients in theth iteration in Eq. (6.30). The values &f in all
iterations are listed in Table 6.1. The rate of vagence is so very fast that the
numerical results are identical in the 4-th andh Beration in a double precision program.
Compared to the MoM method, this method has adgasthoth in computation time and
memory by reducing the size of the matrix. Thes$edinces are listed in Table 6.2, and
this particular problem shows that the computatiore is reduced by 209 times and the

memory used is reduced by 100 times.
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Figure 6.2.A dipole and a plate reflector

-0.4 L L L L I I

Time (Im)

Figure 6.3.The T-pulse fed into the dipole
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Figure 6.4.The spectrum of the T-pulse fed into the dipole
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Figure 6.5.The far field radiated at the direction of directiof 8 = ¢ = 0°.
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Figure 6.6.The far field radiated at the direction of direatiof =90°,4 =0°.

Table 6.1.Convergence test of different iterations.

Iterationk AK)
1 _—
2 0.6701
3 1.5757e-008
4 3.9437e-015
5 0.0000e+000

Table 6.2.Reduction in memory usage and computation time.

Iteration k MoM MoM-PO
MoM unknown number 4822 9
PO unknown number 0 4813
Memory used 904 MB 9 MB
Computation time 3.19 days 22 min (5 iterations)

Example 2 deals with a Boeing 737 plane with a disien of 26 nx 26 mx 11

m. A z-polarized 0.1 meter dipole is mounted on top ef phane. Its center is located at
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(-5, 0, 3.4), as shown in Figure 6.7. The MoM regamntains only this dipole with 5
unknowns and the PO region contains the body optaee with 7327 unknowns. A T-
pulse with duration of 10 Im and a bandwidth of MB{ is radiated by the dipole. The
voltage is fed at the center of the dipole, thehbgl Laguerre degree is chosen as 100,
and the scaling factgr=10°. The current over the surface of the plane istgdbin
Figure 6.8. The values of the current for all timeet instants have been scaled. The
darkest (blue) color is defined as 0 A/m while tightest (red) color is used for all
currents larger thanx10® A/m. The current is seen to move from the fronth®rear in

these figures.

Figure 6.7.A dipole over a Boeing 737 plane
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(@ t=101Im

(b) t=141m

(c)t=18Im

92



(d)t=221m

(e)t=261Im

() t=30Im
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Figure 6.8.Transient current density distribution on the Bgeaircraft.

6.5 Conclusion

A hybrid MoM-PO method in the time domain is presenfor transient analysis
of electromagnetic scattering from electricallygerstructures. This hybrid method is
computationally efficient as only a very few iteoais are required for the numerical
convergence of the results. Sample numerical esalé presented to illustrate the

versatility of this method.
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Appendix A.

The Laguerre Function and Related Integrals

The definition and properties of Laguerre polyndmaxre listed in this appendix.
Definition:

Consider the following set of functions [29],

e d

(tje‘t),ost<oo, i=0,1,2,... (A.1)

These are the Laguerre polynomials of degreEhey are causal; i.e., they are
defined fort=0. They can be computed through a stable recursreeepure and

obtained as

Lo(t) =1 (A.2)
L (t) =1-t (A.3)
L ()= 20030 6 -1, 2 ) (A

Some main properties that are used in the tempomatedures are briefly

described in the following.

Orthogonality:

The Laguerre functions are orthogonal as
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0 _ 1 |:J
t ¢l
e L(OL (Ddt=2a = ]
Jo €' LOL(Od=4 {0, %] (A-3)
Laguerre Transform:
A causal time-dependent functiont) for t =0 can be expanded as
f®)=> fig (A.6)
j=0

Whereqoj(t) is the associated Laguerre function defined in @4l7). Based on the
orthogonal property given by Eq. (A.5), the mulgption of the functionf (t) with

@ (t) and integrating from zero to infinity, yields

j:q(t) f(t)dt=f (A.7)

The expression in Eq. (A.7) is called the Laguénaasform.
Derivative:

Using the Laguerre transform, an analytic repredent for the time derivative of

the function f (t) can be obtained as

ngq(t)if(t)dtziuff (A.8)
o " dt 2" &k '

where f (0) = 0 is assumed ang () =0 is used.

Using the relation Eqgs. (A.5)-(A.8), the derivatieé the functionf (t) can be

expanded as
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d @ (1 i
—f(t):Z[—fj+ka](aj(t) (A.9)

Similarly, the result for the second derivativetloé function f (t) is given as

d? effr, &
—fO=2|| 5+ 2 (- ||g0 (A.10)
dt i0o|\4 k=0

Integral:

Consider an integral given as
() = [ @ (0g (x= y) dx (A.11)

Through a change of variable= X— Yy, and substituting the expression(q(t)

given by Eq. (2.17), Eq. (A.11) yields
) =€ €7 k(z+ Y (3 d (A12)

Using the properties of Laguerre polynomials of H§971) and (8.974) in [29],

one obtains

Li(z+ Y= k(9 k(Y= baa( V) (A.13)
k=0
Substituting Eq. (A.13) into Eq. (A.12), one ob®in

) =2 X (L (W= baa ()], € k(¥ K 2 d (A.14)
k=0
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Because the Laguerre polynomial is defined ZarO, the lower limit of the
integral in Eq. (A.14) may be changed frory to zero. Moreover, Eqg. (A.14) can be
computed by using the orthogonal property giverEhy (A.5) and yields the integral of
associated Laguerre functions as

&2 (L (M= b)), s

A.15
0, j>i ( )

[, 4008 (x=y) dx={
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Appendix B. The Singularity of the Surface

Integrals

In the spatial integral, the Green’s function hiagglar values when the distance is zero.
For the wires, the current is assumed to distrikattehe surface and the integral is
performed along the axis to avoid singularity. Hger for patches, a solution must be

found to solve the integral of the singular points.

In the EFIE, the integrals that involve singulastiare given by Egs. (2.26) —

(2.29) and they are rewritten here as Eqgs. (B(B.4).

. _ (B.1)
Awi = [T [ '(% ff)dSds ¥
Brnj = [ O+l | "( me £dS ds ¥ &2
SF€/(20))
= [ Fll)* j f £dS ds (B.3)
o-sR(29)
j Oef . (r) j — =70 O+ ¢ ")dS dS (B.4)

For the first two integrals (B.1) and (B.2), theitegral kernel can be expressed

as
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SR
lj(SR'9 _ e[ L (SR - kja( SR (B.5)
R R '

WhenR approaches zero, the limit can be obtained byyappL'Hbpital's rule.

l;(sR'9 _ o R

im e[ (SR 3= by sR) = (8.6)

rR-0 R  0R
Therefore, the integral of this integral kernel silo®t contain any singularity and

the computation is straightforward.

For the term of next two equations (B.3) — (B.4ke kernel of the integrals is

e(—sR(ZQ)/ R, which can be expressed by two terms, as shoviaginB.7). The second

term has no singularities and can be analyzed Hggital's rule.

e(‘SR/(Z 9) 1 .\ é‘ SR(2 9) -1

== B.7
R R R (B.7)
For the first term, this results in two integrals
fa(r)
f.(r ds'ds B.8
= [fnO) 2 (B.8)
1 nq
1,=[.0, [ﬂm(r)jstr,[ﬂnQ' )dS'ds (B.9)

TheO,.d,( ") andO,.d,(r ") are constants in the RWG basis, as shown in Eq.

(2.15). The second integral that needs to be hdntﬂdb(r):L%dS'. It can be

analytically calculated as shown in Dr. S. M. Rabissis [2].
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In the I, term, the integral that needs to be handleld, s) = I

triangle be defined in the form in Figure B.1.

~~ Node 2

’ it - —
I 7 e =
ISH P —
/ . -7
/ ’ -

r3 Node 3

Figure B.1 Geometric of the RWG basis function.

f.(r

)dS Let a

The basisf (r") is a difference between two vectofsy ) =r '+,. Ther' can

also be expressed in terms of the vector of thesiofithe triangle.
r'=@-§-ny +f ,+1 3 0<&<1,0<n<1,0<(1-&-n)<1
Therefore, the integral df () can be calculated.

1.0) :fs-ir\:l)ds'

:f (CE-Mr+dTa*7 5 g
' R

= (o) S ds (o of L o
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The integral of idS' and 14s can be handled analytically in [2]. The final
S'R S'R

integral is

F(r

j Fm(r)mj ds' ds

%,—/
calculate analytically

calculate numerically

(B.12)

For the PMCHW equations, the integrals involve glagties are given in Eqs.

(4.32),(4.33), (4.36), and (4.37). They are nowrig@n here.

A

R

Connii = JFm(") j (s ot )x— ds ds

D = [ () j )fn(r )x; ds ds
Vi =Cloai| - = [ Fult)-] S%Te[_zs‘sl n ')XER dS d
Yoo = D[ 4 = [ F ml®) j —e[ ZWJI ) x dec

(B.13)

(B.14)

(B.15)

(B.16)

For the RWG basis function, whén(r) andf,(r') are on the same triangular

patch, f(r)«{f of )R )=
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Appendix C. The Choice of Scaling Factor

C.1 Introduction

In the marching-on-in-degree time domain methothoment, the transient responses are
expanded by a finite number of associated Laguéuretions. There is an error
associated with truncating the associated Laguermnetion series beyond that which is
necessary for the solution process. This erroelsted to the scaling factor used in the
argument of the associated Laguerre functions dotially approximate the unknown
temporal variations. In this section, a least uggmamd of this error is deduced. Based on
this bound, one can obtain an optimum scaling fatctaninimize this error so that it is

guaranteed to be below a certain bound.

The associated Laguerre function is defined as

a(sH=621L(3) (€1
wheres is a scaling factor anldg(st) is the Laguerre polynomial of theth degree. The
scaling factors is needed because the duration of a transienepsagsually depends on
the type of problem and it can vary widely from as@econds to several hundreds of
nanoseconds. If no scaling factor is incorporatkd, value of the associated Laguerre
function is very close td«(0) and it is not suitable for expansion of thensiant

responses.

Theoretically speaking, any time domain functiom d&e expanded using the

associated Laguerre functions with a set of indinitegrees. However, for practical
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reasons, one can only use a finite number of degeexpand a function, as illustrated

by
n-1
()= aa(sh (C.2)
k=0

wheref(t) is an arbitrary transient function aads the coefficient for degrde Making a
finite sum withn terms instead of infinite terms results in an agpnation error. This

error is related to two factors: one is relatedh® highest degree-1 used and the other

is the scaling factos.

In control areas, researchers also use Laguerrgn@oials to expand their
transient signals of interest. Several papers Ieen presented related to the optimum
choice for the value of the scaling factor [J8R]. However, the Laguerre functions they
used in the control area are different from theoeissed Laguerre functions that have
been used in the computational electromagnetiass, thheir conclusions cannot be

applied to my work.

This section shows that the error resulting fromirsappropriate choice of the
scaling factor has a least upper bound and thisidasi a function of the scaling factor.
Therefore, appropriate choice of the scaling factr minimize the least upper bound of

the error.

C.2 Development of the Least Upper Bound

The development of the least upper bound can bieaath by the following steps:
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1. Find a second order differential equation tisasatisfied by the associated

Laguerre functions used in time domain MoM.
2. Introduce two lemmas needed for finding the ufyoeind.
3. Obtain an upper bound using the lemmas of theigus step.
4. Show that the upper bound is the least uppendhou

First of all, a second order differential equatioast be found that the associated

Laguerre functiong (st) satisfies. The Laguerre polynomials used in th&sis satisfy
the following differential equation: [19]

92 9
L (sh+(1- sh—— L(sj+ kk( st=0 (C.3)

st
a(st)? a(st)

From the definition in Eq. (C.1), the first and sed derivative of the associated

Laguerre function is given by

st

st

0 =82 2 0 (C.4)
a(st)(ﬁ‘(St) 5 L(s)+e? 3(s) L ( st
st t C
’ _e? 52 0 2 0 (C.5)
a(st)zg&(st)_ n L (s) eza(st) L( s+ e T k( 9t

Adding Eq. (C.4) to Eq. (C.5) and multiplying by yields
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62
(C.6)

e2 O L (sh+ - -2 | (s |+ @ s)v— e A
a0’ 3(sY

Observe that the terms in the large brackets aditst two terms of Eq. (C.3),

and by applying Eq. (C.3) to Eg. (C.6), one obtains

aZ
st RS ﬂ@(sy ( o 3 —] (3 c.7)

Eq. (C.7) displays the differential equation s&i$fby the associated Laguerre

functions used in the marching-on-in-degree sotupimcedure.

0
By changlngﬂ into E% in Eq. (C.7), one obtains

2 2
e VIC TR {— %jm 3 c8)

Eq. (C.8) is a second order differential equatibat tthe associated Laguerre

functions satisfy.

In the next step, two lemmas are given. Let

(1) =D Galsh (C.9)
k=0

Define two measurasy; andn,, given by
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1 e

MZW'[O tfz(t)dt (C.10)
1 o (d .Y

mz:—”f”2 . t(a f(t)j dt (C.11)

in which, || f[* =" F2(0dt=13 2.
0 Sk=0
Definition of Lemma 1: For a function| f ||2 < +00,
s 1 1
_rTh'l'rrb_Tz(f et (C.12)
Proof ofLemma 1

+o (0 2 (e 0
j t(af(t)] dt_jo t=r FOdf()

0
(0
—t(af(t)j f(t)o

o 2
=—j0 f(t)(%f(t)ﬂ%f(t))dt

+00

+o0 9
—jo f(t)d[ta f(t)j (C.13)

Expandf(t) using the associated Laguerre functions by apglfq. (C.9) and
then apply the relationship of the second ordeeghtial equation given by Eq. (C.8),

resulting in:
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w (0 Vo e & (0 92
jo t(af(t)j dt= jo f(t)kzzcl)q{a@(sl)+t¥¢{<(s)j d

) (C.14)
-s[” f(t)é)q(((-k+szt-—;)@(8)) t

2
Then %mﬁ m, can be evaluated from Eq. (C.14) and using thhogdnal

property of the associated Laguerre functions tesul

s? _ +oo52tf(t) d
ek (G o) o

g aas e

i)

End of the proof oLemma 1

For the function expanded by the associated Lagulemctions with degrees

lower thann, the errore? is defined as

Z ¢ (C.16)

1 oo n-1 2
g2=—— (f(t)—zc (q((st)J dt=
1 I 020 g ||2

From the conclusion of Lemma 1, another conclugiven by Lemma 2 can be

obtained as follows.

Definition of Lemma 2 For the functions belonging to the set
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nnjﬁm
C= , (C.17)

o (d 2
W ot[af(t)J dt =

2 —2c
maxe? < Smtam-2¢ (C.18)
fOC 4sn

Proof ofLemma 2

From the conclusions of Lemma 1, one has

S t(ice2) =1 e ) c19
k=0
0 2 0
S {5 mem |15 ¢ c.20
k=n k=0
”Z°f<|| f° ( m+ m- j (C.21)

Therefore, wher f ||2 # 0, using Eq. (C.21) the error is given by

n

S s+4 -2¢
Z_: m+am

2on (C.22)

K f||
End of the proof otemma 2

The upper bound of the error is then given by Len2m&he final step is to show

that this upper bound is the least upper bounds an be verified by finding a function
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that can reach this upper bound. Therefore, ththasleast upper bound. One can find

such a functiori(t) defined by
(1) = o (Sh + G ( S) (C.23)
G+ci=1 (C.24)

Let f(t) be expanded by the associated Laguerre functithsdegrees lower than

n. So the expansion @ft) misses the second term and result in an err@engby

gi=c? (C.25)
The measurey, is then given by
)
ml—— [Ttfema=" (2n+1)+—S (C.26)

Proof of Eq. (C.26):

Substituting the definition df(t) in Eqg. (C.23) tam,.

ml-—j t £2(1) dt

I’
=s[ 1@ g (sh der " g ( st C (C.27)

+ ZSj:th G @ (st (sh dt

The first term in Eq. (C.27) is evaluated by
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sj:tcﬁ%z(st) dtzc—jj: stéSt( L( 392 f ¥t
=°_r3j°°xe-X(Lg1)(x) L<n1>(>9)2 dx
(C.28)
j xe (Ln(x)) dx+C“J' xe( o ( )<) d

2
:—”(2n+1)
S

where L(nl)(x) is called the generalized Laguerre polynomial esoaiated Laguerre

polynomial. The second term of Eq. (C.27) can bsweated using a similar method.

2

S|t @ (sy dt= %0 (C.29)

Orthogonality can be applied to find the last terinkq. (C.27).

s["te A (a9 dp%j: & sty( Bt st

J' oSt 1 1- St)) L, (sh A s} (C.30)
=,

e (Lo(sh- Ly(9)) L( st ¢ 9t

I
) \C" \5’

Substitute Eq. (C.28), (C.29), and (C.30) into §&2£27), and the result presented

in Eq. (C.26) can be obtained.

End of proof of in Eq. (C.26).

Applying Lemma 1y, is given by
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s (1, 2n+1
Zn1+n12_{5§+ 5 §j (C.31)

Changeci andc? in terms ofg? by applying Eq. (C.23), (C.24), and (C.25) to

(C.26) and (C.31). This results in

2 _
2_S ”1”4‘;:% 2 (C.32)

&

Eq. (C.32) indicates that the error for the funetift) can reach the upper bound

given by Lemma 2. Therefore, this upper boundesléfast upper bound.

C.3 Optimum Scaling Factor in Sense of the Least Uyer Bound

In the previous section, the least upper bounth@fetrror for expanding a function with a
finite number of associated Laguerre functionshtamed. This bound is a function of
the scaling factos and depends on the highest degred the expansion. Therefore, the
error can be reduced in two ways: one is to ined¢hs degree of the expansion and the
other is to choose the scaling factor properlyeduce the bound of the error. This is
achieved by taking the derivative of the right-haide of Eq. (C.18) with respect o
and equating that to zero. Under this conditior, \talue for the optimum scaling factor

is given by

Spt =VAm/ m (C.33)

The least upper bound of the error can be minimized

Please note that this optimum scaling factor ihesense of minimizing the least

upper bound of the error. It does not give the mum error, but provides a guideline on
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how to choose the scaling factor for an arbitraaypsient function and guarantees that the
error is not larger than a bound. The numericah®gtas show that although the optimum
scaling factor does not guarantee a minimum ewoall the degrees, the errors are not
very large compared to the other scaling factods @nverge to zero quite rapidly. The
error of the optimum scaling factor is acceptabte ahat is more important, for an
arbitrary transient function, a scientific methoxisés to calculate it and the error is

guaranteed to be less than this bound.

C.4 Examples
The first example illustrates that the upper bocad be reached and it is the least upper
bound. This example also shows that the optimuniingcas only in the sense of

obtaining a minimum least upper bound but not &t error.

Example 1: For a functionf (t) = @ (sot) = @(Sod » In which s = 10, the

optimum scaling factos to expand this function & = 9.9093x18 Figure C.1 plots the
least upper bound when= s, and the associated errors when using differertngca
factors. As shown in the figure, the error 8f= s IS not greater than the least upper
bound and it reaches the bound for one particutgree while all other scaling factors
have some error greater than this bound. Thisigerthat the bound in this example is
the least upper bound and tisg} is the optimum scaling factor. The figure alsovgfo
that when 10 <0 < 20, other scaling factors can obtain a smallesreiTherefore, the
optimum scaling here is only in the sense of mining the least upper bound but does

not guarantee that it can reach the least erraarigrdegree.
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The next example applies the optimum scaling fatdaa Gaussian pulse, which
is widely used in time domain analyses. This exangdplays the errors associated with
different scaling factors and the optimum scaliagtér that can reduce the error to zero

at an acceptable rate.

Example 2: Here a Gaussian pulse is defined by

o] =1
f(t)—exp{ >

whereu = 20 nanoseconds amd= 2 nanoseconds. The optimum scaling factor fdund

] (C.34)

this method iss,,x = 7.0680x18 In Figure C.2, the errors associated with diffiere
scaling factors are plotted. This figure shows thaterror of the optimum scaling factor
decreases very fast and converges to zero aroumddan of 80. Although some other
scaling factors converge faster than this, thenoytn scaling factor does converge at an

acceptable rate.
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Figure C.1 The least upper bound and the error for diffesealing factor for the pulse

given in Example 1
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Figure C.2 The error for different scaling factor for the geilshown in Example 2.

C.5 Conclusion

Expanding a function with associated Laguerre fionst gives rise to an error

that results from using a finite number of degrelsis error depends on the scaling
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factor and the highest degree of the basis funciibrs appendix showed how to find an
optimum scaling factor so that the least upper boohthis error is minimized for an
arbitrary function. Therefore, the error is smalean a bound that decreases when the
highest degree increases. Although it does notagii@e that the error is minimum for
every degree by comparing to other scaling factousnerical examples show that the

error is acceptable and converges to zero verylsapi
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Appendix D. Numerical Accuracy for MOD

Integrals

D.1 Introduction

The Marching-on-in-degree (MOD) solver based onaefkin implementation of the
MoM reveals that the matrix to be inverted contairiegrals that are similar to the ones
encountered in a frequency domain MoM solver u#iimgsame basis functions. The error
in the evaluation of the matrix elements involvihgse integrals is also observed to be
larger in the time domain than those involved ia fiiequency domain MoM solvers. The
objective of this appendix is to explain this dithray and how to improve upon the
accuracy when using the triangular patch basistiome (RWG) for both the time and the
frequency domain techniques. When the distance dsgtvihe two triangular patches
involved in the evaluation of the matrix elements alose to each other, or when the
degree of the Laguerre polynomial in a MOD methedigh, the integral accuracy is
compromised and the number of sampling points &luate the integrals needs to be

increased.

In the MOD method, the unknown variables, suchhascurrent or the potential
functions related to the integral equation assediawith the problem of interest, are
expanded by a set of both spatial and temporasthasctions. The spatial basis functions
are generally chosen as the piecewise triangle (R¥Gctions, whereas the temporal
basis functions are chosen as the associated Lrag@anctions in this thesis. In a

Galerkin time domain methodology in the MoM conteke time variable is analytically
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integrated out. Consequently, the final equatidmst tare used in the computations
contain only the spatial variables. In this contéixé expressions for the matrix elements
look very similar to the expressions used in adewy domain MoM problem using the
same triangular patch basis. The interesting featuthat even though the expressions
for the matrix elements over the spatial basistions are similar both in the time and in
the frequency domain, the Green'’s functions invdlaee different. Due to a difference in
the Green’s functions, the matrix elements for timee domain problem need to be
evaluated more accurately than its frequency donsaumterpart, using an increased

number of quadrature sampling points for integratio

D.2 Difference in Greens’ Function Terms
In the MOD method, the spatial integrals involvedhe evaluation of the expressions for
the matrix elements are in the form of Egs. (2.28) (2.29). These two equations are

represented here.

ALEab:%TISf ,ﬁ(r).jS%| (SR OF £7) dsd: (D.1)

_1 1 e g ‘ (D.2)
Bima =~ [ 0Foff) [ 21 SR 9 O () dS ok

In the frequency domain MoM [2][38], the spatiatagrals are defined in the

form of

1 1 _; , D.3
AR = [ alr) - [ 2T ) ds (B-3)
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B = j 0. fm(r)j e RO ¢ ') dS ds (D-4)

wherej is the imaginary unit anklis the wave number.

The equations of Egs. (D.1) — (D.4) differ onlytive Green’s function. For the

MOD method, the Green’s function B, = I,,(sSR/ ¢/ Rand for the frequency

domain method it 6., = e ¥R/ R.

The derivatives of these two Green’s functions wébpect tR can be obtained

as

(D.5)

6;3;D - — ? ab(sF\’/c)+ é—sR/(ZC) ( Lp( SR B+ L pa( S/R)} ( )

0Grp __ie—ij_Ee— kR (D.6)

R R? R

The ratio between the spatial derivatives of thee@ts functions with respect to

the Green'’s functions are also calculated as

‘aem /GT 1,5 Lp(SR 9+ Lips(SRY (D.7)
D
R 2cL, (SR - Lps(SR ¥
G 1 (D.8)
‘ aFFzD/GFD el

Eq. (D.8) is a monotonically decaying function witespect to the spatial
variables and it does not have any singularitighéndomairkR € (0, +«). However, for

Eq. (D.7), the denominator terty, _ (SRC) — La-p-1 (SRC) does have zeroes in the
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domainR € (0, +«) whenb < a. Therefore, Eq. (D.7) has some singularities is th

region.

Consider a very small errokR associated with the evaluation of the spatial
variableR, and that the result is in an error in the valt¢he Green’s functionAGrp.

The errorAGrp Is given by

0 (D.9)
AGrp/pp =AR xPCmiep
oR
The corresponding relative error is given by
‘AGTD/FD =AR x 9Grp/ep /GFD/FD (0.10)
Gro/rp oR

When the value oR is such that the denominator of (D.7) is closedoo, the
Green’s function has a pole. A very small erroRitan then result in a large relative
error in the value of the Green’s function. In dos®n, the Green’s function
encountered in the MOD method is more sensitivéh&error in the evaluation &t
Generally, the integrals encountered in (D.1) <4§Dor both time domain and frequency
domain problems cannot be handled analyticallynhmst of patches and a numerical
technigue needs to be employed to evaluate themtbgesurfaces involved. In the time
domain, the functions associated with the integhege singularities; therefore, more
sampling points need to be used in the evaluatfdhenintegrals than in the frequency
domain. Consequently, in the evaluation of thegrdts in Eq. (D.1) and (D.2), one needs
more sampling points in the evaluation of the Gieduanction than in the frequency

domain in order to maintain similar accuracy in final results.
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A plot of the two Green'’s functions for time anéduency domain is displayed in
Figure D.1 and Figure D.2. For the time domain @i®dunction in Figure D.1s is
chosen as 5xfand the degreea(- b) is 50 and 150, respectively, which are common
values for most practical problems. For the fregyestomain Green’s function in Figure
D.2, k is chosen as® Figure D.1 and Figure D.2 show that the time dontareen’s
function in Figure D.1 oscillates more than theyjfrency domain one, especially when
is small or the degreea (- b) is high. Therefore, wheR has a small error, the time
domain Green’s function gives a larger computatienar than the other when using the
same number of sample points to evaluate the imi®gNumerical examples in the

evaluation of Eqgs. (D.1) — (D.4) are used to illatd the same point.

0.4

GTD when a-b=50

0.3k Gp When a-b=150 | |

0.2

L L L L L L L
2 4 6 8 10 12 14
R (m)

Figure D.1 The time domain Green’s function-£
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Figure D.2 The frequency domain Green’s functioppG

D.3 Examples

In this thesis, both the time and frequency domaiagrals are carried out using the
Gaussian quadrature rules for a triangular regifyj [ising the RWG basis functions.
The number of sampling points is varied from 1 ®ii7 the evaluation of the integrals

encountered in Egs. (D.1) — (D.4).

Example 1 considers two triangular spatial basitions parallel to each other,
as shown in Figure D.3. For the time domain Gre@mistion,s is chosen as 5x1@nda
—b = 50. For the frequency domain Green'’s functiors chosen to ben2 The integral
values in the evaluation of the expressions in Hg<l) and (D.3) are listed in Table D.1
and Table D.2. Both expressions converge when ooesases the number of the
sampling quadrature points. Because the exact ydhrethe integrals are not known a
priori, the results obtained by using 79 points@mesidered to be the ones closest to the
accurate values. The relative error at this vasuygatted in Figure D.4. The relative error

is defined as

122



TDIFD (7g)_ ATD/FD (n)‘ (D.11)

_ n
‘ TE/FD (79){

Error(n) =

TD/FD
n

where (n) is the time or frequency domain integral in Eg8.1) and (D.3)

computed withnh sampling points, and the operator |¢| is the albsalalue of the function.
Figure D.4 shows that when one uses 7 samplinggoatich is a very common case for
these computations, the frequency domain integral ltave an error of less than 1%

while the error in the time domain is around 10%sidilar phenomenon also appears in

the evaluation of the integrals &, and B> in the Egs. (D.2) and (D.4); their

relative errors are plotted in Figure D.5. In thgure, when the number of sampling
points is chosen as 7, the frequency domain inkedpas an error of around 0.1% while

the time domain expressions provide a relativerafabout 10%.

Figure D.3 Orientation of the two basis functions for Example
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Figure D.4 Relative error in the evaluation ¢{-., and A.> for Example 1.
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Figure D.5 Relative error in the evaluation & ., and B/ for Example 1.
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TABLE D.1.Numerical error for time domain integrals

Sampling points AL
1 1.196862990017365E-006
4 -9.185507229096584E-008
7 -1.415802785348749E-007
16 -1.520710249941450E-007
25 -1.503210213166758E-007
37 -1.502934135708395E-007
61 -1.502913746203929E-007
79 -1.502915693675874E-007

TABLE D.2.Numerical error for frequency domain integrals

FD

Sampling points n

1 0.1026460570347953E-040.1601586946542305E-06
4 0.7931528008435943E-0$50.1788829860551588E-06
7 0.6072444309197887E-050.1781290363986577E-06
16 0.6105805417065320E-0$0.1781298635103971E-06
25 0.6104483239659091E-050.1781298635107554E-06
37 0.6104447874541564E-050.1781298635107529E-06
61 0.6104432328759541E-050.1781298635107444E-06
79 0.6104431829695501E-050.1781298635106877E-06

Example 2 uses two triangular patch basis functibasare perpendicular to each

other, as shown in Figure D.6. The parameters, &, a, andb are the same as in

Example 1. The relative error in the evaluations tite quantitiesA-., and A-.> are

listed in Table D.3 and Table D.4. The relativeoesrof A and A'> are plotted in

Figure D.7 and the relative errors Bf?., and B-" are plotted in Figure D.8. Figure D.7

and Figure D.8 show that the errors are much lagger the ones from Example 1. This
is because the Green’s function varies over a fargkie wherR is small, as shown in
the Figure D.1 and Figure D.2. In the first examples greater than 0.05m, but in this

example, some of the values®fare close to zero. As implied in Figure D.1 anguiré
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D.2, the error in the evaluation of the Green’sclion is more sensitive to the error in
the evaluation oR for both time and frequency domain cases. In otaget an accurate

value for the integral, more sampling points aredssl. Figure D.7 and Figure D.8 show
that if only 7 sampling points are used in the tidegnain solver, the errors are around
110% and 60%, respectively. These errors are ge ldnat the results of the solver are

unreliable and more sampling points are necessary.

+ Z
0.1m
D— >
A
fo(r
<
F AR >
fn(r 01 m
X , <0l1m .................... >

Figure D.6 The two basis functions for Example 2.

TABLE D.3.Numerical error for time domain integrals

Sampling points AP
1 3.761504994513267E-007
4 -1.152579677805389E-006
7 9.593733385070720E-008
16 -1.317525027949061E-007
25 -9.084526029380924E-008
37 -8.595394401284385E-008
61 -7.911876314641855E-008
79 -7.616760175651086E-008
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TABLE D.4.Numerical error for frequency domain integrals

Sampling
points

FD
Amn

1

4

7
16
25
37
61
79

0.8504782549007540E-05—-j0.1596313625583668E-06
0.1563952782733322E-04—-j0.1788662643803946E-06
0.1418624593893488E-04—j0.1784863698059096E-06
0.1489178854301966E-04—j0.1784867859716771E-06
0.1345273330446101E-04-j0.1784867859718516E-06
0.1300656612436935E-04—-j0.1784867859718702E-06
0.1282336903240997E-04—j0.1784867859718813E-06
0.1269753806813858E-04—-j0.1784867859718796E-06
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Figure D.7 Relative error in the evaluation ¢>., and A'D in Example 2.
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Figure D.8 Relative error in the evaluation & ., and B> in Example 2

Example 3 is the same as Example 1 except thatdgeee of 4 — b) is changed

to 150. All other parameters are the same. Theivelarrors in the evaluation o,
and A0 are plotted in Figure D.9 and the relative eriarthe evaluation oB>, and

B,TF]E are plotted in Figure D.10. Comparing these twarkg with Figure D.4 and Figure

D.5, one can see that as the degree increasegrrirs associated with the integrals
associated with the time domain Green'’s functi@o ahcrease. This is because the time
domain Green'’s function varies more rapidly asdbgree gets larger, as seen in Figure
D.1. If the number of sampling points is not in@ea for higher degrees, the error is

larger when one uses the marching-on-in-degreéigolprocedure.
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Figure D.9 Relative error in the evaluation &>, and A0 in Example 3.
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Figure D.10Relative error in the evaluation & ., and B™> in Example 3
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D.4 Conclusion

Compared to the error associated with a frequermyath solver, the error
associated with the evaluation of the matrix eleimeém a marching-on-in-degree time
domain solver is more sensitive to the error in eélialuation ofR. This is because the
Green’s function varies faster with respectRoTherefore, one needs more sampling
points in the numerical evaluation of the integial®rder to obtain an accurate result. If
one uses the same number of sampling points asinisetrequency domain solver, the
errors is much larger. This is especially importahen two triangular patches are close
in distance to each other or when the degree offiseciated Laguerre polynomials is

large.
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