
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1990

Using Annotated C++ Using Annotated C++

Marshall P. Cline
Clarkson University

Doug Lea
SUNY Oswego

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Cline, Marshall P. and Lea, Doug, "Using Annotated C++" (1990). Electrical Engineering and Computer
Science. 117.
https://surface.syr.edu/eecs/117

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/117?utm_source=surface.syr.edu%2Feecs%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Using Annotated C++

Marshall P. Cline

Department of Electrical and Computer Engineering, Clarkson University

Doug Lea

Department of Computer Science,
SUNY Oswego

and
CASE Center, Syracuse NY

ABSTRACT

A++ (‘‘Annotated C++’’) is both a formalism and a proposed CASE tool for anno-
tating C++ code with object-oriented specifications, assertions, and related semantic
information. Annotations provide programmers with a useful means for approaching
class design, exceptions, correctness, standardization, software reusability and related
issues in software engineering with C++. This paper shows how A++ provides arbitrarily
fine granularity to the C++ type system, how it automates and streamlines exception test-
ing, how it can aid in standardization of software components, and how it can safely
remove redundant exception tests.

1. Introduction

A++ (‘‘Annotated C++’’) is presented in [1] as both a formalism and aproposedCASE tool for
extending C++ with object-oriented annotations. In the present paper, we briefly describe A++ (mainly by
example), and then discuss how A++ can be of practical utility in the construction of well-specified, cor-
rect, robust, efficient, standardized, and reusable C++ classes.

As a formalism, A++ provides a syntax for expressing a variety of semantic constraints and proper-
ties on C++ classes. It is roughly similar to the Ada annotation tool ANNA [2], as well as Eiffel [3] in that
it extends the base type system to support several forms each of preconditions, postconditions, assertions,
and invariants, along with a richer set of ‘‘primitive’’ types and constructs that are useful in expressing such
constraints. It differs from non-object-oriented systems like ANNA in explicitly addressing issues like
classes and inheritance. It differs from Eiffel in addressing C++-specific issues and constructs, and in
maintaining the spirit of C++ in terms of efficiency, flexibility and terseness. All three differ from specifi-
cation languages like VDM [4] in that they attempt to integrate specifications with the implementation lan-
guage, thus providing programmers with a more familiar and natural syntax.

As a proposed CASE tool, A++ is intended to be used as a front end to a C++ compiler. It will trans-
late annotated programs into C++ proper while also statically verifying, to the extent possible, the confor-
mity of code to annotations. As described in more detail below, static analysis is a powerful tool for help-
ing to ensure correctness, efficiency, and robustness of C++ classes.

2. A++ as a Type System

Types may be construed as sets of constraints on objects [5]. In C++, it is easy to specify ‘‘the type
of an object constrained to take on integral values between 0 and 255,’’ via the built-in typeunsigned
char . However, C++ provides no direct support for expressing things like ‘‘the type of an object with two
components, the first taking integral values between 1 and 12, and the second between 1 and the results of
applying functiondays_in_month to the first component.’’ Similarly, while it is possible in C++ to

declare a member functionreset that takes anint m and returnsvoid , it is difficult to state thatmmust
obey a given predicate, and that callingreset will have a particular visible effect. A++ provides such
support, as in

class Calendar {
int mon, date; //month and date
int days_in(int month) { /*...*/ } //returns #days in month

legal:
mon >= 1 && mon <= 12; //mon in 1..12
date >= 1 && date <= days_in(mon); //date in 1..#days(mon)

public:
int month() const { return mon; }
Calendar() : mon(1), date(31) { /*...*/ }
void reset(int m); // Reset Calendar to month ‘m’

axioms:
[int m; require m>=1 && m<=12; promise month() == m] reset(m);
//...

};

As described in more detail in [1], thelegal: keyword introduces invariants for data members of a
class,require indicates preconditions,promise indicates postconditions, andaxioms: introduce pre-
condition/postcondition sets that may simultaneously constrain several member functions.

As another example, while C++ supports subtyping via inheritance, it is difficult to express in a base
class those constraints which must be met in all subclasses. This especially important in the declaration of
annotated ‘‘Abstract Base Classes’’ (ABCs), supported in A++ via additional constructs:

class Stack { // An annotated ABC; Assumes element type T.
public:

virtual void push(T) = 0;
virtual T pop() = 0;
virtual int len() const = 0;
virtual void clear() = 0;
virtual int capacity() const = 0;
virtual ˜Stack() { }

Stack() { }
int full() const { return len() == capacity(); }
int empty() const { return len() == 0; }

axioms:
// An incomplete axiom set addressing only empty/full issues
[require !full(); promise !empty();] push(x);
[require !empty(); promise !full()] pop();
[promise return >= 0] len();
[promise empty()] clear();
[promise return > 0] capacity();
[promise empty()] Stack();

};

class Vector { // A standard Vector class
int cap; // Capacity of this Vector
T* data; // Actual data elements

coherent: // Means ‘required when in a public state’
cap == data.nelems; // nelems is a pseudo-member of arrays

public:
//...

};

class VStack : public Stack { // ‘Vector-based Stack’
protected:

Vector v; // A VStack USES-A Vector
int sp;

legal: sp >= 0 && sp <= v.size();
public:

VStack(int cap=10) : v(cap), sp(0) { }
˜VStack() { }

void push(T x) { v[sp++] = x; } // INHERIT Stack’s axioms
T pop() { return v[--sp]; } // Thus a VStack must
void clear() { sp = 0; } // ‘behave like a Stack’
int len() { return sp; }
int capacity() { return v.size(); }

};

Again, more syntactic details and discussion may be found in [1].

The fact that such type extensions are not typically found inside languages like C++ is almost always
a pragmatic issue. While it is a routine matter for a compiler to statically analyze a C++ program to ensure
that functions expecting arguments of typechar actually receive them, determining whether objects of
classCalendar always remain within theirlegal constraints, or that all uses ofVStack::push obey
the given preconditions and postconditions is very difficult indeed. It requires the use of inference engines
that can possess high overhead without any guarantee of success in statically deciding conformance.

In fact, C++ is among the most difficult languages to statically verify, mainly due to insecurities in
the underlying C type system (pointer coercions, ambiguities between arrays and pointers, aliasing, etc.).
While A++ includes constructs encouraging programmers to avoid most of these problems, the prospects of
completestatic C++ program verification, under any system and/or theorem prover methodology are dim.

Despite this, annotations are extremely valuable constructs for increasing the expressiveness and
semantic content of C++ declarations and enhancing the integration of class specification with class imple-
mentation. For example, A++ permits essentially direct translation of common Abstract Data Type (ADT)
specifications [6] into ABCs, thus increasing the likelihood that such classes are written correctlyby con-
struction.

Moreover, even with modest inferencing capabilities, an annotation toolwill be able to verify many
common constructs, and can postpone others via translation of annotations into exceptions (or merely com-
pile-time warnings), as discussed below. In this fashion, the advantages of the A++ formalism may be
obtained while remaining within the reaches of implementability and practical usability.

A++ may be viewed as an enhanced type system for C++, designed with similar features and goals as
the C++ type system itself, but permitting programmers to supply arbitrarily detailed semantic information,
thus serving as an integrated specification language. Until the A++ tool is developed, programmers may
find the use of A++ constructs as ‘‘structured comments’’ to be a useful stylistic aid in the design and
implementation of C++ classes.

3. A++ and Exceptions

Pragmatic software engineering concerns demand a disciplined and liberal use of exception tests and
handlers in order to ensure robustness and correctness. While exception handling features will certainly
become incorporated into C++ in the near future, their precise form has not yet been established [7].

However, the mere existence of exception constructs is not a cure-all. Programs laden with exception
checks can become more complex and harder to read, and can possess higher time and space overhead.
A++ offers an easier, more structured, and potentially more efficient means for programmers to utilize
exceptions, that is nearly independent of the exact C++ mechanisms chosen to implement exception pro-
cessing.

The vast majority of exception tests inside class member functions revolve around the trapping of
failed preconditions. However, this usage is completely subsumed under A++, where preconditions
become ‘‘part of the type’’ of member functions.

This strategy has several advantages over the raw use of exception checks. Under A++, constraints
areautomaticallytranslated into validity checks (unless statically shown to be superfluous), ensuring that
all declared preconditions are consistently and completely applied wherever applicable. For example, there
is no explicit emptiness test at the head ofpop in the VStack example above. Declaring preconditions
per serather than burying them inside member functions via exception tests tends to increase the clarity of
class declarations and definitions.

Moreover, direct incorporation of preconditions allows for the possibility of static analysis of validity
checks, which can result in significantly faster executable code. In this sense A++ can serve as an
‘‘exception optimizer.’’ If static analysis shows that a particular instance of a validity check willneverfail
in a particular program, then the check, and the corresponding exception raising support, need not appear in
the generated code. In the best case, A++ will insert exception checks only where they really matter, i.e.,
where there is sufficient indeterminacy of usage to indicate that an exception check could actually fail dur-
ing program execution. While doing so, A++ will provide programmers with feedback about which pre-
conditions sometimes, or even always, fail, in the same fashion and spirit (i.e., to aid in the early detection
of programming errors) that C++ compilers provide warning and error diagnostics for potential and actual
type mismatches.

In these ways, A++ may become an important means for assisting programmers in minimizing clas-
sic safety versus efficiency trade-offs. The need for efficient mapping of clean, safe designs is an increas-
ingly vital issue as the use of exceptions becomes more prevalent. A good exception optimizer can remove
the motivation for questionable C++ techniques involving excessive numbers offriend functions for the
sole purpose of providing unrestricted access in ways that are known to be safe by the programmer but not
by a C++ compiler, the use of designs that break encapsulation, and the omission of validity checks, which
are all commonly, and often understandably, invoked for the sake of efficiency, but which are all unneces-
sary under a good static analyzer.

This issue is important enough that careful consideration, evaluation, and experimentation to deter-
mine best available techniques for integrating, analyzing, and translating precondition annotations has
become one of the central objectives in the development of the A++ tool. In principle, prospects for gener-
ating highly efficient code are bright. Optimizability and strong typing are often just two different views of
programmer-provided semantic information inside programs. Constructs that enhance one can only help
the other.

4. A++ and Standardization

As C++ becomes increasingly widespread, people have expressed the need for standardizing com-
mon components likeStrings , Vectors andSets .

The notions of ‘‘standards’’ and of ‘‘annotations’’ are closely interwoven. Standards most often take
the form of specifications that do not make reference to matters of representation or implementation. This
kind of specification technique is directly supported in A++.

Annotated ABCs (like the elidedStack example, above) are object-oriented analogs of ADTs, con-
taining representation-independent specifications of the behavior of base classes that can be implemented

via subclasses using any of a number of representation and/or coding strategies. As such, they are appro-
priate bases for standardization efforts.

While it is sometimes more difficult to spell out high-level specifications using A++ rather than natu-
ral language or unintegrated specification tools (e.g., VDM), there are some clear advantages for using A++
in standardizing C++ classes. Annotated ABCs may be standardized upon and specified within the lan-
guage itself (as extended via A++), rather than via auxiliary documentation. This tactic both formalizes
and simplifies creation of standard base classes, helps automate compliance monitoring, and helps avoid
questions of interpretation, while still allowing component providers the freedom to supply implementation
subclasses that employ arbitrarily diverse coding strategies. The fact that all implementation subclasses
share the same ABC parent guarantees interoperability, while the fact that they are subclasses allows
providers to include additional capabilities, beyond those mandated, within their implementations.

The only drawback to this solution is the efficiency issue. The use of ABCs can generate significant
performance degradations compared to representation-specific classes. However, the A++ tool, along with
the customization-based compiler strategies and language support described in [8] have the potential for
eliminating these degradations. Pending the development of such support, the use of the A++ syntax as a
notational device may still be an attractive vehicle for standardization efforts.

5. A++ and the Construction of Reusable Software

Of course, methods useful for standardization are equally, if not more appropriate for the develop-
ment of component libraries in general. A++ is valuable both in designfor reuse and designwith reuse of
C++ class libraries. Beyond the obvious fact that well-specified, correct, robust, and efficient classes are
almost by definition highly reusable, the use of annotations supports techniques that appear to generally
enhance reuse.

By using annotated ABCs that separate specification from implementation (while still, of course,
remaining within C++) component writers may provide additional opportunities for reuse: (1) Direct reuse
of an implementation subclass; (2) Further subclassing of the implementation subclass to add or modify
implementation code; (3) Reuse of the ABC, but implemented via a new implementation class; and (4)
Subclassing of the ABC to create a new abstract subclass with extended behavioral specifications. In other
words, this strategy allows design reuse to occur nearly independently of code reuse, as advocated by
researchers (e.g., [9]) studying software reuse in general.

Integrated semantics also increases the ability of potential class users to locate, understand, and use
library classes. Via A++, most of the important information associated with a class resides in its declara-
tion, simplifying search, retrieval, browsing, and use.

Of course, specifications are supplements,not replacements for testing library components. Specifi-
cations can be wrong, fail to conform to requirements, and so on. Additionally, as discussed above, even
the most sophisticated tools may fail to verify correct code. However, additional tools and methods based
on the A++ notation appear to be promising approaches to C++ component testing. For example, Frankl’s
[10] tool for generating test programs by analyzing axiomatic class specifications in order to generate two
different paths (sequences of method calls) that place objects in the same alleged state, could be adapted to
read A++-based specifications.

6. Migrating Exception Tests to the Caller

The term ‘‘exception’’ is used here to denote the occurrence of an unanticipated event rather than an
intentional non-local jump. In general ‘‘exceptions’’ actually occur very infrequently. Indeed, the logic
and sanity checks in a correct program are designed to intelligently handle errant user input so that (ideally)
an unexpected failure willneveroccur. In contrast to this low frequency of actual exceptions, exception
testingis ubiquitous.

Callers of a function can’t ‘‘see’’ what tests are just inside the called function, so the compiler is
unable to jump around the test in a subcall even if it is superfluous. For example, bounds testing in a ‘‘safe
array’’ subscripting operation might be performed at the head ofoperator[] , but unlessoperator[]
is expanded inline (and unless the C++ compiler has an optimizer that can exploit the resulting informa-
tion), even accesses such asarray[0] will incur an unnecessary runtime penalty for the bounds check.

Vector operator+ (const Vector& a, const Vector& b)
{

if (a.size() != b.size()) error("sizes not same");
int sz = a.size();
Vector ans(sz);
for (int i = 0; i < sz; ++i)

ans[i] = a[i] + b[i];
return ans;

}

Although the bounds tests willprovably never fail in the above function,i is still checked three
times every time around the loop! Unfortunately this kind of thing is by no means unusual: Stroustrup
describes it as ‘‘typical’’ and proposes either an ‘‘unchecked access’’ function or else using thefriend
construct [11]. Neither approach is ideal: the former breaks abstraction and the latter dilutes localization by
increasing the number of functions which can directly manipulate instances.

A++ provides a different solution: since the preconditions foroperator[] are visible to the caller,
all the above runtime checks can be eliminated. The key concept is to migrate exception testing from the
head of the subcall out to the caller. For example, ifpop() requires!empty() , conventional C++ wis-
dom says thatpop() might begin: if (empty()) throw StackError() (assuming some such
exception syntax). As will be shown, migrating the test out to the caller is merely conceptual, all the details
being taken care of by the A++ preprocessor.

Supposemain() calls pop() , the latter requiring!empty() . Under A++,main will wrap the
call in a test:if (empty()) throw StackError(); else pop() . Since theStack will neverbe
empty() at once insidepop() , A++, in conjunction with a back-end optimizing compiler, will be able to
discard as redundant any conventionalif (empty()) tests found there. As discussed above, few (ideally
no) subcalls can generate exceptions, so few tests will in practice be performed.

The disadvantage of migrating exception testing to the call point is code bloat: if a function is called
many times, its precondition tests might be elaborated many times. It is very difficult in general to beat the
fundamental tradeoff between speed and size, however awrapperfunction can help in this case. For exam-
ple, if code size were more important than speed, A++ could createpopwrapper() which would per-
form the precondition tests and call the ‘‘raw’’pop() . If the output were assembly language, the ideal sit-
uation would be multiple entry points to the function:

proc popwrapper__5StackFv
... ;Do precondition tests

proc pop__5StackFv
... ;Raw function -- no tests
ret

Special consideration must be made in multiple language environments since only C++ would know
about A++. The ‘‘foreign language’’ callers should get the fully-tested version when they callpop() , so
the names presented above can be swapped:

proc pop__5StackFv
... ;Do precondition tests

proc popraw__5StackFv
... ;Raw function -- no tests
ret

We have come full circle. The above code fragment isexactlywhat is produced by current C++ tech-
nology, the only difference being the additional (raw) entry point. But in conventional compilers, only the
fully tested function is ever called, soall calls incur the runtime penalty. Thus A++ safely allows
(hopefully many) calls to ‘‘jump around’’ the runtime tests. Furthermore, since the only additional ‘‘op
code’’ is thejmp around the stack setup, both speed and space overhead is negligible.

Of course, all of these code-generation options are very tentative, and will be further explored during
the process of implementing a usable version of A++.

7. Conclusions and Future Work

Although essential for robust software, disciplined and liberal use of exception testing is often seen
as pessimistic, increases code size, decreases efficiency and can make code harder to read. The result is
often that programmers fail to decorate their code with such checks. We have proposed a CASE tool
(‘‘A++’’) which infers exception tests from higher level annotations rather than requiring exception tests to
be explicitly stated in the code. The programmer can then instruct A++ to either translate all annotations
into run-time exception tests or to perform static analysis whereby tests which are shown to be redundant
need not be inserted. It is hoped that minimizing superfluous run-time checks will help programmers avoid
the temptation to manually remove exception tests in ‘‘tested’’ software.

A++ was also discussed as a means of aiding efforts to standardize software components since it pro-
vides a formal yet convenient language for expressing the appropriate semantic information.

A ‘‘proof of concept’’ implementation will translate A++ syntax into an intermediate form, insert
exception tests everywhere an axiom or assertion directs, and translate the result back into C++ for compi-
lation. It is hoped that the intermediate reference form (IRF) will be a significant spinoff, since the IRF
could be the basis of an entire suite of C++ analysis tools. Several extensions to A++ are also being con-
sidered, including the handling of pointer aliasing and reference binding/lifetime issues, as well as allowing
behavioral compatibility to exist apart from inheritance.

8. References

[1] M. Cline and D. Lea. ‘‘The Behavior of C++ Classes,’’Proceedings of the Symposium on Object
Oriented Programming Emphasizing Practical Applications, Marist College, 1990.

[2] D. Luckham, F. von Henke, B. Krieg-Bruckner and O. Owe, ‘‘ANNA: A Language for Annotating
Ada Programs,’’ Springer-Verlag,Lecture Notes in Computer Science 260, 1987.

[3] B. Meyer,Object Oriented Software Construction, Prentice Hall, 1988.

[4] C. B. Jones.Systematic Software Development Using VDM, Prentice Hall, 1986.

[5] P. Wegner. ‘‘The Object-Oriented Classification Paradigm.’’ In B. Shriver and P. WegnerResearch
Directions in Object-Oriented Programming, MIT Press, 1987.

[6] B. Liskov and S. Zilles, ‘‘Programming with Abstract Data Types.’’SIGPLAN Notices, 1974.

[7] A. Koenig and B. Stroustrup, ‘‘Exception handling for C++.’’Proceedings of the USENIX C++
Conference, 1990.

[8] D. Lea, ‘‘Customization in C++,’’Proceedings of the USENIX C++ Conference, 1990.

[9] W. Tracz, ‘‘The Three Cons of Software Reuse,’’Proceedings of the Third Annual Workshop: Meth-
ods and Tools for Reuse, 1990.

[10] P. Frankl and R. K. Doong, ‘‘Tools for Testing Object-Oriented Programs,’’Proceedings of the
Pacific Northwest Quality Assurance Conference, 1990.

[11] Bjarne Stroustrup,The C++ Programming Language, Addison-Wesley, 1986.

	Using Annotated C++
	Recommended Citation

	tmp.1286291883.pdf.52Z6G

