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Abstract 

A new class of communicating automata called Temporal lnpuVOutput Automata (TAi/oS) 
is introduced. A TAi/o is a predicate automaton used to specify real-time systems. 
The specification provided by a TAi!o includes state predicates with proof expressions 
and abstract program syntax as attributes. An abstract program is extracted during a 
constructive proof of the specification using the proof expressions. A TAi/o 
specification also includes hard, real-time constraints on program behavior. The 
predictability of deterministic, temporally complete TAi/o is investigated. The 
formulation of real-time system transductions and transduction rules for TAi!oS in 
explicit clock temporal logic is given. An illustration of the use of TAi!oS in specifying 
light-controlled vehicles is presented. To illustrate the methodology in constructive 
reasoning about a TAi/o. a proof which derives a partial abstract program is given. 

Index Terms--Communicating automata, program correctness, program 
specification, real-time systems, temporal logic. 

1. Introduction 

Finite state automata are considered the fundamental descriptive tools of 

computing [Con 80]. The behavior of agents in a system has been modelled with finite­

state automata [Aiu 90, Hal 89, Hen 91, Lav 90, Lyn 87, Man 89, Ost 89, Ost 90, Pet 

90a, Pet 90b, Pet 91a, Pet 91b, Kla 91]. An agent is that part of a system which has 

its own identity, and its own externally observable behavior [Mil 89, Pet 91 a]. The 

behavior of an agent is defined to be an infinite sequence of events. An event is an 

externally observable, discrete occurrence. By discrete event, we mean an event 

separable observationally from other events. Examples of events are actions of agents, 

communications between agents, the observable parts of agent states (length and 

* Research supported in part by the School of Computer and Information Science, 
Syracuse University, Syracuse, NY 13244-4100 USA and by the Research & 
Development Laboratories, Culver City, CA 90230-6608 USA. Submitted for journal 
publication. 
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contents of queues, variables, constants, and so on). Automata can be represented as 

finite, directed, labelled graphs. The nodes of such graphs represent agent states; the 

arcs, transitions between states. The specification of the various behaviors of an agent 

can be given by "annotating" the nodes and arcs of an automaton with predicates. Each 

automaton node is annotated with a predicate that specifies an activity associated with the 

state; each arc is inscribed with a predicate identifying an enabling condition for a 

transition to the next state. Such automata are termed predicate automata [Man 89, Alp 

86]. The aim of this paper is to introduce a special class of predicate automata called 

temporal input/output automata (T Ai!oS), which can be used to model the time­

constrained behavior of real-time systems. In such automata, state predicates can 

reference an external clock in specifying timing constraints on the behavior of an agent. 

The language accepted by a TAi!o corresponds to the set of behaviors of an agent which 

satisfy the specification provided by the predicates on the nodes and arcs of the TAito· 

A TAi!o is used to describe a real-time, computational task independent of the 

program which carries out the task. Remarkably, there is a connection between TAi!oS 

and the very first conception of finite automata used by McCullock and Pitts to model the 

behavior of neural nets [McC 43]. That is, McCullock-Pitts neural nets and TAi/os rely 

on predicates with time parameters to describe process behavior. TAi!oS also have 

affinity with the extended program flowcharts used in PICA [Tor 90] (i.e., both rely on 

the use of assertion nodes). Predicate 1/0 automata were introduced in [Pet90a]. A 

T Ai!o is a predicate input/output automaton with a provision for specifying hard, real-

time constraints. The relationship between a specified action and a program is 

expressed with an attributed form of node predicates. The reasoning about a 

specification embodied in a T Ai!o provides a constructive proof that the specification 

satisfies some property. In this context, the term property is an assertion about a 

specified sequence of events in the behavior of a program. Proofs are regarded as 

expressions which denote evidence [Con 89]. In other words, these proof expressions 

provide a basis {evidence) for reasoning about the correctness of a specified 

computation. A proof is termed constructive when the evidence denoted by it can be 

computed from it. In the case of a TAito. the description of a computation is made 

possible by annotating the states of the automaton with proof expressions similar to 

those found in [Con 89]. As in Nuprl [Cons 84, Cons 86, Mur90, Mur 91 ], the proof 

of an assertion produces some object either implicitly or explicitly. The object 

produced by a constructive proof of a specification provided by a TAi!o is a program. 
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The context for this research is given in Section 2. In Section 3, a formal 

definition of TAitoS is presented. Section 4 provides an introduction to a subset of 

real-time temporal logic called Tlrt as well as the properties of various members of the 

class of temporal i/o automata. A specification of a light-controlled vehicle in the 

TLrtl TAito framework is given in Section 5. The correctness issues relative to TAitoS 

and a sample constructive proof of a specification are given in Section 6. 

2. Modeling Real-Time Program Behavior with Automata 

In the context of real-time systems, the term modelling refers to a precise 

behavioral description of the critical features of a system [Ost 89]. For example, some 

of the critical features of a controller of a real-time system are synchronization 

(rendezvous), concurrency (concurrent behaviors of communicating processes), 

responsiveness (behavior which adheres to timing constraints), determinism 

(behavioral transitions which satisfy enabling conditions), and non-determinism 

(interleaving of observed behaviors of concurrent processes). The behavior of a real­

time system is constrained by what are known as hard, real-time constraints. A hard, 

real-time constraint specifies that an action by a system agent must be performed 

within a fixed number of time units. For example, a system agent must respond to 

input from another agent within 10 milliseconds. To model behaviors with infinite 

length in the context of real-time systems, it is common to consider finite state 

automata which accept infinite words. These automata are variations of what are known 

as BOchi automata. 

2.1 Buchi Automata 

BOchi Automata (BAs} are finite-state automata which accept infinite words 
[BOc 62]. A BOchi automaton (~, Q, 0 0 , R, E) is a finite state machine with an input 

alphabet ~, finite set of states Q, start states 0 0 c Q, recurrent states R c Q, and edges E 

c Q x ~ x Q. A recurrent state is an accepting state, which is visited infinitely many 

times during a run of a BA. Various variations of BOchi automata have been used to 

model the behavior of systems [Aip86, Man 89, Ost 89, Pet 90a, Pet 91, Kla 91]. A 

common feature found in all of these variations of BOchi automata is the presence of 
recurrent states. For example, Manna and Pnueli [Man 89] introduce V -automata. A 

V -automata is a predicate automaton which accepts inputs from a program computation 
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of infinite length. Formally, a 'V -automaton is a tuple (0, C, E) with states 0 = 

{recurrent states} U {stable states} U {start states) U {other states}, entry conditions 

E (each state q has an entry condition which must be satisfied before an automaton can 

start its activity in q), and transitions conditions C. The elements of C are predicates of 

the form c(q, q'). A transition from an automaton state q to a new state q' can occur 

when a transition condition c(q, q') is satisfied in state q. In other words, the sets E and 

C consist of first order predicates used to prescribe conditions which must be satisfied 
during an accepting run of a 'V -automaton. These automata are useful in specifying 

temporal properties of programs such as "infinitely often property P holds" 

(symbolized by 1:1 0 P and represented graphically as shown in Figure 1 ). The 

automaton in Figure 1 is non-deterministic and has two start states (q and q'). 

Legend: 

0 symbolizes a 19CUrrant a1a1o 

e .- is an entry edge with default 
entry condition True. 

Figure 1. 'V -automaton for 1:1 0 P 

The advantage to 'V -automata is that they combine visualization of process behavior with 

reasoning (via entry and transition predicates) about process behavior. Their 

disadvantage is that there is no provision for quantitative reasoning about hard, real­

time constraints on process behavior. 
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2.2 Timed Automata 

Recently there has been an effort to associate the ticks of a real-time clock with the 

events in a process behavior modelled by an automaton [Mer 91, Hen 91, Alu 90, Lav 

90]. Except for a provision for input/output channels between composed automata 

found in [Mer 91], the timed BOchi automata (TBAs) introduced by Alur and Dill are 

closest to the temporal i/o automata introduced in this article. A TBA is defined as a 5-
tuple (~.a, a0 , Clocks, E) with input alphabet~. states a (as in BOchi automata, these 

include recurrent states R ~ a), start states 0 0 ~ a, a finite set of real-valued 

clocks, and a set of transitions E, where E is given by E s;;;; a X ~ X a X 2Ciocks X 

cp (Clocks). A TBA accepts both finite and infinite timed sequence of events (called 

timed traces), which are observable during the run of a process modelled by a TBA. As 

in [Mer91 ], each event in a timed trace is associated with a non-negative real number, 

which is a reading of an external clock at the time of the occurrence of the event in the 

trace. This allows for an unbounded number of environment events (reception of a 

value by another automaton, for example) between any two events of a system modelled 

by a TBA. 
An edge (q, 5, A., b, q') in a TBA represents a transition from state q to q' with 

input symbol 5 (A. gives the clocks to be reset with this transition), and b gives the 

enabling condition. In other words, edges are inscribed with predicates (timing 

constraints and possibly reset(x)). The reset(x) predicate asserts that clock x Is 

reset to zero. Figure 2 gives an example of a TBA. 

a, reset(x) 

y 
b b, X<= 2 

Figure 2. Timed BOchi Automaton referencing external clock x 

The predicate reset(x) asserts that clock x is reset in the transition from q2 to q3. The 

timing constraint x <= 2 asserts that the transition from q3 to q2 can only occur if the 

elapsed time is within 2 ticks of clock x. In effect, TBAs are predicate automata 

resembling property recognizers [Alp 86], where edges are inscribed with transition 

conditions (predicates without references to external clocks). The drawback of TBAs is 
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the lack of data variables as found in the Extended State Machines (ESMs) in Ostroff [Ost 

89] and Real-time Transition Systems (RTSs) in Henzinger et al. [Hen 91 ]. Included 

in the data variables of an ESM, for example, is a rigid clock variable T (this variable 

saves a reading of an external clock and retains its value despite state changes). This 

eliminates the need for the reset(x) predicate, which must be part of a transition 

whenever an external clock is reset. The use of a clock variable rather than the 

reset(x) predicate, provides a more abstract specification of process behavior, because 

the role of T is hidden in a specification. The end result is a simpler specification of 

timing constraints, which are easier to implement in a programming language. 

3 Temporal 1/0 Automata 

To model the timed-behavior of communicating processes in real-time systems, 

we introduce a class of predicate automata called Temporal 1/0 Automata (TAite). The 

timed actions associated with a state are specified with state predicates; arcs of TAilos 

are inscribed with enabling conditions for transitions. These are communicating 

automata. When TAifoS are composed, message-passing between the automata is made 

possible by the presence of hidden input/output channels. Each TAite has input/output 

channel variables used in sending and receiving messages over i/o channels. 

Input/output automata (AiteS) were introduced by Lynch and Tuttle [Lyn 88], and 

extended to include timing constraints by Merritt et al. [Mer 91 ]. The language 

accepted by a TAite is the set of the timed behaviors of an agent. Acceptance of the 

behaviors of an agent by a TAite ensures that each sequence of events in an agent 

behavior satisfies a property specified by the automaton. A TAite is defined as follows: 

TAite= (Q, qe. D, P, Clock, N, E) 

where 

Q = { start state qe } U { recurrent states } U { other states } 

D = {I (input channel variable ), 0 (output channel variable ) } 

U { state variables: time, ... } U { rigid variables: T, ... } 

P = set of first order predicates 

Clock = external clock 
N = set of state predicates, where N c Q x P x <I> (Clock) x I x 0 

E = set of enabling conditions, where E c Q x P x Q 
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A state predicate prescribes a (possibly timed) action associated with an automaton 

state. As in [Lyn 88, Mer 91, Pet 90a], there are four types of actions which can be 

predicated of a state of an automaton A; these actions are described informally as follows: 

int(A) = local action. 

out(A) = action A writes a value to an output channel. 

in(A) action A reads a value from an input channel. 

io(A) = action A reads a value from an input channel, and writes a value 

to an output channel. 

In keeping with Ostroffs analysis [Ost 89], a distinction is made between actions and 

events. Actions lead to events and each event leads to the transformation of a state to a 

new state. Let int, in, out, io be the names of actions; E, the name of an event; Q, a set of 

T A ito states; and let I and 0 be input and output channels, respectively. The distinction 

between actions and events is defined formally as follows: 

Actions 

int: Q ---+ E 

in : Q x I ---+ E 

out:Q x 0 ---+ E 

io :QxlxO---+ E 

Events 

E: Q X I X 0 ---+ Q 

Examples of events are timeout (maps a state to a new state when an action times out), 

reception of a message msg from a sources (written as s?msg in CSP), sending a msg to 

a destination d (written as dlmsg in CSP), the tick of an external clock, and so on. For 

implementation reasons, it is assumed that communication between TAifoS is 

synchronous. Further, unlike synchronous communication in CSP [Hoa85], TAitoS 

are unable to block inputs from other automata. An untimed io action terminates when a 

synchronization concludes. A system of communicating automata is formed by what is 

known as a composition. The result of a composition of TAiJoS is a collection of 

communicating automata, which specifies the behavior of a system of communicating 
agents. Let Ai, Aj be TAi!oS and let Ai II A; represent the composition of Ai and Aj. where 
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Ai = ((Q, q0 , 0, P, Clock, N, E) and Aj = (Q', q0 •, D', P', Clock', N', E') 

Then composition of Ai and A; is defined as follows: 

Ai II Aj = (Q U 0' U O_g, q0 , q0 ', q_g, 0 U 0' U G, P U P' U Pg, {Clock, Clock', Clockg}, 

N" N'" N_g, E" E'" Eg) 

where 

G = {sys. state variables: time1, ... } U {sys. rigid variables: T_g, ... } 

Og s;;;; G x Oi x 0; (system states) 

qg = system start state (present with tightly coupled T Ai/oS) 

P _g = set of system predicates 

Clockg = guardian clock process (gives the system time 

& acts as a synchronizer of local clocks ) 
Ng ~ G x Pg x Oi x 0; (set of system state predicates) 

Eg ~ G X p g X E X E' 

(set of enabling conditions for transitions between system states) 

The set of system predicates is similar to proof expressions in [Con 89]. In some very 

real sense, the predicates on the nodes and arcs of either an individual T Ailo or on the 

nodes and arcs of a composition of TAi!oS are part of a deduction about a behavior of a 

program. Their presence makes the proof of correctness of program behavior feasible 

and makes possible the extraction of the program which they prescribe. A visualization 

of a composition of automata is given in Figure 3. The notation in Figure 3 is explained 

as follows: 

= (G, q1, q2, q3, ... , qJ3, ... , qm) 

Q4» i : p(i) = system state predicate 

--seq of T Ai/o A« states 

(oc is a TAi!o index). 

--system path for m T AifoS 

( ct> "phi" is a system path 

index). 

--i th system state 

--annotates ith system state 
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e(i) .. represents an enabling condition for a system state transition. 

0 41 . 
. 1 : p(l-1) 
1-

.. 

0 41 : p(i+1) 
i+1 

41w~~:------------
Q system states 

automata state paths 

CIC 
q 

• 
• 
• 

Figure 3. Abstract View of Composition of Automata 

9 

In a composition of automata, a guardian Clockg is present; it gives the system time, and 

guarantees that local clocks are synchronized with Clockg. The actual synchronization of 

the local clocks in the composition is hidden, and is not part of the specification provided 
by Ai II Aj. Synchronization of local clocks with respect to the global clock becomes a 

chief concern whenever a system state has a timing constraint. The set G is a set of 

global data variables containing rigid variables such as T g (to store a reading of Clockg), 

and state variables such as timeg (captures the value of Clockg in the current state). 
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3.1 Clock Variable and Timed Behaviors 

Timing constraints of a TAi/o reference ticks of an external clock (denoted by 

variable Clock). The rigid variable T records the Clock value, and retains its value 

across state changes of a TAi/o· We assume that the value ofT can be changed when 

needed (this is analogous to resetting the clock in a TBA [Aiu91 ]). The flexible 

variable time gives the value of Clock in the current state. Clock readings are non­

negative, real numbers. Each time an event occurs, a reading of Clock is associated 

with that event. That is, each event e is a conceptualized as a pair (e, time). As a 

result, a timed sequence of events f3 in the behavior of an agent modelled by a TAi/o has a 

trace of the form: 

f3 = (e0 , time0 ), (e1, time1 ), ... (ei, timei), ... 

Let R+ denote the non-negative reals; Nats, the natural numbers 0, 1, .... In addition, 

let timei. timej belong to f3. Then, as in [Aiu 91, Pet 90a], a timed trace f3 has the 

following properties: 

Zero-time in start state: time0 = 0 in (eo, time0 ) 

Strict Monotonicity: 'V i, j E Nats: timei < timej for i < j 

Unboundedness: 'V time E R+, 3 i E Nats: time < timei 

3.2 Semantics of Delay 

Responsiveness of a system is measured in terms of actual values of delays. The 

duration predicate delay(k) asserts that the external clock is allowed to run for k ticks 

before a timeout occurs. Delay(k) can be used to specify a lower bound on the number 

of ticks before an action is performed; delay(k) can also be used to specify an upper 

bound on the duration of an action. In other words, we can use delay(k) to express the 

fact that an action is enabled after a particular time (lower bound) or than an action is 

performed within a specified time limit (upper bound). 
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3.2.1 Lower Time Bound 

We can express a lower bound on the number of ticks before a system action 

begins. If we let ACT be the action to be performed in state q. We can express the fact 

that we let the external clock run for k ticks before performing ACT by writing 

informally "delay(k) before ACT." To see this, let T record the time in state q. 

Assume action ACT is performed in state q. Written by itself, "ACT" is shorthand for 

the assertion "the action ACT is performed." Let sat(q 1 (q'), P) mean that predicate P 

is satisfied in state q of the state sequence (q, q'), and sat(q', Q) mean that predicate Q is 

satisfied in state q'. The double turnstile I= reads "forces" or "satisfies." Then 

satisfaction of "delay(k) before ACT" over a state sequence (q, q') is expressed in Prolog 

form as follows: 

sat(q 1 (q'), delay(k) before ACT) 

q I= delay(k) and T <= time < T + k, 

q' I= ACT and time = T + k. 

This says that the duration predicate is satisfied in state q and k ticks later the predicate 

ACT is satisfied in state q' . The idea of using delay(k) to specify a lower bound on 

when an action can be performed, is expressed graphically in Figure 4. 

delay(k) ACT 

~----••~(!)r----•--~ 
ti~<~: :jo•T+k 

---;1---tr-an-s-iti-on--~~~------------tim-e---ax~i~.­
occurs at 

L kth tic,...k __ _,.) 
y 

Figure 4. Lower bound on when a system action begins. 
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3.2.2 Upper Bound on a System Action 

We can also express an upper bound on the number of ticks during a system action 

using delay(k). This is expressed rather simply by writing "ACT; delay(k}," which 

asserts that ACT cannot be continuously enabled for more than k ticks of the external 

clock. The predicate timeout (see Figure 5) is an enabling condition, which evaluates 

to true at the kth tick of the clock (i.e., an action which must be performed within k 

ticks times out, and a transition to the next state occurs). The meaning of this upper 

bound constraint can be explained concisely by using the satisfaction clause sat(q, P). 

Then the upper bound timing constraint can be defined as follows: 

sat(q, ACT; delay(k)) q I= ACT, 

q I= time< T + k; /* reads "or" *I 

q I= time = T + k and timeout. 

A graphical interpretation of the upper bound constraint on the duration of a system 

action is given in Figure 5. 

ACT; 
delay(k) 't 

~timeou~0 ~ 

time= T + k 

lime<~: :; 

----+-1 -+---t-~ ... transition time-axis 
occurs at 

L kth tick 
y 

) 

Figure 5. Upper bound on the duration of a system action. 
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4. Timed-Behavior Expressed with Temporal Logic 

The behavior of a real-time system can be specified with Real-Time Temporal 

Logic (RTTL) given in [Ost 89, Har 90, Hen 91]. When temporal logic is applied to 

the study of processes, the formulas of temporal logic are interpreted as predicates over 

sequences of process states [Alp 86]. Each state occurs at some instant in time in which 

the values of process variables can be inspected. During a succession of states, changing 

values of state variables may entail changing truth values of predicates about state 

variables. Hence, it is appropriate to use some form of temporal logic to describe 

process behavior. Temporal logic allows the specification of a temporal ordering of 

actions of a system agent. Temporal formulas can be used to enumerate state transitions 

(transformations of one state into a new state) in a behavior as well as the order in 

which transitions are made. 

RTTL provides a concise means of prescribing a property of a behavior represented 

by a temporal 1/0 automaton; such prescriptions are assertional. This form of temporal 

logic is essentially the same as the original temporal logic introduced by Manna and 

Pnueli [Man 81, Man 83] with the addition of data variables such as T (for timing 

constraints) suggested by [Hen 90, Har 90]. Except for some additional derived 

temporal operators taken from [Pet 90a], the temporal logic used in this article is the 

same as RTTL. For simplicity, we limit the presentation of RTTL to a discussion of the 

U (until) and temporal operators derived from U. We also introduce the derived 

temporal operators before, Ow (infinitely often), and seq(p1, P2· P3····· Pn) (a 

temporally quantified sequence of state predicates where P1 holds before P2· which holds 

before p3, ... , before Pn). 

For the subset of RTTL (named Tlrt) we have chosen, the temporal language Tlrt 

is defined as follows: 

Alphabet 

• A denumerable set of variables: x, y, ... 

• A denumerable set of n-ary functions: f, g, ... 

• A denumerable set of n-ary predicate symbols: p, q, ... 
• symbols .., , or, \:1, (, ), U 

Well-formed formulas of Tlrt have the following syntax: 

• Every atomic formula is a formula. 
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• If x is a variable and A is formula, then "'\/ x A is a formula. 

• If A and B are formulas, then ..., A, (A or B), (A U B) 

are formulas. 

Semantics of Temporal Operators. The ..., (not), or, and "'\/ (all) symbols 

have the usual semantics. In addition, the implication symbol ====+ (i.e., p ====+ q = ..., p 

or q) is used. In defining the following semantics, the notation 

(qo, ... ,qx) I= p for x >= 0 

asserts that each of the states in the sequence (q0 , ... ,qx) satisfy predicate p. In what 

follows, let q0 represent the current state in a behavior. Let p, q be first-order 

predicates. The semantics of U as well as the operators derived from U are as follows: 

pUq 

p before q 

<>p 
qk I= seq(p) 

seq(P1, (seq(p2, ... ,pn))) 

()W p 

= 3 k, x: 0 <= x <= k: (qo, ... ,qx) I= p and qk I= q 

= 3 k: 1 <= k: q0 I= p and (q1, ... ,qk) I= p U q 

=true Up 

= qk I= p 

= p1 before seq(p2, (seq(ps, ... ,pn)) 

= seq( p, ow p ) 

The predicate 'p U q' asserts that the predicate q eventually holds (either in the current 

or in some future state) and that the predicate p holds in the current state and in each of 

the states until the state when q holds. By contrast, 'p before q' asserts that p is 

guaranteed to hold initially and sometime later q will hold. For this reason, before is 

called a precedence operator [KrO 85]. These powerful temporal operators provide the 

basis for the semantics of the remaining operators in the above list. 

Notation. Let ACT be the name of an action associated with a state q in a TAi!o· Let 

x> represent a parameter x (of Xtype) whose value is to be written to an output 

channel. Let Y< be a parameter y (of Ytype) whose value is to be read from an input 

channel. Then the predicate 

ACT(x> : Xtype, Y< : Ytype) asserts action ACT writes x to an output channel, 
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and reads y from an input channel. 

In the case where ACT is parameterless, we write ACTio· 

The temporal assertion 0 p says there will be some state either now or in the future in 

which the predicate p evaluates to true. For example, let process be the name of an 

internal action for an agent which receives values for x< , e < as input, and computes 

values for x•>, and e•>, as output. Then 

asserts that eventually the observed values of e and x will be processed to obtain the 

predicted values of e· and x'. Notice that for a named action ACT, if we write 0 ACT, 

this is a shorthand way of writing "eventually perform ACT." 

4 . 1 Temporal Semigroups 

It is possible to define a semigroup relative to the before temporal operator. This 

will allow us to express assertions with seq more concisely. In conventional terms, a 

semigroup is defined as follows. 

Definition 4.1. Let T be a non-empty set, and let ex be an operation on T. A 

semigroup is a pair ( T, ex ) such that for all x, y, z in T, the operation ex 

is associative, i.e., x ex (y ex z) = (x ex y) ex z. 

The temporal operators in TLrt belong to what is known as the future fragment. That is, 

temporal predicates written with TLrt always refer either to the present state or some 

future state. Due to the semantics of before and until, parenthesizing a precedence- or 

an until-assertion does not change the temporal evaluation of the formula. As a result, 

parentheses only provide syntactic sugar (making some formulas easier to read). In 

this restrictive sense, we can define a temporal semigroup as follows. 

Definition 4.2 Let P be a set of predicates and let 1: be a temporal operator. 

A temporal semigroup is a pair ( P, 1: ) such that for all x, y, z in T, the 

operation 1: is associative, i.e., x 1: (y 1: z) = (x 1: y) 1: z. 
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In the case where (P, 1:) Is a temporal semlgroup, then we can remove the parentheses 

and write the expression x 't y 't z. For example, we can write x before y before z as a 

result of Proposition 4.1. 

Proposition 4.1 Let P a set of predicates. Then ( P, before ) is a temporal 

semigroup. 

Proof: Let P1, P2· P3 be predicates in P, and let term = (P2 before p3). Further 

assume q0 , ... , qx .... , qk are states with 0 <= x <= k over which we evaluate 

predicates P1, P2· and P3· Then 

0 P1 before (P2 before P3) assumed 

1 P1 before term by def. 

2 3 k: 1 <= k: qo P= P1 and (q1 , ... ,qk) P= P1 U term by def. of before 

3 qo, ... ,qx P= P1 and (qX+1 , ... ,qy .... ,qk) P= term, x >= 0 fr 2, WLOG 

4 (qX+1 , ... ,qy .... ,qk) P= P2 before P3 fr 3, def. term 

5 qx+1 P= P2 and (qX+2, ... ,qy .... ,qk) P= P2 U P3 fr 4, def. before 

6 qX+1 .... ,qy P= P2 and (qy+l, ... ,qk) P= p3 fr 5, WLOG 

7 (P1 before P2) before P3 fr 3, 6 

I 

Since the seq operator is defined in terms of before, predicates like seq(p1, 

(seq(p2, ... ,pn))) can also be rewritten as seq(seq(p1 , ... ,pn-1 ), Pn). That is, this is 

another way of writing P1 before (seq(p2 .... , Pn)). By continuing this expansion of 

the seq formula, the seq operator is eliminated as in 

P1 before (seq(p2 .... , Pn)) 

= P1 before (P2 before (seq(p3, ... ,pn))) ... 

= P1 before (P2 before (P3 before ( ... (Pn-2 before (Pn-1 before Pn) ... ) 

By repeated application of Prop. 4.1, we can rewrite this assertion as 

(( ... (p1 before P2) before P3) before p4) ... )before Pn 

This gives us the following result. 
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Proposition 4.2 ( P, seq ) is a temporal semigroup. 

Propositions 4.1 and 4.2 allow us to simplify the specification of a temporally ordered 

sequences of predicates. This is reflected in the next proposition. 

Proposition 4.3 Let P1, P2· ... , Pn be predicates. Then seq(p1, (seq(p2, ... , Pn))) 

can be written as seq(p1 , P2· ... , Pn). 

Proof: Immediate from Propositions 4.1 and 4.2. 

Next, we investigate the use of TLrt in specifying the necessary conditions for a 

transformation of a particular state into a new state. 

4 . 2 Transductions and Transduction Rules 

Transduction rules pinpoint the basis for transitions between states in the 

observed behavior of a system. They are useful in formulating timing as well as other 

consistency constraints imposed on system behavior. In the design of a real-time 

system, we are interested in formulating state-transformational control rules to 

guarantee consistency in a system behavior. Rather than speak in terms of entire state 

sequences in a timed-behavior (the macro view), transduction rules provide a refined 

granularity in the prescription of transitions between states within a behavior (the 

micro view). A transduction rule is a satisfaction rule that specifies under what 

conditions a transformation from one state to another should be made. Let econd be an 

enabling condition for the transition between states q and q'. Further, let Trq,q' be a 

transduction rule with respect to states q and q' with state predicates P;delay(k) and P', 

respectively. Trq,q' is defined as follows: 

Trq,q' sat(q I (q'), P; delay(k) and econd) 

A transduction defines the transformation of state q into state q' in terms of state 

predicates P and P', duration of state activity (delay(k)), and possible input from and 

output to 1/0 channels by the operation specified by the state predicate. A transduction 

Tdq,q' is defined as follows: 



Constructing Real-Time Systems 1 8 

Tdq,q' = seq(P; delay(k), P') 

A transduction Tdq,q' = seq(P; delay(k), P') asserts that "predicate P is satisfied in 

state q before predicate P' is satisfied in state q'". On the one hand, a transduction rule 

is a first-order predicate, which specifies under what conditions a transduction (i.e., 

transformation of a state into a new state) is made. On the other hand, a transduction 

Tdq,q' is a temporal ordering of state predicates with a tacit ordering of events. In 

the case where a TAi!o is deterministic, there is a strict relationship between Trq,q•s 

and Tdq,q' s. 

4.3 Temporally Complete 1/0 Automata 

It is important for control engineers designing a real-time system to know under 

what conditions the behavior of a system is predictable. For this reason, the 

completeness of a temporal 1/0 automaton with respect to timing constraints is of 

interest. In terms of timed behavior, there is a need to know that the responsiveness 

of a system to input from the environment is within some maximum time (referred to as 

MAXT in [Pus 90]). 

Definition 4.3 A temporal 1/0 automaton is complete if 

i) every state has a timing constraint (a lower bound as explained 

earlier and a finite upper bound specified by delay(k)). 

ii) for every state q, there is a transduction rule Trq,q' which is valid. 

Let cT Aito be a temporally complete 110 automaton with arbitrary state q annotated with 

predicate P. By definition, q has a timing constraint. WLOG, assume that P is of the 

form ACT; delay(k). If the action specified by ACT times out in k ticks of the clock, 

then by definition (4.3 (ii)) there must be a transition from q to some state q' which is 

enabled as a result of the timeout. That is, there must be a transduction rule in cTAi!o 

of the form sat(q I (q'), ACT; delay and timeout). As a result, we have the following 

propositions. 

Proposition 4.4. Every state in a temporally complete 1/0 automaton has an 

exit edge which is inscribed with a timeout enabling condition. 
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Proposition 4.5 Associated with every state q in a temporally complete 1/0 

automaton, there is a transduction rule of the form sat(q 1 (q'), ACT; delay(k) 

and timeout). 

1 9 

The completion of a timed action ACT in a state q means that either ACT is performed 

within a specified time or there is a timeout. A timed i/o action completes either when 

it terminates or times out. The completion of a timed action does not preclude a timeout. 

That is, 

Definition 4.4 The completion of a timed action ACT in a state q means that 

sat(q, ACT; delay(k)) holds (i.e., a transition from state q to q' occurs). 

By definition, a timed action specified by a node predicate leads to an event. Every event 

induces a transition to a new state in cTAifo, either as a result of a timeout or because 

the specified action has completed within a specified number of ticks of the external 

clock. This proves 

Proposition 4.6 Given the assertion ACT; delay(k) on node q in cTAito· The 

completion of a timed action implies Tdq, q'. That is, a transition from state q 

to q' occurs. 

4.4 Deterministic, Temporal 1/0 Automata 

A TAi!o is deterministic if mutual exclusion among transduction rules holds. This idea is 

stated formally in Def. 4.5. 

Definition 4.5 Let q, q', q" be states in a TAito and let e1 , ... ,e;, ... ,ej, ... ,en the 

enabling condition on transitions leading from q to other states. Let Trq,q' and 
Tr q,q" be transduction rules for enabling conditions e; and ej for 1 <= i, j <= n, 

where i <> j, respectively. The transduction rules are mutually exclusive if 
.., (Trq,q' and Trq,q" ) holds. 

In the case where a temporally complete automaton is deterministic, we can state the 

relationship between transduction rules and transductions formally as follows: 
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Proposition 4.7. Let sat{q 1 {q'), P; delay{k) and econd) be the transduction 

rule for a transformation of state q to q' and let P' be the state predicate which 

labels the node q' of a deterministic cTAito· Then 

sat{q I (q'), P; delay(k) and econd) +=+ Tdq,q' {seq(P; delay(k), P')) 

specifies the transduction from q to q'. 

Proof (by construction). 
( ==+ ) Let sat{q 1 {q'), P; delay{k) and econd) be a transduction rule which is 

satisfied in state q. Assume "P; delay{k)" labels state q and P' is the state 

predicate which labels q'. By definition of a transduction rule, "P; delay{k) 

and econd " holds in state q. Hence, the transformation from state q to q' can be 

made. This is another way of saying the node predicate "P; delay{k)" will be 

satisfied in state q within the time imposed by the timing constraint specified by 

delay(k). This also says the enabling condition econd also holds, which enables 

the transition from q to q'. In addition, since P' is the state predicate which 

labels q', by definition P' must be satisfied in state q'. That is, a predicate 

which labels a state is satisfied in that state. Since TAi!o is deterministic, the 

mutual exclusion property holds. In addition, since TAite is temporally 

complete, we know by Prop. 4.6 that Tdq,q' (seq(P; delay{k), P') holds. 
(+==) Immediate from the definition of seq(P; delay(k), P'). 

I 

4 . 5 Predictability of Temporal 110 Automata. 

20 

The importance of temporally complete automata becomes apparent in the investigation 

of quantitative measures of predictability. That is, given a cTAi/o. we can compute 

upper bounds (values of MAXT) on the response times of prescribed actions of the 

automaton. In the case where a cTAi!o is deterministic, the computation of MAXT for 

every action in a specified behavior is straightforward. To see this, we introduce the 

following notation. 
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Notation. Let cTAi/o be a temporally complete automaton. Let ai be an action 

specified by the node predicate for state qi of a cTAi/o and a timed action trace a: 

of such an automaton be represented by 

a: = (a0 ;delay(k0 )), (a1 ;delay(k1 )), ... , (ai;delay(ki)), ... ) 

21 

Also, let the maximum response time for the ith action ai be MAXT ai· In the case of a 

deterministic cTAi/o. the following result is easy to prove: 

Proposition 4.8. Every action in a deterministic, temporally complete TAi/o 

is part of a single timed trace. 

To say that an action must be performed with k ticks of an external clock is somewhat 

ambiguous. In the case where an action ACT has a timing constraint given by 

delay(k), ACT times out if it takes k ticks to complete. Otherwise, if ACT does not 

time out, there is an upper bound on the duration of ACT which we call a locai-MAXT 

for ACT to complete without a timeout, namely, k - 1 ticks. Relative to a timed trace 
a:, we introduce the notion of globai-MAXT with respect to the final action in a:. These 

terms are defined as follows: 

Definition 4.6. (locai-MAXT) The upper bound on the normal response time 

for an action ACT with timing constraint delay(k) is k - 1. If ACT takes k 

ticks of the external clock to complete, then it times out. 

Definition 4.7. (globai-MAXT) The maximum time MAXTai is the upper bound 

on the normal response time of T Aile measured from a0 to ai in a timed action 

trace a: (i.e, MAXT is the overall time for normal response). 

A timing constraint delay(k) is considered a locai-MAXT. The maximum time MAXai is 

considered a global maximum time (for an entire timed trace); this is analogous to the 

analysis of MAXT with respect to an entire program given in [Pus 90]. Let "ACT, 

delay(ko)" be the node predicate on the start state for a TAi/o· By the start state axiom, 

we know that the value of the clock variable has an initial value of zero. The completion 
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of ACT occurs within ko - 1 ticks of the external clock (the initial value of the clock is 

counted as 1 tick). This proves 

Proposition 4.9. locai-MAXT ao = k0 -1 for a timed action in the start state. 

This suggests a way to compute the value of MAXT in a cTAi!o· Using mathematical 

induction, we can prove the following for a deterministic cTAito: 

Proposition 4.1 0. In a deterministic cTAito. the maximum response time for 

the ith timed action ai over a timed trace a0 to ai is given by 

globai-MAXT = k0 + k1 + ... + ki- i 

For a nondeterministic cTAito. computation of globai-MAXT is somewhat more difficult, 

since each action can be part of more than one timed trace. If we let sample_MAXT be 

the maximum response time of an action over a timed trace in a nondeterministic cTAi/0 , 

then 

Proposition 4.11. In a non-deterministic cTAi/o. the maximum response time 

for the ith timed action ai over n sample, timed traces from a0 to ai is given by 

globai-MAXT = max( sample_MAXT 0 , ... , sample_MAXT n ) 

where sample_MAXT; is the maximum response time for aj over the jth sample, 

timed trace from ao to a;. 

4.6 Named Temporal 110 Automata 

When automata are composed, it is important to have some means of identifying the 

automata in a composition. In the case where there are a limited number of automata 

(no more than 1 0) to be composed into a system, colors could be used to distinguish 

automata. This becomes important when we are specifying actions representing 

communications between automata. So, for example, an automaton with nodes "painted" 
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yellow would call an automaton with nodes painted green. Then if yellow sends green a 

message (msg), we can write 

yellow: green I msg --yellow T Aito sends msg to green T Aito 

With an arbitrary number of automata in a composition, we need to choose some naming 

scheme (machine id number, for example) to write a specification for communications. 

For this reason, we introduce named TAitoS. A named TAito is tuple ( name, Q, q0 , D, 

P, Clock, N, E), where name is a unique form of identification of the automaton. This 

gives rise to following notation for named automata. 

Notation. Let mac and sun be the names of two TAi!oS which have been 

composed and let ACT be an action belonging to sun which mac calls, then 

we write mac: sun.ACT. The prefix mac identifies mac as the caller. In 

the event that mac "sends" sun a value using x> and receives a value y <• we 

write 

mac: sun.ACT( x>, y < ) --mac calls ACT in sun 

When it is clear from the context who the caller is in a communication, we adopt the CSP 

convention and drop the caller-prefix. We illustrate these ideas with a specification 

of a real-time system. 

5. Specification of a Light-Controlled Vehicle 

In this section, we utilize TLrt and named TAitos to specify a control system for an 

autonomous vehicle which relies on what is known as reactive navigation to gain access 

to light-controlled intersections [Ark 90). Reactive navigation is a form of robot 

control which consists of a stimulus-response relationship with the external world. 

The controller for the autonomous vehicle in Figure 6 consists of two parts: a reactive 

navigation unit for a Light-Controlled Vehicle (LCV) and a guard unit (traffic light­

controller) for intersections used by LCVs. 
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1/0 channels 
light control unit 

node2 

deviation angle 
navigation control 

node1 visual feedback 

ctrl 

plant= LCV 

video camera 

' ' ' ' ' ' '' ' ' ' ' ' ' 
' ' ' ', 

' ' 

lights embedded in 
trackingline followed by LCV 

LCV(top 
view) 

Figure 6. Light-Controlled Vehicle 

trackingline 

For simplicity, the LCV in Figure 6 is modelled as an enhanced form of the mobile robot 

described in [Mar 90]. The LCV will use its camera to detect lights embedded in the 

path marked by the tracking tape. In addition to responding to observed deviation 

angles and x-distances, the LCV will also respond to traffic lights when they are detected 

in the sequence of images from its camera. The nodes in Figure 6 represent loosely 

coupled computers which communicate via a local area network. 

real-time system in Figure 6 consists of the following components: 

controller= LCV navigation control II Trafficlight control unit 

plant = LCV mobile unit II Trafficlights 

r t s = controller II plant 

In summary, the 
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5.1 Description of LCV Controller Behavior. 

The LCV processes camera images which include traffic lights. The AV 

(autonomous vehicle) in Figure 6 is a mobile robot which relies on visual images 

captured by an on-board video camera to steer the AV along a tracking tape. In the 

discussion that follows, we have made some simplifying assumptions about the dynamics 

of the robot in Figure 6 to make the modelling of the behavior of this control system 

more concise. We assume that the tracking tape is over a perfectly flat terrain, the 

universe of the robot is limited to following the tracking tape which crosses light­

controlled intersections, and we consider only three control variables: deviation angle 
a, distance x, and image (used to detect traffic lights). The camera images are processed 

by a computer to obtain any necessary adjustments in terms of two directional control 

variables: the deviation angle a of the wheels and an x-distance of the AV plant relative 

to the tracking line in Figure 6. The deviation angle a is used to change the direction of 

the AV so that it travels in parallel with the tracking line. The AV controller also 

determines an x-distance (the distance between the AV's longitudinal axis and the center 

of the tracking line). The x-distance in Figure 6 is used to guide the AV back onto the 

tracking line. 

The navigation unit in Figure 6 also analyzes feedback from the video camera to 

detect intersection lights. In the temporal specification in Figure 7, the action 

process( X< : real; a< : real; image<: imagetype), 

specifies the processing of the images by the LCV navigation unit. The image parameter 

affects the behavior of the LCV if either a green or red light is detected. A light­

controlled intersection is a shared resource (only robots going in the same direction can 

cross the intersection). If an LCV "sees" green, it stops rolling and its navigation unit 

(node 1) transmits a request to the light controller to enter the intersection. Once the 

LCV acquires permission from the light controller (node 2) to continue, it rolls through 

the intersection. On the other hand, if an LCV sees red, it also stops rolling and 

requests a green light. Once the light changes to green, the LCV must still request 

permission to enter the intersection. The behavior of the guard unit software running 

on node2 of Figure 6, consists of synchronizing the directional lights infinitely often 

and either responding to a request for access to the intersection or responding to a robot 

which wants a red light changed to green. In the context of the real-time system in 
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Figure 6, the processes running on nodes 1 and 2 are called agents, which can be 

concisely specified with real-time temporal logic. 

5.2 Temporal Specification of Controller Behavior. 

We make some simplifying assumptions to reduce the complexity of the temporal 

specification of the behavior of the control system. First, by treating light-controlled 

intersections as "critical sections" (only one LCV at a time traverses an intersection), 

we have eliminated the need for a yellow (warning) light. Second, only a pair of robots 

traveling in opposite directions compete for access to light controlled intersections. 

Third, a robot which receives permission to enter an intersection always clears the 

intersection before the light controller changes the lights. The specification of the 

behavior of the navigation and guard units of the LCV is given in Figure 7. 

--navigation unit of mobile robot: 

Ow seq(delay(5), --time to align camera 

process(x( : integer; e ( : real; image(: imagetype); delay(1 0), 

update(x> : integer; e> : real; signal< : signaltype); delay(k), 

timeout ~ correct( ); delay(50), 

SeeLight(image) ==* 
seq( "'C; delay(1 0), --internal action 

SeeGreen(image) =+ seq(guard.requesti0 ; delay(15), 
roll; delay(30)) 

or 

...,SeeGreen(image) =+ guard.changelightsj0 ; delay(30))) 

--Light control guard: 

ow seq(delay(7), --time to synchronize lights 
requesti0 ; delay(1 0), 

or lsCiear ==* changelightSio: delay(1 0)) 

Figure 7. Temporal Specification of Controller for Mobile Robot 
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5.3 Modelling the LCV Controller with TAi/oS 

The behaviors of the navigation unit and guard can be modelled as T Avos as shown 

in Figure 8. The navigation unit in Figure 8 is deterministic but not temporally 

complete, since no timeout transitions are specified, except for the update action on state 

q2. The guard automaton in Figure 8 is also not temporally complete, since no timeout 

transitions are specified. The guard is non-deterministic, since a transition to either 

q2' or q1' from q0 ' is always possible. Arcs without inscriptions are assumed to have 

enabling conditions which are true. 

navigation TAllo: 

guard TAllo: 

channel 
delay(7) 

~ 
Legend: -~ symbolizes a recurrent state, which is also a start state. 

Figure 8. LCV Modelled with T Au0 s 
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5.4 Tabular Representation of Timed Behavior 

Automata can be conveniently represented in tabular form. To analyze the 

timed-behavior of the TAilos in Figure 8, we construct table 5.1 for the guard 

automaton. Since there is only one timed trace containing the request action, the 

determination of the globai-MAXT is just the sum of the upper bounds (6 and 9) for the 

actions on nodes 0 and 1. 

navigation unit in Table 5.1. 

For simplicity, we ignore the timing constraints of the 

Table 5.1 Timed Behavior for LCV guard automaton 

states timing constraint lb up locai-MAXT globai-MAXT 

qo' q1' qo': delay(?) 0 6 6 6 

qo' q2' qo': delay(7) 0 6 6 6 

q1' qO' q1 ': request; 6 9 9 15 

delay(10) 

q2' qo' q2':changelights; 6 14 14 20 

delay(15) 

5.5 Tabular Representation of Transductions 

The tabular representation of transductions for an automaton is useful because it 

facilitates correctness proofs about the specification and construction of the specified 

program. To prepare a TAi!o for a proof of its correctness, and to establish the 

relationship between TAi/o predicates, we introduce a partial list of proof expressions 

(Part A) similar to those found in [Con 89] and attributes (Part B) of state predicates: 

Table 5.2 Annotations on TAi/o Nodes 

A. Proof Expressions. 

Let Trq,q'. Tdq,q' be transduction and transduction rule, respectively; 

let p, q be predicates. 
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or(p, q) --p or q 
orin(p, q) --or introduction 
impel(p, q) --implication elimination 
def(p, q) --q follows from definition of p 

--and introduction 
--ACTio completes 

andin(p, q) 
completes(ACT io) 
atmostone(ACTio) 
mutex(timed trace) 

--at most one i/o action completes 
--timed trace guarantees mutually exclusive 
access to a shared resource. 

B. Attributes of state predicates and conditions. 

recurrent state predicate: [ loop ] 
transition to R state: [ end loop] 
branching node: [or ] 
separator: [ ; ] 
guard on acceptance of a call: [ when ec => ] 
i/o node predicate p: [ accept p] 
p; delay(k): [ p or delay(k) ] 

begin sequence: [ seq ] 
end seq: [ qes] 
impl cond: [ if ] 
end if: [ fi ] 
select call: [ select ] 
end select: [ end select ] 
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The proof expressions facilitate proofs of automaton properties (e.g., mutual exclusion 

for an intersection guarded over by the "seeing eye" traffic light system hardware 

controlled by the guard program--only one mobile robot can be in the intersection any 

one time). The program specified by a TAito is extracted while proving that an 

automaton satisfies required properties. To extract the program specified by a TAi!o. the 

meaning of each predicate is defined with an attribute representing a fragment of 

program code. Every node in Figure 9 has three types of predicates (proof 

expressions, state predicate, and attributes). The proof expressions used in Figure 9 

are listed in Table 5.2A. For example, node q0 in Figure 9 is annotated with 

impel(delay(7), or( Trqo' ,q1', Trqo' ,q2' )), which is an application of implication 

elimination relative to delay(7) and the transduction rules evaluated in state q0 . The 

state predicate on node qo is also attributed with [ loop J delay(?) [ select ]. To 

maintain the generality of the specification, the attributes of each part of a specification 

belong to an abstract programming language. The attributes of TAu0 predicates should 

be thought of as annotations ( they are normally hidden, and added during the later stages 

of modelling ). An annotated version of the guard in Figure 8 is given in Figure 9. 
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impel(delay(?), 
or(Trqo',q1', 

Trqo', q2')) 

Table 5.3 

state node 

0 delay(7) 

1 request; 
delay(10) 

2 change!-.. 
lights; 
delay(15) 

-.timeout 

proof expression: 

state predicate: 

attribute: 

impel(request and -.timeout, Trq1',qo') 

request; delay(10) 
[ when lsCieargr => 

accept request; 
or 
delay(10); 

impel(changelights and -.timeout, Trq2',qo') 

Jtangellghts;delay(15) 

when JsC/earred => 
accept changelights; 
or 11 delay(15); 

Figure 9. Annotated, Temporally Complete TAilo 

Automaton with Proof Expressions & Attributes 

Transductions Tr Rules Proof Express. Attributes 

Tdqo',q1'( seq( Trqo',q1': impel(delay(7), loop 
delay(7), sat(O, or(Trqo',q1', delay(7); 
request; ... ) delay(7)) Trqo,q2)) select 

Tdq1',qo' (seq( Trq1',qo': impel(request, when lsCieargr=> 
request; sat(1, Trq1', qo') accept request; 
delay(10), request. .. ) or 
delay(7)) delay(10); 

Tdq2', qo'( seq( Trq2',qo': impel(change ... , when lsCiearred=> 
change lights; sat(2, Trq2',qo') accept 
delay(15), change ... & changelights; 
delay(7)) lsCiearred) or 

delay(15); 

30 
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We illustrate a correctness proof of an automaton specification in terms of the guard in 

Figure 9. We have minimized the states in this machine for the sake of illustration (a 

more elaborate machine would used in the general case). We will assume that this 

automaton has been made temporally complete (making sure that each state, except for 

the start state, has a timeout transition). In addition, we replace the inscriptions on 

the edges (in Fig. 8) with enabling conditions which are mutually exclusive for the 

case being considered: 

replace q0 •,q1 •: T with Qo',Q1 •: lsCieargr 

replace Qo',Q2': lsCiear with Qo',Q2': lsCiearred 
replace Q1 •,q0 •: T with Q1 •,qo•:..,timeout 

replace Q2•,q0 •: T with Q2',Qo•:..,timeout 

--green direction is clear 

--red direction is clear 

As an aid to implementation of a fully attributed TAif0 , we store the parts of the 

automaton in Table 5.3. The information in Table 5.3 also provides the basis for both 

proofs of automaton properties and program derivation. Arrival at a node provides 

evidence that the attributes of the node predicate belong to a correct specification (up to 

that point). In other words, proving an automaton property con.structs a program. 

6 Correctness Issues 

There are three types of constraints that can be imposed on the behavior specified 

by a TAi!o· On the state transition level, the conjunction of an enabling condition and 

node predicate serves as a constraint on a state change. This form of constraint is 

expressed by a transduction rule. An understanding of the remaining two types of 

constraints hinges on making a distinction between what we call "atomic automata" and 

"molecular automata." An atomic automaton (aTAi!o) consists of nodes without 

underlying channels connecting them. A molecular automaton (mTAi!o) has at least 

one pair of nodes connected by an underlying i/o channel; an mTAi!o is the result of a 

composition. On the atomic automaton level, a constraint is some property such as 

predictability, temporal completeness, determinism, mutual exclusion and so on, which 

the aTAi!o satisfies. On the molecular automaton level (a system of automata), a 

constraint can be placed on the interaction between atoms in the mTAi!o· Examples of 

system properties are precedence (ordering of communications) and safety (nothing bad 

happens). 
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The proof of correctness of constraints on the state transition level has been 

developed for the specification of a knowledge-based, real-time system [Ram 91 ]. On 

this level, the concern is that state changes satisfy the consistency constraints to 

preserve the integrity of the information within a system. The proof of correctness of 

a state change is a deduction which is made with the help of a knowledge base. The proof 

of the correctness of an atomic automaton specification (i.e., demonstrating that the 

specification satisfies some property) is performed with the help of the information 

contained in proof-expression table given in Table 5.2A (we illustrate this idea below). 

A technique for proving that the specification provided by a molecular automaton 

satisfies system properties has been given in [Pet 90a, Pet 90b]. For simplicity, we 

only treat the case where the intersection is clear in the red direction, and a robot is 

waiting for the guard to change the lights. For this case, we show In Figure 10 the 

extraction of a partial abstract program from a constructive proof (for readability, we 

have omitted the single quotes on the states in Figure 9). 

Constructive Proof 

1 q0 I= delay(?) 

2 qo I= lsCiearred, q0 I= ...,lsCieargr 

3 q0 I= impel(delay(7), 
or(Trqo,q1 ,Trqo,q2)) 

4 or(Trqo,q1 ,Trqo,q2)) 
5 not Trqo,q1 

6 or(Trqo,q1 ,Trqo,q2)) and ...,Trqo,q1 
7 Trqo,q2 = sat(qo, delay(?) 

and lsCiearred) 
8 Tdqo,q2 = seq(qo, delay(?), 

changelights;a ... ) 
9 q2 t= changelights;0 ; delay(15) 
1 0 completes(changelights;0 ) 

1 1 q2 I= ...,timeout 
1 2 impel(changelights;0 

1 3 Trq2,qo 
1 4 Tdq2,qo 

and ...,timeout ,Trq2,qo) 

1 5 q0 I= delay(?) 
1 6 qo,q2,qo I= atmostone(changelights;0 ) 

1 7 mutex(Tdqo,q2. Tdq2,qo) 

given 

assumed 

fr 1, graph 
fr 1, 3 
fr 2 

fr 4,5, andin 

fr 6 

fr 7, Prop. 4.7 
fr 8 
fr 9, def. 4.4 

assumed WLOG 

fr1 0, 11, graph 
fr 1 0,11,12 
fr 13, Prop. 4.7 
fr 14 
fr 8, 14 
fr 16 

(Partial) Abstract 
Program 

loop 
delay(?); 

select 

when lsCieargr => 
accept 

changelights;o; 
or delay(15); 

Figure 10 Extraction of Partial Abstract Program from Constructive Proof 
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The property we wish prove is that the guard guarantees mutual exclusion (only one 

mobile robot can be in an intersection at any one time). The guard must control the 

hardware so that the intersection is clear before instructing the hardware to change the 

lights. In Figure 10, we prove the correctness of the guard automaton in the case 

where the guard instructs the hardware to change the lights. The attributes for a 

fragment of an abstract program are extracted in column 4 of Figure 1 0 each time a 

transduction is made during the constructive proof. The remainder of the abstract 

program started in Figure 1 o is obtained from the constructive proof that 

mutex(Tdqo,q1. Tdq1,qo) holds. The proof expressions on the nodes in Figure 9 serve as 

an aid in automated reasoning about the specification. The formulation of the proof 

expressions stem from an interpretation of the structure of a TAi/o graph relative to the 

definitions and propositions we have given. To the extent that a program is identified 

with its behavior, a constructive proof of a TAito is the specified program. In other 

words, the proof constructs the specified behavior. 

7 Conclusion 

The TAi!ofTLrt framework provides a basis for modelling the behavior of a real­

time system. The annotation of node predicates with proof expressions makes it 

possible to construct provably correct prototypes of real-time systems. The attributes 

of node predicates facilitate the extraction of program code during a constructive proof. 

In effect, TAi!oS provide a visual programming approach to the development of provably 

correct real-time systems. Tlrt provides a concise means of expressing transductions 

and properties of automata we wish to prove. The combination of visual programming, 

constructive proofs using transductions and transduction rules, and the expressiveness 

provided by Tlrt. provides an appealing approach to the design of reliable real-time 

systems. 
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