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i 

Abstract 

 

The time domain method of moment has been proposed for a long time. The marching-

on-in-time solver suffers from late time instability, while the marching-on-in-degree 

technique can avoid this problem.  

This thesis introduces a new temporal basis function and a new Green’s function 

form that improves the computation speed of the marching-on-in-degree technique. This 

method can be used for the perfect conductor and can also be applied to conductors with 

loss or dielectric. 

As a method of moment solver, this marching-on-in-degree technique must solve 

a dense matrix equation and it may be time consuming if the objects are very large. 

Therefore, parallelization and a hybrid method are also proposed to handle large objects. 

This thesis will cover all my improvements to the time domain marching-on-in-

degree method.  
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Chapter 1.   

Introduction 

This thesis introduces the marching-on-in-degree (MOD) method, which is a time 

domain method of moment (MoM) solver, as a way to solve the transient electromagnetic 

response from conducting and dielectric objects. The method of moment is a general 

method for solving linear systems that is widely applied to electromagnetic radiation and 

scattering systems. [1] It usually contains integrals of current or other parameters to set 

up equations in terms of fields. Unlike other kinds of solvers, such as finite element 

method (FEM) or finite difference time domain method (FDTD) that compute the field in 

the whole volume, Mom only needs to perform the computation on the surface of the 

objects and does not need a boundary to include all the components. Therefore, it can 

greatly reduce the number of unknowns, especially when the components are far away. 

Researchers have applied the MoM to time domain problems for a long time.[2] 

The conventional methodology to solve this problem takes the form of a marching-on-in-

time (MOT) algorithm, which splits the entire time domain into many time samples and 

calculates sample by sample [2]-[8]. However, the MOT method may suffer from a late 

time instability and may not provide reliable results in some cases [5]-[14]. Therefore, an 

alternative MOD technique has been proposed to overcome this instability [15]-[17]. In 

the MOD method, the transient response is approximated by a set of associated Laguerre 

polynomials, which are a set of causal orthogonal functions defined in the interval [0, +∞) 

[18][19]. By choosing the associated Laguerre polynomials to represent the transient part 



2 

of the response, the time domain integral can be analytically analyzed and temporal 

variables can be eliminated from the final computational equations. In the computation of 

the unknowns, the equation does not rely on the temporal variables and purely relies on 

the unknowns of lower degree. After obtaining these unknowns of lower degree, the 

unknowns of the next higher degree can be computed. This is why it is called marching-

on-in-degree method. 

The current and potential on the object surfaces are expanded by both temporal 

and spatial basis functions. The procedure for solving the integral equations using the 

MOD method is based on application of Galerkin’s testing method, twice, for separate 

temporal and spatial testing. In the spatial expansion and testing, piecewise triangular 

basis functions are used for wires and Rao-Wilton-Glisson (RWG) basis functions are 

used for surfaces. The time variation in the MOD scheme is approximated by a set of 

orthogonal temporal basis functions — associated Laguerre functions — which are 

derived from the Laguerre polynomials. These basis functions are also used for temporal 

testing.  

In previous work in this field, only one associated Laguerre polynomial is used in 

each temporal basis function. It is a complete and orthogonal basis function set and can 

represent all the transient processes. However, this approach has a drawback in that the 

derivative of the associated Laguerre polynomial is a summation of its lower degrees. 

Consequently, the final equations that are programmed contain many summations. 

Therefore, I proposed a new basis function set, which is a combination of associated 

Laguerre polynomials. This basis function set retains all the advantages of the associated 
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Laguerre polynomials while its derivative is another combination of polynomials instead 

of a summation; this reduces the computation time by a factor about 10 to 20. 

This thesis includes six chapters. This first chapter introduces the background of 

the research. The remaining five chapters cover the MOD method with different 

applications.  

Chapter 2 is a summary and brief introduction to the MOD method for time 

domain electromagnetics problems.  

Chapter 3 contains my improvements to the MOD methods for conducting 

surfaces. It includes the new temporal basis function and an organization of Green’s 

function. The new temporal basis function contains a combination of Laguerre 

polynomials so that it can automatically satisfy the initial condition. In addition, Green’s 

function can be combined so that the computation can be much faster. These 

improvements speed up the computation 10–20 times. Cases of unperfected conducting 

objects such as skin effect loss or other types of arbitrary loss with a definition in time or 

frequency domain are also included. 

Chapter 4 introduces the application of MOD method to dielectric surfaces. I 

apply the MOD method to the PMCHW (Poggio, Miller, Chang, Harrington, and Wu) 

equation so that it can solve the dielectric objects in time domain.  

Chapter 5 contains the method of parallelization of the time domain MOD method. 

The popular existing parallelization setups are first summarized and an explanation is 

given to justify why MPI is chosen to implement the job. I also explain the way I 

distribute the matrix into different machines and compute the problem in detail. 
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Chapter 6 describes a hybrid method of MOD and physical optics. The MOD can 

solve the problem quickly with the improvements, but the memory usage and 

computation time still increase as a square and a cube, respectively, of the number of 

unknowns. This reaches the limit of computers very quickly. Physical optics is an 

asymptotic technique and the memory usage and computation time increase linearly with 

the number of unknowns. However, it cannot handle fine and small components 

accurately. A hybrid method between these two methods is developed that can solve 

some of these problems both rapidly and accurately.  
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Chapter 2.   

Time-Domain Electric Field Integral Equation 

for Conducting Object 

2.1 The Time-Domain Electric Field Integral Equation 

The objective of this section is to introduce how to obtain the current distribution in time 

domain on structures with conducting thin wires and surfaces when illuminated by an 

incident electromagnetic pulse, as shown in Figure 2.1. For method of moment, the 

current on the object surfaces are solved. The scattered wave is then computed from the 

time domain Green’s function. 

 
Figure 2.1 The MoM scattering problem. 

For a perfect electric conductor (PEC), the shape of the objects comes into the 

picture by enforcing the boundary condition, which is that the tangential electric field on 

the boundary is zero. Therefore, one has 

( )
tan

( , ) ( , ) 0i st t+ =E r E r ,
    

for S∈r  (2.1) 
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where Ei is the incident electric field and ES is the scattered electric field due to the 

induced current J. The subscript ‘tan’ denotes the tangential component. The scattered 

electric field is also expressed in terms of the scalar and vector potentials as 

( , ) ( , ) ( , )s t t t
t

∂= − − ∇Φ
∂

E r A r r  (2.2) 

where A and Φ  are the magnetic vector and the electric scalar potential, respectively. 

They are given by 

( , )
( , )

4 S
t dS

R

µ τ
π

′ ′= ∫
J r

A r  (2.3) 

1 ( , )
( , )

4 S
t dS

R

ρ τ
πε

′ ′Φ = ∫
r

r  (2.4) 

and | |R ′= −r r represents the distance between the arbitrary observation point r  and the 

source point r '  located on the surface. The retarded time τ is defined as τ = t – R / c, 

where c is the velocity of the electromagnetic wave propagation in that space. The 

parameters μ and ε are the permeability and permittivity of free space, respectively, and ρ 

is the surface-charge density. The electric current and the electric charge density 

described in Eq. (2.3) and (2.4) can be expressed in terms of a Hertz vector ( , )tu r  

defined by 

( , ) ( , )t t
t

∂=
∂

J r u r  (2.5) 

( , ) ( , )t tρ = −∇r u ri  (2.6) 

Substitution of Eqs. (2.2) to (2.6) into Eq. (2.1) results in 
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( )
2

2 tan
tan

( , ) ( , )
( , )

4 4
i

S S
dS dS t

R Rt

µ τ τ
π πε

 ′ ′ ′∂ ∇ ∇′ ′− =  ∂ 
∫ ∫

u r u r
E r

i
 (2.7) 

Here, one obtains an integral equation with an unknown value of Hertz potential. 

Using the Hertz potential instead of current directly provides the advantage that the 

charge density is a time integral of current; one then needs a time derivative on the whole 

equation to remove this integral. When the excitation is a non-continuous wave, the 

derivative will have problems, whereas the Hertz potential does not suffer from this 

drawback. 

In order to solve the time-domain electric field integral equation (TD-EFIE) of Eq. 

(2.7) using Galerkin’s method, the basis functions must first be defined. 

2.2 Spatial Basis Functions 

The potential on the wire is expanded with a piecewise triangular basis function and on 

the surface it is expanded with an RWG basis function. The thin-wire structure to be 

analyzed is approximated by straight wire segments, as illustrated in Figure 2.2. The wire 

is divided into N segment pairs. The piecewise triangular basis function associated with 

the Hertz potential at the n-th common node at r n is defined by 

( ) ( ) ( )n n n
+ −= +f r f r f r  (2.8) 

where  
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,
( )

0,

n
n

nn

n

L
l

L

±
±

±±

±


± ∈

∆= 
 ∉

l
r

f r

r

 (2.9) 

2 2
n n nl a± ±∆ = − +r r  (2.10) 

n n
± ±= −l r r  (2.11) 

In the above equations, nl
±∆  is the length of the segment nL± , n

±l  is the local position 

vector, and a is the radius of the wire.  
 

 

 

 

Figure 2.2 An arbitrarily-shaped conducting wire with a segmentation scheme. 

Assuming that the surface of the structure is to be mashed by many planar 

triangular patches, consider a pair of triangles nT+  and nT−  connected with the n-th non-

boundary edge, as illustrated in Figure 2.3. 

O  

  nL+Segment

 nL−Segment 

n
−l

n
−r

nr
n
+r

n

r
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Figure 2.3 A pair of triangular patches associated with a non-boundary edge. 

In Figure 2.3, ln is the length of the non-boundary edge (edge common to both 

triangles) and na+ and na−  are the areas of the triangles nT+  and nT− , respectively. Vectors 

n
+
ρ  and n

−
ρ  are the position vectors defined with respect to the free vertices (vertices not 

connected to the common edge) of nT+  and nT− , respectively. The position vector n
+
ρ  is 

oriented from the free vertex of nT+  to any point inside the triangle. Similar remarks can 

be applied to the position vector n
−
ρ , except its direction is toward the free vertex from 

any point in nT− . The plus or minus designation of the triangles is defined based on the 

assumption that the positive direction of the current flow is from the triangle nT+  to nT− . 

Applying the RWG basis [2], the expansion function associated with the n-th edge is 

defined on the pair of adjacent triangular patches as 

( ) ( ) ( )n n n
+ −= +f r f r f r  (2.12) 

,
2( )

0,

n
n n

nn

n

l
T

a

T

± ±
±±

±

 ∈= 
 ∉

ρ r
f r

r

 (2.13) 

nl  

na−
area  

 nT +
Patch

 nT −
Patch

n
+
ρ

n
−
ρ

na+
area  
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The surface divergence of the above basis function can then be calculated as 

follows. [2] 

 ( )  ( )  ( )S n S n S n
+ −∇ = ∇ + ∇f r f r f ri i i  (2.14) 

,
 ( )

0,

n
n

nS n

n

l
T

a

T

±
±±

±

± ∈∇ = 
 ∉

r
f r

r

i  (2.15) 

2.3 Temporal Basis Functions 

The Hertz vector can now be expressed in terms of the RWG basis function for the spatial 

variable. Hence, 

1

( , ) ( ) ( )
N

n n
n

t u t
=

=∑u r f r  (2.16) 

where un(t) is the transient part and needs to be expanded by temporal basis function. 

The associated Laguerre function set is defined by  

/2 ( ) ( 0)
( )

0 ( 0)

t
j

j

e L t t
t

t
φ

− ≥= 
<

 (2.17) 

where Lj(t) is the Laguerre polynomial of order j [18][19]. Using it to represent the causal 

temporal basis functions, the transient variation introduced in Eq. (2.17) can be expanded 

as  
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,
0

( ) ( )n n j j
j

u t u stφ
∞

=
=∑  (2.18) 

where un,j are the unknown coefficients to be solved and s is a scaling factor. Controlling 

the factor s allows the support provided by the expansion functions to be increased or 

decreased. The expression of the first and second derivatives of the transient variations 

for the solution can be given analytically as  

1

, ,
0 0

1
( ) ( )

2

j

n n j n k j
j k

d
u t s u u st

dt
φ

−∞

= =

 
= +  

 
∑ ∑  (2.19) 

12
2

, ,2
0 0

1
( ) ( ) ( )

4

j

n n j n k j
j k

d
u t s u j k u st

dt
φ

−∞

= =

 
= + −  

 
∑ ∑  (2.20) 

 This assumes that the functions (0) 0nu =  and (0) 0ndu dt =  as the time response 

have not started at 0t =  because of causality. 

In summary, five characteristic properties of the associated Laguerre functions 

derived from Laguerre polynomials have been used in this new formulation:  

1. Causality: The Laguerre polynomials are defined over 0 t≤ < +∞ . Therefore, they 

are quite suitable to represent any natural time domain responses as they are 

always causal. 

2. Recursive computation: The Laguerre polynomials of higher orders can be 

generated recursively using the lower orders through a stable computational 

process.  
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3. Orthogonality: With respect to a weighting function, the Laguerre polynomials 

are orthogonal to each other. One can construct a set of orthonormal basis 

functions, which is called the weighted Laguerre polynomials or associated 

Laguerre functions. Physical quantities that are functions of time can be spanned 

in terms of these orthonormal basis functions. 

4. Convergence: The associated Laguerre functions decay to zero as time goes to 

infinity; therefore, the solution does not diverge for late times. Also, because the 

associated Laguerre functions form an orthonormal set, any arbitrary time 

function can be spanned by these basis functions and the approximation 

converges. 

5. Separability of the space and time variables: Due to the additive property of the 

weighted Laguerre functions, the spatial and the temporal variables can be 

completely separated and the time variable can be completely eliminated from all 

the computations except the calculation of the excitation coefficient, which is 

determined by the excitation waveform only. This eliminates the interpolation that 

is necessary to estimate values of the current or the charge at time instances that 

do not correspond to a sampled time instance. Therefore, the values of the current 

can be obtained quite accurately at any time.  

2.4 Testing of the Integral Equation 

Substituting Eqs. (2.8)–(2.20) into the TD-EFIE in Eq. (2.7) results in 
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( )
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1 0 tan
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−∞
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∞

= =

 ′ 
′+ −   
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′ ′∇  ′− ∇ =    
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∑∑ ∫

f r

f r
E r

i

 (2.21) 

Next, Galerkin’s method is employed to solve this integral equation. First is the 

temporal testing, where another temporal basis function is multiplied to both sides of Eq. 

(2.21) and integrated over the whole domain of [0,+∞), which eliminates the transient 

variable. One then has  

12

, ,
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,
1 0

1 1
( ) ( ) ( )

4 4

1 1
         ( )  ( ) ( )

4
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n j k

N

n j ij n iS
n j

s
u j k u I sR c dS

R

u I sR c dS V
R
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−∞

= = =

∞

= =

 
′ ′+ −  
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 ′ ′ ′− ∇ ∇ = 
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∑∑ ∫

f r
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 (2.22) 

where 

1

0

( ) ( ) ( ) ( ) 

( / ) ( / )

             ( / )

0

ij i jsR c

i j i j

I sR c st st sR c d st

sR c sR c j i

sR c j i

j i

φ φ

φ φ
φ

∞

− − −

= −

− <
= =
 >

∫

 (2.23) 

0
( ) ( ) ( , ) ( )i

i iV st t d stφ
∞

= ∫r E r  (2.24) 

Because of this orthogonality condition in Eq. (2.23), the upper limit of the sum in 

Eq. (2.22) can be changed from ∞ to i. The spatial testing can then be performed with 

different fm(r ) (m = 1,2,…,N). In this spatial testing, another basis function fm(r ) is 
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multiplied to both sides of Eq. (2.22) and integrates the equation for the whole surface. 

One obtains 

2 1
2

, ,
1 1 0

1 21 1
2

, ,
1 0 0 1 0

1
( )

4

1
( )

4

N N i

mn mn n i mi n k mn
n n k

jN i N i

n k mnij mnij mnij n j
n j k n j

s
u s i k u

s
s j k u A A B u

µ α β µ α
ε

µµ
ε

−

= = =

−− −

= = = = =

 
+ = Ω − −  

 

 
− − − +  

 

∑ ∑∑

∑∑∑ ∑∑
 (2.25) 

where 

( )(2 )

( ) ( )
4

sR c

mn m nS S

e
dS dS

R
α

π

−

′
′ ′= ∫ ∫f r f ri  (2.26) 

( )(2 )

( ) ( )
4

sR c

mn m nS S

e
dS dS

R
β

π

−

′
′ ′ ′= ∇ ∇∫ ∫f r f ri i  (2.27) 

( )
( ) ( )

4
ij

mnij m nS S

I sR c
A dS dS

Rπ′
′ ′= ∫ ∫f r f ri  

(2.28) 

( )
( ) ( )

4
ij

mnij m nS S

I sR c
B dS dS

Rπ′
′ ′ ′= ∇ ∇∫ ∫f r f ri i  

(2.29) 

, ( ) ( )m i m iS
dSΩ = ∫ f r V ri . (2.30) 

Finally, Eq. (2.25) can be written into a matrix equation as 

[ ] , ,mn n i m iZ u γ   =    .  1, 2,3, ,i I= … . (2.31) 

where 
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2 1
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∑∑

∑∑∑ ∑∑
 (2.33) 

The matrix element Zmn is not a function of the order of the temporal testing 

functions. Eq. (2.31) indicates that the unknown coefficient of a temporal degree i  can be 

characterized by its lower degrees; this leads to a marching-on-in-degree algorithm. This 

can start from temporal degree 0 and solve Eq. (2.31) one degree at a time up to the 

maximum degree. Solving the matrix equation in this marching-on-in-degree manner 

allows the unknown coefficients un,j to be found for all the degrees. The electric current is 

expressed using unknown coefficients un,j. 
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Chapter 3.   

The Improvements of the Temporal Basis 

Function  

In the previous work in this field, the associated Laguerre functions were chosen as the 

temporal basis functions. However, this choice has a drawback; namely, that the 

derivative of the associated Laguerre function forms a summation over its lower degrees. 

Consequently, the final equations that are conventionally used contain many summations. 

Therefore, the use of a new basis function set, which is a combination of associated 

Laguerre functions, is proposed here. This new basis function set retains all the 

advantages of the associated Laguerre functions while its derivative now is another 

combination of associated Laguerre functions instead of a summation, which reduces the 

computation time by a factor of about 10 to 20. 

In addition, in Eq. (2.23) of the previous chapter, the lower degree temporal basis 

functions with different retarded times were no longer orthogonal to each other. 

Calculation of the coefficients for each degree required integration over the previous 

polynomial orders to eliminate the components of the lower degree basis functions. This 

takes significant CPU time and results in a computationally inefficient procedure. 

Therefore, a new computational form of the Green’s function is used to treat the retarded 

time component associated with the basis functions of a lower degree in order to reduce 

the operation count. This results in an increase in the computational efficiency over the 

original formulation.  
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In this chapter, the novel transient basis function is first described and a form of the 

new Green’s function in the MOD method is introduced. Numerical results are then 

presented to show the efficiency and accuracy of the improved formulas. The 

improvement in efficiency gives ordinary PCs the capability to calculate transient 

responses from full-sized aircraft and their results are shown in this chapter. 

3.1 New Combination of Temporal Basis Functions 

In order to improve the computational efficiency, the temporal basis function is 

represented by a combination of three associated Laguerre functions with successive 

degrees multiplied by some unknown constants for the transient coefficient ( )nu t , as 

described in [21] 

( ), 1 2
0

( ) ( ) 2 ( ) ( )n n j j j j
j

u t u st st stφ φ φ
∞

+ +
=

= − +∑  (3.1) 

Referring to the property of the Laguerre polynomials [19], the derivative of the 

Laguerre polynomials can be expressed as a sum of its lower-order components as 

1
(1)

1
0

( ) ( ) ( )
j

j pj
p

d
L st L st L st

dt

−

−
=

= − = −∑  (3.2) 

From Eq. (3.2), the derivative of the associated Laguerre function is written as 

1

0

( ) ( ) ( )
2

j

j j p
p

d s
st st s st

dt
φ φ φ

−

=
= − − ∑  (3.3) 
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Using the property given by Eq. (3.3), the first and second derivatives of the 

transient coefficient ( )nu t  of Eq. (3.1) can be derived and represented as a combination 

of associated Laguerre functions of different degrees by: 

( ), 2
0

( ) ( ) ( )
2n n j j j

j

d s
u t u st st

dt
φ φ

∞

+
=

= −∑  (3.4) 

( )
2 2

, 1 22
0

( ) ( ) 2 ( ) ( )
4n n j j j j

j

d s
u t u st st st

dt
φ φ φ

∞

+ +
=

= + +∑  (3.5) 

In contrast to the conventional MOD method [16][17], where the transient 

variable is expanded by a single associated Laguerre function set ( )j stφ , as depicted by 

Eq. (2.18), the new temporal basis function presented here is formed by a combination of 

three associated Laguerre functions, ( )j stφ , 1( )j stφ + , and 2( )j stφ + , for each degree j . 

The use of this combinational temporal basis function set means that the first and second 

derivatives of the transient variable un(t) expressed in Eqs. (3.4) and (3.5) contain fewer 

terms in the summation compared to those using the conventional MOD. This is due to 

cancellation of the lower-degree components in the derivatives of the three associated 

Laguerre functions, ( )j stφ , 1( )j stφ + , and 2( )j stφ + . This cancellation leads to fewer terms 

to be computed and a shorter time for the computation. 

Substituting Eqs. (3.1), (3.4) and (3.5) into Eq. (2.16), the TD-EFIE are expressed 

by the spatial vector function ( )nf r and the temporal function 1 2( ) 2 ( ) ( )j j jst st stφ φ φ+ +− +  

as 
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 (3.6) 

After expanding the terms inside the summation and recombining the terms with 

the same degree of associated Laguerre functions, Eq. (3.6) can be rewritten by 

introducing two temporary parameters ,n je  and ,n jd  as 
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 (3.7) 

where 

, , 2 , 1 ,2n j n j n j n je u u u− −= + +  (3.8) 

, , 2 , 1 ,2n j n j n j n jd u u u− −= − +  (3.9) 

where , 0n ju =  is assumed for j < 0. 

3.2 Testing Procedure and the Matrix Equation 

Similar to the testing procedure described in the previous chapter, Galerkin’s method is 

used in temporal and spatial testing. Applying the temporal testing with a testing function 

( )i stφ  yields 
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 (3.10) 

where I ij(sR/c) and V i(r ) are given in Eqs. (2.23) and (2.24). 

It is important to note that the basis functions contain a combination of three 

associated Laguerre functions, while only one is used for testing. Further, applying 

spatial testing to Eq. (3.10) with a testing function ( )mf r  yields 

2

,
1 0

,
1 0

1
( ) ( ) ( ) 

4 4

1 1
         ( )  ( ) ( )

4

         ( ) ( ) 

N i

n j ij m nS S
n j

N i

m n j ij nS S
n j

i
mS

s
e I sR c dS dS

R

d I sR c dS dS
R

dS

µ
π

πε

= =

= =

′ ′

′ ′ ′− ∇ ∇

=

∑∑∫ ∫

∑∑∫ ∫

∫

f r f r

f r f r

f r V r

i

i i

i

 (3.11) 

Equivalently, Eq. (3.11) can be written as 

2
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4mnij m ij nS S
A I sR c dS dS

Rπ
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, ( ) ( ) i
m i mS

dSΩ = ∫ f r V ri  (3.15) 

Using Eq. (2.23), Eqs. (3.13) and (3.14) for j i=  can be written as 
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Finally, transforming the variables en,i and dn,i back into un,i according to Eq. (3.8) 

and (3.9), and moving the terms associated with un,i of degrees smaller than i to the right-

hand side, yields 
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 (3.18) 

If the unknown coefficients un,j lower than degree i are known, then the coefficients 

un,i of degree i can be solved by Eq. (3.18) in a marching-on-in-degree manner.  

3.3 Property of Green’s Function Terms 

Note that the term I ij(sR/c)/R, which is the Green’s function after testing, exists in all the 

calculations of Amnij and Bmnij. In Eq. (3.13) and (3.14), the associated Laguerre functions 

are not orthogonal, due to the involvement of the retarded time factor; therefore, the 

computations cannot be simplified using the orthogonality between the functions. This 
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results in a need for a much longer CPU time to complete the computation of the Green’s 

function. Therefore, a new Green’s function is designed that groups the retarded-time 

terms, in order to minimize the repetitive computations for the Laguerre polynomials of 

different degrees and the floating-point number divisions for R. Defining the two 

parameters kmni and hmni associated with the new Green’s functions as 
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 Eq. (3.18) can be expressed as  

2 2
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1 1 1

1 1

4 4

N N N

n i mn mn m i mni mni
n n n

s s
u k h

µ µα β
ε ε= = =

 
+ = Ω − −  

 
∑ ∑ ∑  (3.21) 

where 1, 2,...,m N=  and 0,1, 2,...,i I= . This can further be represented in a matrix form as 
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[ ] , ,1 1mn n i m iN N N N
Z u γ× × ×

   =     (3.22) 

where 

2 1

4mn mn mn
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N N

m i m i mni mni
n n

s
k h
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= Ω − −∑ ∑  (3.24) 

For any temporal degree i0, the coefficients 
0,n iu  can be computed by a MOD 

procedure using Eq. (8.23), providing that all the lower-degree coefficients for 

00,1, 2,..., 1i i= −  have already been computed. Using the computational scheme outlined, 

the computation time can be significantly reduced by a factor of more than ten for most 

applications, when contrasted against the use of the conventional MOD.  

3.4 Improvement of the Computation Time 

The improvement of the computation time for solving the TD-EFIE with the new MOD 

scheme outlined in this chapter can be quantized by approximating the computational 

efficiency in terms of the order of magnitude O  (called big O notation) of the total 

number of operations, which mainly depends upon the maximum number of spatial 

unknowns N and the maximum temporal degree I. The TD-EFIE formulations given by 

Eq. (2.31) and Eq. (3.22) allow determination of the number of operations needed for the 

floating-point divisions and the calculations of the Laguerre polynomials using the 

conventional MOD and the new MOD, as listed in Table 3.1. 
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Table 3.1. The number of operations for the conventional and the new MOD methods 

 
The conventional MOD in Eq. 

(2.31) 
The new MOD in Eq. 

(3.22) 

Floating point divisions 2 2( )N IO  2( )N IO  

Laguerre polynomial 
computations 

2 3( )N IO  2 2( )N IO  

 

These two computation tasks are the most time-consuming in the MOD solution 

procedures because the number of floating-point divisions involves many instruction 

cycles and the calculation of the Laguerre polynomials requires a recursive algorithm. 

Table 3.1 also shows that the a relatively smaller number of operations is needed for 

these two computation tasks in the new MOD when compared to the conventional MOD. 

This achieves a significant reduction in time for solving the TD-EFIE. The improvement 

in the efficiency of the new MOD is better illustrated by numerical examples in this 

chapter that compare the computation time for these two MOD methods. 

3.5 Solution for the Unperfected Metal Surface 

The objective of this chapter is to present a solution methodology for the analysis of 

arbitrary frequency dependent losses on conducting structures in a time domain electric 

field integral equation. An implementing method is proposed whereby the convolution 

between these two functional variations — namely the loss factor and the current density 

— can be treated in an analytical fashion, resulting in an accurate and efficient solution 

methodology.  

 The parameters of the loads, such as resistors, inductors, capacitors, or skin 

effects are usually specified in the frequency domain. Therefore, if one transforms this 
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functional variation into time domain, this results in a convolution between these 

temporal functional variations of the loads with the transient current densities on the 

structures. In this section, both of these temporal variations are expanded in terms of the 

associated Laguerre functions. Hence, in this situation, this convolution can be 

analytically performed in an efficient and accurate way, thereby simplifying the 

calculation. 

 The concentrated or distributed loads applied to conducting structures are often 

described in the frequency domain as a function of frequency, by Z(ω). Therefore, when 

transferred into the time domain, this represents a temporal response characterized by Z(t). 

On the surface of the objects, the boundary conditions related to the tangential 

components of the electric fields are given by 

( )
tan

tan

( , ) ( , ) ( , ) ( , ) ( , )i t t Φ t Z t t
t

∂ + − − ∇ = ∗ ∂ 
E r A r r r J r  (3.25) 

where ∗  denotes the convolution, A(r ,t) and Ф(r ,t) are the magnetic vector and the 

electric scalar potentials, respectively. Ei(r ,t) is the incident wave. The subscript tan 

implies the tangential components. Furthermore, A(r ,t) and Ф(r ,t) can be expressed in 

terms of the current density J and the charge density ρ, as indicated in previous chapter in 

Eq. (2.3) and (2.4), and can be further expressed in one Hertz potential, as in Eq. (2.5) 

and (2.6). 

 The time varying loads are also expanded by the associated Laguerre polynomials 

as 
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By applying the same expansion procedure as introduced in Section 3.1, the TD-

EFIE is then expressed in terms of these basis functions as 
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(3.28) 

This equation is almost the same as Eq. (3.6), except for the additional term for the 

loads. In Eq. (3.28), a convolution must be performed between two associated Laguerre 

functions. This can be analytically calculated as [18]. 
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 The temporal testing is applied first and then the spatial testing. As in Section 3.2, 

multiplying with the testing function ( )i stφ to Eq. (3.29) and then integrating over the 

domain [0, +∞) yields 
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(3.30) 

where V i(r ) and I ij(sR/c) are same as previously defined in Eq. (2.23) and (2.24). 

 Furthermore, application of a spatial testing to Eq. (3.30) with the testing function 

( )mf r  and then integrating it over the surface S yields 
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where Amnij, Bmnij, Ωm,i are defined in Eq. (2.28) – (2.30), and  

( ) ( ) ( ) mnk k m nS
Z dSΖ = ∫ r f r f ri  (3.32) 

Finally, the above equations are written in a form that is now amenable to the MOD 

method by moving all the terms associated with un,i to the left hand side and the terms 

associated with un,j (j<i) to the right side of Eq. (3.32). Once the coefficients un,j 
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(j=0,1,2,…,i–1) are evaluated, the unknown coefficient of the next degree un,i can easily 

be accomplished as 
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 Not surprisingly, Eq. (3.33) is the same as Eq. (3.18), which is the perfect 

conductor case, except for two terms of loads. When the loads are zero, Eq. (3.33) 

changes back to Eq. (3.18). This equation can apply the same marching-on-in-degree 

technique and all the other improvements. 

3.6 Numerical Examples for the Improved Time Domain MoM 

In this section, some numerical examples are presented to illustrate the methods 

introduced in the previous sections. The results obtained in the time-domain are then 

compared with the IDFT of the frequency domain solutions to validate the accuracy. In 

addition, the results are also compared with the MOT method to assess the performance 

of these numerical methods in terms of accuracy, stability, and computational efficiency. 

The comparisons are made realistic by using the same surface mesh for the MOD 

approach, the frequency-domain method, and the MOT methods for the analysis of the 

conducting and dielectric structures. 



30 

3.6.1 Use of Various Excitation Sources 

Two types of transient plane waves used to illuminate the scatterers are presented in this 

chapter: the Gaussian pulse and T-pulse. The temporal electric field shaped by a Gaussian 

pulse is given by 

2

0
4

( , )i t e
T

γ

π
−=E r E  (3.34) 

where 

( )0
4 ˆct ct
T

γ = − − r ki  (3.35) 

The parameter ̂k  is the unit vector along the direction of wave propagation, T  is 

the pulse width of the Gaussian pulse, and 0t  is the time delay, which represents the time 

from the origin at which the pulse reaches its peak.  

The T-pulse is a discrete time signal, with most of its prescribed energy focused in 

a given bandwidth [22][23]. It is a strictly time-limited pulse with the added stipulation 

that 99% of its signal energy is concentrated in a narrow band. Hence, effectively, the 

pulse is also approximately band limited. In addition, the pulse can be designed to be 

orthogonal with its shifted version as well and can have a zero DC bias if required. By 

interpolating this discrete pulse, a continuous pulse can be generated while its bandwidth 

remains approximately the same. The mathematical generation of a T-pulse is described 

in [24][25]. Figure 3.1 shows the transient and frequency responses of a T-pulse that is 6 

light-meters (lm) in duration. Most of its energy is concentrated in the band from 0–200 

MHz and only less than 0.008% of the energy is out of this band; therefore, this time 
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limited pulse is also practically band limited and thus is very convenient for system 

applications. 

Next, responses of the system to these pulses are discussed. 

(a) Temporal response.  (b) Spectrum. 
Figure 3.1  The T-pulse. 

3.6.2 Improved Performance in Accuracy and Stability 

Example 3-1: A Pair of Conducting Plates 

The first example deals with a pair of 1m×1m perfectly conducting (PEC) plates 

forming a narrow angle (5°), as shown in Figure 3.2. The objective is to demonstrate that 

the shortcomings of the conventional MOD in [15] in accuracy and stability are alleviated 

in this new MOD formulation. The surfaces of the two plates are discretized into 

triangular patches, as shown in Figure 3.2. There are 274 patches and 435 edges. Some of 

the patches along the connected edge of the two metal plates are in very close proximity 

to each other; this results in strong coupling between them. Hence, a highly accurate 

computation is required for the spatial integrals over the patches.  
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The incident wave is a θ-polarized Gaussian wave arriving from 0φ = ° and 

0θ = °  with a pulse width of 8 lm and delayed by 12 lm. Here, 1 lm is 3.33 nanoseconds. 

The wave has an approximate bandwidth of 120 MHz. The induced current on this 

conducting structure is calculated by the frequency-domain MoM, the new MOD, and the 

conventional MOD method in [15]. The current across the edge connecting the nodes (0, 

0, 0) and (0.0375, 0, 0) are plotted in Figure 3.3, with the three plots marked as IDFT, 

Improved MOD, and conventional MOD, respectively. The conventional MOD in Figure 

3.3 is obviously completely unstable, whereas the new improved MOD method is stable 

and its results agree with the IDFT of the frequency-domain solution. 

When the conventional MOD method in [15] is used to analyze this structure, the 

spatial integrals over the patch are tested at the center of the patch only. This leads to an 

error, which may result in an unstable solution. By first employing the temporal testing 

followed by the spatial testing, the retarded time terms can be handled analytically in the 

new MOD scheme, as opposed to the conventional one. This example illustrates that the 

approximations used in the conventional MOD may lead to the failure of the method for 

some types of scatterers. However, this shortcoming can be eliminated by using the new 

MOD methodology.  
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Figure 3.2  Triangular patch model for a pair of 0.6 m × 0.6 m conducting plates 

connected at an angle of 5°. 

 

Figure 3.3  Current on the conducting plates computed by the improved MOD method 

plotted against the results from the conventional MOD and the IDFT of the frequency-

domain MoM solution. 

3.6.3 Improvement in Computational Efficiency of the New MOD Method 

The utilization of a combination of associated Laguerre functions as temporal basis 

functions, as well as the introduction of a new mathematical form of the Green’s 
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significantly reduces the computation time by at least a factor of ten, thereby making this 

new method as competitive as the MOT algorithm. These claims are illustrated through 

some examples. 

Example 3-2: A Dipole 

Consider a 1 meter long dipole placed along the x-axis and illuminated by a T-

pulse of width 6 lm, starting at 8 lm. The pulse has an approximate bandwidth of 200 

MHz. It is incident from the z-axis and is polarized along the x-axis. Figure 3.4 plots the 

current at the central point of the dipole, calculated using the conventional MOD, the new 

MOD described in Chapter 8, and the IDFT of the frequency-domain solution. The 

highest temporal order of the Laguerre polynomial selected is 50 in the two MOD 

calculations. The computation time needed for all the time-domain methods are listed in 

Table 3.2. Figure 3.4 shows that the results of the conventional MOD and the new MOD 

completely overlap, and they agree well with the IDFT of the frequency-domain solution. 

However, the computation time for the new MOD method over the conventional one is 

less by a factor of eighteen (46.3s as opposed to 2.45s). Figure 3.4 also shows that the 

conventional MOT method becomes unstable at a late time (after 15 lm), although it 

takes the least amount of computation time.  
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Figure 3.4  Transient response at the central point of the dipole due to an incident T-

pulse. 

Table 3.2  Comparison of the computation time for the analysis of the dipole using 
different time-domain methods 

Methods Total Calculation Time (s) 
The conventional MOD  46.30 
The new MOD  2.45 
The MOT  2.04 
 

Example 3-3: A Helix  

Next, consider the analysis of a helix with a height of 8.8 meters and a radius of 2 

meters, which contains 100 spatial unknowns. Its axis is oriented along the z-axis. A 

plane wave consisting of a θ-polarized T-pulse is incident from 0φ = ° and 0θ = ° . The 

T-pulse has a pulse width of 6 lm and starts at 8 lm. It has a bandwidth of 200 MHz. The 

transient current near the end of the structure is computed using the improved MOD 

method. This is plotted in Figure 3.5, along with the results from the IDFT of a frequency 
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domain MoM solution, the conventional MOD, and the MOT techniques. The 

computational time required by all the methods is listed in Table 3.3 for comparison. 

Figure 3.5 shows a very good agreement between the solutions obtained by the 

conventional MOD, the new MOD, and the IDFT of the frequency-domain solution. The 

computational time required by the conventional MOD is twenty-two times greater than 

that of the new MOD (326.2s and 14.23s, respectively). The MOT can solve the problem 

much faster, but its result starts oscillating at an early time, as shown in Figure 3.5.  

 

Figure 3.5  Transient response at a point near the end of the Helix  

due to an incident T-pulse. 

Table 3.3  Comparison of computation time for the analysis of the helix using 
different time-domain methods 

Methods Total Calculation Time (min) 
The conventional MOD  326.20 
The new MOD  14.23 
The MOT  6.66 
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A loop antenna with a diameter of 0.5 meter is placed in the xoy plane. A y-

polarized T-pulse of duration 10 lm and delayed by 8 lm is incident from the x-axis. It has 

a bandwidth of 120 MHz. The highest temporal order of the Laguerre polynomials used 

is 100. In this example, the solution obtained by the conventional and the improved MOD 

are transformed into the frequency domain, and compared with the frequency-domain 

MoM solution. Figure 3.6 plots the currents on the loop at a point (0.25, 0, 0) m in the 

frequency domain. The results from the two MOD methods agree very well, along with 

the frequency domain MoM solution, in both magnitude and phase. The computation 

time to obtain the time-domain solutions using the two MOD and the MOT methods are 

listed in Table 3.4. A much shorter computation time, by a factor of 25, is required for the 

improved MOD than for the conventional MOD method. For this structure, the new 

MOD technique is faster than the MOT method, whose results are not shown because 

they are highly oscillatory. 

(a) (b) 

Figure 3.6  Current response in the frequency domain at a point on the loop antenna 

illuminated by a T-Pulse. (a) Magnitude. (b) Phase. 
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Table 3.4  Comparison of computation time for the analysis of the loop antenna 
using different time-domain methods 

Methods Total Calculation Time (s) 
The conventional MOD  155.56 
The new MOD  6.20 
The MOT  6.90 
 

In summary, the analysis of the four wire structures discussed so far reveals that 

the computed results using the new MOD method are not only accurate and stable, but 

the computation time has been reduced at least by an order of magnitude over the 

conventional MOD method.  

3.6.4 The Examples of Large Objects 

In this section, results of scattering from various shapes and sizes of conducting 

structures with relatively large sizes are presented to demonstrate the improved 

performance of this new time domain MOD algorithm. Example 3-5 is a simple sphere 

with a large number of meshes. Comparing it to the frequency domain results will 

illustrate the accuracy of the MOD method. The next two examples are a sedan and a 

plane, which show that the MOD can be used for arbitrary objects with a large number of 

unknowns. 

Example 3-5: A sphere with 1 meter radius 

A sphere with 1 m radius is illuminated by a θ-polarized incident T-pulse plane 

wave. The back scattered wave is computed and the result is compared to the result of a 

commercial frequency domain MoM solver HOBBIES. I tested two T-pulse waves, one 

with a bandwidth of 200MHz, as shown in Figure 3.1. The other has a bandwidth of 

400MHz, by scaling the T-pulse in time domain. The 200MHz pulse results in a mesh 
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with 14738 triangular patches and a number of unknowns of 22107. The 400MHz pulse 

results in a mesh with 39810 triangular patches and a number of unknowns of 59715. The 

θ-component of the back scattered wave is plotted in Figure 3.7 and Figure 3.8 along 

with comparisons with the HOBBIES results. These plots show that the MOD results 

agree well with the frequency domain results for a large number of unknowns. 

 

Figure 3.7  The θ-component of the back scattered wave from a 1m-radiused sphere with 

an incident pulse of 200MHz. 
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Figure 3.8  The θ-component of the back scattered wave from a 1m-radiused sphere with 

an incident pulse of 400MHz. 

Example 3-6: A sedan 

The scattering from a conducting sedan with size of 5 m × 1.8 m × 1.8 m is shown 

Figure 3.9. A total of 15262 patches and 22893 edges are used for the triangular patch 

model of this structure. It also has a small dipole with two piecewise sections on top of 

the sedan. The transient current is computed on the vehicle when the sedan is illuminated 

by a θ-polarized 200MHz-bandwithed T-pulse, as shown in Figure 3.1, incident head on 

from 0φ = ° and 90θ = ° . The transient current computed by the improved MOD method 

is plotted in Figure 3.10. The current moves from the head to the tail of the vehicle, as 

expected. 
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Figure 3.9  A sedan with triangular mesh. 

 

(a) t = 4.5 lm 

 

(b) t = 6 lm 
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(c) t = 7.5 lm 

 

(d) t = 9 lm 

 

(e) t = 10.5 lm 
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(f) t = 12 lm 

Figure 3.10  The current distribution at different time steps. 

 

 

Example 3-7: A plane 

In this section, a Boeing-737 aircraft with a size of 26 m × 26 m × 11 m is 

analyzed. The surface is discretized using 4721 triangular patches with 7327 edges, as 

shown in Figure 3.11. The structure is excited by a T-pulse coming from the head of the 

plane ( =θ 90° and =φ 0°). The pulse has a pulse-width of 25 lm, a time delay of 0 17.5t =

lm, and a bandwidth of 50 MHz. The transient current distribution on the structure from 

30t = lm to 100t = lm is computed using the new MOD method and is plotted in Figure 

3.12. The values of the current for all time instants have been scaled. The darkest (blue) 

color is defined as 0 mA/m, whereas the lightest (red) color is used for all currents larger 

than 0.3 mA/m. 
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Figure 3.11  Triangular patch model for a Boeing-737 Aircraft with a size of 

 26 m × 26 m ×11 m. 

 

  
(a) t=30 lm (b) t=35 lm 

  
(c) t=40 lm (d) t=45 lm 
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(c) t=60 lm (d) t=100 lm 

 

-4× 10  
Figure 3.12  Transient current distributions on the Boeing-737 aircraft. 

From these examples, the MOD method proposed in in this chapter can be seen to 

speed up the computations by a factor of more than 10. The method retains all the 

advantages of the conventional MOD method, while the calculation time is significantly 

reduced. The numerical examples show that the results agree well with the solutions 

obtained from a frequency domain MoM and the original MOD method. 
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Chapter 4.   

The Time Domain MoM Method for Dielectric 

Objects 

For dielectric objects, the equivalent principle needs both electric and magnetic current to 

represent the materials in the other domain. Solving both currents requires the boundary 

conditions for both electric and magnetic fields.  

Suppose there is a dielectric object as shown in Figure 4.1. The region of outside 

vacuum is called region 1 and the dielectric object is called region 2. No physical surface 

current exists for a real dielectric object; however, the equivalent principle allows us to 

remove the dielectric object and define two electric and magnetic currents on the surface 

so that the field in region 1 is the same as in the original problem. In the same way, one 

can replace the vacuum in region 1 with a dielectric and define another set of electric and 

magnetic currents so that the field inside region 2 is the same as in the original problem.   

 

Figure 4.1  Problem for a dielectric object. 
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Therefore, the boundary condition for dielectric objects is given in Eq. (4.1) and 

(4.2) for the case where the excitation locates in region 1 
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where ( , )s
νE J M  and ( , )s

νH J M  are the scattered electric and magnetic fields in region v. 

Eq. (4.1) is called the Electric Field Integral Equation (EFIE) and Eq. (4.2) is called the 

Magnetic Field Integral Equation (MFIE). Adding Eq. (4.1) to (4.2) gives the Combined 

Field Integral Equation (CFIE). In addition to these three equations, the PMCHW 

(Poggio, Miller, Chang, Harrington, and Wu) equation is another method for solving this 

problem. It adds the incident and scattered waves in two domains up on the boundary, to 

give the following equations 

( ) ( ) ( )1 2tan tan tan
( , ) ( , )s s i− + − =E J M E J M E  (4.3) 

( ) ( ) ( )1 2tan tan tan
( , ) ( , )s s i− + − =H J M H J M H  (4.4) 

4.1 Time Domain PMCHW Equation 

The PMCHW equations given in Eqs. (4.3) and (4.4) can be used to handle time domain 

problems. Unlike the EFIE, the electric vector potential and magnetic scalar potential are 

also needed to formulate the scattered fields, as shown in Eqs. (4.5) and (4.6). 
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where A is the magnetic vector potential, Φ  is the electric scalar potential, F is the 

electric vector potential, and Ψ  is the magnetic scalar potential. v = 1 or 2 identify the 

regions of different materials. These potentials can be calculated by  
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t R cν ντ = −  (4.11) 

where J and M  are the electric and magnetic current, respectively, and ρe and ρm are the 

electric and magnetic charge density, respectively. R represents the distance between the 

observation point r  and the source point r’ , the retarded time is denoted by τv, and the 

velocity of the electromagnetic wave propagated in the space with medium parameters (εv, 

µv) is 1/cν ν νε µ= . 
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 The curl of the electric or magnetic vector potential can be expressed as  
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A r n J r  
 (when v = 1 it is positive and  

v = 2 is negative) 
(4.13) 

2

ˆ ˆ( ', ) 1
( ', ) ( ', )

R c t R R
ν

ν ν
ν

τ τ τ∂∇× = × + ×
∂

M r R R
M r M r  (4.14) 

2

ˆ ˆ( ', ) 1
( ', ) ( ', )

R c t R R
ν

ν ν
ν

τ τ τ∂∇× = × + ×
∂

J r R R
J r J r  (4.15) 

The time derivative of the potentials is handled by introducing Hertz vectors u(r ,t) 

and v(r ,t) for the electric and magnetic currents, defined by 

( , ) ( , )t t
t

∂=
∂

J r u r  (4.16) 

( , ) ( , )t t
t

∂=
∂

M r v r  (4.17) 

and the relation between the Hertz vectors and the electric and magnetic charge densities 

are given by 

( , ) ( , )e t tρ = −∇r u ri  (4.18) 

( , ) ( , )m t tρ = −∇r v ri  (4.19) 

Substituting Eqs. (4.7) – (4.19) into Eqs. (4.5) and (4.6), the TD-PMCHW is 

rewritten as 
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 (4.20) 
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 (4.21) 

4.2 Basis Functions of the Time Domain PMCHW Equations 

These unknown Hertz vectors u(r ,t) and v(r ,t) are spatially expanded by the RWG vector 

function set fn(r ) as 

1

( , ) ( ) ( )
N

n n
n

t u t
=

=∑u r f r  (4.22) 

1

( , ) ( ) ( )
N

n n
n

t v t
=

=∑v r f r  (4.23) 

and the transient coefficients in Eqs. (4.22) and (4.23) are further expanded by using the 

new temporal basis function 1 2( ) 2 ( ) ( )j j jst st stφ φ φ+ +− + . One obtains 

( ), 1 2
0

( ) ( ) 2 ( ) ( )n n j j j j
j

u t u st st stφ φ φ
∞

+ +
=

= − +∑  (4.24) 

( ), 1 2
0

( ) ( ) 2 ( ) ( )n n j j j j
j

v t v st st stφ φ φ
∞

+ +
=

= − +∑  (4.25) 
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Substituting Eq. (4.22) – (4.25) into Eqs. (4.26) and (4.27) results in 
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4.3 Testing of the Time Domain PMCHW Equations 

Following the testing procedures described in Section 2.4 for applying the temporal 

testing first and then the spatial testing, one obtains 
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u D D +
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The integrals in Eqs. (4.28) and (4.29) are given by 

,
1

( ) ( ) ( ') '
4

v
mnij m ij d nS S

A I t dS dS
R νπ

= ∫ ∫f r f ri  (4.30) 

,
1

( ) ( ) ( )
4

v
mnij m ij d nS S

B I t dS dS
R νπ

′ ′ ′= ∇ ∇∫ ∫f r f ri i  (4.31) 

ˆ1
( ) ( ) ( )

4
v
mnij m ij nS S

v

R
C I s dS dS

c Rπ
′ ′= ×∫ ∫

R
f r f ri  (4.32) 

2

ˆ1
( ) ( ) ( )

4
v
mnij m ij nS S

v

R
D I s dS dS

c Rπ
′ ′= ×∫ ∫

R
f r f ri  (4.33) 
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, ( ) ( )E E
m i m iS

dSΩ = ∫ f r V ri  (4.38) 

, ( ) ( )H H
m i m iS

dSΩ = ∫ f r V ri  (4.39) 

,dt sR cν ν=  (4.40) 

Transforming Eqs. (4.28) and (4.29) into a matrix form, the TD-PMCHW 

formulations are expressed as 
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Finally, the computational efficiency can further be improved by using the new 

formulations. Eqs. (4.46) and (4.47) are written as  
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4.4 Numerical Examples 

Example 4-1: A Dielectric Sphere 

A dielectric sphere with a radius of 0.1 m, relative permittivity 1,rε =  and 

relative permeability 0.5rµ =  is modeled by triangular patches containing 84 edges and 

56 patches. The incident wave exciting the structure is a φ-polarized T-pulse with a 

duration of 10 lm, starting at 4 lm, and arrives from the direction of 0θ = °  and 0 .φ = °  It 

has a bandwidth of 120 MHz. Figure 9.28 plots the scattered far field along the direction 

of 180θ = °  and 0φ = ° , as computed by the new MOD method. The computed result 

agrees well with the frequency domain solution. 

Example 4-2: A Dielectric Cylinder 

A dielectric cylinder with a radius of 0.1 m and a height of 0.2 m is radiated with 

a φ-polarized T-pulse with a duration of 10 lm, starting at 4 lm, and coming from the 

direction of 0θ = °  and 0 .φ = ° It has a relative permittivity 2rε = −  and permeability

1rµ = − . It has a bandwidth of 120 MHz. The structure is discretized by triangular 

patches containing 246 edges and 164 patches. The scattered far field along the direction 
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180θ = °  and 0φ = °  is computed using the new MOD method. The results are plotted in 

Figure 4.3 along with the IDFT of the frequency domain solution. The two results agree 

well with each other. 

 

Figure 4.2 Transient scattered far field from a dielectric sphere of εr = 1 and µr = 0.5.  

 

Figure 4.3 Transient scattered far field from a dielectric cylinder of εr = –2 and µr = –1. 
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Example 4-3: Structures with Different Relative Permittivity 

The dielectric sphere of Example 18 is studied further using different materials 

with a relative permeability of 1rµ =  and relative permittivity of rε = 0.5 or 10. The 

structure is excited with a φ-polarized T-pulse starting at 4 lm and is incident from 

0θ = °  and 0 .φ = °  Two versions of the T-pulse are considered, with pulse durations of 

10 lm and 20 lm. These correspond to a bandwidth of 120 MHz and 60 MHz, 

respectively. Figure 9.30 plots the scattered far field along the direction 180θ = °  and 

0φ = °  using the new MOD method. Both results for rε = 0.5 and rε = 10 agree well with 

the frequency domain solutions. 

  

(a) (b) 

Figure 4.4 Transient scattered far field from a dielectric sphere with µr = 1:  

(a) εr = 0.5. (b) εr = 10. 
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different relative permeability of rµ = 1 or 2. The structure is excited with a T-pulse with 

the same parameters used in Example 17. Figure 9.31 plots the scattered far field along 

the direction of 180θ = °  and 0φ = °  computed by the improved MOD method. Both 

results for rµ = 1 and rµ = 2 agree well with the frequency domain solutions. 

  

  

(a) (b) 

Figure 4.5 Transient scattered far field for a dielectric sphere with εr = 2:  

(a) µr = 1. (b) µr = 2. 

The MOD approach has been presented to solve the time domain PMCHW 

equations to analyze the scattering from three-dimensional arbitrarily shaped dielectric 
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Chapter 5.   

Parallelization of the Time Domain MoM Code 

This section introduces how to parallelize the marching-on-in-degree (MOD) time 

domain method of moment (MoM) code.  

The major operations for a serial MOD time domain MoM code, based on the 

theories in Chapter 3 and 4, are to fill a matrix equation and to solve that matrix equation. 

These two steps are the most time consuming steps. Other operations, such as calculating 

the far field or near field, take much less time than these two. Therefore, this chapter 

describes how to parallelize these two major steps.  

The message passing interface (MPI) [26] is a widely used library for parallel 

computing. It is a language-independent communication protocol and it is standardized 

and portable, so the same code can be easily compiled on different operation systems and 

cluster setups. 

In addition to MPI, I also used the ScaLAPACK (Scalable Linear Algebra 

PACKage) library.[27] This is a library that provides high-performance linear algebra 

routines that support MPI protocol. The use of ScaLAPACK allowed me to fill and solve 

the matrix equation efficiently. 

5.1 Parallelization Architecture of the Time Domain MoM 

The MPI is a distributed memory system; the major difference between it and a shared 

memory system is that each CPU in MPI controls its own memory and the whole 
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memory of the cluster or computer is distributed into several parts, as shown in Figure 

5.1. The use of a distributed memory system provides two major advantages. First, some 

of the clusters do not have one global memory; shared memory has difficulties in these 

types of cases. Second, a distributed memory system makes programing robust when 

different CPUs attempt to read from and write to the same memory unit at the same time, 

which often happens when solving a matrix equation. [28] 

  

(a) A distributed memory system. (b) A shared memory system. 

Figure 5.1 The difference between a distributed memory system and a shared memory 

system. 

5.2 Matrix Filling 

When using MPI technology, the matrix needs to be distributed into different CPU 

processes, and how the matrix is distributed affects the efficiency of the code. 

ScaLAPACK routines use block partitioned algorithms to reduce data movements. It 

partitions the matrix into many small blocks and distributes those blocks into all the CPU 

processes. [27] 

The difference between serial and parallel matrix filling is how the matrix is 

distributed into all the CPU cores. Serial code has only one working CPU core and that 
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core owns all the matrix elements, while in parallel code, each CPU core owns part of the 

matrix elements. The process to fill the values of the matrix elements is the same for 

serial and parallel code, while solving the matrix needs some communication between 

CPUs. 

Load balance is a measurement of the balance of the computation. If all the 

processes start and stop simultaneously, the computation has a good load balance. On the 

other hand, if some processes finish their jobs faster than others, they need to wait for 

others to finish and this wastes CPU resources. ScaLAPACK therefore uses a block 

cyclic distribution to achieve a good load balance. It divides P processes into a P=Pr×Pc 

process grid and distributes the matrix on this grid. The following are three examples that 

review the relationship of load balance between the process grid and block size. 

For example, consider a  9×9 matrix and the process grid and block size given in 

Table 5.1.  

Table 5.1. Examples for ScaLAPACK distributing the matrix for different process grids 
and block sizes. 

Examples 
Number of CPU 

processes 
Process grid Block size 

Example 1 6 Pr = 2, Pc =3 2×2 
Example 2 4 Pr = 2, Pc =2 2×2 
Example 3 4 Pr = 2, Pc =2 3×3 

 
Example 1 has 6 CPU cores and they are allocated into a 2×3 grid. The first step 

is to partition the matrix into many blocks with a block size of 2×2. The blocks are then 

cylindrically allocated into the 2×3 process grid, as shown in Figure 5.2. Finally, the data 

of the matrix are stored in different CPU processes.  
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A11 A12 A17 A18

A21 A22 A27 A28

A51 A52 A57 A58

A61 A62 A67 A68

A91 A92 A97 A98

A13 A14 A19

A23 A24 A29

A53 A54 A59

A63 A64 A69

A93 A94 A99

A15 A16

A25 A26

A55 A56

A65 A66

A95 A96

A31 A32 A37 A38

A41 A42 A47 A48

A71 A72 A77 A78

A81 A82 A87 A88

A33 A34 A39

A43 A44 A49

A73 A74 A79

A83 A84 A89

A35 A36

A45 A46

A75 A76

A85 A86

A11 A12 A13 A14 A15 A16 A17 A18 A19

A21 A22 A23 A24 A25 A26 A27 A28 A29

A31 A32 A33 A34 A35 A36 A37 A38 A39

A41 A42 A43 A44 A45 A46 A47 A48 A49

A51 A52 A53 A54 A55 A56 A57 A58 A59

A61 A62 A63 A64 A65 A66 A67 A68 A69

A71 A72 A73 A74 A75 A76 A77 A78 A79

A81 A82 A83 A84 A85 A86 A87 A88 A89

A91 A92 A93 A94 A95 A96 A97 A98 A99

 

Figure 5.2 The distribution of matrix in Example 1. 

Example 2 has 4 CPU cores and they are allocated into a 2×2 grid. As in Example 

1, the first step is to partition the matrix into many 2×2 blocks and then to cylindrically 

allocate the blocks into the 2×2 process grid, as shown in Figure 5.3. A comparison with 

Example 1reveals that the load balance is better than in Example 1. Many simulations 

also show that when the number of CPU processes is a power of two, the calculation is 

faster than for the cases where it is not.  

Example 3 has the same number of CPU cores and process grids as Example 2. 

The difference is the block size, which is 3×3. The blocks are cylindrically allocated into 

the 2×2 process grid, as shown in Figure 5.4. A comparison to Example 2 shows that 

reducing the block size can improve the load balance. However, a large block size can 

reduce the data movement in the memory and improve the performance. Therefore, a 

balance is needed between the load balance and data movement. 
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In the parallel time domain code, each CPU process needs to determine which 

matrix elements are stored in its memory, using the block cyclic method. Once this is 

known, then the process to calculate the values of the matrix elements is the same as a 

serial code. 

A11 A12 A15 A16 A19

A21 A22 A25 A26 A29

A51 A52 A55 A56 A59

A61 A62 A65 A66 A69

A91 A92 A95 A96 A99

A13 A14 A17 A18

A23 A24 A27 A28

A53 A54 A57 A58

A63 A64 A67 A68

A93 A94 A97 A98

A31 A32 A35 A36 A39

A41 A42 A45 A46 A49

A71 A72 A75 A76 A79

A81 A82 A85 A86 A89

A33 A34 A37 A38

A43 A44 A47 A48

A73 A74 A77 A78

A83 A84 A87 A88

A11 A12 A13 A14 A15 A16 A17 A18 A19

A21 A22 A23 A24 A25 A26 A27 A28 A29

A31 A32 A33 A34 A35 A36 A37 A38 A39

A41 A42 A43 A44 A45 A46 A47 A48 A49

A51 A52 A53 A54 A55 A56 A57 A58 A59

A61 A62 A63 A64 A65 A66 A67 A68 A69

A71 A72 A73 A74 A75 A76 A77 A78 A79

A81 A82 A83 A84 A85 A86 A87 A88 A89

A91 A92 A93 A94 A95 A96 A97 A98 A99

 

Figure 5.3 The distribution of matrix in Example 2. 
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Figure 5.4 The distribution of matrix in Example 3. 

In method of moment, a matrix equation needs to be filled in the form of Eq. (5.1), 

in which Z and V are computed from the structure and the excitation, I,  is the unknown 

current or potential to be solved. The way to store the N×N Z matrix is already shown 

above. The vectors I  and V can be treat as an N×1 matrix and stored in the same way. 

[ ] [ ] [ ]1 1N N N N× × ×=Z I V  (5.1) 

5.3 Solving the Matrix Equation 

In my code, the matrix equation is solved by LU decomposition. Unlike the Gaussian 

elimination method or iterative methods, when the vector V is changed and Z is 

unchanged, the LU decomposition does not need to be repeated and the same L  and U 

matrix can be reused. This is very useful for marching-on-in-degree method because for 
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each different degree, the matrix Z is always the same; the only thing that changes is the 

vector V. 

 ScaLAPACK provides an LU decomposition subroutine for solving the matrix 

equation in parallel. This algorithm is based on the block operation mention above. If a 

matrix equation as shown in Eq.(5.1) exists, the matrix Z can be decomposed into two 

multiplication matrixes, as shown Eq. (5.2), where L  is a lower triangular matrix and U is 

an upper triangular matrix. LU decomposition for matrix elements is discussed in many 

materials, but the same idea also works for blocks. For Example 3, in Figure 5.4, I can 

divide the 9×9 matrix into nine 3×3 submatrixes. The LU decomposition can then be 

done with submatrixes, as shown Eq. (5.3), in which Z ij, L ij, and Uij are submatrixes 

divided by blocks, as shown in Figure 5.4. 

[ ] [ ] [ ]N N N N N N× × ×=Z L U  (5.2) 

9 9 9 9 9 9× × ×

     
     =     
          

11 12 13 11 11 12 13

21 22 23 21 22 22 23

31 32 33 31 32 33 33

Z Z Z L 0 0 U U U

Z Z Z L L 0 0 U U

Z Z Z L L L 0 0 U

 (5.3) 

The LU decomposition is a recursive algorithm. This decomposition can be first 

applied for the elements of the submatrix Z11 to obtain its LU decomposition of L 11 and 

U11 The submatrix of L 12 and L 13 in the first column of the L  matrix can then be obtained 

by inverting the U11 from Eq. (5.4). Inversion of L 11 can also obtain U12 and U13 in the 

first row of the U matrix. After the submatrixes of L  and U of the first column or row are 

known, then the submatrixes of the second column or row can be calculated from Eq. 

(5.4). This then continues for the next column and row in a recursive way. 
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   
   =   
      

11 12 13 11 11 11 12 11 13

21 22 23 21 11 21 12 22 22 21 13 22 23

31 32 33 31 11 31 12 31 22 31 13 32 23 33 33

Z Z Z L U L U L U

Z Z Z L U L U + L U L U + L U

Z Z Z L U L U + L U L U + L U + L U

 (5.4) 

Solving the parallel LU decomposition requires that the CPU cores communicate 

with each other because they need the results for the previous rows or columns. Therefore, 

perfect load balance cannot occur when waiting for the data from other CPU cores. For 

example, when one of the CPU cores is computing the L 11 and U11, other CPU cores are 

idle because all the other operations rely on the value of these two matrixes. The 

communication also takes time and reduces the speed of simulation. ScaLAPACK is 

optimized to improve the load balance in the way it stores the matrix in memory and 

reduces the communication. 

5.4 Numerical Examples for the Parallelization 

In this section, some numerical examples are provided to illustrate the performance of the 

parallel time domain code. The first two examples have the time domain results 

computed from different platforms and are compared with the IDFT result from the 

frequency domain code. They show the accuracy of the parallel code from different 

platforms. The third and fourth examples are simulated with different numbers of CPU 

cores. They show the time reduction for parallelization and the efficiency change. The 

fifth example is the parallel code for handling large vehicles. It shows that the parallel 

time domain code is able to handle complex objects. The sixth example is a simulation 

with a dielectric.   

In Example 1, I compared the far field of the parallel time domain result with the 

IDFT result from a frequency domain EM simulator HOBBIES to show the accuracy of 
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the parallel code. I simulated a sphere with a radius of 1 meter, where the incident wave 

comes from the –z direction with polarization of x direction. I calculated the x component 

of the scattered far field at the +z direction and compared the result to the frequency 

domain IDFT result. The sphere is discretized into 14,738 triangular patches and results 

in 22,107 RWG unknowns. The excitation is a T-pulse with a bandwidth of 200 MHz. 

The parallel time domain code was run on two different computers. The first computer is 

a cluster with 10 compute nodes and 20 CPU cores. It has a Linux operating system with 

Intel MPI. The second computer is a desktop with 4 CPU cores. It has a Windows 

operating system with MPICH2 MPI. The results are plotted in Figure 5.5. The parallel 

time domain code run on different computers gave the exactly same results and they 

agree well with the frequency domain result.  

In Example 2, the object is the same as in the first example. The excitation pulse 

is changed to a T-pulse with a bandwidth of 400 MHz. The higher frequency requires a 

finer mesh. In this example, the sphere is discretized into 39,810 triangular patches and 

resulting in 59,715 unknowns. The incident and scattered direction are the same as the 

previous example. The parallel time domain results from different computers are 

compared with the IDFT result from the frequency domain solver HOBBIES. The results 

are plotted in Figure 5.6. As with the previous result, the parallel time domain results are 

identical and they match well with the frequency domain result. 
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Figure 5.5. The far field comparison of the time and frequency domain results for the 

first numerical example. 

 

Figure 5.6 The far field comparison of the time and frequency domain results for the 

second numerical example. 

Example 3 shows the parallel efficiency of the code. I still used a sphere with 

radius of 1 meter, which was discretized into 1440 triangular patches and 2160 unknowns. 
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A plane wave with a bandwidth of 180 MHz comes from –z direction. I ran this project 

on a Linux cluster with different number of CPU cores and compared the efficiency. 

Parallel efficiency is a measurement of the quality of the parallelization and is defined in 

Eq. (5.5). The computation time and parallel efficiency are listed in Table 5.2. I can see 

that the parallel efficiency decreases as I use more CPU cores. This is because, in the LU 

decomposition, different CPU cores cannot be perfectly load balanced and they also need 

some communication time. As the number of CPU cores increases, more communication 

time is needed and the load balance decreases. Although the efficiency is reduced, using 

more CPU cores is still faster. 

Time used of 1 CPU core
Parallel efficiency

(Time used of  CPU core)p p
=

×
 (5.5) 

Table 5.2. Comparison of the parallel time domain code for different number of CPU 
cores for a 2160-unknown problem. 

Number of CPU cores 
Total time of the simulation 

(sec) 
Parallel efficiency 

1 531.42 100% 
2 270.68 98.16% 
4 141.27 94.04% 
8 77.05 86.21% 
16 44.87 74.02% 

 
Example 4 is similar to the third one. The only difference is that I used a finer 

mesh and a greater number of unknowns. In this example, I discretized the sphere into 

3966 triangular patches and 5949 unknowns. The computation time and parallel 

efficiency are listed in Table 5.3. When compared to the previous example, I can see that 

the parallel efficiency is improved. Because there are more unknowns in this example, 
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the load balance is improved and the ratio of communication time comparing to the 

calculation time is also reduced. This comparison is also plotted in Figure 5.7. 

Table 5.3. Comparison of the parallel time domain code for different number of CPU 
cores for a 5949-unknown problem. 

Number of CPU cores 
Total time of the simulation 

(sec) 
Parallel efficiency 

1 4007.2 100% 
2 2009.0 99.73% 
4 1013.6 98.84% 
8 525.14 95.38% 
16 281.63 88.93% 

 

 

Figure 5.7 The comparison of parallel efficiency for different number of unknowns 

Example 5 is a Chevrolet Impala sedan with a monopole antenna on its roof, as 

shown in Figure 5.8. The size of the car is 5.09 m × 1.85 m × 1.50 m and the monopole is 

0.21 m long. The monopole is excited by a generator with a Gaussian pulse voltage in the 

form of Eq. (5.6), in which t0 = 10 nanoseconds, σ = 2 nanoseconds, and the bandwidth is 

300 MHz. The z component of the far field to the –x direction, which is to the front of the 

car, is computed. I simplified the problem in this example by assuming that the whole 

vehicle is made of a perfect conductor. The vehicle is discretized into 15,300 triangular 
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patches and 22,952 unknowns. It was run on a Linux cluster with 32 CPU cores and the 

result is compared to the IDFT result from the frequency domain solver HOBBIES, as 

shown in Figure 5.9. The results match well. 

2
0
2

( )
( ) exp

2

t t
V t

σ
 −= −  
 

 (5.6) 

 

Figure 5.8 A sedan with a monopole antenna on the roof. 

 

Figure 5.9 Comparison of the far field result in time and frequency domain. 
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Example 6 is a dipole inside a dielectric sphere. The dipole is located at the center 

of the dielectric sphere and is placed along the z direction, as shown in Figure 5.10. The 

dipole is 0.1 meter long and the radius of the sphere is 0.5 meter. The dielectric constant 

of the sphere is ε = 2. The source is at the center of the dipole and provides a Gaussian 

pulse voltage, as shown in Eq. (5.6), in which t0 = 10 nanoseconds, σ = 2 nanoseconds, 

and the bandwidth is 300 MHz. The sphere is discretized into 2128 triangular patches and 

the dipole is divided into 4 subsections. There is a total of 6390 unknowns. The z 

component of the far field to the +x direction is computed and is compared with an IDFT 

result from the frequency domain solver HOBBIES, as shown in Figure 5.11. This 

simulation was run on a Linux cluster with 20 CPU cores. 

 

Figure 5.10 A dipole inside a dielectric sphere. 
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Figure 5.11 Comparison the far field results in the time and frequency domain. 

Parallelization is an accurate and efficient way of solving the time domain MoM 

problems of large scale. MPI and ScaLAPACK are used to solve the MoM problems. 

Numerical examples show that this parallelization method is efficient and accurate. 
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Chapter 6.   

A Hybrid Method of Moment and Physical 

Optics Method 

The method of moment (MoM) is a widely used technique for solving electromagnetic 

problems. However, as the size of the problem increases, the matrix size and the 

computation time increase as the square and cube of the unknown numbers, respectively. 

Therefore, substantial resources are needed to compute large objects and this is not 

affordable for many applications.  

In many cases, these large objects are metallic and their surfaces are relatively 

smooth, so hybridization of MoM with asymptotic techniques is a reasonable 

approach.[33][34] The small objects are analyzed by MoM while the large and smooth 

surfaces are analyzed by asymptotic methods. Compared with the ray-based methods, the 

current-based physical optics (PO) method is preferred because the MoM is also a 

current-based method.[35][36] Many researchers have already used hybrid MoM-PO in 

frequency domain problems. [35]-[37] 

In this chapter, I extend the hybrid MoM-PO method to the time domain MoM.  

First, the problem is divided into two regions. One is the MoM region and the 

other is the PO region. The currents in the MoM region can be solved by electric field 

integral equations (EFIE) by assuming that the PO current is known. The PO current can 
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then be analyzed with the known MoM current. With this new PO current, the original 

MoM current can be updated. By repeating this iteration, a final result can be obtained. 

Numerical examples are provided at the end of the chapter to verify the accuracy 

and the efficiency of this hybrid method. The numerical result shows that this iteration 

method converges very rapidly. 

6.1 Solving the Current in the MoM Region by EFIE 

Suppose that the current in the PO region is already known; the current in the MoM 

region can then be solved by EFIE. The boundary condition on the perfect electric 

conductor (PEC) MoM surface forces the tangential electric field to be zero, as shown in 

Eq. (6.1). 

tan tan
( , ) ( , ) ( , )MoM incident POt t t   − = +   E r E r E r  (6.1) 

where ( , )incident tE r , ( , )MoM tE r , and ( , )PO tE r  denote the incident wave, the scattered 

wave from the MoM region, and the scattered wave from the PO region, respectively. 

The subscript tan implies the tangential components. The scattered wave can be obtain 

from the magnetic vector potential ( , )tA r and the electric scalar potential ( , )Φ tr as 

introduced in Chapter 2.  and is expressed as (6.3). 

( , ) ( , ) ( , )MoM MoM MoMt t t
t

∂= − −∇Φ
∂

E r A r r  (6.2) 

( , ) ( , ) ( , )PO PO POt t t
t

∂= − − ∇Φ
∂

E r A r r  (6.3) 

where A and Φ  are the magnetic vector and the electric scalar potential, respectively. 
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As in the previous chapters, these two potentials can be expressed in current and 

charge density and then simplify by applying the Hertz vector potential ( , )tu r . Similar 

to Eq. (2.7), the Eq. (6.1) can be changed to  

( )

2

2
tan

2

2tan
tan

( , ) ( , )

4 4

( , ) ( , )
( , )

4 4

MoM MoM

PO PO

MoM MoM

S S

PO PO
i

S S

dS dS
R Rt

t dS dS
R Rt

µ τ τ
π πε

µ τ τ
π πε

 ′ ′ ′∂ ∇ ∇′ ′−  ∂ 

 ′ ′ ′∂ ∇ ∇′ ′= − −  ∂ 

∫ ∫

∫ ∫

u r u r

u r u r
E r

i

i

 (6.4) 

The Hertz potential u(r ,t) is then expanded using spatial and temporal basis 

functions. 

1

( , ) ( ) ( )
N

n n
n

t u t
=

=∑u r f r  (6.5) 

( ), 1 2
0

( ) ( ) 2 ( ) ( )n n j j j j
j

u t u st st stφ φ φ
∞

+ +
=

= − +∑  (6.6) 

where fn(r ) is the spatial basis function, and ( )j stφ is associated Laguerre function. 

By substituting Eq. (6.5) and (6.6) into Eq. (6.4), the scattered waves from the 

MoM and PO region in Eq. (1) are then expressed in terms of these basis functions as 
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where NMoM and NPO are the number of spatial basis number. 

Temporal testing is then applied by inner production with ( )i stφ  and spatial 

testing is then applied by inner production with ( )MoM
mf r . One can obtain Eq. (6.8) 
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where 
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Rπ
′ ′ ′= ∇ ∇∫ ∫f r f ri i  (6.10) 
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'
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( )  ( ) 

4
ijPO MoM PO

mnij m nS S

I sR c
a dS dS

Rπ
′ ′= ∫ ∫f r f ri  (6.11) 

'

( )
( )  ( )

4
ijPO MoM PO

mnij m nS S

I sR c
b dS dS

Rπ
′ ′ ′= ∇ ∇∫ ∫f r f ri i  (6.12) 

_
, ( ) ( ) E incident MoM incident

m i m ES
dSΩ = ∫ f r V ri  (6.13) 

0
( ) ( ) ( , ) ( )incident incident

E i st t d stφ
∞

= ∫V r E r  (6.14) 

( )

( ) ( )
(2 )

(2 )
1

( ) ( ) ( ) ( ) 

0

             

( ) ( )

ij i jsR c

sR c

sR c
i j i j

I sR c st st sR c d st

j i

e j i

e L sR c L sR c j i

φ φ
∞

−

−
− − −

= −

 >
= =


− <

∫

 (6.15) 

In Eq. (6.8), the upper limit of the summation over j in the amnij and bmnij terms is 

replaced by i instead of ∞ because the integral I ij(sR/c) equals 0 when j > i.  

Finally, the above equations can be written in a form that is amenable to the MOD 

method by moving all the terms associated with ,
MoM
n ic to the left hand side and the terms 

associated with ,
MoM
n ju (j<i) to the right hand side. Once the coefficients ,

MoM
n ju

(j=0,1,2,…,i–1) are evaluated, the unknown coefficient of the next degree ,
MoM
n iu can 

easily be accomplished, as shown in Eq. (6.16). Once the unknown in the PO rations and 

the unknown less than i-th degree in the MoM region are known, the unknown of degree i 

in the MoM region can be computed with this equation. 
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 (6.16) 

6.2 Solving the Current in the PO Region 

If the current in the MoM region is already known, the current over the PEC PO 

region is given by the boundary condition of Eq. (6.17). In the PO region, the mutual 

interaction with PO current at other positions is neglected. The total magnetic field can be 

substituted by two times of the wave incident to the PO surface at the lit region litS  and 0 

in the shadowed region shadowS .  

ˆ( , ) ( , )PO t t= ×J r n H r  (6.17) 

( )ˆ2 ( , ) ( , )
( , )

0

incident MoM
litPO

shadow

t t S
t

S

 × + ∈= 
∈

n H r H r r
J r

r
 (6.18) 

where incidentH  is the incident magnetic field and the MoMH is the scattered field from the 

MoM current. 
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As in the previous chapters, Eq. (6.18) can be analyzed with Hertz vector 

potential. 

, , 2
1 0

( )[ ] ( )
2

( ', )
ˆ2 ( , )
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j n j n j n
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 
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f r

J r
n H r

 (6.19) 

The curl in Eq. (6.19) can be analyzed by Eq. (6.20). [38] 

2

ˆ ˆ( ', ) 1
( ', ) ( ', )

R c t R R

τ τ τ∂∇ × = × + ×
∂

J r R R
J r J r  (6.20) 

The equation then becomes  
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ˆ
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j n j n j n
j

s
st u u t

s
s u u u

c R
dS

s
s u u

R

φ

φ τ
π

φ τ
π

∞

−
= =

∞
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∑

 (6.21) 

The temporal testing is applied by inner production with ( )i stφ  and then the 

spatial testing is applied by inner production with ( )PO
mf r . For the reason that no mutual 

interaction is assumed to occur in the PO region, the inner product of the two different 

spatial basis functions is zero. One can obtain Eq. (6.22). 
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where 

'

( ) ˆˆ( )  ( ')  
4

ijPO PO MoM
mnij m nS S

I sR c
c dS dS

Rπ
′= × ×∫ ∫f r n f r Ri  (6.23) 

'

( ) ˆˆ( )  ( ')  
4

ijPO PO MoM
mnij m nS S

I sR c
c dS dS

Rπ
′= × ×∫ ∫f r n f r Ri  (6.24) 

2'

( ) ˆˆ( )  ( ')  
4

ijPO PO MoM
mnij m nS S

I sR c
d dS dS

Rπ
′= × ×∫ ∫f r n f r Ri  (6.25) 

_
, ˆ( ) ( )H incident PO incident

n i n HS
dSΩ = ⋅ ×∫ f r n V r  (6.26) 

0
( ) ( ) ( , ) ( )incident incident

H i st t d stφ
∞

= ∫V r H r  (6.27) 

2| ( ) |PO
n nS

dSΓ = ∫ f r  (6.28) 

The Eq. (6.22) can also be solved by a MOD method. After the coefficients ,
PO
n ju

(j=0,1,2,…,i–1) are calculated, the unknown coefficient of the next degree ,
PO
n ju  can 

easily be obtained without solving matrix equations. 

6.3 Solve the Hybrid MoM-PO Problem Iteratively 

The hybrid MoM-PO problem can be analyzed by an iterative method.  
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1. First let the initial guest of the PO unknown coefficients to be zero. 

, (0) 0PO
n iu =  

2. The MoM unknown coefficients of the k-th iteration , ( )
MoM
n i ku  can be 

evaluated by substituting the PO coefficients of last iteration , ( 1)
PO
n i ku −  into 

Eq. (6.16). 

3. The PO unknown coefficients of the k-th iteration , ( )
PO
n i ku can be evaluated 

by substituting the MoM coefficients of last iteration , ( )
MoM
n i ku  into Eq. 

(6.22). 

4. If not converged, goto step 2.  

These steps can also be expressed by Eq. (6.29) and Figure 6.1. 

(0) ( , ) 0PO t =E r  (6.29)-a 

(1) (0)tan tan
( , ) ( , ) ( , )MoM incident POt t t   − = +   E r E r E r  (6.29)-b 

(1) (1)tan tan
( , ) ( , ) ( , )PO incident MoMt t t   − = +   E r E r E r  (6.29)-c 

(2) (1)tan tan
( , ) ( , ) ( , )MoM incident POt t t   − = +   E r E r E r  (6.29)-d 

(2) (2)tan tan
( , ) ( , ) ( , )PO incident MoMt t t   − = +   E r E r E r  (6.29)-e 

…  
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Figure 6.1. The iterative method for analyzing a hybrid MoM-PO problem. 

6.4 Numerical Examples 

Numerical examples are presented to illustrate the versatility of this method. In this 

section, all the structures are excited using a T-pulse, which was introduced in Section 

3.6.1. A T-pulse is a strictly time-limited pulse with most of its energy concentrated in a 

narrow band. Hence, the waveform by definition is causal.  

Example 1 deals with the transient electromagnetic radiation from a l meter long 

dipole and a PEC circular plate with a 3 meter radius placed 2 meters away, as shown in 

Figure 6.2. The axis of the dipole is placed along the x-axis. The dipole is divided into 10 

subsections and a piecewise triangular basis function is applied, which is expressed as 

( ) / ( )n n n nl L± ± ± ±= ± ∆ ∈f r l r .[39] The PEC plate is divided into 3292 triangles and 4813 

RWG basis functions are applied. The dipole is divided into an MoM region and the plate 
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is divided into a PO region. The duration of the T-pulse that the dipole radiates is 7 lm, as 

shown in Figure 6.3. The unit lm is a light-meter, which is 3.33 nanoseconds, and equals 

the time taken by light to travel one meter. Most of the energy is concentrated in the 

frequency band from 0 to 150 MHz, and only less than 0.0003% of the energy is outside 

this band, as shown in Figure 6.4. The voltage is fed at the center of the dipole, the 

highest Laguerre degree is chosen as 150, and the scaling factor 910s = . 

The far field at the direction of 0θ ϕ= = °  is plotted in Figure 6.5 and the 

direction of 90θ = ° , 0ϕ = °  is plotted in Figure 6.6. The numbers of iterations are one to 

five, respectively. Figure 6.5 shows that the backscattered far field of an MoM-PO with 

only one iteration differs significantly from the MoM method but the rest of them agree 

well with the results generated by only the MoM technique. In Figure 6.6, which is the 

front scattered far field, the MoM-PO results do not agree well with the MoM result. The 

convergence of this method is measured by defining a variable ( )k∆  to measure the 

change of the coefficients in the k-th iteration in Eq. (6.30). The values of ( )k∆ in all 

iterations are listed in Table 6.1. The rate of convergence is so very fast that the 

numerical results are identical in the 4-th and 5-th iteration in a double precision program. 

Compared to the MoM method, this method has advantages both in computation time and 

memory by reducing the size of the matrix. These differences are listed in Table 6.2, and  

this particular problem shows that the computation time is reduced by 209 times and the 

memory used is reduced by 100 times. 
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Figure 6.2. A dipole and a plate reflector 

 

 

Figure 6.3. The T-pulse fed into the dipole 
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Figure 6.4. The spectrum of the T-pulse fed into the dipole 

 

 

Figure 6.5. The far field radiated at the direction of direction of 0θ ϕ= = ° . 
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Figure 6.6. The far field radiated at the direction of direction of 90θ = ° , 0ϕ = ° . 

 

Table 6.1. Convergence test of different iterations. 

Iteration k ( )k∆  
1 --- 
2 0.6701 
3 1.5757e-008 
4 3.9437e-015 
5 0.0000e+000 

 

Table 6.2. Reduction in memory usage and computation time. 

Iteration k MoM  MoM-PO  
MoM unknown number 4822 9 
PO unknown number 0 4813 

Memory used 904 MB 9 MB 
Computation time 3.19 days 22 min (5 iterations) 

 

Example 2 deals with a Boeing 737 plane with a dimension of 26 m × 26 m × 11 

m. A z-polarized 0.1 meter dipole is mounted on top of the plane. Its center is located at 
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(-5, 0, 3.4), as shown in Figure 6.7. The MoM region contains only this dipole with 5 

unknowns and the PO region contains the body of the plane with 7327 unknowns. A T-

pulse with duration of 10 lm and a bandwidth of 100MHz is radiated by the dipole. The 

voltage is fed at the center of the dipole, the highest Laguerre degree is chosen as 100, 

and the scaling factor 910s = . The current over the surface of the plane is plotted in 

Figure 6.8. The values of the current for all the time instants have been scaled. The 

darkest (blue) color is defined as 0 A/m while the lightest (red) color is used for all 

currents larger than 62 10−×  A/m. The current is seen to move from the front to the rear in 

these figures. 

 

Figure 6.7. A dipole over a Boeing 737 plane 

 

 

Dipole 
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(a)  t = 10 lm 

 

(b)  t = 14 lm 

 

(c) t = 18 lm 
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(d) t = 22 lm 

 

(e) t = 26 lm 

 

(f)  t = 30 lm 



94 

 

Figure 6.8. Transient current density distribution on the Boeing aircraft. 

6.5 Conclusion 

A hybrid MoM-PO method in the time domain is presented for transient analysis 

of electromagnetic scattering from electrically large structures. This hybrid method is 

computationally efficient as only a very few iterations are required for the numerical 

convergence of the results. Sample numerical results are presented to illustrate the 

versatility of this method. 

 

Current density (A/m)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-6



95 

Appendix A.  

The Laguerre Function and Related Integrals 

The definition and properties of Laguerre polynomials are listed in this appendix. 

Definition: 

Consider the following set of functions [29], 

( )( )
!

t j
j t

j j

e d
L t t e

j dt
−= , 0 t≤ < ∞ , 0, 1, 2,j = … . (A.1) 

These are the Laguerre polynomials of degree j. They are causal; i.e., they are 

defined for 0t ≥ . They can be computed through a stable recursive procedure and 

obtained as 

0 ( ) 1L t =  (A.2) 

1( ) 1L t t= −  (A.3) 

( ) ( )1 2
1

(2 1 ) ( ) ( 1) ( )j j jL t j t L t j L t
j − −= − − − −  (A.4) 

Some main properties that are used in the temporal procedures are briefly 

described in the following. 

Orthogonality: 

The Laguerre functions are orthogonal as 



96 

0

1,
( ) ( )

0,
t

i j ij

i j
e L t L t dt

i j
δ

∞ − =
= =  ≠

∫  (A.5) 

Laguerre Transform: 

A causal time-dependent function ( )f t  for 0t ≥  can be expanded as  

0

( ) ( )j j
j

f t f tφ
∞

=
=∑  (A.6) 

where ( )j tφ  is the associated Laguerre function defined in Eq. (2.17). Based on the 

orthogonal property given by Eq. (A.5), the multiplication of the function ( )f t  with 

( )j tφ and integrating from zero to infinity, yields 

0
( ) ( )i it f t dt fφ

∞
=∫  (A.7) 

The expression in Eq. (A.7) is called the Laguerre transform.  

Derivative: 

Using the Laguerre transform, an analytic representation for the time derivative of 

the function ( )f t  can be obtained as 

1

0
0

1
( ) ( )

2

i

i i k
k

d
t f t dt f f

dt
φ

−∞

=
= +∑∫  (A.8) 

where (0) 0f =  is assumed and ( ) 0iφ ∞ =  is used.  

Using the relation Eqs. (A.5)-(A.8), the derivative of the function ( )f t  can be 

expanded as 
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1

0 0

1
( ) ( )

2

j

j k j
j k

d
f t f f t

dt
φ

−∞

= =

 
= +  

 
∑ ∑  (A.9) 

Similarly, the result for the second derivative of the function ( )f t  is given as 

12

2
0 0

1
( ) ( ) ( )

4

j

j k j
j k

d
f t f j k f t

d t
φ

−∞

= =

  
= + −   

   
∑ ∑  (A.10) 

Integral: 

Consider an integral given as 

0
( ) ( ) ( )ij i jI y x x y dxφ φ

∞
= −∫  (A.11) 

Through a change of variable z x y= − , and substituting the expression of ( )j tφ  

given by Eq. (2.17), Eq. (A.11) yields 

2( ) ( ) ( )y z
ij i jy

I y e e L z y L z dz
∞− −
−

= +∫  (A.12) 

Using the properties of Laguerre polynomials of Eqs. (8.971) and (8.974) in [29], 

one obtains 

( )1
0

( ) ( ) ( ) ( )
i

i k i k i k
k

L z y L z L y L y− − −
=

+ = −∑  (A.13) 

Substituting Eq. (A.13) into Eq. (A.12), one obtains 

( )2
1

0

( ) ( ) ( ) ( ) ( )
i

y z
ij i k i k k jy

k

I y e L y L y e L z L z dz
∞− −

− − − −
=

= −∑ ∫  (A.14) 
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Because the Laguerre polynomial is defined for 0z≥ , the lower limit of the 

integral in Eq. (A.14) may be changed from y−  to zero. Moreover, Eq. (A.14) can be 

computed by using the orthogonal property given by Eq. (A.5) and yields the integral of 

associated Laguerre functions as 

( )2
1

0

( ) ( ) ,
( ) ( )

0,

y
i j i j

i j

e L y L y j i
x x y dx

j i
φ φ

−
∞ − − − − ≤− = 

>
∫  (A.15) 
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Appendix B. The Singularity of the Surface 

Integrals 

In the spatial integral, the Green’s function has singular values when the distance is zero. 

For the wires, the current is assumed to distribute at the surface and the integral is 

performed along the axis to avoid singularity. However, for patches, a solution must be 

found to solve the integral of the singular points. 

In the EFIE, the integrals that involve singularities are given by Eqs. (2.26) – 

(2.29) and they are rewritten here as Eqs. (B.1) – (B.4).  

( )
( ) ( )         

4
ij

mnij m nS S

I sR c
A dS dS i j

Rπ′
′ ′= ≠∫ ∫f r f ri  

(B.1) 

( )
( ) ( )         

4
ij

mnij m nS S

I sR c
B dS dS i j

Rπ′
′ ′ ′= ∇ ∇ ≠∫ ∫f r f ri i  

(B.2) 

( )(2 )

( ) ( )
4

sR c

mn m nS S

e
dS dS

R
α

π

−

′
′ ′= ∫ ∫f r f ri  (B.3) 

( )(2 )

( ) ( )
4

sR c

mn m nS S

e
dS dS

R
β

π

−

′
′ ′ ′= ∇ ∇∫ ∫f r f ri i  (B.4) 

For the first two integrals (B.1) and (B.2), their integral kernel can be expressed 

as 
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2
1( ) ( )( )

sR

c
i j i jij e L sR c L sR cI sR c

R R

− − − − = . 
(B.5) 

When R approaches zero, the limit can be obtained by applying L'Hôpital's rule.  

2
1

0

( )
lim ( ) ( )

sR
ij c

i j i j
R

I sR c s
e L sR c L sR c

R R c− − −→

 ∂
  = − = −  ∂  

. (B.6) 

Therefore, the integral of this integral kernel does not contain any singularity and 

the computation is straightforward. 

For the term of next two equations (B.3) – (B.4), the kernel of the integrals is 

( )(2 ) /sR ce R−
, which can be expressed by two terms, as shown in Eq. (B.7). The second 

term has no singularities and can be analyzed by L'Hôpital's rule. 

( ) ( )(2 ) (2 )1 1sR c sR ce e

R R R

− − −= +  (B.7) 

For the first term, this results in two integrals  

1 '

( ')
( ) '

4
n

mS S
I dS dS

Rπ
= ⋅∫ ∫

f r
f r  (B.8) 

2 ''

1
( ) ( ') '

4r m r nS S
I dS dS

Rπ
= ∇ ⋅ ∇ ⋅∫ ∫f r f r  (B.9) 

The ' ( ')r m∇ ⋅ f r  and ' ( ')r n∇ ⋅ f r  are constants in the RWG basis, as shown in Eq. 

(2.15). The second integral that needs to be handled is 
'

1
( ) 'b S

I dS
R

= ∫r . It can be 

analytically calculated as shown in Dr. S. M. Rao’s thesis [2].  
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In the 1I  term, the integral that needs to be handled is 
'

( ')
( ) 'n

a S
dS

R
= ∫

f r
I r . Let a 

triangle be defined in the form in Figure B.1. 

 

Figure B.1 Geometric of the RWG basis function. 

The basis ( ')nf r  is a difference between two vectors, 1( ') 'n = −f r r r . The 'r  can 

also be expressed in terms of the vector of the nodes of the triangle. 

1 2 3' (1 )ξ η ξ η= − − + +r r r r ,  0 1ξ< < ,0 1η< < ,0 (1 ) 1ξ η< − − <  (B.10) 

Therefore, the integral of ( )aI r  can be calculated. 

'

1 2 3
'

2 1 3 1' '

( ')
( ) '

( )
       '

       ( ) ' ( ) '

n
a S

S

S S

dS
R

dS
R

dS dS
R R

ξ η ξ η

ξ η

=

− − + +=

= − + −

∫

∫

∫ ∫

F r
I r

r r r

r r r r

 (B.11) 
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The integral of 
'

'
S

dS
R

ξ
∫  and 

'
'

S
dS

R

η
∫  can be handled analytically in [2]. The final 

integral is  

'

calculate analytically

calculate numerically

( ')
( ) 'n

mS S
dS dS

R
⋅∫ ∫

F r
F r

�������

�����������

 
(B.12) 

For the PMCHW equations, the integrals involve singularities are given in Eqs. 

(4.32),(4.33), (4.36), and (4.37). They are now rewritten here. 

ˆ1
( ) ( ) ( )

4
v
mnij m ij nS S

v

R
C I s dS dS

c Rπ
′ ′= ×∫ ∫

R
f r f ri  (B.13) 

2

ˆ1
( ) ( ) ( )

4
v
mnij m ij nS S

v

R
D I s dS dS

c Rπ
′ ′= ×∫ ∫

R
f r f ri  (B.14) 

2 ˆ1
( ) ( )

4
v

j i

sR

cv v
mn mnij m nS S

C e dS dS
R

γ
π=

 
− 
  ′ ′= = ×∫ ∫

R
f r f ri  (B.15) 

2
2

ˆ1
( ) ( )

4
v

j i

sR

cv v
mn mnij m nS S

D e dS dS
R

χ
π=

 
− 
  ′ ′= = ×∫ ∫

R
f r f ri  (B.16) 

 For the RWG basis function, when ( )mf r  and ( )n ′f r  are on the same triangular 

patch, ( )ˆ( ) ( ) 0m n ′ × =f r f r Ri . 
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Appendix C. The Choice of Scaling Factor 

C.1 Introduction 

In the marching-on-in-degree time domain method of moment, the transient responses are 

expanded by a finite number of associated Laguerre functions. There is an error 

associated with truncating the associated Laguerre function series beyond that which is 

necessary for the solution process. This error is related to the scaling factor used in the 

argument of the associated Laguerre functions that actually approximate the unknown 

temporal variations. In this section, a least upper bound of this error is deduced. Based on 

this bound, one can obtain an optimum scaling factor to minimize this error so that it is 

guaranteed to be below a certain bound. 

The associated Laguerre function is defined as 

2( ) ( )
st

k kst e L stφ
−

=  (C.1) 

where s is a scaling factor and Lk(st) is the Laguerre polynomial of the k-th degree. The 

scaling factor s is needed because the duration of a transient process usually depends on 

the type of problem and it can vary widely from nanoseconds to several hundreds of 

nanoseconds. If no scaling factor is incorporated, the value of the associated Laguerre 

function is very close to Lk(0) and it is not suitable for expansion of the transient 

responses. 

Theoretically speaking, any time domain function can be expanded using the 

associated Laguerre functions with a set of infinite degrees. However, for practical 
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reasons, one can only use a finite number of degrees to expand a function, as illustrated 

by 

1

0

( ) ( )
n

k k
k

f t c stφ
−

=
≈∑  (C.2) 

where f(t) is an arbitrary transient function and ck is the coefficient for degree k. Making a 

finite sum with n terms instead of infinite terms results in an approximation error. This 

error is related to two factors: one is related to the highest degree n-1 used and the other 

is the scaling factor s.  

In control areas, researchers also use Laguerre polynomials to expand their 

transient signals of interest. Several papers have been presented related to the optimum 

choice for the value of the scaling factor [30]-[32]. However, the Laguerre functions they 

used in the control area are different from the associated Laguerre functions that have 

been used in the computational electromagnetics; thus, their conclusions cannot be 

applied to my work. 

This section shows that the error resulting from an inappropriate choice of the 

scaling factor has a least upper bound and this bound is a function of the scaling factor. 

Therefore, appropriate choice of the scaling factor can minimize the least upper bound of 

the error. 

C.2 Development of the Least Upper Bound 

The development of the least upper bound can be achieved by the following steps:  
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1. Find a second order differential equation that is satisfied by the associated 

Laguerre functions used in time domain MoM.  

2. Introduce two lemmas needed for finding the upper bound.  

3. Obtain an upper bound using the lemmas of the previous step.  

4. Show that the upper bound is the least upper bound. 

First of all, a second order differential equation must be found that the associated 

Laguerre function ( )k stφ  satisfies. The Laguerre polynomials used in this thesis satisfy 

the following differential equation: [19] 

2

2
( ) (1 ) ( ) ( ) 0

( )( )
k k kst L st st L st k L st

stst

∂ ∂+ − + =
∂∂

 (C.3) 

From the definition in Eq. (C.1), the first and second derivative of the associated 

Laguerre function is given by 

2
2( ) ( ) ( )

( ) 2 ( )

st
st

k k k
e

st L st e L st
st st

φ
−

−∂ ∂= − +
∂ ∂

 (C.4) 

2 22
2 2

2 2
( ) ( ) ( ) ( )

4 ( )( ) ( )

st
st st

k k k k
e

st L st e L st e L st
stst st

φ
−

− −∂ ∂ ∂= − +
∂∂ ∂

 (C.5) 

Adding Eq. (C.4) to Eq. (C.5) and multiplying by st  yields 
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2

2

2
2 2 2

2

( ) ( )
( )( )

1
    ( ) (1 ) ( ) ( ) ( )

( ) 4 2( )

k k

st st st

k k k k

st st st
stst

st
e st L st st L st e L st e L st

stst

φ φ

− − −

∂ ∂+
∂∂

 ∂ ∂= + − + −  ∂∂ 

 (C.6) 

Observe that the terms in the large brackets are the first two terms of Eq. (C.3), 

and by applying Eq. (C.3) to Eq. (C.6), one obtains 

2

2

1
( ) ( ) ( )

( ) 4 2( )
k k k

st
st st st k st

stst
φ φ φ∂ ∂  + = − + − ∂∂  

 (C.7) 

Eq. (C.7) displays the differential equation satisfied by the associated Laguerre 

functions used in the marching-on-in-degree solution procedure.  

By changing 
( )st

∂
∂

 into 
1

s t

∂
∂

 in Eq. (C.7), one obtains 

2 2

2

1
( ) ( ) ( ) ( )

4 2k k k k
s t

t st st st s k st
tt

φ φ φ φ∂ ∂  + − = − − ∂∂  
 (C.8) 

Eq. (C.8) is a second order differential equation that the associated Laguerre 

functions satisfy. 

In the next step, two lemmas are given. Let 

0

( ) ( )k k
k

f t c stφ
∞

=
=∑  (C.9) 

Define two measures m1 and m2, given by 
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2
1 2 0

1
( )m tf t dt

f

∞
= ∫  (C.10) 

         
2

2 2 0

1
( )

d
m t f t dt

dtf

∞  =  
 

∫  (C.11) 

in which, 
2 2 2

0
0

1
( ) k

k

f f t dt c
s

∞∞

=
= = ∑∫ .  

Definition of Lemma 1: For a function 
2

f < +∞ , 

2
2

1 2 2
0

1 1

4 2k
k

s
m m c k

f

∞

=

 + = + 
 

∑  (C.12) 

Proof of Lemma 1: 

2

0 0

0
0

2

20

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t f t dt t f t df t
t t

t f t f t f t d t f t
t t

f t f t t f t dt
t t

+∞ +∞

+∞
+∞

+∞

∂ ∂  = ∂ ∂ 

∂ ∂   = −   ∂ ∂   

 ∂ ∂= − +  ∂ ∂ 

∫ ∫

∫

∫

 (C.13) 

Expand f(t) using the associated Laguerre functions by applying Eq. (C.9) and 

then apply the relationship of the second order differential equation given by Eq. (C.8), 

resulting in: 
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2 2

20 0
0

0
0

( ) ( ) ( ) ( )

1
( ) ( ) ( )

4 2

k k k
k

k k
k

t f t dt f t c st t st dt
t t t

st
s f t c k st dt

φ φ

φ

∞+∞ +∞

=

∞+∞

=

 ∂ ∂ ∂  = − +    ∂ ∂ ∂   

 = − − + − 
 

∑∫ ∫

∑∫

 (C.14) 

Then 
2

1 24

s
m m+  can be evaluated from Eq. (C.14) and using the orthogonal 

property of the associated Laguerre functions result in:  

 
22 2 2

1 2 2 0

2 0
0

2
2

0

1 ( )
( )

4 4

1 1
( ) ( )

2

1 1

2

k k
k

k
k

s s t f t d
m m t f t dt

dtf

f t c s k st dt
f

c k
f

φ

+∞

∞+∞

=

∞

=

 + = +  
 

 = + 
 

 = + 
 

∫

∑∫

∑

 (C.15) 

End of the proof of Lemma 1. 

For the function expanded by the associated Laguerre functions with degrees 

lower than n, the error 2
nε  is defined as  

21
2 2

2 20
0

1 1
( ) ( )

n

n k k k
k k n

f t c st dt c
f s f

ε φ
− ∞∞

= =

 
= − = 

 
∑ ∑∫  (C.16) 

From the conclusion of Lemma 1, another conclusion given by Lemma 2 can be 

obtained as follows. 

Definition of Lemma 2: For the functions belonging to the set 
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2
12 0

2

22 0

1
: ( ) ,

1
( )

f tf t dt m
f

C
d

t f t dt m
dtf

∞

∞

 = 
 =  

  =    

∫

∫

, (C.17) 

2
2 1 24 2

max
4n

f C

s m m s

sn
ε

∈

+ −≤  (C.18) 

Proof of Lemma 2: 

From the conclusions of Lemma 1, one has  

2
22

1 2
0

1

2 4k
k

s
c k f m m

∞

=

  + = +       
∑  (C.19) 

                      
2

22 2
1 2

0

1

4 2k k
k n k

s
n c f m m c

∞ ∞

= =

 
≤ + −  

 
∑ ∑  (C.20) 

           
2

22
1 24 2k

k n

s s
n c f m m

∞

=

 
≤ + −  

 
∑  (C.21) 

Therefore, when 
2

0f ≠ , using Eq. (C.21) the error is given by 

2
2 2 1 2

2

4 21

4n k
k n

s m m s
c

sns f
ε

∞

=

+ −= ≤∑  (C.22) 

End of the proof of Lemma 2. 

The upper bound of the error is then given by Lemma 2. The final step is to show 

that this upper bound is the least upper bound. This can be verified by finding a function 
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that can reach this upper bound. Therefore, this is the least upper bound. One can find 

such a function f(t) defined by  

0 0( ) ( ) ( )n nf t c st c stφ φ= +  (C.23) 

2 2
0 1nc c+ =  (C.24) 

Let f(t) be expanded by the associated Laguerre functions with degrees lower than 

n. So the expansion of f(t) misses the second term and result in an error given by  

2 2
n ncε =  (C.25) 

The measure m1 is then given by  

2 2
2 0

1 2 0

1
( ) (2 1)nc c

m t f t dt n
s sf

∞
= = + +∫  (C.26) 

Proof of Eq. (C.26): 

Substituting the definition of f (t) in Eq. (C.23) to m1. 

2
1 2 0

2 2 2 2
0 00 0

0 00

1
( )

   ( ) ( )

       2 ( ) ( )

n n

n n

m t f t dt
f

s t c st dt s t c st dt

s t c c st st dt

φ φ

φ φ

∞

∞ ∞

∞

=

= +

+

∫

∫ ∫

∫

 (C.27) 

The first term in Eq. (C.27) is evaluated by 
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( )

( )

( ) ( )

2 22 2

0 0

2 2(1) (1)
10

2 22 2(1) (1)
10 0

2

( ) ( ) ( )

( ) ( )

( ) ( )

(2 1)

stn
n n n

xn
n n

x xn n
n n

n

c
s t c st dt s t e L st d st

s

c
xe L x L x dx

s

c c
xe L x dx xe L x dx

s s

c
n

s

φ
∞ ∞ −

∞ −
−

∞ ∞− −
−

=

= −

= +

= +

∫ ∫

∫

∫ ∫

 (C.28) 

where (1)( )nL x  is called the generalized Laguerre polynomial or associated Laguerre 

polynomial. The second term of Eq. (C.27) can be evaluated using a similar method. 

2
2 2 0
0 00

( )
c

s t c st dt
s

φ
∞

=∫  (C.29) 

Orthogonality can be applied to find the last term of Eq. (C.27). 

( )

( )

0
0 00 0

0
0

0
0 10

( ) ( ) ( ) ( )

1 (1 ) ( ) ( )

( ) ( ) ( ) ( )

0

stn
n n n

stn
n

stn
n

c c
s t c c st st dt e s t L st d st

s

c c
e st L st d st

s

c c
e L st L st L st d st

s

φ φ
∞ ∞ −

∞ −

∞ −

=

= − −

= −

=

∫ ∫

∫

∫

 (C.30) 

Substitute Eq. (C.28), (C.29), and (C.30) into Eq. (C.27), and the result presented 

in Eq. (C.26) can be obtained. 

End of proof of in Eq. (C.26). 

Applying Lemma 1, m2 is given by 
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2
2 2

1 2 0
1 2 1

4 2 2 n
s n

m m s c c
+ + = + 

 
 (C.31) 

Change 2
0c  and 2

nc  in terms of 2
nε  by applying Eq. (C.23), (C.24), and (C.25) to 

(C.26) and (C.31). This results in 

2
2 1 24 2

4n
s m m s

sn
ε + −=  (C.32) 

Eq. (C.32) indicates that the error for the function f(t) can reach the upper bound 

given by Lemma 2. Therefore, this upper bound is the least upper bound. 

C.3 Optimum Scaling Factor in Sense of the Least Upper Bound 

In the previous section, the least upper bound of the error for expanding a function with a 

finite number of associated Laguerre functions is obtained. This bound is a function of 

the scaling factor s and depends on the highest degree n of the expansion. Therefore, the 

error can be reduced in two ways: one is to increase the degree of the expansion and the 

other is to choose the scaling factor properly to reduce the bound of the error. This is 

achieved by taking the derivative of the right-hand side of Eq. (C.18) with respect to s 

and equating that to zero. Under this condition, the value for the optimum scaling factor 

is given by 

2 14 /opts m m=  (C.33) 

The least upper bound of the error can be minimized. 

Please note that this optimum scaling factor is in the sense of minimizing the least 

upper bound of the error. It does not give the minimum error, but provides a guideline on 
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how to choose the scaling factor for an arbitrary transient function and guarantees that the 

error is not larger than a bound. The numerical examples show that although the optimum 

scaling factor does not guarantee a minimum error for all the degrees, the errors are not 

very large compared to the other scaling factors and converge to zero quite rapidly. The 

error of the optimum scaling factor is acceptable and what is more important, for an 

arbitrary transient function, a scientific method exists to calculate it and the error is 

guaranteed to be less than this bound. 

C.4 Examples 

The first example illustrates that the upper bound can be reached and it is the least upper 

bound. This example also shows that the optimum scaling is only in the sense of 

obtaining a minimum least upper bound but not the least error. 

Example 1: For a function 5 0 20 0( ) ( ) ( )f t s t s tφ φ= − , in which s0 = 109, the 

optimum scaling factor s to expand this function is sopt = 9.9093×108. Figure C.1 plots the 

least upper bound when s = sopt and the associated errors when using different scaling 

factor s. As shown in the figure, the error of s = sopt is not greater than the least upper 

bound and it reaches the bound for one particular degree while all other scaling factors 

have some error greater than this bound. This verifies that the bound in this example is 

the least upper bound and that sopt is the optimum scaling factor. The figure also shows 

that when 10 < n < 20, other scaling factors can obtain a smaller error. Therefore, the 

optimum scaling here is only in the sense of minimizing the least upper bound but does 

not guarantee that it can reach the least error for any degree.  
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The next example applies the optimum scaling factor to a Gaussian pulse, which 

is widely used in time domain analyses. This example displays the errors associated with 

different scaling factors and the optimum scaling factor that can reduce the error to zero 

at an acceptable rate. 

Example 2: Here a Gaussian pulse is defined by 

2

2

( )
( ) exp

2

t
f t

µ
σ

 −= −  
 

 (C.34) 

where µ = 20 nanoseconds and σ = 2 nanoseconds. The optimum scaling factor found by 

this method is sopt = 7.0680×108. In Figure C.2, the errors associated with different 

scaling factors are plotted. This figure shows that the error of the optimum scaling factor 

decreases very fast and converges to zero around an order of 80. Although some other 

scaling factors converge faster than this, the optimum scaling factor does converge at an 

acceptable rate. 
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Figure C.1 The least upper bound and the error for different scaling factor for the pulse 

given in Example 1  
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Figure C.2 The error for different scaling factor for the pulse shown in Example 2.  

C.5 Conclusion 

Expanding a function with associated Laguerre functions gives rise to an error 

that results from using a finite number of degrees. This error depends on the scaling 
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factor and the highest degree of the basis function. This appendix showed how to find an 

optimum scaling factor so that the least upper bound of this error is minimized for an 

arbitrary function. Therefore, the error is smaller than a bound that decreases when the 

highest degree increases. Although it does not guarantee that the error is minimum for 

every degree by comparing to other scaling factors, numerical examples show that the 

error is acceptable and converges to zero very rapidly.  
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Appendix D. Numerical Accuracy for MOD 

Integrals 

D.1 Introduction 

The Marching-on-in-degree (MOD) solver based on a Galerkin implementation of the 

MoM reveals that the matrix to be inverted contains integrals that are similar to the ones 

encountered in a frequency domain MoM solver using the same basis functions. The error 

in the evaluation of the matrix elements involving these integrals is also observed to be 

larger in the time domain than those involved in the frequency domain MoM solvers. The 

objective of this appendix is to explain this dichotomy and how to improve upon the 

accuracy when using the triangular patch basis functions (RWG) for both the time and the 

frequency domain techniques. When the distance between the two triangular patches 

involved in the evaluation of the matrix elements are close to each other, or when the 

degree of the Laguerre polynomial in a MOD method is high, the integral accuracy is 

compromised and the number of sampling points to evaluate the integrals needs to be 

increased.  

In the MOD method, the unknown variables, such as the current or the potential 

functions related to the integral equation associated with the problem of interest, are 

expanded by a set of both spatial and temporal basis functions. The spatial basis functions 

are generally chosen as the piecewise triangle (RWG) functions, whereas the temporal 

basis functions are chosen as the associated Laguerre functions in this thesis. In a 

Galerkin time domain methodology in the MoM context, the time variable is analytically 
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integrated out. Consequently, the final equations that are used in the computations 

contain only the spatial variables. In this context, the expressions for the matrix elements 

look very similar to the expressions used in a frequency domain MoM problem using the 

same triangular patch basis. The interesting feature is that even though the expressions 

for the matrix elements over the spatial basis functions are similar both in the time and in 

the frequency domain, the Green’s functions involved are different. Due to a difference in 

the Green’s functions, the matrix elements for the time domain problem need to be 

evaluated more accurately than its frequency domain counterpart, using an increased 

number of quadrature sampling points for integration. 

D.2 Difference in Greens’ Function Terms 

In the MOD method, the spatial integrals involved in the evaluation of the expressions for 

the matrix elements are in the form of Eqs. (2.28) and (2.29). These two equations are 

represented here. 

1 1
( ) ( ) ( ) 

4
TD
mnab m ab nS S

A I sR c dS dS
Rπ

′ ′= ∫ ∫f r f ri  
(D.1) 

1 1
( ) ( ) ( )

4
TD
mnab m ab nS S

B I sR c dS dS
Rπ

′ ′ ′= ∇ ∇∫ ∫f r f ri i  
(D.2) 

In the frequency domain MoM [2][38], the spatial integrals are defined in the 

form of 

1 1
( )  ( ) 

4
FD j k R
mn m nS S

A e dS dS
Rπ

− ′ ′= ∫ ∫f r f ri  
(D.3) 
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1 1
( )  ( )

4
FD j k R
mn m nS S

B e dS dS
Rπ

− ′ ′ ′= ∇ ∇∫ ∫f r f ri i  
(D.4) 

where j is the imaginary unit and k is the wave number.  

The equations of Eqs. (D.1) – (D.4) differ only in the Green’s function. For the 

MOD method, the Green’s function is ( )TDG / /abI sR c R= and for the frequency 

domain method it is FDG /jkRe R−= . 

The derivatives of these two Green’s functions with respect to R can be obtained 

as 

( ) ( )(2 )
12

1
( ) ( ) ( ) ( )

2
sR cTD

ab a b a b
G s

I sR c e L sR c L sR c b a
R cRR
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The ratio between the spatial derivatives of the Green’s functions with respect to 

the Green’s functions are also calculated as 
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Eq. (D.8) is a monotonically decaying function with respect to the spatial 

variables and it does not have any singularities in the domain R ∈ (0, + ∞). However, for 

Eq. (D.7), the denominator term La – b (sR/c) – La – b – 1 (sR/c) does have zeroes in the 
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domain R ∈ (0, + ∞) when b < a. Therefore, Eq. (D.7) has some singularities in this 

region.  

Consider a very small error ∆R associated with the evaluation of the spatial 

variable R, and that the result is in an error in the value of the Green’s function, ∆GTD. 

The error ∆GTD is given by 

/
/

TD FD
TD FD

G
G R

R

∂∆ = ∆ ×
∂

 
(D.9) 

The corresponding relative error is given by 
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/
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When the value of R is such that the denominator of (D.7) is close to zero, the 

Green’s function has a pole. A very small error in R can then result in a large relative 

error in the value of the Green’s function. In conclusion, the Green’s function 

encountered in the MOD method is more sensitive to the error in the evaluation of R. 

Generally, the integrals encountered in (D.1) – (D.4) for both time domain and frequency 

domain problems cannot be handled analytically for most of patches and a numerical 

technique needs to be employed to evaluate them over the surfaces involved. In the time 

domain, the functions associated with the integrals have singularities; therefore, more 

sampling points need to be used in the evaluation of the integrals than in the frequency 

domain. Consequently, in the evaluation of the integrals in Eq. (D.1) and (D.2), one needs 

more sampling points in the evaluation of the Green’s function than in the frequency 

domain in order to maintain similar accuracy in the final results. 
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A plot of the two Green’s functions for time and frequency domain is displayed in 

Figure D.1 and Figure D.2. For the time domain Green’s function in Figure D.1, s is 

chosen as 5×109 and the degree (a – b) is 50 and 150, respectively, which are common 

values for most practical problems. For the frequency domain Green’s function in Figure 

D.2, k is chosen as 2π. Figure D.1 and Figure D.2 show that the time domain Green’s 

function in Figure D.1 oscillates more than the frequency domain one, especially when R 

is small or the degree (a – b) is high. Therefore, when R has a small error, the time 

domain Green’s function gives a larger computational error than the other when using the 

same number of sample points to evaluate the integrals. Numerical examples in the 

evaluation of Eqs. (D.1) – (D.4) are used to illustrate the same point. 

 

Figure D.1 The time domain Green’s function GTD. 
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Figure D.2 The frequency domain Green’s function GFD. 

D.3 Examples 

In this thesis, both the time and frequency domain integrals are carried out using the 

Gaussian quadrature rules for a triangular region [40] using the RWG basis functions. 

The number of sampling points is varied from 1 to 79 in the evaluation of the integrals 

encountered in Eqs. (D.1) – (D.4).  

Example 1 considers two triangular spatial basis functions parallel to each other, 

as shown in Figure D.3. For the time domain Green’s function, s is chosen as 5×109 and a 

– b = 50. For the frequency domain Green’s function, k is chosen to be 2π. The integral 

values in the evaluation of the expressions in Eqs. (D.1) and (D.3) are listed in Table D.1 

and Table D.2. Both expressions converge when one increases the number of the 

sampling quadrature points. Because the exact values for the integrals are not known a 

priori, the results obtained by using 79 points are considered to be the ones closest to the 

accurate values. The relative error at this value is plotted in Figure D.4. The relative error 

is defined as 
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where / ( )TD FD
mnA n  is the time or frequency domain integral in Eqs. (D.1) and (D.3) 

computed with n sampling points, and the operator |•| is the absolute value of the function. 

Figure D.4 shows that when one uses 7 sampling points, which is a very common case for 

these computations, the frequency domain integral can have an error of less than 1% 

while the error in the time domain is around 10%. A similar phenomenon also appears in 

the evaluation of the integrals of TD
mnabB  and FD

mnB  in the Eqs. (D.2) and (D.4); their 

relative errors are plotted in Figure D.5. In this figure, when the number of sampling 

points is chosen as 7, the frequency domain integrals has an error of around 0.1% while 

the time domain expressions provide a relative error of about 10%. 

 

Figure D.3 Orientation of the two basis functions for Example 1 
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Figure D.4 Relative error in the evaluation of TD
mnabA  and FD

mnA  for Example 1. 

 

Figure D.5 Relative error in the evaluation of TD
mnabB  and FD

mnB  for Example 1. 
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TABLE D.1. Numerical error for time domain integrals 

Sampling points TD
mnabA  

1 1.196862990017365E-006 
4 -9.185507229096584E-008 
7 -1.415802785348749E-007 
16 -1.520710249941450E-007 
25 -1.503210213166758E-007 
37 -1.502934135708395E-007 
61 -1.502913746203929E-007 
79 -1.502915693675874E-007 

 

TABLE D.2. Numerical error for frequency domain integrals 

Sampling points FD
mnA  

1 0.1026460570347953E-04– j 0.1601586946542305E-06 
4 0.7931528008435943E-05– j 0.1788829860551588E-06 
7 0.6072444309197887E-05– j 0.1781290363986577E-06 
16 0.6105805417065320E-05– j 0.1781298635103971E-06 
25 0.6104483239659091E-05– j 0.1781298635107554E-06 
37 0.6104447874541564E-05– j 0.1781298635107529E-06 
61 0.6104432328759541E-05– j 0.1781298635107444E-06 
79 0.6104431829695501E-05– j 0.1781298635106877E-06 

 

Example 2 uses two triangular patch basis functions that are perpendicular to each 

other, as shown in Figure D.6. The parameters of s, k, a, and b are the same as in 

Example 1. The relative error in the evaluations for the quantities TD
mnabA  and FD

mnA  are 

listed in Table D.3 and Table D.4. The relative errors of TD
mnabA  and FD

mnA  are plotted in 

Figure D.7 and the relative errors of TD
mnabB  and FD

mnB are plotted in Figure D.8. Figure D.7 

and Figure D.8 show that the errors are much larger than the ones from Example 1. This 

is because the Green’s function varies over a larger value when R is small, as shown in 

the Figure D.1 and Figure D.2. In the first example, R is greater than 0.05m, but in this 

example, some of the values of R are close to zero. As implied in Figure D.1 and Figure 
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D.2, the error in the evaluation of the Green’s function is more sensitive to the error in 

the evaluation of R for both time and frequency domain cases. In order to get an accurate 

value for the integral, more sampling points are needed. Figure D.7 and Figure D.8 show 

that if only 7 sampling points are used in the time domain solver, the errors are around 

110% and 60%, respectively. These errors are so large that the results of the solver are 

unreliable and more sampling points are necessary. 

 

Figure D.6 The two basis functions for Example 2. 
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TABLE D.4. Numerical error for frequency domain integrals 

Sampling 
points 

FD
mnA  

1 0.8504782549007540E-05–j0.1596313625583668E-06 
4 0.1563952782733322E-04–j0.1788662643803946E-06 
7 0.1418624593893488E-04–j0.1784863698059096E-06 
16 0.1489178854301966E-04–j0.1784867859716771E-06 
25 0.1345273330446101E-04–j0.1784867859718516E-06 
37 0.1300656612436935E-04–j0.1784867859718702E-06 
61 0.1282336903240997E-04–j0.1784867859718813E-06 
79 0.1269753806813858E-04–j0.1784867859718796E-06 

 

 

Figure D.7 Relative error in the evaluation of TD
mnabA  and FD

mnA  in Example 2. 
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Figure D.8 Relative error in the evaluation of TD
mnabB  and FD

mnB  in Example 2 

Example 3 is the same as Example 1 except that the degree of (a – b) is changed 

to 150. All other parameters are the same. The relative errors in the evaluation of TD
mnabA  

and FD
mnA  are plotted in Figure D.9 and the relative errors in the evaluation of TD

mnabB  and 

FD
mnB are plotted in Figure D.10. Comparing these two figures with Figure D.4 and Figure 

D.5, one can see that as the degree increases, the errors associated with the integrals 

associated with the time domain Green’s function also increase. This is because the time 

domain Green’s function varies more rapidly as the degree gets larger, as seen in Figure 

D.1. If the number of sampling points is not increased for higher degrees, the error is 

larger when one uses the marching-on-in-degree solution procedure.  
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Figure D.9 Relative error in the evaluation of TD
mnabA  and FD

mnA  in Example 3. 

 

Figure D.10 Relative error in the evaluation of TD
mnabB  and FD

mnB  in Example 3 
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D.4 Conclusion 

Compared to the error associated with a frequency domain solver, the error 

associated with the evaluation of the matrix elements in a marching-on-in-degree time 

domain solver is more sensitive to the error in the evaluation of R. This is because the 

Green’s function varies faster with respect to R. Therefore, one needs more sampling 

points in the numerical evaluation of the integrals in order to obtain an accurate result. If 

one uses the same number of sampling points as used in a frequency domain solver, the 

errors is much larger. This is especially important when two triangular patches are close 

in distance to each other or when the degree of the associated Laguerre polynomials is 

large. 
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