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We have studied numerically the dynamics of a driven elastic interface in a random

medium, focusing on the thermal rounding of the depinning transition and on the behavior

in the T = 0 pinned phase. Thermal effects are quantitatively more important than ex-

pected from simple dimensional estimates. For sufficient low temperature the creep velocity

at a driving force equal to the T = 0 depinning force exhibits a power-law dependence on

T , in agreement with earlier theoretical and numerical predictions for CDW’s. We have

also examined the dynamics in the T = 0 pinned phase resulting from slowly increasing the

driving force towards threshold. The distribution of avalanche sizes S‖ decays as S−1−κ
‖ ,

with κ = 0.05 ± 0.05, in agreement with recent theoretical predictions.
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1. Introduction

The study of the dynamics of driven interfaces in random materials is relevant to a

wide class of physical problems, from fluid invasion in porous media [1-3] to the motion

of domain walls in random magnets [4,5]. The interface dynamics in these systems is

controlled by the competition between an external field which exerts a driving force per

unit area F on the interface and the pinning by impurities which impedes the motion.

The interface is often modeled as an elastic medium that is distorted by disorder, but

cannot break. The dynamics of such elastic interfaces driven through quenched disorder

in the absence of thermal fluctuations has been studied extensively both analytically and

numerically [1-10]. At zero temperature there is a sharp transition from a sliding state

above a critical driving force FT to a pinned state below FT . The transition has been

described as a critical phenomenon in terms of scaling laws and critical exponents [9,10].

The critical exponents depend on the dimensionality of the interface and of the embedding

space, as well as on the geometry of the quenched disorder. Thermal fluctuations are

expected to round the transition. Closely related systems that exhibit the same type of

nonlinear collective dynamics and have been studied very extensively are charge density

waves (CDW’s) in low dimensional conductors [6-11].

The dynamics of weakly pinned flux lines in type-II superconductors is another prob-

lem in this general class [15]. A transport current density J flowing through a type-II su-

perconductor in the mixed state in the plane normal to the external field exerts a Lorentz

force per unit volume F ∼ J on the vortex lines, which then moves across the current

causing electric fields proportional to the vortex velocity and hence resistance. Impurities

and other defects in the material act to pin the vortices and impede their motion. Point-

like material impurities, such as O2 vacancies, yield a quenched random pinning potential

with short-range correlations.

At low temperatures and fields, when the characteristic pinning energy barriers for a

single vortex line exceed the energy associated with intervortex interactions, dissipation is

controlled by single vortex dynamics. The problem can then be modeled as that of a one-

dimensional elastic interface (string) driven through a random medium. It is important

to distinguish between two types of short-range disorder that are relevant in different

physical systems. These are usually referred to as random-field (or random-force) disorder

and random-bond (or random-potential) disorder. The disorder is of the random-field type

for domain walls in disordered ferromagnets [16] or fluid interfaces in porous media [17]. In
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this case the pinning energy is the sum of the contributions from all the impurities in the

area or volume spanned by the invading fluid during its motion. In contrast, the disorder

that controls the dynamics of domain boundaries in ferromagnets with random exchange

interactions [18] or flux lines in type-II superconductors is of the random bond or potential

type. In this case the pinning energy is determined by the instantaneous position of the

interface and it arises only from the impurities in its vicinity. The static behavior, i.e., at

finite temperature and zero driving force, has been studied extensively and is known to

depend strongly on the type of disorder [16,18]. In contrast, Narayan and Fisher recently

argued that the critical behavior of driven interfaces at zero temperature is essentially

independent of the type of disorder [10]. Numerical work has not yet addressed this point

conclusively.

In this paper we present results of numerical simulations of the dynamics of an elastic

string in quenched disorder of the random bond type. Our earlier studies of this model

at zero temperature have focused on the critical properties at the depinning transition

and the dynamics in the sliding state [19,8]. We found that at T = 0 there is a sharp

transition at a threshold force FT from a state where the string is pinned for F < FT to a

sliding state for F > FT . The mean velocity vanishes as the threshold is approached from

the sliding state as v ∼ fβ with f = |F − FT |/FT and β = 0.24 ± 0.1 [20]. The data can

also be fit by a form v ∼ 1/ln|f |. The spatial range of velocity correlations in the sliding

state is determined by a correlation length ξ that diverges at threshold as ξ ∼ f−ν , with

ν = 1.05± 0.1. Due to the effect of random forces the driven interface profile is rough and

can be characterized by a roughness exponent ζ, defined by

<
[

u(z, t) − u(0, t)
]2

>∼ |z|2ζ , (1.1)

where u(z, t) is the instantaneous position of a point on the string. Our numerical work

at T = 0 yielded ζ = 0.97± 0.05. Numerical studies of related lattice models have yielded

ζ = 1.25 ± 0.01 [21]. The continuous elastic model of interface dynamics was studied

recently by Narayan and Fisher [10] at T = 0 via a systematic expansion in ǫ = 5−d, where

d is the dimensionality of the embedding space and 5 the upper critical dimensionality.

For the case d = 2 of interest here they found ν = ζ = 1 exactly to all order in ǫ and

β = 1−2ǫ/9+O(ǫ2) = 1/3+O(ǫ2). These results are consistent with those obtained from

our numerical work.

We have now extended our work in two ways. First we have considered the string

dynamics in the presence of both quenched disorder and thermal fluctuations. Secondly,
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we have investigated the properties of the zero temperature pinned phase below threshold.

As expected, thermal fluctuations round the depinning transition and replace it by a

smooth crossover. For temperatures well below a characteristic depinning temperature

Tdp ∼ (∆KR3
p)

1/3, where ∆ is the strength of the quenched disorder (of range Rp) and K

the string elastic constant, the temperature dependence of the mean velocity at the zero

temperature threshold FT scales with temperature as v(FT , T ) ∼ T β/τ , where β is the

T = 0 depinning exponent and τ is a nonuniversal exponent, with τ = 3
2 for continuous

pinning potentials (see Figure 1). This scaling form was predicted some time ago [14] by

D. S. Fisher through a mean field theory for the Fukuyama-Lee-Rice model of CDW’s. It

was also recently verified numerically for both continuous and discrete CDW models in

two and three dimensions [22]. It is not a priori obvious that interfaces with short-range

pinning potentials should behave like models of CDW’s, where the pinning potential is

periodic - and therefore correlated - along the direction of motion. In fact the critical

exponents describing the T = 0 depinning transition are different in these two classes

of models. On the other hand, our results indicate that in both cases the dynamics at

finite temperatures occurs via thermally induced hopping over small energy barriers and

is insensitive to the details of the pinning potential, provided the time scale of the thermal

hop is sufficiently short. The mechanism for destabilization of the soft modes of the system

is the same for models with short-range pinning potentials and CDW’s and the mean field

argument proposed by Fisher applies in both cases. The details of the pinning potential

only enter through the T = 0 depinning exponent, β. The string dynamics for T > Tdp

is qualitatively different and the scaling just described fails. This difference is clarified by

the high force perturbation theory discussed in Section 3. Numerical studies of interface

dynamics in 1 + 1 dimensions at finite temperature were carried out recently by Kaper

et al. [23]. Our work on thermal effects complements this earlier studies by focusing on

the scaling of velocity with temperature for T < Tdp, that was not discussed in [23], and

on the qualitative difference in the string dynamics at low (T < Tdp) and high (T > Tdp)

temperatures.

We have also investigated the properties of the zero temperature pinned phase below

threshold. The response of the string when the driving force is increased towards thresh-

old from below is dominated by localized forward jumps or “avalanches”. The number

distribution of avalanche sizes S‖ in the string direction, D(S‖; f), was conjectured to
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obey a scaling form near threshold [10], characterized by a diverging correlation length

ξ ∼ (FT − F )−ν ,

D(S‖; f) =
1

S1+κ
‖

D̂(S‖/ξ−), (1.2)

where D(S‖; f)dS‖df is the number of avalanches of diameter between S‖ and S‖ + dS‖

that occur when the reduced force is changed from f to f + df . Also, D̂(x) is a scaling

function that decays rapidly for x >> 1. Using an ǫ expansion in 5−ǫ dimensions, Narayan

and Fisher predicted κ = 0 and ν = ν = 1, with ν the correlation length exponent when

the transition is approached from above threshold [10].

We have studied the scaling of avalanches numerically by evaluating the distribution

D(S‖) of avalanche sizes S‖ obtained in response to a small increase of the driving force

for all forces below FT ,

D(S‖) =

∫ 0

−1

dfD(S‖; f) ∼ 1

S1+κ′

‖

, (1.3)

and we find κ′ = 1.0 ± 0.2. The exponents κ and κ′ are related by

κ′ = κ +
1

ν
. (1.4)

We find κ′ = 1.0 ± 0.2 and κ = 0.05 ± 0.05, corresponding to ν = 1.13 ± 0.30, consistent

with the theoretical values. The value κ = 0 indicates that avalanches of large size are

likely and the description of the interface or as an elastic string breaks down. This is also

consistent with our result that the roughening exponent ζ defined as A ∼ S1+ζ
‖ , where

A is the area of an avalanche, is ζ = 1.0 ± 0.05. As discussed by Coppersmith [24] in

the context of CDW, large strain may develop in the d = 2 case of interest here. In a

real system the string will relax these strains by pinching off a vortex loop around an

impurity, a mechanism that is excluded in our model. Overhangs and loops could modify

qualitatively both the dynamics in the pinned region and the T = 0 depinning transition.

Further studied are needed to address their role.

The remainder of the paper is organized as follows. After briefly describing the model

in section 2, we discuss simple dimensional estimates and the results of the high field

perturbation theory in section 3. The numerical result at finite temperature are presented

in section 4, while the scaling of avalanches in the T = 0 pinned state is discussed in section

5.
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2. The Model

The specific model we have studied is an elastic string embedded in two dimensions

and on the average aligned with the z direction (in superconductors this is the direction

of the applied magnetic field). We describe the interface by its displacement u(z, t) in the

direction of the applied force per unit length, F . The displacement is assumed to be a

single-valued function of z at any time t, i.e., we ignore overhangs in the string and vortex

loops that could be pinched off from it during the motion. In the absence of driving force

the Hamiltonian of the string is the sum of the elastic energy of the string and a pinning

potential from random impurities in the medium,

H =

∫ L

0

{K

2
(
∂u

∂z
)2 + V (u(z, t); z)

}

, (2.1)

where L is the size of the system in the z direction and K the elastic constant. Assuming

purely relaxational dynamics, the equation of motion for the string in the presence of a

constant driving force F per unit length in the transverse direction is given by

γ∂tu(z, t) = − δH

δu
+ F + η(z, t)

=K∂2
zu(z, t) + Fp(u; z) + F + η(z, t),

(2.2)

where γ is a friction coefficient, Fp(u; z) = −∂V (u; z)/∂u is the pinning force per unit

length, and η(z, t) is a Gaussian correlated Langevin force per unit length describing

thermal noise, with < η(z, t) >= 0 and correlations

< η(z, t)η(z′, t′) >= 2γTδ(z − z′)δ(t − t′). (2.3)

The angular brackets < · · · > denote the thermal average. In the numerical model the

pinning potential is written explicitly in terms of the interaction of the string with Np

short-ranged pinning centers randomly distributed at positions ~Ri in the plane,

V (u; z) =

Np
∑

i=1

U(|~r − ~Ri|), (2.4)

where ~r = (u(z, t), z). The interaction U(|~r− ~Ri|) of the string with the ith pin is approxi-

mated by a potential well centered at the pin location ~Ri of finite range Rp and maximum

depth U0. The pins are uniformly distributed with areal density np. When the mean pin

spacing 1/
√

np is large compared to the potential range Rp, the pinning potential can also
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be described as a continuum gaussian random variable, with mean and correlations given

by,

V (u; z)V (u′; z′) ∼ ∆δ(u − u′)δ(z − z′), (2.5)

where

∆ ≈ (U0Rp)
2npR

2
p{1 + O(npR

2
p)} (2.6)

and the overbar denotes an average over disorder realizations.

The overall motion of the string is described by a “center of mass” velocity, defined

as

vcm(F, t) =
1

L

∫ L

0

dzv(z, t), (2.7)

where v(z, t) = ∂tu(z, t) is the instantaneous velocity of a point on the string. The center

of mass velocity is a fluctuating quantity since it depends of both the random positions of

pins and the thermal noise. The average or drift velocity of the string is given by

v(F ) = < vcm(F, t) >. (2.8)

In the numerical calculation the average over different realizations of disorder (denoted by

the overbar) is performed by averaging over time, since as time evolves the string samples

different impurity configurations.

3. Dimensional estimates and perturbation theory

Considerable insight on the behavior of the driven string can be gained by simple

dimensional estimates and by a perturbation theory in the pinning force. Most of the

results discussed in this section have been obtained elsewhere for a general d-dimensional

interface [25]. It is, however, instructive to summarize them here for the 1+1 dimensional

case of interest.

The relative importance of thermal fluctuations and quenched disorder in governing

the equilibrium properties of elastic interfaces, in the absence of external drive, has been

studied extensively. Thermal fluctuations always dominate at small length scales. In

this regime they are responsible for small amplitude vibrations of the interface within a

given pinning well and therefore lead to a smoothing of the pinning potential. At large

length scales the importance of thermal fluctuations depends on dimensionality. For a one

dimensional interface in d = 2 the disorder is always dominant at large length scales. This
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is because the value of the roughness exponent ζeq of an elastic string disordered only by

random bond quenched disorder, ζeq(d = 2) = 2/3, is larger than the corresponding value

for a thermal string in equilibrium, ζth = 1/2.

A disordered elastic interface in the absence of thermal fluctuations is characterized

by the Larkin-Ovchinnikov (LO) collective pinning length, Lc. This is estimated by dimen-

sional analysis by considering the energy fluctuation associated with displacing a segment

of string of length L by a transverse distance Rp across a single pinning well,

δF = K
R2

p

L
+ (U0Rp)

√

npRpL. (3.1)

The LO pinning length is obtained by minimizing (3.1), with the result Lc ≈
Rp

(

K/U0

√

npR2
p

)1/3
. When Lc >> Rp, the string is pinned collectively by many pins.

It is this weak pinning regime that is relevant for flux lines in superconductors. When

thermal fluctuations are important the mean thermal displacement of the string exceeds

Rp and the string experiences a random potential averaged over the length of its root mean

square thermal excursion about equilibrium, < u2
th >1/2. The temperature dependent pin-

ning length is estimated by considering the energy associated with a fluctuation of length

L and transverse distance < u2
th >1/2,

δF = K
< u2

th >

L
+ U0Rp

[

npRpL
Rp

< u2
th >1/2

]1/2

, (3.2)

where < u2
th > is determined by requiring K < u2

th > /L ∼ T . We find Lc(T ) ≈
Lc(T/Tdp)

5, where the depinning temperature Tdp is defined by < u2
th >≈ Lc(T )T/K = R2

p

, which yields Tdp ≈ (U0Rp)
2/3(npR

3
pK)1/3. The temperature-dependent pinning length is

defined by interpolating between the T = 0 LO length and the finite temperature result,

Lc(T ) = Lc[1 + (T/Tdp)
5]. (3.3)

A more rigorous derivation of these results can be found in [25].

Considerable insight on the competing roles of quenched disorder and thermal noise

can be gained by considering the string dynamics at large velocities, where the disorder can

be treated as weak. For F >> FT , the effect of pinning is negligible and the string advances

uniformly, with v ≈ v0 = F/γ. The deviations from this asymptotic behavior can be

studied by a perturbation theory in F/Fp that was introduced first by Schmid and Hauger

and by Larkin and Ovchinnikov for T = 0 and recently extended by Vinokur et al. [26,27]
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to incorporate thermal fluctuations. To carry out the perturbation theory it is convenient to

consider a frame of reference moving at the mean velocity v of the string. The instantaneous

position of a point on the string is then written as u(z, t) = vt + up(z, t) + uth(z, t), where

up(z, t) is the deformation due to quenched disorder, treated as small, and uth(z, t) is the

contribution from thermal fluctuations to the displacement from the uniform sliding state.

It is defined as the solution of,

∂tuth(z, t) = K∂2
zuth(z, t) + η(z, t). (3.4)

The mean velocity is then given by

δv =
1

γ
< Fp(vt + up + uth; z) >, (3.5)

with δv = v − v0 and

γ∂tup(z, t) = K∂2
zup(z, t) + Fp

(

vt + up(z, t) + uth(z, t)
)

. (3.6)

The right hand side of Eq. (3.5) is evaluated in perturbation theory by treating up as small.

The first order correction to the average string velocity as compared to the asymptotic value

v = v0 is given by the self-consistent solution of the equation

δv

v
=

∆

γ

∫ +∞

−∞

dk

2π
k3|p(k)|2

∫ ∞

0

dt
sin kvt

v
G(0, t)Ss(k, t), (3.7)

where p(k) is the single-vortex form factor that provides a short-length scale cutoff at

k ∼ 1/Rp, with k the wavevector in the direction of motion. Also, G(0, t) is the vortex

Green’s function evaluated at z = 0, given by

G(0, t) = Θ(t)

∫
′

dq

2π

1

γ
e−q2Kt/γ . (3.8)

The prime on the integration over the wavevector −∞ < q < +∞ in the z direction

denotes a short distance cutoff at |q| ∼ 2π/Rp which controls the crossover to single

particle behavior at short times. Thermal fluctuations are responsible for the appearance

in Eq. (3.7) dynamical structure factor Ss(k, t) of a single vortex in the absence of disorder,

given by

Ss(k, t) =< eik[uth(z,t)−uth(z,0)] >≈ e−k2<[uth(z,t)−uth(z,0)]2>/2. (3.9)
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In the absence of thermal fluctuations Ss(k, t) = 1 and the cutoff k0 on the k-integration

in Eq. (3.7) is provided by the form factor p(k), i.e. k0 ∼ 1/Rp. At finite temperature this

cutoff is replaced by k0 ∼ [R2
p+ < u2

th(t) > /2]−1/2.

By using the fluctuation-dissipation theorem the mean square thermal displacement

can be expressed in terms of the Green’s function given in Eq. (3.8), with the result

< u2
th(t) >=

2T

K

∫
′

dq

2π

1

q2

(

1 − e−Kq2t/γ
)

. (3.10)

The q-integration on the right hand side of Eq. (3.10) is easily carried out, with the result

< u2
th(t) > ≈ T

π
√

Kγ

√
t, t >> t0,

≈ 4T

γRp
t, t << t0,

(3.11)

where t0 = R2
p/D0, with D0 = K/γ the diffusion constant of a point vortex, is the time

scale for diffusion across the range Rp of the pinning potential. For t << t0 different bits

of string of length ≤ Rp are essentially uncorrelated along the z direction and one recovers

single-particle behavior, < u2
th(t) >∼ t.

As discussed earlier, at large times or long length scales disorder is always important

and the long time divergence of Eq. (3.11) is cut off by disorder. The effect of disorder

can be approximately incorporated in Eq. (3.10) by introducing a large distance cutoff at

q ∼ 2π/Lc(T ) in the q-integration. Neglecting for simplicity the crossover to single particle

behavior, we obtain three distinct regimes

< u2
th(t) > < R2

p, t0 < t < tph = t0

(

RpK/T
)2

,

< u2
th(t) > ≈ T

π

√

t

Kγ
, tph < t < td = tph

(

T/Tdp

)12

,

< u2
th(t) > ≈ TLc(T )

K
, t > td.

(3.12)

We have introduced here two new time scales. The time tph characterizes the time scale for

small phonon-like vibrations of the string within the potential well of a single pin, while td

is the time scale where disorder becomes dominant. The intermediate regime in Eq. (3.12)

only occurs provided tph < td which corresponds to T > Tdp.

We now proceed to approximately evaluate the correction δv given in Eq. (3.7) . The

right hand side of Eq. (3.7) can be reduced to a one-dimensional integral that can be
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evaluated numerically. It is, however, more instructive to simply carry out a dimensional

estimate of the integral. Neglecting for now the short distance cutoff in the q-equation in

Eq. (3.8) , we obtain G(0, t) = Θ(t)
√

γ/πKt. Inserting this on the right hand side of Eq.

(3.7) and noting that the main contribution to the time integration comes from kvt ∼ 1,

we obtain
δv

v
=

∆√
πγK

∫ +∞

−∞

dk

2π
k4

∫ 1/kv

0

dt
√

te−k2[R2

p+<u2

th(t)>/2]. (3.13)

As the driving force F - and therefore the string mean velocity v - increases, the time cutoff

1/kv decreases. Inserting on the right hand side of eq. (3.13) the form for < u2
th(t) > from

Eq. (3.12) appropriate to each time regime and carrying out the integration, we obtain

δv

v
∼ ∆

γR3
p

√

KγRp

1

v3/2
, t0 <

Rp

v
< tph,

δv

v
∼ 2∆

15

(

27K2γ2

πT 7

)1/3
1

v1/3
, tph <

Rp

v
< td,

δv

v
∼ 2∆

15

1√
πKγ

(

ǫ

TLc(T )

)7/2
1

v3/2
, td <

Rp

v
,

(3.14)

or

1 − v

v0
∼ F−3/2,

T 2

KR3
p

< F <
K

Rp
,

1 − v

v0
∼ F−1/3,

T 2
dp

KR3
p

(Tdp

T

)10

< F <
T 2

KR3
p

,

1 − v

v0
∼ F−3/2, F <

T 2
dp

KR3
p

(Tdp

T

)10

.

(3.15)

For F > K/Rp, corresponding to the case where the time cutoff is realized at times shorter

than t0, the string is sliding so fast that correlations among different string elements have

no time to develop and one recovers single particle behavior, with δv/F ∼ F−2. The

results summarized in Eqs. (3.15) show that the shape of the v-F curve is qualitatively

different at high and low temperatures. The perturbation theory yields v/F ∼ 1−CF−α,

where C is a constant that depend on temperature and the value of α in the various

regimes can be inferred from Eqs. (3.15). The curvature of the v-F curve is determined

by d2v
d2F

∼ −α(α − 1)F−α−1 and is positive if α < 1 and negative if α > 1. If T << Tdp

the intermediate region described by the second of Eqs. (3.15) does not occur and the

perturbation theory yields α = 3/2 in the entire region where perturbation theory applies,
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up to F ∼ K/Rp. The v-F curve has a negative curvature in this regime and thermal effects

only affect the coefficient of the correction δv. When T > Tdp there is an intermediate

region described by the second of Eqs. (3.15) where α = 1/3 and the v-F curve has

a positive curvature. This behavior is apparent in our data described in the following

section(see Fig. 2).

4. Numerical Results at Finite Temperature

We have integrated numerically the discretized version of the equation of motion

(2.2) for a string composed of discrete elements, each of dimensionless size Rp in the z

direction. Here Rp is chosen as the unit of lengths. All forces are measured in units of the

string tension K. The string elements interact via nearest neighbor elastic forces and are

constrained to move only in the direction of the driving force. This model is appropriate

for flux lines in layered superconductors, where each flux line can be thought of as a stack

of interacting two-dimensional “pancake” vortices residing in the CuO2 planes. Periodic

boundary conditions are imposed in the z direction. Each string element is subject to

attractive potential wells of finite size Rp = 1 and maximum depth U0 in both the z and

u directions, centered at the randomly distributed pin locations. The displacements of the

discrete string elements are treated as continuous variables and the coupled equations of

motion are integrated by a fourth order Runge-Kutta algorithm with a time step much

smaller than the typical time to cross a single potential well (typically ∆t ∼ 0.1, where

time is measured in units of t0 = R2
p/D0). As in our T = 0 simulations, we have been

able to obtain reliable data at very small velocities thanks to our “pinning cells” method.

The method consists in dividing the plane in “pinning cells” of dimension Rp. At T = 0

the string can only move forward and each section of the string only “sees” the disorder in

the pinning cell that neighbors it in the forward direction of motion. Thermal fluctuation

can also kick the string to move backward, in the direction opposite to that of the driving

force. At every iteration each string element needs to know the disorder in the cells that

it has left behind, since these may be revisited. We have developed an algorithm to store

at each step an adjustable number of “past” pinning cells for each section of the string,

in addition to the “future” cell. The list of past cells is updated in parallel at each time

step. For driving forces within 10% of the zero temperature threshold, the length of

the simulation usually exceeds 106 time steps, while shorter simulation times gave good

averages for forces further from threshold. We have investigated systems of size from 256
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to 16384. The computations were performed on the Connection Machine CM-2 and CM-5.

In our dimensionless units the parameters of the model are the dimensionless pinning force

F̃p = U0/K, the dimensionless areal density of pins, ρ = npR
2
p, and the dimensionless

driving force F̃ = FRp/K. In these units the temperature is measured in units of KRp

and the depinning temperature is given by T̃dp = Tdp/K = F̃
2/3
P ρ1/3 and the LO collective

pinning length is L̃c = F̃
−1/3
p ρ−1/6, yielding a dimensionless estimate for threshold force

F̃T = ρF̃p and F̃T = ρ2/3F̃
4/3
P for strong and weak pinning, respectively. We will always

refer to the dimensionless quantities below and drop the tilde to simplify the notation.

Our simulations were carried out for Fp = 1 and ρ = 0.1, yielding Lc = 1.5 and

Tdp = 0.46. The dimensional estimate for the threshold force gives FT = 0.1, which is

consistent with our result FT = 0.2435 ± 0.005 obtained from the simulations. The mean

velocity of the string is shown in Fig. 2 for various temperatures and system sizes. For very

large driving forces the effect of pinning is negligible and the string advances uniformly,

with v ≈ F . For T 6= 0 there is no sharp transition and the velocity at low driving forces

is small but finite. The velocity versus driving force (v-F ) curve always exhibits a tail

with positive curvature below the T = 0 threshold. At higher driving forces the curvature

of the v-F curve changes sign and eventually approaches the asymptotic limit v ∼ F . At

T = 1.0 × 10−2, well below our dimensional estimate of Tdp ≈ 0.46, thermal effects have

already washed out completely the depinning transition. Thermal effects are quantitatively

more pronounced than expected from dimensional estimates.

We distinguish three regimes characterizing the string response at finite temperature.

At high driving forces the deviation from the asymptotic behavior v ∼ F are well described

by the perturbation theory discussed in section 3. If T << Tdp our simulation agree with

δv/F ∼ F−3/2(with a crossover to δv/F ∼ F−2 at very large driving force) and the v-F

curve has a negative curvature in this regime. At higher temperature the v-F curve shows

an intermediate region with positive curvature where δv/F ∼ F−1/3. The qualitative

difference in the shape of the v-F curve at high and low temperature is consistent with the

results of the perturbation theory discussed at the end of Section 3. The value of T above

which thermal effects change qualitatively the response is, however, much lower than the

value obtained for Tdp from dimensional estimates. Finally, at very high forces, 1− v/F ∼
F−2. This crossover is controlled by the range of the pinning potential correlations in the

z direction.

For driving forces within a few percent of the zero temperature threshold and suf-

ficiently low temperature, the mean velocity exhibits the scaling behavior proposed by
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Fisher in the context of CDW’s. He argued that thermally-induced “hops” over pinning

energy barriers are analogue to jumps resulting from ramping up the force at T = 0.

The velocity evaluated at the T = 0 threshold is found to scale with temperature as

v(F = FT , T ) ∼ T β/τ , with β = 0.24 and τ = 3/2, as shown in Fig. 1. In addition in the

region of low T and F close to FT , our data can be fit to the scaling form proposed by

Fisher

v(f, T ) ∼ T β/τB(fT−1/τ), (4.1)

as shown in Fig. 3. Here B(x) is a scaling function that behaves as B(x) ∼ xβ for x → ∞.

This scaling fails, however, at higher temperatures.

Finally, at very small driving forces (F << FT ) and low temperatures (T << Tdp) the

dynamics occurs via creep over pinning energy barriers and v ∼ e−U(F )/T . The pinning

energy barrier U(F ) has been predicted to diverge when F → 0 as U(F ) ∼ F−µ. The creep

exponent µ has been estimated by dimensional analysis as µ = 1/4. It should, however,

be noticed that this result was obtained by assuming that the roughening exponent of the

string has the equilibrium value ζeq = 2/3. Our numerical results in this region are not

inconsistent with a small value of µ, as shown in Fig. 4, but are insufficient to either

confirm or discard the assumption that the creep dynamics is controlled by the single

diverging energy scale U(F ) and to determine the creep exponent conclusively. A different

approach may be needed to address this point.

5. Avalanches in the T = 0 pinned state

In this section we discuss the critical behavior of the interface at zero temperature in

the pinned region, as the threshold FT is approached from below by slowly increasing the

driving force. As discussed recently by Narayan and Fisher [10] for the interface problem

and in more detail by Narayan and Middleton [28] for CDW’s, local instabilities occurs as

F is increased towards threshold resulting in “avalanches” of various size. The notion of

avalanches was introduced to describe the large response to a local perturbation in models

exhibiting self-organized criticality (SOC)[29]. Here we discuss avalanches obtained in

response to a small increase of the driving force, which provides a global perturbation that

affects equally all the discrete string elements. This perturbation, if sufficiently small, will,

however, only trigger instabilities locally. The resulting response consists of discontinuous

local jumps of portions of the interface (i.e., avalanches), with a distribution of sizes. The

size of an avalanche can be defined in terms of its area (or moment)A or of its diameter
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S‖ in the direction of interface. We start the system in a pinned configuration at a driving

force F < FT . Increasing the reduced force f = F/FT − 1 from f to f + df triggers a

forward jump of sections of the string, until a new metastable pinned state is reached.

The avalanche is characterized by the total area A swept by the string as a result of the

increase in driving force,

A =

∫ S‖

0

dzu(z). (5.1)

Assuming u(z) ∼ zζ , with ζ a roughening exponent, the area and diameter of the avalanche

are related by

A ∼ S1+ζ
‖ . (5.2)

Figure 5 shows a plot of the area of the avalanches versus their diameter. The straight line

has slope 2 and we find ζ = 1 ± 0.05.

Fisher and Narayan have conjectured that the distribution of avalanche sizes near

threshold obeys the scaling form given in Eq. (1.2)[10]. Using Eq.(5.2), one can also im-

mediately obtain the scaling form for the number distribution of avalanche areas, DA(A; f),

given by,

DA(A; f) =
1

A1+κA
D̂(A1/(1+ζ)/ξ ), (5.3)

with

κA =
κ

(1 + ζ)
. (5.4)

Rather than considering the distribution of avalanches at a fixed force f , we have evaluated

numerically the distribution of avalanche areas and diameters integrating over all driving

force below FT . The total distribution of avalanche size is given in Eq. (1.3). The

corresponding distribution of avalanche areas is given by

DA(A) =

∫ 0

−1

dfDA(A; f) ∼ 1

A1+κ′
A

. (5.5)

The corresponding exponents are related to the exponents defined in (1.2)and (5.3)by

κ′ = κ +
1

ν
,

κ′
A = κA +

1

ν (1 + ζ)
.

(5.6)

To generate avalanches, we start with the string in a metastable pinned configuration

well below FT and study the response to a small increase ∆F of the force (we have used
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∆F = 1× 10−4 in most of our simulations). The increase in force triggers local avalanches

which are recorded, until the string reaches a new pinned configurations. The procedure

is then repeated by stepping up again the force of an amount ∆F until FT is reached.

If, however, the string slides as a whole in response to the small perturbation, we discard

this event, return to the original pinned configuration and repeat the procedure with a

smaller ∆F . These “giant avalanches” are discarded because they are a finite-size effect,

characteristic of the response of finite systems above threshold. The distributions are

shown in Figs. 6a and 6b for two system sizes. They exhibit a power-law decay with

κ′ = 1.0 ± 0.2 and κ′
A = 0.5 ± 0.15.

In order to gain further insight in the “shape” of the avalanches, we define the number

distribution Du(∆u; f) of the local displacement advances ∆u following the ramping of the

force. More precisely Du(∆u; f)d(∆u)df is the number of displacement advances between

∆u and ∆u + d(∆u) that occur when the reduced force is increased from f to f + df . To

develop a scaling ansatz for Du(∆u; z) we proceed as follows. Let n(∆u|A)d(∆u) be the

conditional number of displacements between ∆u and ∆u + d(∆u) that occurs within a

given avalanche of fixed area A. We assume that the transverse shape of the avalanche (in

the direction of motion) can be characterized by a single length scale S⊥, defined as

S⊥ = A/S‖. (5.7)

then conjecture a scaling ansatz for n(∆u|A) of the form

n(∆u|A) =
S‖

S⊥
n̂(∆u/S‖), (5.8)

where n̂(x) is a scaling function that depends on the detailed shape of the string and the

prefactor in Eq. (5.8) is determined by the normalization condition

∫ S⊥

0

d(∆u)n(∆u|A) = S‖. (5.9)

The distribution of displacements Du(∆u; f) can then be written as

Du(∆u; f) =

∫

dADA(A; f)n(∆u|A). (5.10)

By inserting Eq. (5.8)in Eq. (5.10)and making use of Eq. (5.2)and (5.7), we obtain

Du(∆u; f) ∼ 1

∆u1+κu
, (5.11)
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with

κu = −1

ζ
+ κA

(

1 +
1

ζ

)

. (5.12)

Finally, the number distribution of the local displacements ∆u integrated over all forces

up to FT decays as

Du(∆u) ∼ 1

∆u1+κ′
u

, (5.13)

with

κ′
u = κu +

1

ζν
. (5.14)

The distribution Du(∆u) can be evaluated with excellent statistics and is shown in Fig. 7.

We find κ′
u = 0.0 ± 0.10.

The primed exponents κ′, κ′
A and κ′

u governing the scaling of the distribution of

avalanches for all forces below FT are related by the same relations (5.4)and (5.12)that

hold among the unprimed exponents,

κ′
A =

κ′

(1 + ζ)
,

κ′
u = κ′

A +
1

ζ
(κ′

A − 1).

(5.15)

The exponents obtained from our numerics satisfy well these scaling relations.

The correlation length exponent ν can be inferred from (5.6) or (5.14) if at least

one of the distribution at fixed driving force is computed numerically. This is in general

more difficult since the distribution is quite sensitive to the value of the force increment

used, which needs to be made very small. We have evaluated numerically D(S‖; f) for

three different driving force. The distribution for f = 0.063 is shown in Fig. 8. We find

κ = 0.05± 0.05. Using the first of Eq. (5.6)and the value κ′ = 1.0± 0.2 quoted earlier, we

obtain ν = 1.13±0.30. The result is again consistent with theoretical predictions. Finally,

as a consistency check, we can now use ν = 1.13±0.30 in the second of Eqs. (5.6)and Eq.

(5.14)to obtain κA = 0.07± 0.22 and κu = −0.95± 0.15. These in turn satisfy the scaling

relationships (5.4)and (5.12) .

The distribution of avalanches in discrete interface growth models has been studied

numerically by Sneppen [29] and by Sneppen and Jensen [30]. In their model the growing

interface is maintained in a “critical state” by a local growth rule similar to that used

in invasion percolation models that prevents the formation of overhangs. The spatial

and temporal correlations between successive growth events and avalanches in this model
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have been studied extensively by Leschhorn and Tang [31]. They find a rather complex

behavior where the distribution of growth events shows dynamical scaling only locally. This

is because in the Sneppen model the driving force is self-tuned to maintain the interface

in a “critical state” at the onset of steady state motion, thereby introducing additional

spatial and temporal inhomogeneities in the model.

In contrast, in our continuous model the distributions of various measures of avalanche

sizes displays a well defined dynamical scaling characterized by a single correlation length

ξ ∼ |f |−ν as the threshold is approached from below. The correlation length exponent

ν equals the correlation length exponent ν obtained when the transition is approached

from above. On the other hand, the values of the scaling exponent of the avalanche size

distribution, κ ≈ 0, and of the roughness exponent, ζ ≈ 1, indicate that the interface may

develop large local gradients, which were explicitly excluded in our model. A physical

interface will relax these large strains by pinching off loops around the pinning centers, a

mechanism that may modify qualitatively the dynamics in the critical region both below

and above threshold. In particular this could reduced considerably the value of the rough-

ness exponent ζ. Further studies of a more general model that incorporates strong elastic

nonlinearities and allows for overhangs and loop generation are clearly needed to address

these questions.
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Figure Captions

Fig. 1. Creep velocity as a function of dimensionless temperature T at the T = 0 thresh-

old force FT . The sample size is indicated. The line shows the slope β/τ = 0.16

for the exponents values discussed in the text.

Fig. 2. Creep velocity as a function of dimensionless driving force at various tempera-

tures. The straight line shows the asymptotic uniform velocity v ∼ F . The data

shown summarize results for three different system size : L = 1024, 4096, 16384.

The same symbol is used for different system size as no significant size dependence

was observed.

Fig. 3. Scaled creep velocity vT−β/τ versus scaled reduced force fT−1/τ for the three

lowest temperatures of Fig. 2, using τ = 1.5 and β = 0.24.

Fig. 4. Log-log plot of the energy barrier U(F ) defined as U(F ) = T log(F/v) versus

driving force in the low temperature creep region(from T = 3.16 × 10−4 to T =

1.00 × 10−2). The dashed line has slope −1/4.

Fig. 5. The area of avalanches obtained by successively stepping up the driving force by

small increments f ≈ 4.0 × 10−4 for −1 ≤ f ≤ 0 versus their diameter in the

direction of the interface for both L = 1024 and L = 4096. The straight line has

slope 2.

Fig. 6. The distribution of avalanche diameters (a) and areas (b) integrated over all

driving forces. The straight line has slope -2 for (a) and −3
2 for (b).

Fig. 7. The number distribution of displacement increments ∆u for all driving forces

below threshold for L = 4096. The straight line has slope -1.

Fig. 8. The number distribution of avalanche diameters for fixed driving force f =

−0.063. The dimensionless ∆F used here is ∆F ≈ 7.0 × 10−4. The straight

line has slope −1.05.
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