
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

7-1991

Constructing Real-Time Systems from Temporal I/O Automata Constructing Real-Time Systems from Temporal I/O Automata

J. F. Peters III

S. Ramanna

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Peters, J. F. III and Ramanna, S., "Constructing Real-Time Systems from Temporal I/O Automata" (1991).
Electrical Engineering and Computer Science - Technical Reports. 110.
https://surface.syr.edu/eecs_techreports/110

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/110?utm_source=surface.syr.edu%2Feecs_techreports%2F110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-22

Constructing Real-Time Systems from
Temporal I/O Automata

J. F. Peters III and S. Ramanna

July 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Constructing Real-Time Systems from
Temporal 1/0 Automata"

J. F. Peters Ill and S. Ramanna

Syracuse University
School of Computer & Information Science

4-116 CST, Syracuse, NY 13244-41 00 USA

Abstract

A new class of communicating automata called Temporal lnpuVOutput Automata (TAi/oS)
is introduced. A TAi/o is a predicate automaton used to specify real-time systems.
The specification provided by a TAi!o includes state predicates with proof expressions
and abstract program syntax as attributes. An abstract program is extracted during a
constructive proof of the specification using the proof expressions. A TAi/o
specification also includes hard, real-time constraints on program behavior. The
predictability of deterministic, temporally complete TAi/o is investigated. The
formulation of real-time system transductions and transduction rules for TAi!oS in
explicit clock temporal logic is given. An illustration of the use of TAi!oS in specifying
light-controlled vehicles is presented. To illustrate the methodology in constructive
reasoning about a TAi/o. a proof which derives a partial abstract program is given.

Index Terms--Communicating automata, program correctness, program
specification, real-time systems, temporal logic.

1. Introduction

Finite state automata are considered the fundamental descriptive tools of

computing [Con 80]. The behavior of agents in a system has been modelled with finite­

state automata [Aiu 90, Hal 89, Hen 91, Lav 90, Lyn 87, Man 89, Ost 89, Ost 90, Pet

90a, Pet 90b, Pet 91a, Pet 91b, Kla 91]. An agent is that part of a system which has

its own identity, and its own externally observable behavior [Mil 89, Pet 91 a]. The

behavior of an agent is defined to be an infinite sequence of events. An event is an

externally observable, discrete occurrence. By discrete event, we mean an event

separable observationally from other events. Examples of events are actions of agents,

communications between agents, the observable parts of agent states (length and

* Research supported in part by the School of Computer and Information Science,
Syracuse University, Syracuse, NY 13244-4100 USA and by the Research &
Development Laboratories, Culver City, CA 90230-6608 USA. Submitted for journal
publication.

Constructing Real-Time Systems 2

contents of queues, variables, constants, and so on). Automata can be represented as

finite, directed, labelled graphs. The nodes of such graphs represent agent states; the

arcs, transitions between states. The specification of the various behaviors of an agent

can be given by "annotating" the nodes and arcs of an automaton with predicates. Each

automaton node is annotated with a predicate that specifies an activity associated with the

state; each arc is inscribed with a predicate identifying an enabling condition for a

transition to the next state. Such automata are termed predicate automata [Man 89, Alp

86]. The aim of this paper is to introduce a special class of predicate automata called

temporal input/output automata (T Ai!oS), which can be used to model the time­

constrained behavior of real-time systems. In such automata, state predicates can

reference an external clock in specifying timing constraints on the behavior of an agent.

The language accepted by a TAi!o corresponds to the set of behaviors of an agent which

satisfy the specification provided by the predicates on the nodes and arcs of the TAito·

A TAi!o is used to describe a real-time, computational task independent of the

program which carries out the task. Remarkably, there is a connection between TAi!oS

and the very first conception of finite automata used by McCullock and Pitts to model the

behavior of neural nets [McC 43]. That is, McCullock-Pitts neural nets and TAi/os rely

on predicates with time parameters to describe process behavior. TAi!oS also have

affinity with the extended program flowcharts used in PICA [Tor 90] (i.e., both rely on

the use of assertion nodes). Predicate 1/0 automata were introduced in [Pet90a]. A

T Ai!o is a predicate input/output automaton with a provision for specifying hard, real-

time constraints. The relationship between a specified action and a program is

expressed with an attributed form of node predicates. The reasoning about a

specification embodied in a T Ai!o provides a constructive proof that the specification

satisfies some property. In this context, the term property is an assertion about a

specified sequence of events in the behavior of a program. Proofs are regarded as

expressions which denote evidence [Con 89]. In other words, these proof expressions

provide a basis {evidence) for reasoning about the correctness of a specified

computation. A proof is termed constructive when the evidence denoted by it can be

computed from it. In the case of a TAito. the description of a computation is made

possible by annotating the states of the automaton with proof expressions similar to

those found in [Con 89]. As in Nuprl [Cons 84, Cons 86, Mur90, Mur 91], the proof

of an assertion produces some object either implicitly or explicitly. The object

produced by a constructive proof of a specification provided by a TAi!o is a program.

Constructing Real-Time Systems 3

The context for this research is given in Section 2. In Section 3, a formal

definition of TAitoS is presented. Section 4 provides an introduction to a subset of

real-time temporal logic called Tlrt as well as the properties of various members of the

class of temporal i/o automata. A specification of a light-controlled vehicle in the

TLrtl TAito framework is given in Section 5. The correctness issues relative to TAitoS

and a sample constructive proof of a specification are given in Section 6.

2. Modeling Real-Time Program Behavior with Automata

In the context of real-time systems, the term modelling refers to a precise

behavioral description of the critical features of a system [Ost 89]. For example, some

of the critical features of a controller of a real-time system are synchronization

(rendezvous), concurrency (concurrent behaviors of communicating processes),

responsiveness (behavior which adheres to timing constraints), determinism

(behavioral transitions which satisfy enabling conditions), and non-determinism

(interleaving of observed behaviors of concurrent processes). The behavior of a real­

time system is constrained by what are known as hard, real-time constraints. A hard,

real-time constraint specifies that an action by a system agent must be performed

within a fixed number of time units. For example, a system agent must respond to

input from another agent within 10 milliseconds. To model behaviors with infinite

length in the context of real-time systems, it is common to consider finite state

automata which accept infinite words. These automata are variations of what are known

as BOchi automata.

2.1 Buchi Automata

BOchi Automata (BAs} are finite-state automata which accept infinite words
[BOc 62]. A BOchi automaton (~, Q, 0 0 , R, E) is a finite state machine with an input

alphabet ~, finite set of states Q, start states 0 0 c Q, recurrent states R c Q, and edges E

c Q x ~ x Q. A recurrent state is an accepting state, which is visited infinitely many

times during a run of a BA. Various variations of BOchi automata have been used to

model the behavior of systems [Aip86, Man 89, Ost 89, Pet 90a, Pet 91, Kla 91]. A

common feature found in all of these variations of BOchi automata is the presence of
recurrent states. For example, Manna and Pnueli [Man 89] introduce V -automata. A

V -automata is a predicate automaton which accepts inputs from a program computation

Constructing Real-Time Systems 4

of infinite length. Formally, a 'V -automaton is a tuple (0, C, E) with states 0 =

{recurrent states} U {stable states} U {start states) U {other states}, entry conditions

E (each state q has an entry condition which must be satisfied before an automaton can

start its activity in q), and transitions conditions C. The elements of C are predicates of

the form c(q, q'). A transition from an automaton state q to a new state q' can occur

when a transition condition c(q, q') is satisfied in state q. In other words, the sets E and

C consist of first order predicates used to prescribe conditions which must be satisfied
during an accepting run of a 'V -automaton. These automata are useful in specifying

temporal properties of programs such as "infinitely often property P holds"

(symbolized by 1:1 0 P and represented graphically as shown in Figure 1). The

automaton in Figure 1 is non-deterministic and has two start states (q and q').

Legend:

0 symbolizes a 19CUrrant a1a1o

e .- is an entry edge with default
entry condition True.

Figure 1. 'V -automaton for 1:1 0 P

The advantage to 'V -automata is that they combine visualization of process behavior with

reasoning (via entry and transition predicates) about process behavior. Their

disadvantage is that there is no provision for quantitative reasoning about hard, real­

time constraints on process behavior.

Constructing Real-Time Systems 5

2.2 Timed Automata

Recently there has been an effort to associate the ticks of a real-time clock with the

events in a process behavior modelled by an automaton [Mer 91, Hen 91, Alu 90, Lav

90]. Except for a provision for input/output channels between composed automata

found in [Mer 91], the timed BOchi automata (TBAs) introduced by Alur and Dill are

closest to the temporal i/o automata introduced in this article. A TBA is defined as a 5-
tuple (~.a, a0 , Clocks, E) with input alphabet~. states a (as in BOchi automata, these

include recurrent states R ~ a), start states 0 0 ~ a, a finite set of real-valued

clocks, and a set of transitions E, where E is given by E s;;;; a X ~ X a X 2Ciocks X

cp (Clocks). A TBA accepts both finite and infinite timed sequence of events (called

timed traces), which are observable during the run of a process modelled by a TBA. As

in [Mer91], each event in a timed trace is associated with a non-negative real number,

which is a reading of an external clock at the time of the occurrence of the event in the

trace. This allows for an unbounded number of environment events (reception of a

value by another automaton, for example) between any two events of a system modelled

by a TBA.
An edge (q, 5, A., b, q') in a TBA represents a transition from state q to q' with

input symbol 5 (A. gives the clocks to be reset with this transition), and b gives the

enabling condition. In other words, edges are inscribed with predicates (timing

constraints and possibly reset(x)). The reset(x) predicate asserts that clock x Is

reset to zero. Figure 2 gives an example of a TBA.

a, reset(x)

y
b b, X<= 2

Figure 2. Timed BOchi Automaton referencing external clock x

The predicate reset(x) asserts that clock x is reset in the transition from q2 to q3. The

timing constraint x <= 2 asserts that the transition from q3 to q2 can only occur if the

elapsed time is within 2 ticks of clock x. In effect, TBAs are predicate automata

resembling property recognizers [Alp 86], where edges are inscribed with transition

conditions (predicates without references to external clocks). The drawback of TBAs is

Constructing Real-Time Systems 6

the lack of data variables as found in the Extended State Machines (ESMs) in Ostroff [Ost

89] and Real-time Transition Systems (RTSs) in Henzinger et al. [Hen 91]. Included

in the data variables of an ESM, for example, is a rigid clock variable T (this variable

saves a reading of an external clock and retains its value despite state changes). This

eliminates the need for the reset(x) predicate, which must be part of a transition

whenever an external clock is reset. The use of a clock variable rather than the

reset(x) predicate, provides a more abstract specification of process behavior, because

the role of T is hidden in a specification. The end result is a simpler specification of

timing constraints, which are easier to implement in a programming language.

3 Temporal 1/0 Automata

To model the timed-behavior of communicating processes in real-time systems,

we introduce a class of predicate automata called Temporal 1/0 Automata (TAite). The

timed actions associated with a state are specified with state predicates; arcs of TAilos

are inscribed with enabling conditions for transitions. These are communicating

automata. When TAifoS are composed, message-passing between the automata is made

possible by the presence of hidden input/output channels. Each TAite has input/output

channel variables used in sending and receiving messages over i/o channels.

Input/output automata (AiteS) were introduced by Lynch and Tuttle [Lyn 88], and

extended to include timing constraints by Merritt et al. [Mer 91]. The language

accepted by a TAite is the set of the timed behaviors of an agent. Acceptance of the

behaviors of an agent by a TAite ensures that each sequence of events in an agent

behavior satisfies a property specified by the automaton. A TAite is defined as follows:

TAite= (Q, qe. D, P, Clock, N, E)

where

Q = { start state qe } U { recurrent states } U { other states }

D = {I (input channel variable), 0 (output channel variable) }

U { state variables: time, ... } U { rigid variables: T, ... }

P = set of first order predicates

Clock = external clock
N = set of state predicates, where N c Q x P x <I> (Clock) x I x 0

E = set of enabling conditions, where E c Q x P x Q

Constructing Real-Time Systems 7

A state predicate prescribes a (possibly timed) action associated with an automaton

state. As in [Lyn 88, Mer 91, Pet 90a], there are four types of actions which can be

predicated of a state of an automaton A; these actions are described informally as follows:

int(A) = local action.

out(A) = action A writes a value to an output channel.

in(A) action A reads a value from an input channel.

io(A) = action A reads a value from an input channel, and writes a value

to an output channel.

In keeping with Ostroffs analysis [Ost 89], a distinction is made between actions and

events. Actions lead to events and each event leads to the transformation of a state to a

new state. Let int, in, out, io be the names of actions; E, the name of an event; Q, a set of

T A ito states; and let I and 0 be input and output channels, respectively. The distinction

between actions and events is defined formally as follows:

Actions

int: Q ---+ E

in : Q x I ---+ E

out:Q x 0 ---+ E

io :QxlxO---+ E

Events

E: Q X I X 0 ---+ Q

Examples of events are timeout (maps a state to a new state when an action times out),

reception of a message msg from a sources (written as s?msg in CSP), sending a msg to

a destination d (written as dlmsg in CSP), the tick of an external clock, and so on. For

implementation reasons, it is assumed that communication between TAifoS is

synchronous. Further, unlike synchronous communication in CSP [Hoa85], TAitoS

are unable to block inputs from other automata. An untimed io action terminates when a

synchronization concludes. A system of communicating automata is formed by what is

known as a composition. The result of a composition of TAiJoS is a collection of

communicating automata, which specifies the behavior of a system of communicating
agents. Let Ai, Aj be TAi!oS and let Ai II A; represent the composition of Ai and Aj. where

Constructing Real-Time Systems 8

Ai = ((Q, q0 , 0, P, Clock, N, E) and Aj = (Q', q0 •, D', P', Clock', N', E')

Then composition of Ai and A; is defined as follows:

Ai II Aj = (Q U 0' U O_g, q0 , q0 ', q_g, 0 U 0' U G, P U P' U Pg, {Clock, Clock', Clockg},

N" N'" N_g, E" E'" Eg)

where

G = {sys. state variables: time1, ... } U {sys. rigid variables: T_g, ... }

Og s;;;; G x Oi x 0; (system states)

qg = system start state (present with tightly coupled T Ai/oS)

P _g = set of system predicates

Clockg = guardian clock process (gives the system time

& acts as a synchronizer of local clocks)
Ng ~ G x Pg x Oi x 0; (set of system state predicates)

Eg ~ G X p g X E X E'

(set of enabling conditions for transitions between system states)

The set of system predicates is similar to proof expressions in [Con 89]. In some very

real sense, the predicates on the nodes and arcs of either an individual T Ailo or on the

nodes and arcs of a composition of TAi!oS are part of a deduction about a behavior of a

program. Their presence makes the proof of correctness of program behavior feasible

and makes possible the extraction of the program which they prescribe. A visualization

of a composition of automata is given in Figure 3. The notation in Figure 3 is explained

as follows:

= (G, q1, q2, q3, ... , qJ3, ... , qm)

Q4» i : p(i) = system state predicate

--seq of T Ai/o A« states

(oc is a TAi!o index).

--system path for m T AifoS

(ct> "phi" is a system path

index).

--i th system state

--annotates ith system state

Constructing Real-Time Systems

e(i) .. represents an enabling condition for a system state transition.

0 41 .
. 1 : p(l-1)
1-

..

0 41 : p(i+1)
i+1

41w~~:------------
Q system states

automata state paths

CIC
q

•
•
•

Figure 3. Abstract View of Composition of Automata

9

In a composition of automata, a guardian Clockg is present; it gives the system time, and

guarantees that local clocks are synchronized with Clockg. The actual synchronization of

the local clocks in the composition is hidden, and is not part of the specification provided
by Ai II Aj. Synchronization of local clocks with respect to the global clock becomes a

chief concern whenever a system state has a timing constraint. The set G is a set of

global data variables containing rigid variables such as T g (to store a reading of Clockg),

and state variables such as timeg (captures the value of Clockg in the current state).

Constructing Real-Time Systems 1 0

3.1 Clock Variable and Timed Behaviors

Timing constraints of a TAi/o reference ticks of an external clock (denoted by

variable Clock). The rigid variable T records the Clock value, and retains its value

across state changes of a TAi/o· We assume that the value ofT can be changed when

needed (this is analogous to resetting the clock in a TBA [Aiu91]). The flexible

variable time gives the value of Clock in the current state. Clock readings are non­

negative, real numbers. Each time an event occurs, a reading of Clock is associated

with that event. That is, each event e is a conceptualized as a pair (e, time). As a

result, a timed sequence of events f3 in the behavior of an agent modelled by a TAi/o has a

trace of the form:

f3 = (e0 , time0), (e1, time1), ... (ei, timei), ...

Let R+ denote the non-negative reals; Nats, the natural numbers 0, 1, In addition,

let timei. timej belong to f3. Then, as in [Aiu 91, Pet 90a], a timed trace f3 has the

following properties:

Zero-time in start state: time0 = 0 in (eo, time0)

Strict Monotonicity: 'V i, j E Nats: timei < timej for i < j

Unboundedness: 'V time E R+, 3 i E Nats: time < timei

3.2 Semantics of Delay

Responsiveness of a system is measured in terms of actual values of delays. The

duration predicate delay(k) asserts that the external clock is allowed to run for k ticks

before a timeout occurs. Delay(k) can be used to specify a lower bound on the number

of ticks before an action is performed; delay(k) can also be used to specify an upper

bound on the duration of an action. In other words, we can use delay(k) to express the

fact that an action is enabled after a particular time (lower bound) or than an action is

performed within a specified time limit (upper bound).

Constructing Real-Time Systems 1 1

3.2.1 Lower Time Bound

We can express a lower bound on the number of ticks before a system action

begins. If we let ACT be the action to be performed in state q. We can express the fact

that we let the external clock run for k ticks before performing ACT by writing

informally "delay(k) before ACT." To see this, let T record the time in state q.

Assume action ACT is performed in state q. Written by itself, "ACT" is shorthand for

the assertion "the action ACT is performed." Let sat(q 1 (q'), P) mean that predicate P

is satisfied in state q of the state sequence (q, q'), and sat(q', Q) mean that predicate Q is

satisfied in state q'. The double turnstile I= reads "forces" or "satisfies." Then

satisfaction of "delay(k) before ACT" over a state sequence (q, q') is expressed in Prolog

form as follows:

sat(q 1 (q'), delay(k) before ACT)

q I= delay(k) and T <= time < T + k,

q' I= ACT and time = T + k.

This says that the duration predicate is satisfied in state q and k ticks later the predicate

ACT is satisfied in state q' . The idea of using delay(k) to specify a lower bound on

when an action can be performed, is expressed graphically in Figure 4.

delay(k) ACT

~----••~(!)r----•--~
ti~<~: :jo•T+k

---;1---tr-an-s-iti-on--~~~------------tim-e---ax~i~.­
occurs at

L kth tic,...k __ _,.)
y

Figure 4. Lower bound on when a system action begins.

Constructing Real-Time Systems 1 2

3.2.2 Upper Bound on a System Action

We can also express an upper bound on the number of ticks during a system action

using delay(k). This is expressed rather simply by writing "ACT; delay(k}," which

asserts that ACT cannot be continuously enabled for more than k ticks of the external

clock. The predicate timeout (see Figure 5) is an enabling condition, which evaluates

to true at the kth tick of the clock (i.e., an action which must be performed within k

ticks times out, and a transition to the next state occurs). The meaning of this upper

bound constraint can be explained concisely by using the satisfaction clause sat(q, P).

Then the upper bound timing constraint can be defined as follows:

sat(q, ACT; delay(k)) q I= ACT,

q I= time< T + k; /* reads "or" *I

q I= time = T + k and timeout.

A graphical interpretation of the upper bound constraint on the duration of a system

action is given in Figure 5.

ACT;
delay(k) 't

~timeou~0 ~

time= T + k

lime<~: :;

----+-1 -+---t-~ ... transition time-axis
occurs at

L kth tick
y

)

Figure 5. Upper bound on the duration of a system action.

Constructing Real-Time Systems 1 3

4. Timed-Behavior Expressed with Temporal Logic

The behavior of a real-time system can be specified with Real-Time Temporal

Logic (RTTL) given in [Ost 89, Har 90, Hen 91]. When temporal logic is applied to

the study of processes, the formulas of temporal logic are interpreted as predicates over

sequences of process states [Alp 86]. Each state occurs at some instant in time in which

the values of process variables can be inspected. During a succession of states, changing

values of state variables may entail changing truth values of predicates about state

variables. Hence, it is appropriate to use some form of temporal logic to describe

process behavior. Temporal logic allows the specification of a temporal ordering of

actions of a system agent. Temporal formulas can be used to enumerate state transitions

(transformations of one state into a new state) in a behavior as well as the order in

which transitions are made.

RTTL provides a concise means of prescribing a property of a behavior represented

by a temporal 1/0 automaton; such prescriptions are assertional. This form of temporal

logic is essentially the same as the original temporal logic introduced by Manna and

Pnueli [Man 81, Man 83] with the addition of data variables such as T (for timing

constraints) suggested by [Hen 90, Har 90]. Except for some additional derived

temporal operators taken from [Pet 90a], the temporal logic used in this article is the

same as RTTL. For simplicity, we limit the presentation of RTTL to a discussion of the

U (until) and temporal operators derived from U. We also introduce the derived

temporal operators before, Ow (infinitely often), and seq(p1, P2· P3····· Pn) (a

temporally quantified sequence of state predicates where P1 holds before P2· which holds

before p3, ... , before Pn).

For the subset of RTTL (named Tlrt) we have chosen, the temporal language Tlrt

is defined as follows:

Alphabet

• A denumerable set of variables: x, y, ...

• A denumerable set of n-ary functions: f, g, ...

• A denumerable set of n-ary predicate symbols: p, q, ...
• symbols .., , or, \:1, (,), U

Well-formed formulas of Tlrt have the following syntax:

• Every atomic formula is a formula.

Constructing Real-Time Systems 1 4

• If x is a variable and A is formula, then "'\/ x A is a formula.

• If A and B are formulas, then ..., A, (A or B), (A U B)

are formulas.

Semantics of Temporal Operators. The ..., (not), or, and "'\/ (all) symbols

have the usual semantics. In addition, the implication symbol ====+ (i.e., p ====+ q = ..., p

or q) is used. In defining the following semantics, the notation

(qo, ... ,qx) I= p for x >= 0

asserts that each of the states in the sequence (q0 , ... ,qx) satisfy predicate p. In what

follows, let q0 represent the current state in a behavior. Let p, q be first-order

predicates. The semantics of U as well as the operators derived from U are as follows:

pUq

p before q

<>p
qk I= seq(p)

seq(P1, (seq(p2, ... ,pn)))

()W p

= 3 k, x: 0 <= x <= k: (qo, ... ,qx) I= p and qk I= q

= 3 k: 1 <= k: q0 I= p and (q1, ... ,qk) I= p U q

=true Up

= qk I= p

= p1 before seq(p2, (seq(ps, ... ,pn))

= seq(p, ow p)

The predicate 'p U q' asserts that the predicate q eventually holds (either in the current

or in some future state) and that the predicate p holds in the current state and in each of

the states until the state when q holds. By contrast, 'p before q' asserts that p is

guaranteed to hold initially and sometime later q will hold. For this reason, before is

called a precedence operator [KrO 85]. These powerful temporal operators provide the

basis for the semantics of the remaining operators in the above list.

Notation. Let ACT be the name of an action associated with a state q in a TAi!o· Let

x> represent a parameter x (of Xtype) whose value is to be written to an output

channel. Let Y< be a parameter y (of Ytype) whose value is to be read from an input

channel. Then the predicate

ACT(x> : Xtype, Y< : Ytype) asserts action ACT writes x to an output channel,

Constructing Real-Time Systems 1 5

and reads y from an input channel.

In the case where ACT is parameterless, we write ACTio·

The temporal assertion 0 p says there will be some state either now or in the future in

which the predicate p evaluates to true. For example, let process be the name of an

internal action for an agent which receives values for x< , e < as input, and computes

values for x•>, and e•>, as output. Then

asserts that eventually the observed values of e and x will be processed to obtain the

predicted values of e· and x'. Notice that for a named action ACT, if we write 0 ACT,

this is a shorthand way of writing "eventually perform ACT."

4 . 1 Temporal Semigroups

It is possible to define a semigroup relative to the before temporal operator. This

will allow us to express assertions with seq more concisely. In conventional terms, a

semigroup is defined as follows.

Definition 4.1. Let T be a non-empty set, and let ex be an operation on T. A

semigroup is a pair (T, ex) such that for all x, y, z in T, the operation ex

is associative, i.e., x ex (y ex z) = (x ex y) ex z.

The temporal operators in TLrt belong to what is known as the future fragment. That is,

temporal predicates written with TLrt always refer either to the present state or some

future state. Due to the semantics of before and until, parenthesizing a precedence- or

an until-assertion does not change the temporal evaluation of the formula. As a result,

parentheses only provide syntactic sugar (making some formulas easier to read). In

this restrictive sense, we can define a temporal semigroup as follows.

Definition 4.2 Let P be a set of predicates and let 1: be a temporal operator.

A temporal semigroup is a pair (P, 1:) such that for all x, y, z in T, the

operation 1: is associative, i.e., x 1: (y 1: z) = (x 1: y) 1: z.

Constructing Real-Time Systems 1 6

In the case where (P, 1:) Is a temporal semlgroup, then we can remove the parentheses

and write the expression x 't y 't z. For example, we can write x before y before z as a

result of Proposition 4.1.

Proposition 4.1 Let P a set of predicates. Then (P, before) is a temporal

semigroup.

Proof: Let P1, P2· P3 be predicates in P, and let term = (P2 before p3). Further

assume q0 , ... , qx , qk are states with 0 <= x <= k over which we evaluate

predicates P1, P2· and P3· Then

0 P1 before (P2 before P3) assumed

1 P1 before term by def.

2 3 k: 1 <= k: qo P= P1 and (q1 , ... ,qk) P= P1 U term by def. of before

3 qo, ... ,qx P= P1 and (qX+1 , ... ,qy ,qk) P= term, x >= 0 fr 2, WLOG

4 (qX+1 , ... ,qy ,qk) P= P2 before P3 fr 3, def. term

5 qx+1 P= P2 and (qX+2, ... ,qy ,qk) P= P2 U P3 fr 4, def. before

6 qX+1 ,qy P= P2 and (qy+l, ... ,qk) P= p3 fr 5, WLOG

7 (P1 before P2) before P3 fr 3, 6

I

Since the seq operator is defined in terms of before, predicates like seq(p1,

(seq(p2, ... ,pn))) can also be rewritten as seq(seq(p1 , ... ,pn-1), Pn). That is, this is

another way of writing P1 before (seq(p2 , Pn)). By continuing this expansion of

the seq formula, the seq operator is eliminated as in

P1 before (seq(p2 , Pn))

= P1 before (P2 before (seq(p3, ... ,pn))) ...

= P1 before (P2 before (P3 before (... (Pn-2 before (Pn-1 before Pn) ...)

By repeated application of Prop. 4.1, we can rewrite this assertion as

((... (p1 before P2) before P3) before p4) ...)before Pn

This gives us the following result.

Constructing Real-Time Systems 1 7

Proposition 4.2 (P, seq) is a temporal semigroup.

Propositions 4.1 and 4.2 allow us to simplify the specification of a temporally ordered

sequences of predicates. This is reflected in the next proposition.

Proposition 4.3 Let P1, P2· ... , Pn be predicates. Then seq(p1, (seq(p2, ... , Pn)))

can be written as seq(p1 , P2· ... , Pn).

Proof: Immediate from Propositions 4.1 and 4.2.

Next, we investigate the use of TLrt in specifying the necessary conditions for a

transformation of a particular state into a new state.

4 . 2 Transductions and Transduction Rules

Transduction rules pinpoint the basis for transitions between states in the

observed behavior of a system. They are useful in formulating timing as well as other

consistency constraints imposed on system behavior. In the design of a real-time

system, we are interested in formulating state-transformational control rules to

guarantee consistency in a system behavior. Rather than speak in terms of entire state

sequences in a timed-behavior (the macro view), transduction rules provide a refined

granularity in the prescription of transitions between states within a behavior (the

micro view). A transduction rule is a satisfaction rule that specifies under what

conditions a transformation from one state to another should be made. Let econd be an

enabling condition for the transition between states q and q'. Further, let Trq,q' be a

transduction rule with respect to states q and q' with state predicates P;delay(k) and P',

respectively. Trq,q' is defined as follows:

Trq,q' sat(q I (q'), P; delay(k) and econd)

A transduction defines the transformation of state q into state q' in terms of state

predicates P and P', duration of state activity (delay(k)), and possible input from and

output to 1/0 channels by the operation specified by the state predicate. A transduction

Tdq,q' is defined as follows:

Constructing Real-Time Systems 1 8

Tdq,q' = seq(P; delay(k), P')

A transduction Tdq,q' = seq(P; delay(k), P') asserts that "predicate P is satisfied in

state q before predicate P' is satisfied in state q'". On the one hand, a transduction rule

is a first-order predicate, which specifies under what conditions a transduction (i.e.,

transformation of a state into a new state) is made. On the other hand, a transduction

Tdq,q' is a temporal ordering of state predicates with a tacit ordering of events. In

the case where a TAi!o is deterministic, there is a strict relationship between Trq,q•s

and Tdq,q' s.

4.3 Temporally Complete 1/0 Automata

It is important for control engineers designing a real-time system to know under

what conditions the behavior of a system is predictable. For this reason, the

completeness of a temporal 1/0 automaton with respect to timing constraints is of

interest. In terms of timed behavior, there is a need to know that the responsiveness

of a system to input from the environment is within some maximum time (referred to as

MAXT in [Pus 90]).

Definition 4.3 A temporal 1/0 automaton is complete if

i) every state has a timing constraint (a lower bound as explained

earlier and a finite upper bound specified by delay(k)).

ii) for every state q, there is a transduction rule Trq,q' which is valid.

Let cT Aito be a temporally complete 110 automaton with arbitrary state q annotated with

predicate P. By definition, q has a timing constraint. WLOG, assume that P is of the

form ACT; delay(k). If the action specified by ACT times out in k ticks of the clock,

then by definition (4.3 (ii)) there must be a transition from q to some state q' which is

enabled as a result of the timeout. That is, there must be a transduction rule in cTAi!o

of the form sat(q I (q'), ACT; delay and timeout). As a result, we have the following

propositions.

Proposition 4.4. Every state in a temporally complete 1/0 automaton has an

exit edge which is inscribed with a timeout enabling condition.

Constructing Real-Time Systems

Proposition 4.5 Associated with every state q in a temporally complete 1/0

automaton, there is a transduction rule of the form sat(q 1 (q'), ACT; delay(k)

and timeout).

1 9

The completion of a timed action ACT in a state q means that either ACT is performed

within a specified time or there is a timeout. A timed i/o action completes either when

it terminates or times out. The completion of a timed action does not preclude a timeout.

That is,

Definition 4.4 The completion of a timed action ACT in a state q means that

sat(q, ACT; delay(k)) holds (i.e., a transition from state q to q' occurs).

By definition, a timed action specified by a node predicate leads to an event. Every event

induces a transition to a new state in cTAifo, either as a result of a timeout or because

the specified action has completed within a specified number of ticks of the external

clock. This proves

Proposition 4.6 Given the assertion ACT; delay(k) on node q in cTAito· The

completion of a timed action implies Tdq, q'. That is, a transition from state q

to q' occurs.

4.4 Deterministic, Temporal 1/0 Automata

A TAi!o is deterministic if mutual exclusion among transduction rules holds. This idea is

stated formally in Def. 4.5.

Definition 4.5 Let q, q', q" be states in a TAito and let e1 , ... ,e;, ... ,ej, ... ,en the

enabling condition on transitions leading from q to other states. Let Trq,q' and
Tr q,q" be transduction rules for enabling conditions e; and ej for 1 <= i, j <= n,

where i <> j, respectively. The transduction rules are mutually exclusive if
.., (Trq,q' and Trq,q") holds.

In the case where a temporally complete automaton is deterministic, we can state the

relationship between transduction rules and transductions formally as follows:

Constructing Real-Time Systems

Proposition 4.7. Let sat{q 1 {q'), P; delay{k) and econd) be the transduction

rule for a transformation of state q to q' and let P' be the state predicate which

labels the node q' of a deterministic cTAito· Then

sat{q I (q'), P; delay(k) and econd) +=+ Tdq,q' {seq(P; delay(k), P'))

specifies the transduction from q to q'.

Proof (by construction).
(==+) Let sat{q 1 {q'), P; delay{k) and econd) be a transduction rule which is

satisfied in state q. Assume "P; delay{k)" labels state q and P' is the state

predicate which labels q'. By definition of a transduction rule, "P; delay{k)

and econd " holds in state q. Hence, the transformation from state q to q' can be

made. This is another way of saying the node predicate "P; delay{k)" will be

satisfied in state q within the time imposed by the timing constraint specified by

delay(k). This also says the enabling condition econd also holds, which enables

the transition from q to q'. In addition, since P' is the state predicate which

labels q', by definition P' must be satisfied in state q'. That is, a predicate

which labels a state is satisfied in that state. Since TAi!o is deterministic, the

mutual exclusion property holds. In addition, since TAite is temporally

complete, we know by Prop. 4.6 that Tdq,q' (seq(P; delay{k), P') holds.
(+==) Immediate from the definition of seq(P; delay(k), P').

I

4 . 5 Predictability of Temporal 110 Automata.

20

The importance of temporally complete automata becomes apparent in the investigation

of quantitative measures of predictability. That is, given a cTAi/o. we can compute

upper bounds (values of MAXT) on the response times of prescribed actions of the

automaton. In the case where a cTAi!o is deterministic, the computation of MAXT for

every action in a specified behavior is straightforward. To see this, we introduce the

following notation.

Constructing Real-Time Systems

Notation. Let cTAi/o be a temporally complete automaton. Let ai be an action

specified by the node predicate for state qi of a cTAi/o and a timed action trace a:

of such an automaton be represented by

a: = (a0 ;delay(k0)), (a1 ;delay(k1)), ... , (ai;delay(ki)), ...)

21

Also, let the maximum response time for the ith action ai be MAXT ai· In the case of a

deterministic cTAi/o. the following result is easy to prove:

Proposition 4.8. Every action in a deterministic, temporally complete TAi/o

is part of a single timed trace.

To say that an action must be performed with k ticks of an external clock is somewhat

ambiguous. In the case where an action ACT has a timing constraint given by

delay(k), ACT times out if it takes k ticks to complete. Otherwise, if ACT does not

time out, there is an upper bound on the duration of ACT which we call a locai-MAXT

for ACT to complete without a timeout, namely, k - 1 ticks. Relative to a timed trace
a:, we introduce the notion of globai-MAXT with respect to the final action in a:. These

terms are defined as follows:

Definition 4.6. (locai-MAXT) The upper bound on the normal response time

for an action ACT with timing constraint delay(k) is k - 1. If ACT takes k

ticks of the external clock to complete, then it times out.

Definition 4.7. (globai-MAXT) The maximum time MAXTai is the upper bound

on the normal response time of T Aile measured from a0 to ai in a timed action

trace a: (i.e, MAXT is the overall time for normal response).

A timing constraint delay(k) is considered a locai-MAXT. The maximum time MAXai is

considered a global maximum time (for an entire timed trace); this is analogous to the

analysis of MAXT with respect to an entire program given in [Pus 90]. Let "ACT,

delay(ko)" be the node predicate on the start state for a TAi/o· By the start state axiom,

we know that the value of the clock variable has an initial value of zero. The completion

Constructing Real-Time Systems 22

of ACT occurs within ko - 1 ticks of the external clock (the initial value of the clock is

counted as 1 tick). This proves

Proposition 4.9. locai-MAXT ao = k0 -1 for a timed action in the start state.

This suggests a way to compute the value of MAXT in a cTAi!o· Using mathematical

induction, we can prove the following for a deterministic cTAito:

Proposition 4.1 0. In a deterministic cTAito. the maximum response time for

the ith timed action ai over a timed trace a0 to ai is given by

globai-MAXT = k0 + k1 + ... + ki- i

For a nondeterministic cTAito. computation of globai-MAXT is somewhat more difficult,

since each action can be part of more than one timed trace. If we let sample_MAXT be

the maximum response time of an action over a timed trace in a nondeterministic cTAi/0 ,

then

Proposition 4.11. In a non-deterministic cTAi/o. the maximum response time

for the ith timed action ai over n sample, timed traces from a0 to ai is given by

globai-MAXT = max(sample_MAXT 0 , ... , sample_MAXT n)

where sample_MAXT; is the maximum response time for aj over the jth sample,

timed trace from ao to a;.

4.6 Named Temporal 110 Automata

When automata are composed, it is important to have some means of identifying the

automata in a composition. In the case where there are a limited number of automata

(no more than 1 0) to be composed into a system, colors could be used to distinguish

automata. This becomes important when we are specifying actions representing

communications between automata. So, for example, an automaton with nodes "painted"

Constructing Real-Time Systems 2 3

yellow would call an automaton with nodes painted green. Then if yellow sends green a

message (msg), we can write

yellow: green I msg --yellow T Aito sends msg to green T Aito

With an arbitrary number of automata in a composition, we need to choose some naming

scheme (machine id number, for example) to write a specification for communications.

For this reason, we introduce named TAitoS. A named TAito is tuple (name, Q, q0 , D,

P, Clock, N, E), where name is a unique form of identification of the automaton. This

gives rise to following notation for named automata.

Notation. Let mac and sun be the names of two TAi!oS which have been

composed and let ACT be an action belonging to sun which mac calls, then

we write mac: sun.ACT. The prefix mac identifies mac as the caller. In

the event that mac "sends" sun a value using x> and receives a value y <• we

write

mac: sun.ACT(x>, y <) --mac calls ACT in sun

When it is clear from the context who the caller is in a communication, we adopt the CSP

convention and drop the caller-prefix. We illustrate these ideas with a specification

of a real-time system.

5. Specification of a Light-Controlled Vehicle

In this section, we utilize TLrt and named TAitos to specify a control system for an

autonomous vehicle which relies on what is known as reactive navigation to gain access

to light-controlled intersections [Ark 90). Reactive navigation is a form of robot

control which consists of a stimulus-response relationship with the external world.

The controller for the autonomous vehicle in Figure 6 consists of two parts: a reactive

navigation unit for a Light-Controlled Vehicle (LCV) and a guard unit (traffic light­

controller) for intersections used by LCVs.

Constructing Real-Time Systems 24

1/0 channels
light control unit

node2

deviation angle
navigation control

node1 visual feedback

ctrl

plant= LCV

video camera

' ' ' ' ' ' '' ' ' ' ' ' '
' ' ' ',

' '

lights embedded in
trackingline followed by LCV

LCV(top
view)

Figure 6. Light-Controlled Vehicle

trackingline

For simplicity, the LCV in Figure 6 is modelled as an enhanced form of the mobile robot

described in [Mar 90]. The LCV will use its camera to detect lights embedded in the

path marked by the tracking tape. In addition to responding to observed deviation

angles and x-distances, the LCV will also respond to traffic lights when they are detected

in the sequence of images from its camera. The nodes in Figure 6 represent loosely

coupled computers which communicate via a local area network.

real-time system in Figure 6 consists of the following components:

controller= LCV navigation control II Trafficlight control unit

plant = LCV mobile unit II Trafficlights

r t s = controller II plant

In summary, the

Constructing Real-Time Systems 25

5.1 Description of LCV Controller Behavior.

The LCV processes camera images which include traffic lights. The AV

(autonomous vehicle) in Figure 6 is a mobile robot which relies on visual images

captured by an on-board video camera to steer the AV along a tracking tape. In the

discussion that follows, we have made some simplifying assumptions about the dynamics

of the robot in Figure 6 to make the modelling of the behavior of this control system

more concise. We assume that the tracking tape is over a perfectly flat terrain, the

universe of the robot is limited to following the tracking tape which crosses light­

controlled intersections, and we consider only three control variables: deviation angle
a, distance x, and image (used to detect traffic lights). The camera images are processed

by a computer to obtain any necessary adjustments in terms of two directional control

variables: the deviation angle a of the wheels and an x-distance of the AV plant relative

to the tracking line in Figure 6. The deviation angle a is used to change the direction of

the AV so that it travels in parallel with the tracking line. The AV controller also

determines an x-distance (the distance between the AV's longitudinal axis and the center

of the tracking line). The x-distance in Figure 6 is used to guide the AV back onto the

tracking line.

The navigation unit in Figure 6 also analyzes feedback from the video camera to

detect intersection lights. In the temporal specification in Figure 7, the action

process(X< : real; a< : real; image<: imagetype),

specifies the processing of the images by the LCV navigation unit. The image parameter

affects the behavior of the LCV if either a green or red light is detected. A light­

controlled intersection is a shared resource (only robots going in the same direction can

cross the intersection). If an LCV "sees" green, it stops rolling and its navigation unit

(node 1) transmits a request to the light controller to enter the intersection. Once the

LCV acquires permission from the light controller (node 2) to continue, it rolls through

the intersection. On the other hand, if an LCV sees red, it also stops rolling and

requests a green light. Once the light changes to green, the LCV must still request

permission to enter the intersection. The behavior of the guard unit software running

on node2 of Figure 6, consists of synchronizing the directional lights infinitely often

and either responding to a request for access to the intersection or responding to a robot

which wants a red light changed to green. In the context of the real-time system in

Constructing Real-Time Systems 26

Figure 6, the processes running on nodes 1 and 2 are called agents, which can be

concisely specified with real-time temporal logic.

5.2 Temporal Specification of Controller Behavior.

We make some simplifying assumptions to reduce the complexity of the temporal

specification of the behavior of the control system. First, by treating light-controlled

intersections as "critical sections" (only one LCV at a time traverses an intersection),

we have eliminated the need for a yellow (warning) light. Second, only a pair of robots

traveling in opposite directions compete for access to light controlled intersections.

Third, a robot which receives permission to enter an intersection always clears the

intersection before the light controller changes the lights. The specification of the

behavior of the navigation and guard units of the LCV is given in Figure 7.

--navigation unit of mobile robot:

Ow seq(delay(5), --time to align camera

process(x(: integer; e (: real; image(: imagetype); delay(1 0),

update(x> : integer; e> : real; signal< : signaltype); delay(k),

timeout ~ correct(); delay(50),

SeeLight(image) ==*
seq("'C; delay(1 0), --internal action

SeeGreen(image) =+ seq(guard.requesti0 ; delay(15),
roll; delay(30))

or

...,SeeGreen(image) =+ guard.changelightsj0 ; delay(30)))

--Light control guard:

ow seq(delay(7), --time to synchronize lights
requesti0 ; delay(1 0),

or lsCiear ==* changelightSio: delay(1 0))

Figure 7. Temporal Specification of Controller for Mobile Robot

Constructing Real-Time Systems 27

5.3 Modelling the LCV Controller with TAi/oS

The behaviors of the navigation unit and guard can be modelled as T Avos as shown

in Figure 8. The navigation unit in Figure 8 is deterministic but not temporally

complete, since no timeout transitions are specified, except for the update action on state

q2. The guard automaton in Figure 8 is also not temporally complete, since no timeout

transitions are specified. The guard is non-deterministic, since a transition to either

q2' or q1' from q0 ' is always possible. Arcs without inscriptions are assumed to have

enabling conditions which are true.

navigation TAllo:

guard TAllo:

channel
delay(7)

~
Legend: -~ symbolizes a recurrent state, which is also a start state.

Figure 8. LCV Modelled with T Au0 s

Constructing Real-Time Systems 28

5.4 Tabular Representation of Timed Behavior

Automata can be conveniently represented in tabular form. To analyze the

timed-behavior of the TAilos in Figure 8, we construct table 5.1 for the guard

automaton. Since there is only one timed trace containing the request action, the

determination of the globai-MAXT is just the sum of the upper bounds (6 and 9) for the

actions on nodes 0 and 1.

navigation unit in Table 5.1.

For simplicity, we ignore the timing constraints of the

Table 5.1 Timed Behavior for LCV guard automaton

states timing constraint lb up locai-MAXT globai-MAXT

qo' q1' qo': delay(?) 0 6 6 6

qo' q2' qo': delay(7) 0 6 6 6

q1' qO' q1 ': request; 6 9 9 15

delay(10)

q2' qo' q2':changelights; 6 14 14 20

delay(15)

5.5 Tabular Representation of Transductions

The tabular representation of transductions for an automaton is useful because it

facilitates correctness proofs about the specification and construction of the specified

program. To prepare a TAi!o for a proof of its correctness, and to establish the

relationship between TAi/o predicates, we introduce a partial list of proof expressions

(Part A) similar to those found in [Con 89] and attributes (Part B) of state predicates:

Table 5.2 Annotations on TAi/o Nodes

A. Proof Expressions.

Let Trq,q'. Tdq,q' be transduction and transduction rule, respectively;

let p, q be predicates.

Constructing Real-Time Systems

or(p, q) --p or q
orin(p, q) --or introduction
impel(p, q) --implication elimination
def(p, q) --q follows from definition of p

--and introduction
--ACTio completes

andin(p, q)
completes(ACT io)
atmostone(ACTio)
mutex(timed trace)

--at most one i/o action completes
--timed trace guarantees mutually exclusive
access to a shared resource.

B. Attributes of state predicates and conditions.

recurrent state predicate: [loop]
transition to R state: [end loop]
branching node: [or]
separator: [;]
guard on acceptance of a call: [when ec =>]
i/o node predicate p: [accept p]
p; delay(k): [p or delay(k)]

begin sequence: [seq]
end seq: [qes]
impl cond: [if]
end if: [fi]
select call: [select]
end select: [end select]

29

The proof expressions facilitate proofs of automaton properties (e.g., mutual exclusion

for an intersection guarded over by the "seeing eye" traffic light system hardware

controlled by the guard program--only one mobile robot can be in the intersection any

one time). The program specified by a TAito is extracted while proving that an

automaton satisfies required properties. To extract the program specified by a TAi!o. the

meaning of each predicate is defined with an attribute representing a fragment of

program code. Every node in Figure 9 has three types of predicates (proof

expressions, state predicate, and attributes). The proof expressions used in Figure 9

are listed in Table 5.2A. For example, node q0 in Figure 9 is annotated with

impel(delay(7), or(Trqo' ,q1', Trqo' ,q2')), which is an application of implication

elimination relative to delay(7) and the transduction rules evaluated in state q0 . The

state predicate on node qo is also attributed with [loop J delay(?) [select]. To

maintain the generality of the specification, the attributes of each part of a specification

belong to an abstract programming language. The attributes of TAu0 predicates should

be thought of as annotations (they are normally hidden, and added during the later stages

of modelling). An annotated version of the guard in Figure 8 is given in Figure 9.

Constructing Real-Time Systems

impel(delay(?),
or(Trqo',q1',

Trqo', q2'))

Table 5.3

state node

0 delay(7)

1 request;
delay(10)

2 change!-..
lights;
delay(15)

-.timeout

proof expression:

state predicate:

attribute:

impel(request and -.timeout, Trq1',qo')

request; delay(10)
[when lsCieargr =>

accept request;
or
delay(10);

impel(changelights and -.timeout, Trq2',qo')

Jtangellghts;delay(15)

when JsC/earred =>
accept changelights;
or 11 delay(15);

Figure 9. Annotated, Temporally Complete TAilo

Automaton with Proof Expressions & Attributes

Transductions Tr Rules Proof Express. Attributes

Tdqo',q1'(seq(Trqo',q1': impel(delay(7), loop
delay(7), sat(O, or(Trqo',q1', delay(7);
request; ...) delay(7)) Trqo,q2)) select

Tdq1',qo' (seq(Trq1',qo': impel(request, when lsCieargr=>
request; sat(1, Trq1', qo') accept request;
delay(10), request. ..) or
delay(7)) delay(10);

Tdq2', qo'(seq(Trq2',qo': impel(change ... , when lsCiearred=>
change lights; sat(2, Trq2',qo') accept
delay(15), change ... & changelights;
delay(7)) lsCiearred) or

delay(15);

30

Constructing Real-Time Systems 31

We illustrate a correctness proof of an automaton specification in terms of the guard in

Figure 9. We have minimized the states in this machine for the sake of illustration (a

more elaborate machine would used in the general case). We will assume that this

automaton has been made temporally complete (making sure that each state, except for

the start state, has a timeout transition). In addition, we replace the inscriptions on

the edges (in Fig. 8) with enabling conditions which are mutually exclusive for the

case being considered:

replace q0 •,q1 •: T with Qo',Q1 •: lsCieargr

replace Qo',Q2': lsCiear with Qo',Q2': lsCiearred
replace Q1 •,q0 •: T with Q1 •,qo•:..,timeout

replace Q2•,q0 •: T with Q2',Qo•:..,timeout

--green direction is clear

--red direction is clear

As an aid to implementation of a fully attributed TAif0 , we store the parts of the

automaton in Table 5.3. The information in Table 5.3 also provides the basis for both

proofs of automaton properties and program derivation. Arrival at a node provides

evidence that the attributes of the node predicate belong to a correct specification (up to

that point). In other words, proving an automaton property con.structs a program.

6 Correctness Issues

There are three types of constraints that can be imposed on the behavior specified

by a TAi!o· On the state transition level, the conjunction of an enabling condition and

node predicate serves as a constraint on a state change. This form of constraint is

expressed by a transduction rule. An understanding of the remaining two types of

constraints hinges on making a distinction between what we call "atomic automata" and

"molecular automata." An atomic automaton (aTAi!o) consists of nodes without

underlying channels connecting them. A molecular automaton (mTAi!o) has at least

one pair of nodes connected by an underlying i/o channel; an mTAi!o is the result of a

composition. On the atomic automaton level, a constraint is some property such as

predictability, temporal completeness, determinism, mutual exclusion and so on, which

the aTAi!o satisfies. On the molecular automaton level (a system of automata), a

constraint can be placed on the interaction between atoms in the mTAi!o· Examples of

system properties are precedence (ordering of communications) and safety (nothing bad

happens).

Constructing Real-Time Systems 32

The proof of correctness of constraints on the state transition level has been

developed for the specification of a knowledge-based, real-time system [Ram 91]. On

this level, the concern is that state changes satisfy the consistency constraints to

preserve the integrity of the information within a system. The proof of correctness of

a state change is a deduction which is made with the help of a knowledge base. The proof

of the correctness of an atomic automaton specification (i.e., demonstrating that the

specification satisfies some property) is performed with the help of the information

contained in proof-expression table given in Table 5.2A (we illustrate this idea below).

A technique for proving that the specification provided by a molecular automaton

satisfies system properties has been given in [Pet 90a, Pet 90b]. For simplicity, we

only treat the case where the intersection is clear in the red direction, and a robot is

waiting for the guard to change the lights. For this case, we show In Figure 10 the

extraction of a partial abstract program from a constructive proof (for readability, we

have omitted the single quotes on the states in Figure 9).

Constructive Proof

1 q0 I= delay(?)

2 qo I= lsCiearred, q0 I= ...,lsCieargr

3 q0 I= impel(delay(7),
or(Trqo,q1 ,Trqo,q2))

4 or(Trqo,q1 ,Trqo,q2))
5 not Trqo,q1

6 or(Trqo,q1 ,Trqo,q2)) and ...,Trqo,q1
7 Trqo,q2 = sat(qo, delay(?)

and lsCiearred)
8 Tdqo,q2 = seq(qo, delay(?),

changelights;a ...)
9 q2 t= changelights;0 ; delay(15)
1 0 completes(changelights;0)

1 1 q2 I= ...,timeout
1 2 impel(changelights;0

1 3 Trq2,qo
1 4 Tdq2,qo

and ...,timeout ,Trq2,qo)

1 5 q0 I= delay(?)
1 6 qo,q2,qo I= atmostone(changelights;0)

1 7 mutex(Tdqo,q2. Tdq2,qo)

given

assumed

fr 1, graph
fr 1, 3
fr 2

fr 4,5, andin

fr 6

fr 7, Prop. 4.7
fr 8
fr 9, def. 4.4

assumed WLOG

fr1 0, 11, graph
fr 1 0,11,12
fr 13, Prop. 4.7
fr 14
fr 8, 14
fr 16

(Partial) Abstract
Program

loop
delay(?);

select

when lsCieargr =>
accept

changelights;o;
or delay(15);

Figure 10 Extraction of Partial Abstract Program from Constructive Proof

Constructing Real-Time Systems 33

The property we wish prove is that the guard guarantees mutual exclusion (only one

mobile robot can be in an intersection at any one time). The guard must control the

hardware so that the intersection is clear before instructing the hardware to change the

lights. In Figure 10, we prove the correctness of the guard automaton in the case

where the guard instructs the hardware to change the lights. The attributes for a

fragment of an abstract program are extracted in column 4 of Figure 1 0 each time a

transduction is made during the constructive proof. The remainder of the abstract

program started in Figure 1 o is obtained from the constructive proof that

mutex(Tdqo,q1. Tdq1,qo) holds. The proof expressions on the nodes in Figure 9 serve as

an aid in automated reasoning about the specification. The formulation of the proof

expressions stem from an interpretation of the structure of a TAi/o graph relative to the

definitions and propositions we have given. To the extent that a program is identified

with its behavior, a constructive proof of a TAito is the specified program. In other

words, the proof constructs the specified behavior.

7 Conclusion

The TAi!ofTLrt framework provides a basis for modelling the behavior of a real­

time system. The annotation of node predicates with proof expressions makes it

possible to construct provably correct prototypes of real-time systems. The attributes

of node predicates facilitate the extraction of program code during a constructive proof.

In effect, TAi!oS provide a visual programming approach to the development of provably

correct real-time systems. Tlrt provides a concise means of expressing transductions

and properties of automata we wish to prove. The combination of visual programming,

constructive proofs using transductions and transduction rules, and the expressiveness

provided by Tlrt. provides an appealing approach to the design of reliable real-time

systems.

Acknowledgement

We would like to thank Gideon Frieder and the other members of the School of Computer

& Information Science at Syracuse University for providing an excellent environment

for this research. We would also like to thank William Hankley, CIS Dept., Kansas State

University, and Chetan Murthy, Computer Science Dept., Cornell University, for many

helpful discussions concerning constructive logic and specification theory.

Constructing Real-Time Systems 34

References

[Alp 86] Alpern, B.L. Proving Temporal Properties of Concurrent Programs: A
Non-Temporal Approach, Ph.D. dissertation, Cornell University, TR-86-
732, 1986.

[Aiu 90] Alur, R. Dill, D. Automata for Modelling Real-Time Systems, LNCS 443:
322-335, Springer-Verlag, NY, 1990.

[Ark 90] Arkin, R.C. Integrating Behavioral, Perceptual, and World Knowledge in
Reactive Navigation, Robotics and Autonomous Systems, vol. 6: 105-122
1990.

[Buc 62] Buehl, J.R. On a decision method in restricted second-order arithmetic,
Proc. Int. Congr. Logic, Methodology, and Philosophy of Science 1960,
Stanford University Press, 1-11, 1962.

[Con 80] Constable, R.L. The Role of Finite Automata in the Development of Modern
Computing Theory, Proc. of the Kleene Symposium, North-Holland, 61-
83, 1980.

[Con 84] Constable, R. L. Bates, J.L. The Nearly Ultimate Pearl, TR 83-551,
Computer Science Dept., Cornell University, Jan., 1984.

[Con 86] Constable, R.L. et al. Implementing Mathematics with the Nuprl Proof
Development System, Prentice-Hall, NJ, 1986.

[Con 89] Constable, R.L. Assigning Meaning to Proofs: A Semantic Basis for Problem
Solving Environments, Constructive Methods in Computing Science, NATO
ASI Series, vol. F 55, 63-90, 1989.

[Har 90] Harel, E. et al. Explicit Clock Temporal Logic, Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science, , 402-413, June,
1990.

[Hal 89] Halbwachs, N. et al. Specifying, Programming and Verifying Real-Time
Systems Using a Synchronous Declarative Language, Proc. of Joint Univ. of
Newcastle Upon Tynellnternational Computers Limited Seminar, 11.27-
11.49, Sept. 1989.

[Hen 91] Henzinger, T.A., et al. Temporal Proof Methodologies for Real-Time
Systems, Proceedings of the 18th Annual ACM Symposium on Principles of
Programming Languages, 353-366, Jan., 1991 .

[Hoa 85] Hoare, C.A.R. Communicating Sequential Processes, Prentice-Hall, NJ,
1989.

[Kia 91) Klarlund, N. Schneider, F.B. Proving Nondeterministically Specified
Safety Properties Using Progress Measures, TR 91-1204, Cornell
University, May, 1991.

[KrO 85] KrOger, F. Temporal Logic of Programs Lecture Notes, Report TUM-
18521, lnstitut fur lnformatik, Technische Universitat Munchen, 1985.

[Lav 90] Lavignon, J.-F., andY. Shoham. Temporal Automata, Report No. STAN­
CS-90-1325, August, 1990.

[Lyn 88] Lynch, N., and M. Tuttle. An Introduction to Input/Output Automata,
Report MIT/LCS/TM-373, November, 1988.

[Man 81] Manna, Z. A. Pnueli. Verification of Concurrent Programs, Part 1: the
temporal framework, Report No. STAN-CS-81-836, Dept. of Computer
Science, Stanford University, June, 1981.

Constructing Real-Time Systems 35

[Man 83)

[Man 89)

[Mar 90)

[McC 43)

[Mer 91)

[Mil 89]

[Mur 90)

[Mur 91)

[Ost 89)

[Ost 90)

Manna, Z. A. Pnueli. Verification of concurrent programs: a temporal
proof system, Report No. STAN-CS-83-967, Dept. of Computer Science,
Stanford University, June, 1983.
Manna, Z. Pnueli, A. Specification and Verification of Concurrent
Programs by V -Automata, LNCS 398, 125-164, 1989.
Maravall, D., et al. Guidance of an Autonomous Vehicle by Visual Feedback,
Cybernetics and Systems, vol. 21, 257-266, 1990.
McCullock, W.S. Pitts, W. A logical calculus of ideas immanent in nervous
activity, Bull. Math. Biophys., vol 5: 115-133, 1943.
Merritt, M. et al. Time-Constrained Automata. To appear in Proc. 2nd
Int. Conference on Concurrency Theory (Concur'91), August, 1991.
Milner, R. Communication and Concurrency, Prentice-Hall, Inc., NJ,
1989.
Murthy, C. Extracting Constructive Content from Classical Proofs, Ph. D.
diss., Report 90-115, Cornell University, Aug., 1990.
Murthy, C. Classical Proofs as Programs: How, What, When, and Why, To
appear in the Proc. of Constructivity in Computer Science, summer, 1991.
Ostroff, J.S. Temporal Logic for Real-Time Systems, John Wiley & Sons,
Inc., New York, 1989.
Ostroff, J.S. Wonham, W.M. A Framework for Real-Time Discrete Event
Control, IEEE Transactions on Automatic Control, vol. 35, no. 4, 386-
396, Ap., 1990.

[Pet 90a) Peters, J.F. Constructive Specification of Communicating Processes Using
Temporal Logic, Ph.D. dissertation, Computing & Information Sciences,
Kansas State University, 1990a.

[Pet 90b) Peters, J.F. Hankley, W. Proving Specifications of Tasking Systems Using
Ada/TL, Proceedings of ACM Tri-Ada'90, 4-13, Dec., 1990b.

[Pet 91 a) Peters, J.F. Ramanna, S. Modelling Timed-Behavior of Real-Time
Systems with Temporal Logic. To appear in Cybernetics and Systems: An
International Journal, 1991.

[Pet 91b] Peters, J.F. Ramanna, S. Prototyping Provably Correct Real-Time
Systems, Report No. SU-CIS-91-23, School of Computer & Information
Science, Syracuse University, July, 1991.

[Pus 90) Puschner, P. Zainlinger, R. Developing Software with Predictable Timing
Behavior, Research Report 5/90, ITI, Technische Universitat Wien,
Austria, Feb., 1990.

[Ram 91) Ramanna, S. Peters, J.F. Explicit Clock Logic in Consistency Constraints
in Real-Time Systems. To appear in the IFAC Workshop on Artificial
Intelligence in Real-Time Control (AIRTC91), Sept., 1991.

[Tor 90] Torn, A.A. PICA--A graphical program development tool, Acta
Cybernetica, vol. 9, no. 3: 303-322, 1990.

	Constructing Real-Time Systems from Temporal I/O Automata
	Recommended Citation

	SU-CIS-91-22_001c.tif
	SU-CIS-91-22_002c.tif
	SU-CIS-91-22_003c.tif
	SU-CIS-91-22_004c.tif
	SU-CIS-91-22_005c.tif
	SU-CIS-91-22_006c.tif
	SU-CIS-91-22_007c.tif
	SU-CIS-91-22_008c.tif
	SU-CIS-91-22_009c.tif
	SU-CIS-91-22_010c.tif
	SU-CIS-91-22_011c.tif
	SU-CIS-91-22_012c.tif
	SU-CIS-91-22_013c.tif
	SU-CIS-91-22_014c.tif
	SU-CIS-91-22_015c.tif
	SU-CIS-91-22_016c.tif
	SU-CIS-91-22_017c.tif
	SU-CIS-91-22_018c.tif
	SU-CIS-91-22_019c.tif
	SU-CIS-91-22_020c.tif
	SU-CIS-91-22_021c.tif
	SU-CIS-91-22_022c.tif
	SU-CIS-91-22_023c.tif
	SU-CIS-91-22_024c.tif
	SU-CIS-91-22_025c.tif
	SU-CIS-91-22_026c.tif
	SU-CIS-91-22_027c.tif
	SU-CIS-91-22_028c.tif
	SU-CIS-91-22_029c.tif
	SU-CIS-91-22_030c.tif
	SU-CIS-91-22_031c.tif
	SU-CIS-91-22_032c.tif
	SU-CIS-91-22_033c.tif
	SU-CIS-91-22_034c.tif
	SU-CIS-91-22_035c.tif
	SU-CIS-91-22_036c.tif

