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ON THE NATURALITY OF THE SPECTRAL SEQUENCE FROM

KHOVANOV HOMOLOGY TO HEEGAARD FLOER HOMOLOGY

J. ELISENDA GRIGSBY AND STEPHAN WEHRLI

Abstract. In [18], Ozsváth-Szabó established an algebraic relationship, in the form
of a spectral sequence, between the reduced Khovanov homology of (the mirror of) a

link L ⊂ S3 and the Heegaard Floer homology of its double-branched cover. This
relationship, extended in [19] and [4], was recast, in [5], as a specific instance of a
broader connection between Khovanov– and Heegaard Floer–type homology theories,
using a version of Heegaard Floer homology for sutured manifolds developed by Juhász
in [7]. In the present work we prove the naturality of the spectral sequence under certain
elementary TQFT operations, using a generalization of Juhász’s surface decomposition
theorem valid for decomposing surfaces geometrically disjoint from an imbedded framed
link.

1. Introduction

Let L ⊂ S3 be a link. There is an algebraic connection, discovered by Ozsváth and
Szabó, between the Khovanov homology [10] of L and the Heegaard Floer homology [17]
of the double-branched cover of L. Specifically, in [18], Ozsváth-Szabó construct a spec-

tral sequence whose E2 term is K̃h(L) and whose E∞ term is ĤF (Σ(S3, L)). Here (and

throughout), K̃h denotes Khovanov’s reduced homology [11], L denotes the mirror of L,

Σ(A, B) denotes the double-branched cover of A branched over B, and ĤF denotes the
(∧ version of the) Heegaard Floer homology [17]. Unless explicitly stated otherwise, all
Khovanov and Heegaard Floer homology theories discussed in this paper will be considered
with coefficients in Z2.

Later work, of Roberts in [19] and the authors in [4], placed Ozsváth-Szabó’s work in a
more general context, leading to:

• a proof, in [4], that Khovanov’s categorification, [12], of the reduced, n–colored
Jones polynomial detects the unknot whenever n ≥ 2, as well as

• a new method, due to Baldwin-Plamenevskaya [2], for establishing the tightness of
certain contact structures.

In [5], we recast [18], [19], and [4] as specific instances of a broader relationship between
Khovanov- and Heegaard Floer-type homology theories, using a version of Heegaard Floer
homology for sutured manifolds developed by Juhász in [7]. The aim of the present work
is to prove that the connection between Khovanov and Heegaard-Floer homology behaves
well under certain natural geometric operations.

In particular, let D represent an oriented disk, A an oriented annulus, and I = [0, 1] the
oriented closed unit interval. In [4] we prove the existence of a spectral sequence from the
Khovanov homology of any admissible balanced tangle, T ⊂ D × I, to the sutured Floer
homology of Σ(D× I, T ). Here, D× I is viewed as a product sutured manifold in the sense

JEG was partially supported by an NSF postdoctoral fellowship and NSF grant number DMS-0905848.
SW was supported by a postdoctoral fellowship of the Fondation Sciences Mathématiques de Paris.
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2 J. ELISENDA GRIGSBY AND STEPHAN WEHRLI

T ′

F

T

Figure 1. Adjoining a trivial strand, separated from an n–balanced tangle,
T ⊂ D × I, by a vertical disk, F , to form an n + 1–balanced tangle, T ′ ⊂
D × I.

of Gabai [3] (Definition 2.1), sutured Floer homology [7] is an invariant of balanced sutured
manifolds (see Definitions 2.1 and 2.2), and an admissible n–balanced tangle (Definition 2.4)
is a properly-imbedded 1–manifold satisfying:

(1) T ∩ (∂D × I) = ∅, and
(2) |T ∩ (D × {1})| = |T ∩ (D × {0})| = n ∈ Z≥0,

where two admissible n–balanced tangles are considered equivalent if they are ambiently
isotopic through admissible n–balanced tangles. In [5], we prove the existence of a similar
spectral sequence from the Khovanov homology of a link (admissible 0–balanced tangle), L,
in the product sutured manifold A × I to the sutured Floer homology of Σ(A × I, L).

These spectral sequences are constructed, following [18], by associating to an enhanced
projection (diagram) of T ⊂ D × I (resp., L ⊂ A × I) a framed link, LL ⊂ Σ(D × I, T )
(resp., LL ⊂ Σ(A × I, L)). By counting holomorphic polygons in a particular choice of
Heegaard multi-diagram compatible with LT (resp., LL), one obtains a filtered complex,
X(LT ) (resp., X(LL)), with an associated link surgeries spectral sequence whose E2 term is
an appropriate version of Khovanov homology for T (resp., for L) and whose E∞ term is
the sutured Floer homology of Σ(D × I, T ) (resp., of Σ(A × I, L)).

Roberts, in [20, Sec. 7], proves that the filtered quasi-isomorphism type (Definition 2.6)
of X(LT ) (resp., X(LL)) is invariant of the choice of multi-diagram, and Baldwin, in [1],
proves that the filtered quasi-isomorphism type of X(LT ) is independent of the projection
of T (resp., L), yielding, for any n–balanced tangle T ⊂ D × I (resp., any link L ⊂ A × I)
a sequence of invariants, one for every page of the link surgeries spectral sequence for LT

(resp., LL).1

In the present work, we show that these invariants behave “as expected” with respect to
the following standard TQFT-type operations:

(1) trivial inclusion (see Figure 1),
(2) horizontal stacking (see Figure 2), and
(3) vertical cutting (see Figure 3).

In particular, let F(T ) := X(LT ) (resp., F(L) := X(LL)) denote the filtered chain
complex, described above and in Notation 2.7, associated to the balanced tangle T ⊂ D× I

(resp., link L ⊂ A × I). We prove:

1Baldwin and Roberts state their theorems only for the case where T ⊂ D × I is a 1–balanced tangle,
but their arguments are all local, hence work equally well in our more general setting. See Remark 3.9.
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T1

F

T1 + T2

T1

Figure 2. Stacking two (projections of) balanced tangles, T1, T2 ⊂ D× I,
to obtain a new balanced tangle, T1 + T2 ⊂ D × I.

Cut

L ⊂ A × I T ⊂ D × I

Figure 3. Cutting a link, L ⊂ A × I, to obtain a balanced tangle, T ⊂ D × I.

Theorem 5.1. (Trivial inclusion) Let T ⊂ D×I be a balanced tangle in the product sutured
manifold D × I, and let T ′ ⊂ D × I be the tangle obtained from T by adjoining a trivial
strand separated from T by a properly-imbedded I–invariant disk, F , as in Figure 1. Then

F(T ) = F(T ′).

Theorem 5.2. (Stacking) Let Ti ⊂ (D × I)i, for i = 1, 2, be two n–balanced tangles, and
let T1 + T2 ⊂ D × I be any n–balanced tangle obtained by stacking a projection, P(T1), of
T1 on top of a projection, P(T2), of T2 as in Figure 2. Then

F(T1 + T2) = F(T1) ⊗F(T2).

Theorem 5.8. (Cutting) [5, Thm. 3.1] Let L ⊂ A × I be a link, and let T ⊂ D × I be any
balanced tangle admitting a projection whose closure in A × I is a projection of L. Then

F(T ) ≤ F(L).

In the above, “F1 = F2” means that F1 is filtered quasi-isomorphic (Definition 2.6) to
F2, and “F1 ≤ F2” means that F1 is filtered quasi-isomorphic to a direct summand of F2.
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These naturality theorems follow from an extension of work of Juhász, who proves, in
[8], that the Floer homology of a sutured manifold behaves nicely in the presence of ad-
missible decomposing surfaces (Definition 4.1), properly-imbedded surfaces with boundary
intersecting the sutures in a controlled fashion. In particular, an admissible decomposing
surface, S, induces a splitting of the sutured Floer chain complex, and performing a surface
decomposition (Definition 4.1) along S picks out a direct summand of the splitting.

Using degeneration techniques suggested to us by Robert Lipshitz, we prove a generalized
version of Juhász’s surface decomposition theorem, applicable to filtered chain complexes
arising from sutured multi-diagrams. More precisely:

Theorem 4.5. Let L ⊂ (Y, Γ) be a framed link in a strongly-balanced sutured manifold
(Definition 2.2), and let S ⊂ (Y, Γ) be a connected decomposing surface satisfying:

(1) S ∩ L = ∅, and
(2) for every component V of R(Γ) the closed components of the intersection V ∩ S

consist of parallel oriented boundary-coherent curves (Definition 4.4).

Let (Y ′, Γ′) be the sutured manifold obtained by decomposing along S and L′ ⊂ (Y ′, Γ′)
the induced image of L. If X(L) (resp., X(L′)) is the filtered complex associated to L (resp.,
L′), then

X(L′) ≤ X(L).

The paper is organized as follows:

• In Section 2, we fix notation.
• In Section 3, we discuss splitting of the link surgeries spectral sequence in the pres-

ence of a decomposing surface disjoint from the link.
• In Section 4, we prove the surface decomposition theorem for sutured multi-diagrams

(Theorem 4.5).
• In Section 5, we prove the naturality results (Theorems 5.1, 5.2, and 5.8). In this

last section, we also discuss the relationship between the stacking operation and a
generalized version of the Murasugi sum.

Acknowledgments: We thank John Baldwin, Matt Hedden, Nathan Habegger, András
Juhász, Mikhail Khovanov, Rob Kirby, Robert Lipshitz, Peter Ozsváth, Lawrence Roberts,
and Liam Watson for interesting conversations. We are particularly indebted to Robert
Lipshitz for providing us with both the key idea in the proof of Theorem 4.5 and extremely
valuable feedback on a preliminary draft. A portion of this work was completed while
the second author was a visiting postdoctoral fellow at Columbia University, supported
by a Swiss NSF fellowship for prospective researchers. We are grateful to the Columbia
mathematics department for its hospitality.

2. Definitions and Notation Conventions

We shall assume familiarity with [4] and [5], where most relevant background material
and notation is collected. See, in particular:

• [4, Sec. 2], which contains necessary definitions and results related to sutured man-
ifolds and sutured Floer homology collected from [3], [7], and [8];

• [4, Sec. 4], which develops Ozsváth-Szabó’s link surgeries spectral sequence ([18])
for framed links in sutured manifolds;

• [4, Sec. 5] (resp, [5, Sec. 2]), which explains how to associate to an admissible
balanced tangle, T (resp., link L) in the product sutured manifold, D × I (resp,
A × I), two chain complexes and a spectral sequence from the first to the second,
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one arising from a Khovanov-type construction and the other arising from Juhász’s
Heegaard Floer-type construction applied to Σ(D × I, T ) (resp., Σ(A × I, L)).

We repeat the following definitions and establish the following notation for the conve-
nience of the reader:

Definition 2.1. [3] A sutured manifold (Y, Γ) is a compact, oriented 3–manifold with bound-
ary ∂Y along with a set Γ ⊂ ∂Y of pairwise disjoint annuli A(Γ) and tori T (Γ). The interior
of each component of A(Γ) contains a suture, an oriented simple closed curve which is
homologically nontrivial in A(Γ). The union of the sutures is denoted s(Γ).

Every component of R(Γ) = ∂Y − Int(Γ) is assigned an orientation compatible with the
oriented sutures. Let R+(Γ) (resp., R−(Γ)) denote those components of R(Γ) whose normal
vectors point out of (resp., into) Y .

Definition 2.2. [7, Defn. 2.2] A sutured manifold (Y, Γ) is said to be balanced if χ(R+) =
χ(R−), and the maps π0(Γ) → π0(∂Y ) and π0(∂Y ) → π0(Y ) are surjective.2

A sutured manifold (Y, Γ) is said to be strongly balanced if for each component F of ∂Y ,
χ(F ∩ R+(Γ)) = χ(F ∩ R−(γ).

Definition 2.3. A product sutured manifold is a sutured manifold of the form (F×I, ∂F×I),
where F is an oriented surface with ∂F 6= ∅ and I = [0, 1] is the closed unit interval.

Definition 2.4. [4, Defn. 5.1-5.2] Let F be an oriented surface with ∂F 6= ∅, and let
(F × I, ∂F × I) be the associated product sutured manifold, with F+ := F × {1} (resp.,
F− := F × {0}).

An admissible n–balanced tangle, T ⊂ F × I is (any representative of) an equivalence
class of properly-imbedded (unoriented) 1–manifolds satisfying

• T ∩ ∂(F × I) ⊂ Int(F+) ∪ Int(F−),
• T1, T2 are equivalent if they can be connected by an ambient isotopy acting trivially

on ∂F × I,
• |T ∩ F+| = |T ∩ F−| = n ∈ Z≥0.

We will often refer to 0–balanced tangles as links.

Let D represent an oriented disk and A an oriented annulus. In the present work, we will
focus on admissible balanced tangles T ⊂ D × I and links L ⊂ A × I.

Notation 2.5. Let F be a filtered chain complex. We will denote by ss(F) the spectral
sequence induced by F and Ei(F) its i–th page.

Definition 2.6. Let F1, F2 be two filtered chain complexes. We shall say that F1, F2 are
filtered quasi-isomorphic if there exists a third filtered chain complex, F ′, and filtered chain
maps

φj : Fj → F ′,

such that

φj : Ei(Fj) → Ei(F ′)

is an isomorphism for all i ∈ Z+, j = 1, 2.
If F1 and F2 are filtered quasi-isomorphic, we shall say

F1 = F2.

2The equivalence of this definition to the original definition in [7] is immediate.
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Notation 2.7. Let D denote an oriented disk, A an oriented annulus, and I = [0, 1] the
oriented closed unit interval.

Let T ⊂ D × I (resp., L ⊂ A × I) be an admissible balanced tangle (resp., link) in
the product sutured manifold D × I (resp., A × I), and let LT ⊂ Σ(D × I, T ) (resp.,
LL ⊂ Σ(A × I, L)) be its associated surgery link in the double-branched cover, constructed
as in [4, Sec. 5] (resp., [5, Sec. 2]) by taking the preimage of simple arcs at each crossing of
the projection of T ⊂ D × I ⊂ R3 to the xz plane (resp., of L ⊂ A × I to A).

We will denote by F(T ) (resp., F(L)) the filtered complex inducing the link surgeries
spectral sequence associated to LT (resp., LL). Recall that E2(F(T )) (resp., E2(F(L))) is
an appropriate version of the Khovanov homology of T (resp., L) and E∞(F(T )) (resp.,
E∞(F(L)) is SFH(Σ(D × I, T )) (resp., SFH(Σ(A× I, L)). Note that F(T ) (resp., F(L))
is well-defined, up to filtered quasi-isomorphism (see Remark 3.9).

In addition, we note:

(1) Unless explicitly stated otherwise, every sutured manifold encountered in the present
paper may be assumed to be strongly balanced with no toroidal sutures (i.e., T (Γ) =
∅). Each sutured manifold will furthermore be endowed with a Riemannian metric,
along with a canonical unit vector field along ∂Y , denoted v0 (Notation 3.1).

(2) If (Y, Γ) is a “standard” sutured manifold of one of the types describe in [4, Ex.
2.5-2.7] or obtained from such a sutured manifold by taking a cyclic branched cover
over an admissible, properly imbedded 1–manifold as described in [4, Defn. 2.11],
we will sometimes omit reference to Γ in the notation.

(3) SFH(Y ) will denote the sutured Floer homology [7] of (Y, Γ), and SFH(Y ; s) will
denote the sutured Floer homology of (Y, Γ) in the Spinc structure s. Recall that
a Spinc structure on a sutured manifold is a homology class of unit vector fields on
(Y, Γ), all of which agree with v0 on ∂Y (see Definition 3.2). SFH(Y ) is the homol-
ogy of any chain complex, CFH(Y ), obtained by applying the standard Heegaard
Floer construction to the two half-dimensional tori, Tα, Tβ ⊂ Symd(Σ), associated
to a balanced Heegaard diagram, (Σ, α, β), for (Y, Γ). In particular, generators of
CFH(Y ) are elements x ∈ Tα ∩ Tβ . See [7] for more details.

3. Splitting the Link Surgeries Spectral Sequence

In [4, Sec. 4] (following [18, Sec. 4]), it was proved that an oriented, framed link

L = L1 ∪ . . . ∪ Lℓ

in a balanced, sutured manifold (Y, Γ) induces a link surgeries spectral sequence which
converges to SFH(Y, Γ), the sutured Floer homology of (Y, Γ). In this section, we prove
that this spectral sequence splits as a direct sum of spectral sequences in the presence of
a properly-imbedded surface (S, ∂S) ⊂ (Y, ∂Y ) satisfying L ∩ S = ∅. This generalizes [19,
Sec. 7], which treats the case of a Seifert surface in a sutured knot complement.

3.1. Sutured multi-diagrams, Spinc structures, and Alexander gradings. In order
to set up the statement of the result, we recall some definitions.

Notation 3.1. [7, Not. 3.1] Let v0 be a non-zero vector field along ∂Y that points into Y

along R−(Γ), points out of Y along R+(Γ), and on Γ is the gradient of the height function
s(Γ) × I → I.

Definition 3.2. [7, Sec. 4] A Spinc structure, s, on a sutured manifold, (Y, Γ) is a homology
class of nowhere-vanishing vector fields on Y , all agreeing with v0 on ∂Y . Two non-vanishing
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vector fields are said to be homologous if, away from finitely many points in Int(Y ), they
are homotopic through non-vanishing vector fields, rel ∂Y . The set of Spinc structures on
(Y, Γ) will be denoted Spinc(Y, Γ).

Definition 3.3. [8, Defn. 3.6] If s ∈ Spinc(Y, Γ), and t is a trivialization of v⊥0 , then c1(s, t)
is the relative Euler class of (v0)

⊥ with respect to t.

Remark 3.4. Note that if (Y, Γ) is strongly-balanced, then (v0)
⊥ is trivializable ([8, Prop.

3.4]).

With these notions in place, we see that a properly-imbedded surface, (S, ∂S) ⊂ (Y, ∂Y ),
in a balanced, sutured 3–manifold, (Y, Γ), induces a splitting of any chain complex, CFH(Y ),
used to compute SFH(Y ). In particular, let [S] ∈ H2(Y, ∂Y ; Z) denote the homology class
of S and define:

sk(S) := {s ∈ Spinc(Y, Γ) | 〈c1(s, t), [S]〉 = 2k.}

Subject to the map s : Tα ∩ Tβ → Spinc(Y, Γ) defined in [7, Sec. 4] (following [17,
Sec. 2.6]), [S] endows the generators of CFH(Y ) with a 1

2Z–grading, which we will call the
AlexanderS–grading, or AS–grading, for short. In particular, if x ∈ Tα ∩ Tβ is a generator
of CFH(Y ), then we define

AS(x) :=
1

2
〈c1(s(x), t), [S]〉.

Since the differential on the complex is Spinc-structure preserving, it is, in particular, AS–
grading preserving. Hence, [S] induces a decomposition of SFH(Y ):

SFH(Y ) =
⊕

k∈ 1
2

Z

SFH(Y ; sk(S)).

In other words,
AS(x) = k ⇐⇒ s(x) ∈ sk(S).

Remark 3.5. Gradings induced on sutured Floer chain complex generators by properly-
imbedded surfaces were defined by Juhász in [9, Sec. 4]. Note that changing the trivialization
induces an overall shift in the AS gradings by half the rotation number around ∂S of the
new trivialization with respect to the old, by [9, Lem. 3.11].

Now, suppose L = L1 ∪ . . . ∪ Lℓ is an oriented, framed link in a sutured manifold (Y, Γ).
Denote by (λ1, . . . , λℓ) the ℓ–tuple of framings and (µ1, . . . , µℓ) the ℓ–tuple of meridians.
Then to each “multi-framing,”

I = (m1, . . . , mℓ) ∈ {0, 1,∞}ℓ,

in the sense of [18, Sec. 4], we can associate a sutured manifold, YI , obtained by doing mi–
framed surgery on Li for each i = 1, . . . , ℓ. Here ∞ means no surgery, 0 means λi–framed
surgery, and 1 means (λi + µi)–framed surgery.

Beginning with the data of a bouquet L∪a1∪ . . .∪aℓ (where ai is an embedded arc in Y

whose interior is disjoint form L and from aj for j 6= i, and which connects a point on Li to
a point on R+(Γ)), we can construct a sutured Heegaard diagram (Σ, α, βI) representing a
sutured manifold, Y (I), homeomorphic to YI , as follows. Let

(Σ, {α1, . . . , αd}, {βℓ+1, . . . βd})

be a sutured Heegaard diagram for Y − L′, where

L′ := N(L ∪ a1 ∪ . . . ∪ aℓ)
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is a regular neighborhood of the bouquet, and let γ1, . . . , γℓ ⊂ ∂(Y − L′) be disjoint simple
closed curves specifying the multi-framing I = (m1 . . . , mℓ). If we set (βI)i := γi for i ≤ ℓ

and (βI)i := βi for ℓ < i ≤ d, then (Σ, α, βI) is a Heegaard diagram representing the
sutured manifold, Y (I), obtained from Y − L′ by attaching 3-dimensional 2-handles along
the curves γi ⊂ Y − L′. Furthermore, there is a diffeomorphism3

fI : YI −→ Y (I),

which restricts to the identity map on YI−L′′ = Y −L′′, where L′′ denotes a suitably chosen
thickening of the regular neighborhood L′. In particular, this implies that YI and Y (I) are
equivalent as sutured manifolds and that we have a canonical inclusion iI := fI |Y −L′′ of
Y −L′′ into Y (I) for each I ∈ {0, 1,∞}ℓ. Moreover, fI |∂YI

agrees with the identity map on
(∂YI)−L′′, and since L′′ ∩ ∂YI is a disjoint union of disks, this determines fI |∂YI

uniquely
up to isotopy relative to (∂YI) − L′′.

Definition 3.6. We endow the set {0, 1,∞}ℓ with the dictionary order, and we call a tuple
I ′ = (m′

1, . . . , m
′
ℓ) ∈ {0, 1,∞}ℓ an immediate successor of I = (m1, . . . , mℓ) if there exists

some j such that mi = m′
i when i 6= j and (mj , m

′
j) is either (0, 1) or (1,∞).

It is explained in [4, Sec. 4] (following [18, Sec. 4]) how to construct a sutured Heegaard
multi-diagram (

Σ, α, βIi1
, . . . , βIim

)

for every subset

{Ii1 , . . . , Iim
} ⊆ {0, 1,∞}ℓ,

beginning with the data of a bouquet subordinate to L.

Notation 3.7. Let {Ii1 , . . . , Iim
} ⊆ {0, 1,∞}ℓ be any nonempty subset. We denote by(

Σ, α, β{Ii1
,...,Iim}

)
any sutured multi-diagram compatible with L, produced by the method

outlined in [4, Sec. 4]. I.e.,
(
Σ, α, β{Ii1

,...,Iim}

)
:=
(
Σ, α, βIi1

, . . . , βIim

)
.

In particular, for each I ∈ {Ii1 , . . . , Iim
}, (Σ, α, βI) is a sutured Heegaard diagram for

Y (I).

We will have particular interest in {0, 1,∞}ℓ ⊆ {0, 1,∞}ℓ and {0, 1}ℓ ⊂ {0, 1,∞}ℓ.
Accordingly:

Definition 3.8. Given a framed ℓ–component link L, we call any
(
Σ, α, β{0,1,∞}ℓ

)
a full

sutured multi-diagram for L and
(
Σ, α, β{0,1}ℓ

)
a (0, 1) sutured multi-diagram for L.

From these sutured multi-diagrams, one obtains chain complexes:

• From a full sutured multi-diagram for L, one constructs a chain complex

X =
⊕

I∈{0,1,∞}ℓ

CFH(Y (I)),

where CFH(Y (I)) is the chain complex associated to (Σ, α, βI). The differential

D : X → X

3when considered as a map between smooth manifolds with corners, cf. [13].
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is specified, on a generator ξ ∈ CFH(Y (I)), by

Dξ :=
∑

J

∑

{I=I0<...<Ij=J}

DI1<...<Ij (ξ).

Here the index set of the inner sum is taken over the set of all increasing sequences I
to J having the property that Ii+1 is an immediate successor of Ii, and DI0<...<Ij

is defined by counting certain holomorphic j +2–gons in the sutured multi-diagram,
(Σ, α, βI1, . . . , βIj).

• From a (0, 1) sutured multi-diagram for L, one similary constructs the complex
X(0,1) ⊂ X , with restricted differential D(0,1). It is then proved, in [4, Prop. 4.1],
that X(0,1) is a filtered chain complex, whose associated spectral sequence has E1

term ⊕

I∈{0,1}ℓ

SFH(Y (I)),

and E∞ term SFH(Y (I∞)), where I∞ := (∞, . . . ,∞).

Remark 3.9. By work of Roberts in [20, Sec. 7], we know that the filtered quasi-
isomorphism type of X (resp., X(0,1)) is independent of the choice of full (resp., (0, 1))
sutured multi-diagram for L and, hence, each term of the associated spectral sequence is an
invariant of the framed link L ⊂ (Y, Γ).

More specifically, any two full or (0, 1) sutured multi-diagrams compatible with a given
framed link L ⊂ (Y, Γ) are related by a sequence of (de)stabilizations, isotopies, and han-
dleslides. Roberts, in [20, Sec. 7], constructs a filtered chain map associated to each type of
move, which he proves is a filtered quasi-isomorphism.4 In the case of a (de)stabilization,
this map is the obvious filtered chain isomorphism [17, Sec. 10], while in the case of an
isotopy (resp., handleslide), the map is obtained by counting holomorphic polygons in a su-
tured multi-diagram containing the curves before and after the isotopy (resp., handleslide).
To prove that each map is a filtered chain map, he uses polygon associativity [18, Sec. 4],
verifying in each case that certain ends of 1–dimensional moduli spaces of polygons cancel
in pairs as in [18, Lem. 4.5]. Since each map agrees with the one defined by Ozsváth-Szabó
in the proof of the isotopy (resp., handleslide) invariance of Heegaard Floer homology (see
[17], [7]), it induces an isomorphism on the E1 page.

Furthermore, if a link LT ⊂ Σ(D × I, T ) (resp., LL ⊂ Σ(A × I, L)) is obtained from
an admissible balanced tangle T ⊂ D × I (resp., a link L ⊂ A × I) as in [4] (resp., [5]),
then each page of the link surgeries spectral sequence associated to LT (resp., LL) is an
invariant of T (resp., L). This follows immediately from [1], in which Baldwin proves that if
two projections of a link L in S3 are related by a sequence of Reidemeister moves, then the
resulting link surgeries spectral sequence for LL is an invariant of L. His arguments transfer
to our more general setting without change. We need only note:

(1) Any two projections of a balanced tangle T ⊂ D × I are related by projection
isotopies, Reidemeister moves, and insertion/deletion of a braid at either the top
or bottom. Projection isotopies do not affect LT , and insertion/deletion of a braid
at the top or bottom results in a filtered quasi-isomorphic complex, because all
resolutions of a braid have backtracking except the trivial one (see [4, Sec. 5.2]).

4More precisely, Roberts proves the existence of a “1–quasi-isomorphism,” a filtered chain map inducing
an isomorphism on the E1 page (and, hence, an isomorphism on every subsequent page) of the associated
spectral sequence.
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(2) Any two diagrams for a link L ⊂ A× I are related by diagram isotopies and Reide-
meister moves which, by [1], yield filtered quasi-isomorphic complexes.

Bearing Remark 3.9 in mind, if L ⊂ (Y, Γ) is a framed link, we will henceforth refer to
the link surgeries spectral sequence associated to L. Similarly, if a link LT ⊂ Σ(D × I, T )
(resp., LL ⊂ Σ(A× I, L)) is obtained from an admissible balanced tangle T ⊂ D× I (resp.,
a link L ⊂ A× I) as in [4] (resp., [5]), then we will refer to the spectral sequence associated
to T (resp., L).

Now suppose L = L1 ∪ . . . ∪ Lℓ ⊂ (Y, Γ) is geometrically disjoint5 from a given ori-
ented, imbedded decomposing surface (S, ∂S) ⊂ (Y, ∂Y ) satisfying all of the hypotheses of
Theorem 4.5. In view of [8, Lem. 4.5], we can then assume that S may be isotoped in a
neighborhood of ∂Y so that it is good, i.e. so that each component of ∂S intersects both
R+(Γ) and R−(Γ). This, in turn, implies that each component of Y − S intersects both
R+(Γ) and R−(Γ), so we can find a bouquet L∪ a1 ∪ . . .∪ aℓ geometrically disjoint from S.
Denoting by L′′ a (thickened) regular neighborhood of L∪ a1 ∪ . . .∪ aℓ as in the paragraph
preceding Definition 3.6, we can in fact assume that S is fully contained in Y − L′′. In the
following definitions, I ∈ {0, 1,∞}ℓ is an arbitrary multi-framing, and Y (I) is the sutured
manifold defined in the paragraph preceding Definition 3.6.

Definition 3.10. Let (S, ∂S) ⊂ (Y, ∂Y ) be a decomposing surface that is fully contained in
Y −L′′. Then we denote by SI the image of S under the natural imbedding Y −L′′ →֒ Y (I),
and we say that SI ⊂ Y (I) is compatible with S ⊂ Y .

Now fix a trivialization, t, of the oriented 2-plane field (v0)
⊥ on ∂Y . Recall that YI is

the sutured manifold obtained by performing I–surgery on L ⊂ Y , hence ∂YI = ∂Y for all
I ∈ {0, 1,∞}ℓ.

Definition 3.11. For each I ∈ {0, 1,∞}ℓ, let fI : YI → Y (I) be the smooth map intro-
duced in the paragraph preceding Definition 3.6 and

dfI : TYI → TY (I)

its differential. Then we denote by tI := dfI(t) the trivialization of (v0)
⊥ on ∂Y (I) induced

by t, and we say that tI is compatible with t.

Given the trivializations tI , we can endow each chain complex, CFH(Y (I)), with ASI
–

gradings and this, in turn, endows

X =
⊕

I∈{0,1,∞}ℓ

CFH(Y (I))

with AS gradings. The following lemma verifies that the differential, D, in the complex, X ,
respects this grading.

Lemma 3.12. Let L = L1 ∪ . . . ∪ Lℓ ⊂ (Y, Γ) be an oriented, framed link and S ⊂ (Y, Γ)
a decomposing surface satisfying the conditions of Theorem 4.5. Suppose I1 < . . . < Ik

is a sequence of multi-framings such that Ii+1 is an immediate successor of Ii for each
i ∈ {1, . . . , k − 1}, and (Σ, α, βI1 , . . . , βIk) is an associated sutured multi-diagram. Then
the map DI1<...<Ik obtained by counting holomorphic (k + 1)–gons preserves AS–gradings.

Proof. Let Ψ ∈ π2(x, θ, . . . , θ,y) be a domain representing a (k + 1)–gon contributing to
DI1<...<Ik , where

(1) x ∈ Tα ∩ Tβ
I1

5Note that if Li∩S = 0 algebraically, one can find a homologous surface, S′, which satisfies this condition.
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(2) y ∈ Tα ∩ Tβ
Ik

, and

(3) θ is the canonical top-degree generator in each of Tβ
Ii

∩ Tβ
Ii+1

for each i ∈
{1, . . . , k − 1}.

Recall (see [4, Sec. 3]) that one associates to a sutured multi-diagram, (Σ, η0, . . . , ηk), a
4–manifold:

Wη0,...,ηk :=
(Pk+1 × Σ)

∐k
i=0(ei × Ui)

(ei × Σ) ∼ (ei × ∂Ui)
.

Here, Ui is the compression body obtained from Σ × [0, 1] by attaching a 3-dimensional
2-handle along each curve ηi

j ×{1}, for each ηi
j ∈ ηi. Pk+1 is a topological (k +1)–gon, with

vertices labeled vi, for i ∈ Zk+1, clockwise, and ei is the edge connecting vi to vi+1. Note
that for each i ∈ Zk+1, the sutured manifold

−Yηiηi+1 := Ui

⋃

Σ×{0}

−Ui+1

sits naturally as a subset of ∂Wη0,...,ηk , so we may define:

(1) Z := ∂Wη0,...,ηk −
⋃

i∈Zk

Int(−Yηiηi+1).

Letting W denote the 4–manifold obtained as above from the sutured multi-diagram
(Σ, α, βI1 , . . . , βIk), we obtain a related 4–manifold, W , by appropriately “capping off”
certain subsets of the boundary of W . We will view W as a cobordism (with corners)
between Yα,β

I1
and Yα,β

Ik
.

More explicitly, let Uα (resp., Uβ
Ii

) denote the compression body obtained from Σ× [0, 1]
by attaching 3-dimensional 2-handles along the curves αj × {1} (resp., (βIi)j ×{1}). Since
Ii+1 is an immediate successor of Ii for i ∈ {1, . . . , k−1}, the compression body Uβ

Ii+1
can

be obtained from Uβ
Ii

by performing surgery on a framed knot Ki ⊂ Uβ
Ii

corresponding to

the component of L on which the multi-framings Ii and Ii+1 disagree. More precisely, we
have a diffeomorphism fi : Uβ

Ii
(Ki) → Uβ

Ii+1
, where Uβ

Ii
(Ki) is the result of performing

surgery on Ki ⊂ Uβ
Ii

. Let gi : ∂Uβ
Ii

→ ∂Uβ
Ii+1

be the restriction of fi to ∂Uβ
Ii

(Ki) =
∂Uβ

Ii
, and let Wi be the 4-manifold obtained from Uβ

Ii
× [0, 1] by attaching a 4-dimensional

2-handle along the framed knot Ki × {1}. Then

∂Wi = (−Uβ
Ii

× {0}) ∪ (∂Uβ
Ii

× [0, 1]) ∪ (Uβ
Ii

(Ki) × {1})

∼= (−Uβ
Ii

× {0}) ∪ (∂Uβ
Ii

× [0, 1]) ∪ (Uβ
Ii+1

× {1}),

where, in the second line, ∂Uβ
Ii

× [0, 1] is glued to Uβ
Ii+1

× {1} using the map gi × id{1}.
The boundary of Wi contains a subset diffeomorphic to Yβ

Ii ,β
Ii+1

= −Uβ
Ii

∪Σ×{0} Uβ
Ii+1

(namely the subset (−Uβ
Ii
×{0})∪ (Σ×{0}× [0, 1])∪ (Uβ

Ii
(Ki)×{1})), and hence we can

use Wi to cap off the copy of −Yβ
Ii ,β

Ii+1
that appears in the boundary of W = Wα,β

I1 ,...,β
Ik

(see Figure 4). After doing this for each i ∈ {1, . . . , k − 1}, we obtain

W := W ∪ W1 ∪ . . . ∪ Wk−1,

and, by analogy to (1) above, we denote:

Z := ∂W −
(
Int
(
−Yα,β

I1

))
−
(
Int
(
Yα,β

Ik

))

Note that Z can be identified with the mapping cylinder of the map

g : ∂Yα,β
I1

−→ ∂Yα,β
Ik

,
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defined as the identity map on (∂Uα) − (Σ × {0}) and as the composition

gk−1 ◦ . . . ◦ g1 : R+(Uβ
I1

) −→ R+(Uβ
Ik

)

on R+(Uβ
I1

) := (∂Uβ
I1

) − (Σ × {0}).
Now recall (cf. [4, Defn. 3.5]):

Definition 3.13. A relative Spinc structure for a pair (W, Z) with W a 4–manifold and
Z ⊂ W a closed, smoothly-imbedded submanifold is an equivalence class of pairs (ξ, P )
where P is a finite collection of points in W − Z, and ξ is an oriented 2-plane field on
W − P , agreeing with a fixed, oriented 2–plane field, ξ0, on Z. Two such pairs (ξ, P )
and (ξ′, P ′) are considered to be equivalent if there is a compact 1-manifold C ⊂ W − Z

containing P and P ′ and with the property that ξ|W−C and ξ′|W−C are isotopic rel. Z. We
denote by Spinc(W, Z) the set of all relative Spinc structures for the pair (W, Z).

In [4, Sec. 3.1] (following [17]) it is shown how to associate to the domain, Ψ ∈
π2(x, θ, . . . , θ,y), a relative Spinc structure s(Ψ) ∈ Spinc(W, Z). Moreover, s(Ψ) extends
uniquely to a Spinc structure s(Ψ) ∈ Spinc(W, Z) satisfying

s(Ψ)|Y (I1) = s(x) and s(Ψ)|Y (Ik) = s(y),

where the fixed oriented 2–plane field, ξ0, on Z ∼= (∂Yα,β
I1

) × [0, 1] is defined as

ξ0 := (v0)
⊥ ⊕ 0.

The proof of the lemma is now based on the following two observations:

(1) The surfaces SI1 and SIk are isotopic in W rel. Z.
(2) The trivializations, tI1 = dfI1(t) and tIk = dfIk(t), of (v0)

⊥ on ∂Y (I1) and ∂Y (Ik)
extend naturally, via the map g, to a trivialization, tZ , of ξ0 on Z.

Observation (1) implies that

[SI1 ] = [SIk ] ∈ H2(W, Z; Z),

and observation (2), combined with the naturality of the relative first Chern class, imply
that

c1(s(Ψ), tZ) ∈ H2(W, Z; Z)

restricts to

c1(s(x), tI1) ∈ H2(Y (I1), ∂Y (I1); Z)

and

c1(s(y), tIk) ∈ H2(Y (Ik), ∂Y (Ik); Z).

Here, we use the following definition for the first Chern class of a relative spinc structure,
s ∈ Spinc(W, Z), with respect to a trivialization, tZ , of the fixed 2–plane field, ξ0, over Z:

Definition 3.14. Let s ∈ Spinc(W, Z) be represented by a pair, (ξ, P ), where P is a finite

collection of points in W − Z, and ξ is an oriented 2–plane field on W − P , agreeing with
ξ0 over Z. Then

c1(s, tZ) ∈ H2(W, Z; Z)

is the relative Euler class of ξ with respect to tZ . It is the obstruction to extending tZ to a

trivialization of ξ over the (relative) 2–skeleton of (W, Z).
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≃P4 × Σ

e × Uα

Yα,βI1 Yα,β
Ik

Yα,βI1 Yα,β
Ik

e × UβI1 e × UβI3

e × UβI2

Figure 4. Before capping off, the figure on the left represents the 4–
manifold Wα,β

I1 ,β
I2 ,β

cI3
. Capping off Yβ

I1 ,β
I2

and Yβ
I2 ,β

I3
with a copy

of the restriction to the upper compression body of the appropriate 4–
dimensional 2–handle attachment (pictured in green) yields the 4–manifold
cobordism associated to the sequence I1, I2, I3, as illustrated on the right.
The red dotted lines represent the critical levels of the associated relative
Morse decomposition.

We conclude:

AS(x) =
1

2
〈 c1(s(x), tI), [SI1 ] 〉

=
1

2
〈 c1(s(Ψ), tZ), [SI1 ] 〉

=
1

2
〈 c1(s(Ψ), tZ), [SIk ] 〉

=
1

2
〈 c1(s(y), tIk), [SIk ] 〉

= AS(y),

as desired. �

With this lemma in hand, it is now straightforward to construct a splitting of the link
surgeries spectral sequence of [4, Prop. 4.1], as follows.

Proposition 3.15. Let (Y, Γ) be a sutured manifold, (S, ∂S) ⊂ (Y, ∂Y ) an oriented surface,
and L = L1 ∪ . . . ∪ Lℓ ⊂ (Y, Γ) an oriented, framed link satisfying L ∩ S = ∅. For each
m ∈ 1

2Z, let

X(0,1)
m ⊂ X(0,1)

be the subcomplex of X(0,1) corresponding to those elements x ∈ CFH(Y (I)) satisfying

ASI
(x) = m,

where I ranges over all elements in {0, 1}ℓ.
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If D
(0,1)
m denotes the restricted differential, then (X

(0,1)
m , D

(0,1)
m ) is a filtered chain complex

whose associated spectral sequence has E1 term
⊕

I∈{0,1}ℓ

SFH(Y (I) ; sm(SI) )

and whose E∞ term is

SFH(Y (I∞) ; sm(S) ),

where I∞ := (∞, . . . ,∞).

Proof. By analogy to the notation established above, let Xm ⊂ X denote the subset of the
full complex,

X :=
⊕

I∈{0,1,∞}ℓ

CFH(Y (I))

corresponding to those elements in ASI
–grading m and let Dm denote the restricted differ-

ential. Lemma 3.12 tells us that (Xm, Dm) is a subcomplex of (X, D) and
(
X

(0,1)
m , D

(0,1)
m

)

is a subcomplex of
(
X(0,1), D(0,1)

)
for each m ∈ Z.

Furthermore, recall that
(
X(0,1), D(0,1)

)
is a filtered chain complex, where the filtration

arises from a different grading on the complex. Namely, if x ∈ CFH(Y (I)), with I =

(m1, . . . , mℓ), then we say that x is in filtration-grading
∑ℓ

i=1 mi. (X(0,1), D(0,1)) is then

a filtered chain complex, since D(0,1) is non-decreasing with respect to this grading. This

filtration-grading descends to each component,
(
X

(0,1)
m , D

(0,1)
m

)
, of the splitting, endowing

(
X

(0,1)
m , D

(0,1)
m

)
with the structure of a filtered chain complex for each m ∈ Z.

Now the proof follows exactly as in the proof of [4, Prop. 4.1], following the proof of
[18, Thm. 4.1]. Lemma 3.12 tells us that the various chain maps and homotopy maps
split according to ASI

–grading. Furthermore, domains representing 1–dimensional moduli
spaces of holomorphic polygons, which we degenerate to prove polygon associativity (see
[17, Sec. 8.4], [18, Sec. 4], [4, Sec. 3.3]), also respect ASI

–grading, by the same argument
used in the proof of Lemma 3.12. One need only note that each pair of cancelling terms
in the proof of an analogue of [18, Lem. 4.5] appears in the same ASI

–graded component.
The rest of the argument, applied to each ASI

–grading separately, is identical. �

4. Surface decompositions

In the previous section, we proved that the link surgeries spectral sequence associated to a
framed link in a sutured manifold splits in the presence of a properly-imbedded surface whose
intersection with the link is empty. In this section, we will investigate the algebraic effect
on the link surgeries spectral sequence of cutting the sutured manifold open (decomposing)
along such a surface. The main result is a generalization to multi-diagrams of Juhász’s
surface decomposition theorem ([8, Thm. 1.3]).

4.1. Background and statement of theorem. We recall a few definitions related to
surface decompositions in sutured manifolds in preparation for stating the main theorem.

Definition 4.1. [8, Defn. 2.4] A decomposing surface in a sutured manifold, (Y, Γ), is a
properly imbedded, oriented surface, (S, ∂S) ⊂ (Y, ∂Y ) such that for every component, λ,
of (∂S) ∩ Γ, one of the following occurs:

• λ is a properly imbedded non-separating arc in Γ such that |λ ∩ s(Γ)| = 1.
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• λ is a simple closed curve in an annular component, A, of Γ representing the same
homology class in A as s(Γ).

• λ is a homotopically nontrivial curve in a torus component T of Γ, and if δ is another
component of T ∩ (∂S), then λ and δ represent the same homology class in T .

Definition 4.2. Given a decomposing surface, S, in a sutured manifold, Y , the result of
decomposing Y along S is a new sutured manifold, (Y ′, Γ′), obtained as follows.

• Y ′ = Y − Int(N(S)),
• Γ′ = (Γ ∩ Y ′) ∪ N(S′

+ ∩ R−(Γ)) ∪ N(S′
− ∩ R+(Γ)),

• R+(Γ′) = ((R+(Γ) ∩ Y ′) ∪ S′
+) − Int(Γ′),

• R−(Γ′) = ((R−(Γ) ∩ Y ′) ∪ S′
−) − Int(Γ′),

where S′
+ (resp., S′

−) is the component of ∂N(S)∩ Y ′ whose normal vector field points out
of (resp., into) Y ′.

Definition 4.3. [8, Defn. 3.7] Let (Y, Γ) be a strongly-balanced sutured manifold, v0 the
fixed unit vector field on ∂Y as in 3.1, t a choice of trivialization of v⊥0 , and S a decomposing
surface in (Y, Γ). Then

c(S, t) := χ(S) −
I(S)

2
− r(S, t),

where χ(S) is the Euler characteristic of S, I(S) = |∂S ∩ s(Γ)| is the geometric intersection
of ∂S with s(Γ), and r(S, t) is the rotation of the projection into v⊥0 of the positive unit
normal field of S along ∂S with respect to t.

Definition 4.4. [8] A curve C ⊂ R(Γ) is said to be boundary-coherent if either [C] 6= 0 in
H1(R(Γ)) or C is oriented as the boundary of its interior.

Now recall (Definition 3.8) that one obtains a filtered chain complex, X(0,1), from a (0, 1)
sutured multi-diagram, (Σ, α, β{0,1}ℓ), for a framed ℓ–component link, L, in a balanced

sutured manifold. If S is a decomposing surface geometrically disjoint from L, then X(0,1)

splits according to AS gradings:

X(0,1) =
⊕

m

X(0,1)
m ,

where X
(0,1)
m is the subcomplex of X(0,1) corresponding to those elements x ∈ CFH(Y (I))

satisfying ASI
(x) = m.

Theorem 4.5. Let L ⊂ (Y, Γ) be a framed link in a strongly-balanced sutured manifold, and
let S ⊂ (Y, Γ) be a connected decomposing surface satisfying:

(1) S ∩ L = ∅, and
(2) for every component V of R(Γ) the closed components of the intersection V ∩ S

consist of parallel oriented boundary-coherent curves.

Let (Y ′, Γ′) be the sutured manifold obtained by decomposing along S and L′ ⊂ (Y ′, Γ′)

the induced image of L. If X(0,1) (resp.,
(
X(0,1)

)′
) is the filtered complex associated to a

(0, 1) sutured multi-diagram for L (resp., L′), then (X(0,1))′ is filtered quasi-isomorphic to

X
(0,1)
k for k = 1

2c(S, t).

We have abused notation above, using c(S, t) to refer to c(SI , t) for any choice of I ∈
{0, 1}ℓ (since c(SI1

, t) = c(SI2
, t) for all pairs I1, I2 ∈ {0, 1,∞}ℓ). The above theorem says

that (X(0,1))′ is filtered quasi-isomorphic to a direct summand of X(0,1) under the splitting
induced by S ⊂ (Y, Γ). Furthermore, c(S, t) identifies the Alexander grading of this direct
summand.
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4.2. Surface multi-diagrams. To prove Theorem 4.5, we will need special multi-diagrams
compatible with a collection of decomposing surfaces.

Definition 4.6. Let
{(Yj , Γj)|j = 1, . . . , n}

be a finite collection of balanced, sutured manifolds and Sj ⊂ Yj a decomposing surface
for each j ∈ {1, . . . , n}, in the sense of [8, Defn. 2.4]. A balanced sutured multi-diagram
adapted to the collection {Sj ⊂ Yj |j = 1, . . . , n} is a tuple (Σ, α, β1, . . . , βn, P ) such that

(1) (Σ, α, βj) is a balanced sutured Heegaard diagram defining the sutured manifold Yj

in the sense of [7, Defn. 2.8],
(2) P ⊂ Σ is a closed subsurface of Σ with ∂P a graph satisfying:

• ∂P = A ∪ B such that B ∩ α = ∅ and A ∩ βj = ∅ for all j = 1, . . . , n, and
• A ∩ B = P ∩ ∂Σ is the set of vertices of the graph.

(3) (Σ, α, βj , P ) is adapted to Sj in the sense of [8, Defn. 4.3]. In particular, for each
j = 1, . . . , n, the surface obtained by smoothing the corners of(

P ×

{
1

2

})
∪

(
A ×

[
1

2
, 1

])
∪

(
B ×

[
0,

1

2

])
⊂ Yj

is equivalent to Sj (in the sense of [8, Defn. 4.1]).

As in [8, Defn. 4.3], we call a tuple (Σ, α, β1, . . . , βn, P ) satisfying the above properties a
surface multi-diagram.

Definition 4.7. Given a sutured multi-diagram (Σ, α, β1, . . . , βn, P ) adapted to a col-
lection, {Sj ⊂ Yj}, of decomposing surfaces, we can uniquely associate to it a tuple
(Σ′, α′, β′

1, . . . , β
′
n, PA, PB , p), where (Σ′, α′, β′

1, . . . , β
′
n) is a balanced sutured multi-diagram

such that for each j = 1, . . . , n, the tuple (Σ′, α′, β′
j, PA, PB, p) represents the balanced su-

tured manifold obtained by decomposing (Yj , Γj) along Sj and satisfies the properties listed
in [8, Defn. 5.1].

In particular, PA, PB ⊂ Σ′ are closed subsurfaces, p : Σ′ → Σ is smooth, a local diffeo-
morphism on its interior, and its restrictions,

• p : (Σ′ − (PA ∪ PB)) → (Σ − P ),
• p : PA → P , and
• p : PB → P

are diffeomorphisms.

Suppose that L = L1 ∐ . . . ∐ Lℓ is a framed link in a sutured manifold (Y, Γ) and
(S, ∂S) ⊂ (Y, ∂Y ) is a decomposing surface satisfying conditions (1) and (2) in the statement
of Theorem 4.5. As in Section 3, for each I ∈ {0, 1,∞}ℓ we let Y (I) denote the sutured
manifold obtained by doing I–surgery on L and let SI denote the surface in Y (I) compatible
to S ⊂ Y in the sense of Definition 3.10.

Since surgery on L ⊂ Y affects neither ∂S∩Γ nor ∂S∩R(Γ), SI is a decomposing surface
satisfying conditions (1) and (2) in the statement of Theorem 4.5 for each I ⊂ {0, 1,∞}ℓ.

A decomposing surface in a sutured manifold, (Y, Γ), determines a distinguished set of
elements in Spinc(Y, Γ) as follows. This set will play a large role in the proof of Theorem
4.5.

Definition 4.8. [8, Defn. 1.1] A Spinc structure s ∈ Spinc(Y, Γ) is said to be outer with
respect to a decomposing surface (S, ∂S) ⊂ (Y, ∂Y ) if there exists a unit vector field on Y

representing s which is nowhere equal to the negative unit normal vector field on S. As in
[8], we denote the set of S–outer Spinc structures on (Y, Γ) by OS .
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Notation 4.9. Given a compatible collection, {SI ⊂ Y (I)}, of properly-imbedded, oriented
surfaces as in Definition 3.10, we denote by O∐I

the subset
∐

I

OSI
⊂
∐

I

Spinc(Y (I))

corresponding to the union over all SI–outer Spinc structures.

Given a link L ⊂ (Y, Γ) and a decomposing surface S ⊂ Y satisfying conditions (1) and
(2) of the statement of Theorem 4.5, the following two results explain how to construct a full
sutured multi-diagram for L that is also a surface multi-diagram adapted to the collection
{SI ⊂ Y (I) | I ∈ {0, 1,∞}ℓ}.

Lemma 4.10. Let L be an oriented, framed link in a strongly-balanced sutured manifold
(Y, Γ) and let S ⊂ (Y, Γ) a decomposing surface satisfying conditions (1) and (2) in the
statement of Theorem 4.5. For each I ∈ {0, 1,∞}ℓ, let (Y (I)′, Γ′) the sutured manifold
obtained by decomposing (Y (I), Γ) along SI.

Then S is isotopic, in the complement of L, to a decomposing surface S′ such that each
component of ∂S′ intersects both R+(Γ) and R−(Γ). Furthermore, for each I ∈ {0, 1,∞}ℓ,
decomposing Y (I) along S′

I also gives (Y (I)′, Γ′), and O∐I
= O′

∐I
.

Proof. The isotopy S → S′ described in the proof of [8, Lem. 4.5] takes place in a neigh-
borhood of ∂Y , hence avoids L ⊂ Int(Y ). The rest of the result then follows from [8, Lem.
4.5]. �

Proposition 4.11. Let L be an oriented, framed link in a strongly-balanced sutured mani-
fold, and let S be a decomposing surface satisfying:

(1) S ∩ L = ∅, and
(2) each component of ∂S intersects both R+(Γ) and R−(Γ).

Then there exists an admissible full sutured multi-diagram for L that is also a surface
multi-diagram adapted to the collection

{
SI ⊂ Y (I)|I ∈ {0, 1,∞}ℓ

}
.

See [4, Sec. 3.2] for the definition of an admissible sutured multi-diagram.

Proof. Since each component of ∂S intersects both R±(Γ), it follows that the boundary
of each component of S intersects both R±(Γ) and there are no closed components of ∂S

contained entirely in Γ.
We begin as Juhász does in the proof of [8, Prop. 4.4], by defining a function

f : ∂Y ∪ S → [−1, 4]

with f−1
(

3
2

)
∩ S a polygon, P ⊂ S. Since S ∩ L = ∅, L is contained in the complement,

Y −N(S). Furthermore, since the boundary of each component of S intersects R+(Γ), each
component of Y − N(S) intersects R+(Γ).

We now form a bouquet on L as in [4][Sec. 4] by choosing a collection of arcs a1, . . . , aℓ

from the link components L1, . . . Lℓ to R+(Γ). Let L′ := N(L ∪ a1 ∪ . . . ∪ aℓ) as in the
discussion preceding Definition 3.10, and extend the function, f , to a Morse function, f0,
on Y − L′. We deform this Morse function to a self-indexing one with no index 0 or index
3 critical points. In the process, we may need to move S to an isotopic surface, S′.

Let Σ = f−1
(

3
2

)
and let α = (α1, . . . , αd) (resp., β0 = (βℓ+1, . . . , βd)) be the intersection

of gradient flow lines from the index 1 critical points (resp., to the index 2 critical points).
Then (Σ, α, β0) is a (non-balanced) sutured Heegaard diagram for Y − L′ compatible with

S′. Each I ∈ {0, 1,∞}ℓ specifies an extension of β0 to βI as in [4, Sec. 4].
(
Σ, α, β{0,1,∞}ℓ

)
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is then a full sutured multi-diagram for L that is also a surface multi-diagram adapted to
the collection, SI ⊂ Y (I). In particular, P ⊂ Σ is a closed subsurface with ∂P a graph
satisfying:

• ∂P = A ∪ B such that B ∩ α = ∅ and A ∩ βI = ∅ for all I ∈ {0, 1,∞}ℓ, and
• A ∩ B = P ∩ ∂Σ is the set of vertices of the graph.

To make
(
Σ, α, β{0,1,∞}ℓ

)
admissible, wind the curves in β{0,1,∞}ℓ in the complement

of A ⊂ P , as in [8, Prop. 4.8], employing the inductive argument from the proof of [4, Lem.
3.12]. �

Note that Proposition 4.11 implies the existence of an admissible surface multi-diagram
for L adapted to {SI ⊂ Y (I) | I ∈ {Ii1 , . . . , Iik

}} for any subset, {Ii1 , . . . , Iik
} ⊂ {0, 1,∞}ℓ.

4.3. Polygon counts in cylindrical sutured Floer homology. In [14], Lipshitz provides
a reformulation of the Heegaard Floer homology of a closed 3–manifold, Y , using counts of
holomorphic curves in the symplectic manifold Σ× [0, 1]×R, where Σ is a Heegaard surface
for Y . Sutured Floer homology admits an analogous reformulation, as briefly described in [4,
Sec. 2.1]. In this section, we discuss the cylindrical analogue of holomorphic polygon counts
in sutured multi-diagrams. This construction is implicit in [14, Sec. 10], which describes
holomorphic triangle and 4–gon counts.

We will also make use of some of the theory describing moduli space degenerations ap-
pearing in [16]. In order to place ourselves in the correct context to directly apply relevant
results, we will sometimes find it convenient to fill in each boundary component of Σ with

a disk containing a basepoint, obtaining a closed Heegaard surface, Σ̂. This poses no ex-
tra complications, since counts of holomorphic polygons whose domains miss the basepoint
regions correspond naturally to holomorphic polygon counts in the original sutured setting.

Definition 4.12. By a holomorphic n–gon (n ≥ 2 ∈ Z) we mean any region in C with
smooth boundary and n cylindrical ends, as pictured in Figure 5.6 When n ≤ 3, all such ob-
jects are conformally equivalent,7 and when n > 3, the moduli space of (marking-preserving
conformal equivalence classes of) such objects is parameterized by a space homeomorphic to
Rn−3.8 We will use Pn to denote an n–gon, considered as a topological object, and (Pn, jP)
to denote an n–gon equipped with a specific complex structure, jP ∈ Rn−3.

As in [14, Fig. 7], each Pn is equipped with a clockwise labeling of its boundary com-
ponents: e0, . . . , en−1, and an associated labeling of its cylindrical ends: v0,1, . . . , vn,0. We
denote by MPn

the moduli space of marked conformal equivalence classes of n–gons.

Now let (Σ, η0, . . . , ηn) be a sutured multi-diagram, where, for each i = 0, . . . , n,

ηi = (ηi)1 ∐ . . . ∐ (ηi)d

is a disjoint union of d circles (d ≥ 0 a fixed integer) imbedded in Σ, such that the set,
{[(ηi)1], . . . , [(ηi)d]}, is linearly-independent in H1(Σ; Z).

We form the 4–manifold
Wη0,...,ηn

:= Σ × Pn+1,

6Any such region is conformally equivalent to the unit disk in C with n boundary punctures.
7When n = 2, the space of conformal equivalences is homeomorphic to R.
8This parameterization is not natural, but can be accomplished by, for example, using a conformal

equivalence to identify three of the boundary punctures with three specified, fixed points on the unit circle
and parameterizing by arclength from the variable punctures to a fixed puncture.
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e2
v1,2

v2,3

v3,4

v4,0v0,1

e1

e3

e4

e0

v1,2

v2,3

v3,4

v4,0

v0,1

Figure 5. A holomorphic 5–gon ⊂ C (left) with edges labeled e0, . . . , e4

and cylindrical ends labeled v0,1, . . . , v4,0, conformally equivalent to the unit
disk ⊂ C with 5 boundary punctures (right).

equipped with the obvious projection maps, πΣ : Wη0,...,ηn
→ Σ and πP : W → Pn+1, and

let
Wηi,ηi+1

= Σ × vi,i+1

denote the cylindrical ends of Wη0,...,ηn
. We now endow Wη0,...,ηn

with a split symplectic
form, ω = ωΣ + ωP and choose generic almost complex structures on the cylindrical ends
satisfying [14, (J1)-(J5)] along with a family,

{Ja | a ∈ MPn+1
},

of almost complex structures on Wη0,...,ηn
satisfying [14, (J’1)-(J’4)] when n + 1 = 3 and

the obvious analogues of conditions (1)-(7) of [14, Sec. 10.6.2] when n+1 ≥ 4.9 We will say
that a family of almost complex structures as above satisfies Lipshitz’s conditions.

An intersection point, x ∈ ηi ∩ ηi+1, is now defined to be any d–tuple of distinct points,

x = (x1, . . . , xd) ∈ ηi ∩ ηi+1,

such that exactly one xj lies on each circle of ηi and exactly one xj lies on each circle of
ηi+1.

For each i = 0, . . . , n, let Cη
i

denote the disjoint union of cylinders, ηi × ei ⊂ Wη0,...,ηn
.

Now, given
(x0, . . . ,xn) ∈ (η0 ∩ η1) × . . . × (ηn ∩ η0),

let π2(x0, . . . ,xn) denote the set of homology classes of continuous maps

f : (R, ∂R) →

(
Wη0,...,ηn

,

n⋃

i=0

Cη
i

)

9Conditions (5) and (6) are made recursively with reference to all possible degenerations of an n–gon as
in [17, Sec. 8.1.5], [4, Fig. 3].



20 J. ELISENDA GRIGSBY AND STEPHAN WEHRLI

such that

• R is a (non-compact) surface with boundary and cylindrical ends, and
• the cylindrical ends of R are asymptotic to xi × vi,i+1 in a one-to-one fashion. In

particular, there is a bijective correspondence between cylindrical ends of R and
cylinders, (xi)j × vi,i+1.

If A ∈ π2(x0, . . . ,xn) is a homology class as above (see [14, Sec. 10]), then it corresponds
naturally to a homotopy class φA ∈ π2(x0, . . . ,xn) (in the sense of [17, Sec. 8.1.2]).

Furthermore, let (Wη0,...,ηn
)
Ja

represent the 4–manifold, Wη0,...,ηn
, equipped with the

complex structure, Ja. Then if we denote by MA
Ja

the moduli space of embedded holomor-
phic curves

f : (R, ∂R) →

(
(Wη0,...,ηn

)
Ja

,

n⋃

i=0

Cη
i

)
,

and by

MA :=
⋃

a∈MPn+1

MA
Ja

the union over the moduli spaces associated to the marked equivalence classes, then there is
a “tautological correspondence”10 ([21], [14, Sec. 13]) between MA and M(φA), the moduli
space of holomorphic n + 1–gons in Symd(Σ) representing φA (with respect to suitable
almost complex structures).

4.4. Proof of surface decomposition theorem for sutured multi-diagrams. With
the relevant background material in place, we turn to the proof of Theorem 4.5. The
following technical lemma is crucial to allowing an identification of the appropriate moduli
spaces appearing in the definition of the boundary map for the chain complexes in Theorem
4.5. The idea for the proof was suggested to us by Robert Lipshitz.

Lemma 4.13. Let (Σ, η0, η1, . . . , ηn, P ) be an admissible surface multi-diagram (Definition
4.6).11 Recall that P ⊂ Σ is an imbedded subsurface with ∂P = A ∪ B, such that

ηi ∩ B = ∅ if i = 0, and
ηi ∩ A = ∅ if i 6= 0.

Let xi ∈ ηi ∩ ηi+1 for each i ∈ Zn+1, and suppose that x0,xn are outer in the sense of
[8, Defn. 5.3].

Fix A ∈ π2(x0,x1, . . . ,xn) such that µ(φA) = 0 (resp., µ(φA) = 1) if n > 1 (resp., if
n = 1).12

Then there exists a family, {Ja | a ∈ MPn+1
}, of almost complex structures on Wη0,...,ηn

satisfying Lipshitz’s conditions such that for every (R, ∂R) ∈ MA,

RP := R∩ π−1
Σ (P )

splits as a disjoint union
RP = RA ∐RB,

where φA := πΣ(RA) and φB := πΣ(RB) satisfy

∂φA ⊂ (A ∪ η0)

∂φB ⊂ (B ∪i6=0 ηi).

10with respect to suitable almost complex structures
11In Definition 4.6, we used the notations α instead of η0 and β

i
instead of η

i
, for 1 ≤ i ≤ n.

12We make this index restriction because the proof of Theorem 4.5 only requires an identification of
0-dimensional moduli spaces of polygons. Furthermore, Lipshitz imposes transversality requirements on
families of almost complex structures [14, Sec. 10.6.2, (1)–(7)] only for curves of index ≤ 1.
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We summarize Lemma 4.13 as follows: There exists a family of almost complex structures
on Wη0,...,ηn

with respect to which the intersection of a fixed Maslov index 0 holomorphic

curve with π−1
Σ (P ) splits as the disjoint union of a curve having boundary of type A and a

curve having boundary of type B.

Proof. Let a1, . . . , ar (resp., b1, . . . , br) be the edges in A ⊂ ∂P (resp., B ⊂ ∂P ). Form Σ̂
by filling in the boundary components of Σ with disks containing basepoints.13 Denote by

P̂ ⊂ Σ̂ the image of P , and by Z1, . . . , Zm ⊂ Σ̂ the images of the boundary components of
P , under the inclusion map.

Given an almost complex structure, j, on Σ̂, let ℓ(Z) denote the length of a closed curve,
Z, with respect to a fixed complete hyperbolic metric associated to j (c.f.[6, Chp. IV]).

Choose a generic sequence, {jΣ}i∈N
, of almost complex structures on Σ̂ with respect to

which ℓ(Z1), . . . , ℓ(Zm) → 0 as i → ∞ and a corresponding sequence,
{
Ja|a ∈ MPn+1

}
i∈N

,
of families of almost complex structures on Wη0,...,ηn

satisfying Lipshitz’s conditions.
Suppose MA 6= ∅ for infinitely many choices of (jΣ)i, i ∈ N. Then there exists a

subsequence of imbedded holomorphic surfaces,

(Rik
, ∂Rik

) → Wη0,...,ηn
,

such that

• each Rik
represents the homology class A,

• the associated domain, φ(A) = πΣ(Rik
), of each Rik

misses the basepoints, and
• the sequence converges to a matched pair of simple holomorphic combs RP and

RΣ−P , where RP (resp., RΣ−P ) projects to P̂ (resp., to Σ̂− P̂ ) under the map πΣ.

We say that RP (resp., RΣ−P ) is the holomorphic comb over P̂ (resp., over Σ̂− P̂ ).

Here we adopt the terminology from [16, Sec. 5, 9]. By a straightforward analogue of
the arguments found in [16, Prop. 5.20] and [15, Prop. 4.2.1], matched pairs of simple
holomorphic combs form the top stratum of the compactification of MA.

Recall that a simple holomorphic comb [16, Defn. 5.15] is a pair, (u, v), of holomorphic
imbeddings of surfaces with decorated cylindrical ends, where u maps to Σ×Pn+1, v maps to
(Z1∐. . .∐Zm)×R×Pn+1, and there is a 1 to 1 correspondence between the Reeb decorations
of u at east ∞ and the Reeb chord decorations of v at west ∞. See [16, Sec. 5.2, Conditions
(1)-(5)] for the appropriate conditions on the curve v in (Z1 ∐ . . . ∐ Zm) × R × Pn+1 in the
case n = 1. When n > 1, we replace condition (3) with the requirement that ∂v ⊂ ∂Pn+1.
This condition, combined with the maximum principle, will force Pn+1 to be equipped with
a degenerate holomorphic structure, and, under the map πP, v will map to a single point in
(the degeneration of) Pn+1.

More explicitly, since πP : Rik
→ Pn+1 is holomorphic for each ik, ([14, Condition J’4]),

the projections, πP, of the interiors of the limiting curves, RP and RΣ−P , must also be
holomorphic. Hence, any cylindrical end of RP (resp., RΣ−P ) must project to a cylindrical
end of Pn+1. In other words, Pn+1 is equipped with a (degenerate) holomorphic structure
such that the images of the cylindrical ends of RP (resp., RΣ−P ) project to cylindrical ends
of (the degeneration of) Pn+1. Each cylindrical end can be topologically identified with
some open half-neighborhood of a smoothly-imbedded arc in Pn+1. We will refer to these
arcs as vanishing arcs and label them γ1, . . . , γr. See Figure 6.

Each connected component of Pn+1 − ∪iγi is then conformally equivalent to some holo-
morphic k–gon (1 ≤ k ≤ n + 1) which, upon fixing a parameterization (see Definition

13See the discussion at the beginning of Section 4.3.
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N±(γi)

∼
γi

γi

Figure 6. A polygon, Pn+1 (left), pictured as a unit disk with boundary
punctures, along with the oriented vanishing arcs, {γi}, induced by the
degeneration of the holomorphic structure on Σ along Z1, . . . , Zm. The half-
neighborhoods, N±(γi), of the smoothly imbedded arcs, γi, are equipped
with cylindrical holomorphic structures, as indicated in the figure on the
right. (Note that we may need to rescale to deal with flat components as
in, e.g., [14, Proof of Lemma 8.2].)

4.12), can be conformally identified with the standard unit disk with marked points on the
boundary.14 Each holomorphic curve,

v ⊂ (Z1 ∐ . . . ∐ Zm) × R × Pn+1,

is mapped, under πP, to the image of one of the vanishing arcs under this identification.
A pair, (u1, v1) and (u2, v2) of holomorphic combs is matched if the asymptotics of v1

at east ∞ match the (orientation-reverse) of the asymptotics of v2 at east ∞ [16, Sec. 9].
More precisely, let Pn+1 be equipped with a (possibly degenerate) holomorphic structure as
above, with vanishing arcs γ1, . . . , γr. Choose orientations on the γi and label by N+(γi)
(resp., N−(γi)) the open half-neighborhood of γi oriented compatibly (resp., incompatibly)
with γi.

15 Then we say that (u1, v1) and (u2, v2) are a matched pair of holomorphic combs

14Neighborhoods of the marked points correspond to cylindrical ends under this identification.
15Note that an orientation on the circles, Zi, will induce an orientation on the vanishing arcs, γi.
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if, under the map, πP, the interior of ui maps holomorphically to the interior of

Pn+1 − ∪iγi

in such a way that

• there is a 1 to 1 (cyclic-orientation-reversing on each boundary component) identi-
fication of the limiting Reeb chords of v1 at east ∞ with the limiting Reeb chords
of v2 at east ∞, and

• if a cylindrical end of u1 projects to N+(γi) under the map πP, and it is identified
(under the sequence of 1 to 1 correspondences described above and in the defini-
tion of a holomorphic comb) with a cylindrical end of u2, then the corresponding
cylindrical end of u2 maps to N−(γi).

• If n = 1 (hence Pn+1 ∼ [0, 1] × R), the evaluation maps ev : ui → R (as described
in [16, Sec. 5.1]) agree under the correspondence.

Remark 4.14. Since our chosen sequence, {jΣ}i∈N
, of almost complex structures on Σ is

generic, and we are restricting our attention to index 0 (resp., index 1) domains when n > 1
(resp, n = 1), we may assume, for any comb, (u, v), we encounter, that the part, v, mapping
into (Z1 ∐ . . .∐Zm)×R× Pn+1 is trivial, in the sense of the discussion following [16, Defn.
5.14].

Bearing this in mind, whenever we refer to a holomorphic comb, we will henceforth
mean a holomorphic imbedding, u, into Σ × Pn+1 of a (possibly disconnected) surface with
decorated cylindrical ends limiting on Reeb chords in (Z1 ∐ . . . ∐ Zm) × Pn+1.

Since we are interested in the topology of φP , let us focus on the holomorphic comb over

P̂ . More specifically, for each ik, let (RP )ik
represent Rik

∩ π−1
Σ (P̂ ), and let RP represent

the holomorphic comb which projects, via πΣ, to P̂ in the limit.
Then RP has cylindrical ends of two types:

• those asymptotic to xi × vi,i+1 (these are the analogues of Reeb chords at ±∞, in
the language of [16, Sec. 5]), and

• those asymptotic to ρ, where ρ is a Reeb chord in (Z1 ∐ . . . ∐ Zm) × Pn+1.

We now make two key observations:

(1) Each cylindrical end of RP limits on a Reeb chord whose boundary points are either
both of type A or both of type B. Recall that a type A (resp., type B) boundary
is one that lies on curves in η0 (resp., ηi for i 6= 0). This follows because the
cylindrical ends of RP are asymptotic to Reeb chords in either xi × vi,i+1 or in
(Z1∐ . . .∐Zm)×Pn+1. All cylindrical ends of the first type have boundaries of type
B only since, by assumption, x0 and xn–the only intersection points corresponding
to Reeb chords with boundaries of both type A and B–lie in outer Spinc structures,
hence do not appear among the cylindrical ends of RP . By the positioning of the
basepoints in the regions adjacent to the circles, Zi (see Figure 7), each cylindrical
end of the second type will have boundary points which are either both of type A

or both of type B.
(2) Each of

πP : Rik
→ Pn+1

along with the limit

πP : R → Pn+1

is a d–fold branched covering map [14, 16].
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P̂

type A
curves

type B
curves

*

*

*

*

*
*

*

*

Z1

Z2

Z3

basepoints

Figure 7. A subsurface P̂ ⊂ Σ̂ associated to a surface multi-diagram.
The positioning of the basepoints in the regions adjacent to the boundary,
(Z1 ∐ . . . ∐ Zm), of P forces the east ∞ cylindrical ends of holomorphic
combs to have boundary of either type A or type B but not both.

Orient the circles, Z1, . . . , Zm, as the boundary of P̂ , and let γi be the associated oriented
vanishing arcs of Pn+1 with respect to the sequence {(jΣ) | i ∈ N} (see Footnote 15). Then
each east ∞ cylindrical end of RP is mapped to a particular element of {N+(γi)} under the
projection, πP.

Now let {Ñ+(γi)} denote the set of connected components of the d–fold branched covers
in R of {N+(γi)}. Similarly, let {Ci} denote the set of connected components of

Pn+1 −
⋃

N+(γi),

and let {C̃i} denote the connected components of their d–fold branched covers in R. By

observation 1, above, if C̃i ⊂ RP , then C̃i has curves of only one type (either type A or

type B) on its boundary. Hence, the (necessarily connected) projection of C̃i to Σ has the
same property.
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Furthermore, each Ñ+(γi) has boundary curves of only one type. Let

(C̃P )A =
⋃{

C̃i ⊂ RP | ∂C̃i is type A.
}

(Ñ+(γ))A =
⋃{

Ñ+(γi) | ∂(Ñ+(γi)) is type A.
}

Analogously define (C̃P )B and (Ñ+(γ))B .
Then ((

C̃P

)
A
∪
(
Ñ+(γ)

)
A

)
∩
((

C̃P

)
B
∪
(
Ñ+(γ)

)
B

)
= ∅.

Taking

RA :=
((

C̃P

)
A
∪
(
Ñ+(γ)

)
A

)
, and

RB :=
((

C̃P

)
B
∪
(
Ñ+(γ)

)
B

)
,

we therefore can realize RP as a disjoint union:

RP = RA ∐RB,

such that the projection, πΣ(RP ) = φP , can be decomposed as

φP = φA + φB ,

where φA (resp., φB) has boundary of type A (resp., type B), as desired.
�

Lemma 4.13 implies that we can choose a suitable almost complex structure with respect
to which a holomorphic polygon represented by any fixed domain, A (representing a topo-
logical polygon between generators in outer spinc structures), must split as claimed. If the
surface multi-diagram is admissible, we can find a suitable almost complex structure with
respect to which holomorphic polygons for all such domains split as claimed:

Corollary 4.15. Let (Σ, η0, . . . , ηn, P ) be an admissible surface multi-diagram. Then there
exists some generic almost complex structure, jΣ, on Σ such that for every choice of the
following data:

• a non-empty ordered subset,

{i0 = 0, i1, . . . , ik} ⊆ {0, . . . , n}

• an associated family, {Ja|a ∈ MPk+1
}, of almost complex structures on Wη0,ηi1

,...,ηik

satisfying Lipshitz’s conditions,
• a (k + 1)–tuple (x0, . . . ,xk) with xj ∈ Tηij

∩ Tηij+1
and x0,xk outer, and

• a domain A ∈ π2(x0, . . . ,xk),

each surface (R, ∂R) ∈ MA satisfies the property that

RP := R∩ π−1
Σ (P )

splits as a disjoint union

RP = RA ∐RB,

where φA := πΣ(RA) (resp., φB := πΣ(RB)) has boundary of type A only (resp., type B

only).
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Proof. Since (Σ, η0, . . . , ηn) is admissible, there are a finite number of domains that can
represent holomorphic (k + 1)–gons, for any 1 ≤ k ≤ n, since there are a finite number of
domains with non-negative coefficients. Of these domains, let φ1, . . . , φm be those for which
φP := φi ∩P does not split as φA +φB. Now choose a sequence {jΣ}i∈N

, of almost complex
structures on Σ as in the proof of Lemma 4.13 along with a choice of family,

{Ja|a ∈ MPk+1
},

of almost complex structures on Wη0,ηi1
,...,ηik

for each 1 ≤ k ≤ n. If, for each (jΣ)i,

there exists some φl, with l ∈ {1, . . . , m}, such that M(φl) 6= ∅, then, by the pigeonhole
principle, there exists some fixed l0 ∈ {1, . . . , m} and some subsequence {(jΣ)ic

}c∈N
such

that M(φl0) 6= ∅ for all (jΣ)ik
, contradicting Lemma 4.13.

�

Proposition 4.16. Let (Σ, α, β{0,1}ℓ , P ) be a (0, 1) sutured multi-diagram for L ⊂ Y

adapted to a collection,

{SI ⊂ Y (I)|I ∈ {0, 1}ℓ},

of decomposing surfaces SI for Y (I), and let L′ be the image of L in (Y ′, Γ′), the sutured
manifold obtained by decomposing along S.

Let (Σ′, α′, β′
{0,1}ℓ , PA, PB , p) be the tuple obtained from this data as in Definition 4.7.

Then (Σ′, α′, β′
{0,1}ℓ) is a (0, 1) sutured multi-diagram for L′ ⊂ Y ′.

Furthermore,

X ′ ∼=
⊕

s∈O∐I

(X ; s),

where “∼=” denotes a filtered quasi-isomorphism.

In the above, X (resp., X ′) is the filtered chain complex obtained from the (0, 1) sutured

multi-diagram,
(
Σ, α, β{0,1}ℓ

) (
resp.,

(
Σ′, α′, β′

{0,1}ℓ

))
, as in the discussion following Def-

inition 3.8, and
⊕

s∈O∐I

(X ; s) refers to the complex whose generators lie in O∐I
, the outer

spinc structures, with restricted differential.

Proof. (Σ′, α′, β′
I) is a sutured Heegaard diagram for Y ′(I) for each I, by [8, Prop. 5.2],

since (Σ, α, βI , P ) is adapted to SI ⊂ Y (I) for each I ∈ {0, 1}ℓ. Hence,
(
Σ′, α′, β′

{0,1}ℓ

)

is a (0, 1) sutured multi-diagram for L′ ⊂ Y ′.
In order to prove that

X ′ ∼=
⊕

s∈O∐I

(X ; s),

we first note that, since (Σ, α, βI , P ) is adapted to SI ⊂ Y (I) for each I, and the generators
x ∈ Tα ∩ TβI

lying in OSI
are precisely those satisfying x ∩ P = ∅, by [8, Lem. 5.4].

Furthermore, there is a set-wise bijection

{x ∈ Tα ∩ TβI
|x ∩ P = ∅} ↔ Tα′ ∩ Tβ′

I

for each I, hence a bijection between the generators of
⊕

s∈O∐I

(X ; s) and of X ′.

To prove that the chain complexes are filtered quasi-isomorphic, it will suffice to show
that the differentials on the complexes X ′ and

⊕
s∈O∐I

(X ; s) agree for a suitable generic

almost complex structure on Σ (inducing a generic almost complex structure on Σ′).
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To this end, let

(Ii1 , . . . , Iik
) ⊆ {0, 1}ℓ

be any ordered subset as in Section 3.1. We will construct a one-to-one correspondence
between embedded holomorphic surfaces representing holomorphic k–gons in

Wα,βI1
,...,βIk

:= Σ × Pk+1

and

Wα′,β′

I1
,...,β′

Ik

:= Σ′ × Pk+1.

First, note that Corollary 4.15 ensures the existence of a generic almost complex structure,
jΣ, on Σ with respect to which the intersection, φP := φ∩P , of any given candidate domain,
φ, for any holomorphic k–gon associated to any ordered subset

(Ii1 , . . . , Iik
) ⊆ {0, 1}ℓ

as in Section 3.1 can be decomposed as

φP = φA + φB ,

where φA (resp., φB) has boundary curves of type A only (resp., of type B only).
Fix such an almost complex structure, jΣ, on Σ, and choose a family, {Ja|a ∈ MPk+1

},
on Σ × Pk+1 satisfying Lipshitz’s conditions for each k = 1, . . . , n. Now let

(R, ∂R) → Σ × Pk+1

be a holomorphic embedding representing a holomorphic (k+1)–gon, and let φ = πΣ(R) ⊂ Σ
be its associated domain.

By Lemma 4.13, φP splits as φA + φB , so we can lift φ uniquely to a domain, φ′ ⊂ Σ′,
satisfying p(φ′) = φ under the covering projection, p : Σ′ → Σ. We construct φ′ by lifting
φA to φ′

A ⊂ PA and φ′
B ⊂ PB as in Figure 8 and taking

φ′ = p−1 (φΣ−P ) + φ′
A + φ′

B.

Now, pull back a family of almost complex structures, {J ′
a}, on Σ′ × Pn along the map

(p × I) : (Σ′ × Pk+1) → (Σ × Pk+1).

Note that {J ′
a} satisfies Lipshitz’s conditions, since {Ja} does. We then construct an imbed-

ded surface

(R′, ∂R′) → Σ′ × Pk+1

by choosing the unique lift,

(R′, ∂R′) := (p−1 × I)(R, ∂R),

satisfying the property that πΣ′ (R′) = φ′. By construction, (R′, ∂R′) → Σ′×Pk+1 represents
a holomorphic (k + 1)–gon with domain, φ′.

Conversely, suppose that (R′, ∂R′) is an imbedded holomorphic surface with respect to
an almost complex structure in the family, {J ′

a} constructed above. Then

(R, ∂R) := (p × I)(R′, ∂R′)

is holomorphic with respect to the the corresponding almost complex structure in the family,
{Ja}.

To see that the holomorphic map i : R → Σ×Pk+1 is also an imbedding, suppose, aiming
for a contradiction, that it is not. Then there exist points a 6= b ∈ R such that i(a) = i(b).
In particular, i(a) = i(b) project to the same point of Σ under the map πΣ and to the same
point of Pk+1 under the map πP.
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Σ Σ′

φ′
Σ−P

φB

P

φ′
B

φA

φΣ−P

PAφ′
A

PB

Figure 8. Lifting a domain, φ ⊂ Σ, satisfying φP = φA +φB to a domain,
φ′ ⊂ Σ′, by lifting φΣ−P to φ′

Σ−P and φA ⊂ P (resp., φB ⊂ P ) to φ′
A ⊂ PA

(resp., φ′
B ⊂ PB).

To see that this is impossible, note that since R′ is imbedded in Σ′ × Pk+1, i(a) and
i(b) must be the images under the map p × I of points a′ ∈ π−1

Σ (φ′
A) ⊂ PA × Pk+1 and

b′ ∈ π−1(φ′
B) ⊂ PB × Pk+1, else the double point of R will lift to a double point of R′.

Now let RP (resp., RΣ−P ) represent the preimage of P (resp., Σ−P ) under the map πΣ

and (Pk+1)P (resp., (Pk+1)Σ−P ) its image under πP. Then

πP(i(a)) = [πP ◦ (p × I)] (a′)

must necessarily lie in a different connected component of Pk+1 − (Pk+1)Σ−P than

πP(i(b)) = [πP ◦ (p × I)] (b′),

since the boundary of its connected component has curves of type A only, and the boundary
of the connected component containing πP(i(b)) has curves of type B only.

In particular, πP(i(a)) 6= πP(i(b)), and we conclude that i : R → Σ×Pk+1 is an imbedding,
as desired.

�

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. By Proposition 4.11, there exists a (0, 1) sutured multi-diagram,
(
Σ, α, β{0,1}ℓ , P

)

for L that is also a surface multi-diagram compatible with the collection

{SI ⊂ Y (I)|I ∈ {0, 1}ℓ}.

By Proposition 4.16, the multi-diagram,
(
Σ′, α′, β′

{0,1}ℓ

)
, obtained as in Definition 4.7 is

a (0, 1)–sutured multi-diagram compatible with L′. Furthermore, if X(0,1)
(
resp., (X(0,1))′

)
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is the (0, 1)–filtered chain complex corresponding to the sutured multi-diagram
(
Σ, α, β{0,1}ℓ

)

(resp.,
(
Σ′, α′, β′

{0,1}ℓ

)
), then Proposition 4.16 tells us that

(
X(0,1)

)′
∼=

⊕

s∈O∐I

(X ; s).

But [8, Lem. 3.10] tells us that, for each I ∈ {0, 1}ℓ, s ∈ OSI
iff

〈c1(s, t), [SI ]〉 = c(SI , t).

Hence, (
X(0,1)

)′
∼=

⊕

{sk(S) | k= 1
2
c(S,t)}

(
X(0,1); sk(S)

)
= X

(0,1)
k .

Furthermore (see [20, Sec. 7]) any other choice of a (0, 1) sutured multi-diagram for L

(resp., L′) yields a filtered chain complex that is filtered quasi-isomorphic to X(0,1) (resp.,

to
(
X(0,1)

)′
). See Remark 3.9). �

5. Naturality of the Spectral Sequence

In this section, we discuss consequences of Theorem 4.5. We shall see that various natural
geometric operations on balanced tangles can be understood in terms of surface decompo-
sitions on their sutured double branched covers, which will, in particular, imply that the
algebra of the spectral sequence from Khovanov homology to sutured Floer homology, de-
scribed in [4] and [5], behaves “as expected” with respect to the geometric operations.

In what follows, recall that any admissible balanced tangle T ⊂ D × I (resp., link L ⊂
A× I) can be represented by an enhanced projection (diagram) P(T ) (resp., P(L)). See [4,
Sec. 5] and [5, Sec. 2].

Theorem 5.1. (Trivial inclusion) Let T ⊂ D × I be an n–balanced tangle in the product
sutured manifold D × I, and let T ′ ⊂ D × I be the (n + 1)–balanced tangle obtained from
T by adjoining a trivial strand separated from T by a properly-imbedded I–invariant disk,
F , as in Figure 1. Let F(T ),F(T ′) be the associated filtered complexes as in Definition 2.7.
Then

F(T ) = F(T ′).

Proof. Let F̃ denote the preimage of F in Σ(D × I, T ′), which is a (2–component) vertical
decomposing surface satisfying conditions (1) and (2) of the statement of Theorem 4.5.
Then, as in the proof of Proposition 4.11, we can choose a Morse function on Σ(D × I, T )

whose gradient is everywhere tangent to F̃ . In particular, (see, e.g., the constructions in [7,
Sec. 4], [17, Sec. 2.6]) any Spinc structure on Y (I) for any I ∈ {0, 1}ℓ can be represented

by a (homology class of) unit vector field that is everywhere tangent to F̃ . This implies (see

Definition 4.8) that every generator in F(T ′) is outer with respect to F̃ .

Furthermore, decomposing along F̃ produces the sutured manifold which is the disjoint
union of Σ(D × I, T ) and a product sutured manifold. Theorem 4.5 then implies

F(T ) = F(T ′),

as desired.
�
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Theorem 5.2. (Stacking) Let Ti ⊂ (D × I)i, for i = 1, 2, be two n–balanced tangles, and
let T1 + T2 ⊂ D × I be any n–balanced tangle obtained by stacking a projection, P(T1), of
T1 on top of a projection, P(T2), of T2 as in Figure 2. Then

F(T1 + T2) = F(T1) ⊗F(T2).

Proof. Let F denote the disk along which the two product sutured manifolds (D × I)1 and

(D × I)2 are glued and F̃ its preimage in Σ(D × I, T1 + T2). Applying finger moves as in

the proof of [8, Lem. 4.5], we move F̃ to an equivalent surface satisfying conditions (1) and
(2) of the statement of Theorem 4.5.

As in the proof of Proposition 4.11, we choose a Morse function on Σ(D × I, T1 + T2)

whose restriction to F̃ points in either the positive normal direction to F̃ (along the quasi-

polygon P ⊂ F̃ ) or is tangent to F̃ (along the vertical regions, F̃ − P ). In particular, as in
the proof of Theorem 5.1, any Spinc structure on Y (I) can be represented by a unit vector

field agreeing with the above vector field on F̃ , hence every generator of F(T1 +T2) is outer

with respect to F̃ .
By Theorem 4.5, we then obtain

F(T1 + T2) = F(T1) ⊗F(T2),

as desired. �

Theorem 5.3. (Offset stacking) Let Ti be an ni–balanced tangle in (D × I)i for i = 1, 2.
For k ∈ Z, let T1+k T2 be any n–balanced tangle obtained by k–offset stacking any projection
P(T1) of T1 atop any projection, P(T2), of T2, as in Figure 9. More precisely, one forms
T1 +k T2 from projections, P(T1) and P(T2), by

• stacking P(T1) atop P(T2) so that the leftmost strand of P(T2) is |k| strands to the
right (resp., to the left) of the left-most strand of P(T1) when k ≥ 0 (resp., k ≤ 0),

• adjoining trivial strands to both P(T1) and P(T2) to ensure that both are n–balanced,
for minimal n.

Then

F(T1 +k T2) = F(T1) ⊗F(T2).

Remark 5.4. If Ti is an ni–balanced tangle for i = 1, 2, then T1 +k T2 is an n–balanced
tangle, with

n =

{
max(n1, n2 + k) when k ≥ 0
max(n1 + |k|, n2) when k < 0.

With notation as above, note that m = (n1+n2)−n is the number of overlapping strands
(of the nontrivial parts) of T1 +k T2. We will often refer to m = (n1 +n2)−n as the overlap
of T1, T2 in T1 +k T2.

Proof of Theorem 5.3. This is an immediate corollary of Theorems 5.1 and 5.2. �

There is also a natural geometric relationship between links in A×I and balanced tangles
in D× I, along with a corresponding naturality result for the associated spectral sequences.
To understand this relationship, recall (see [19], [4]) that A × I can be identified as the
sutured complement of a standard unknot, B ⊂ S3, via the identification:

A × I = {(r, θ, z) | r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ R
3 ∪∞ = S3,

B = {(r, θ, z) | r = 0} ∪∞ ⊂ S3
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T1 +k T2

T1

T2

Figure 9. Offset stacking two balanced tangles T1 and T2 to obtain a new
balanced tangle, T1 +k T2. In the above, P(T1) is stacked atop P(T2) with
offset k = −1 and overlap m = 1.

Definition 5.5. Let a ∈ [0, 2π). Then

γa := {(r, θ) ∈ A | θ = a}

denotes the properly-imbedded arc with argument a, oriented outward, and

Da := γa × I

denotes the corresponding I–invariant disk, endowed with the product orientation.

Definition 5.6. (Cutting) Let L ⊂ A × I be a link in the product sutured manifold
(A × I, ∂A × I), P(L) a projection of L, and Da an I–invariant disk. Then we denote
by Ψa(P(L)) the balanced tangle projection obtained by decomposing A × I along Da.

Definition 5.7. (Gluing) Let T ⊂ D × I be a balanced tangle in the product sutured
manifold (D × I, ∂D × I) and P(T ) a projection of T . Then we denote by Ψ−1

a (P(T ))
the annular link projection obtained by identifying D+ and D− at θ = a, as in Figure 10.
Ψ−1

a (P(T )) is the braid closure of P(T ), considered as a link in A × I.

The following result was proved in [4]. We recall it here, since it provides another example
of the naturality of the spectral sequence relating Khovanov homology and Heegaard Floer
homology.

Theorem 5.8. (Cutting) [5, Thm. 3.1] Let L ⊂ A × I be a link, and let T ⊂ D × I be
any balanced tangle admitting a projection, P(T ), such that Ψ−1

a (P(T )) is a projection of
L. Then F(T ) is a direct summand of F(L). If there exists a′ ∈ [0, 2π) such that

|Da′ ⋔ L| < |Da ⋔ L|,

then F(T ) = 0, i.e., the trivial direct summand of F(L).

Remark 5.9. Note that Theorem 5.8 is proved by applying Theorem 4.5 to

D̃a = Σ(Da, Da ⋔ L),
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Ψ−1
aθ = a

Ψa

Figure 10. (A projection of) an annular link, along with (a projection of)
a balanced tangle obtained by cutting A × I along a vertical disk, Da =
γa × I, for some a ∈ [0, 2π).

a (Z2–equivariant) Seifert surface for B̃ ⊂ Σ(A × I, L), the preimage of B in Σ(A × I, L).

Furthermore, the Euler characteristic of D̃a is given by:

χ(D̃a) = 2 − |Da ⋔ L|,

by the Riemann-Hurwitz formula. In particular, the vanishing/non-vanishing of F(T ) de-

tects the Thurston norm of the cohomology class Poincare dual to [D̃a].

5.1. Offset stacking, generalized Murasugi sum, and annular link composition.

Link projections in A× I can be composed. This composition is closely related to both the
offset stacking operation and a generalization of the Murasugi sum operation.

Definition 5.10. (Annular link composition) For i = 1, 2, let Li ⊂ (A×I)i be a link, P(Li)
a projection, and k ∈ Z.

Then the k–offset composition, denoted P(L1) +k P(L2), is defined as:

P(L1) +k P(L2) := Ψ−1
a (Ψa(P(L1)) +k Ψa(P(L1))).

See Figure 11.

Definition 5.11. (Generalized Murasugi sum) For i = 1, 2, let Li be a nullhomologous link
in the three-manifold Yi and Si a choice of Seifert surface for Li. For i = 1, 2, let Fi ⊂ Si

be a subsurface satisfying:

• Each boundary component of Fi is a cyclic graph whose edges can be labeled either
1 or 2 such that no two adjacent edges have the same label. In particular, there are
an even number of vertices and edges.

• The type 1 edges (resp., type 2 edges) are in the boundary (resp., in the interior)
of S1, and the type 2 edges (resp., type 1 edges) are in the boundary (resp., in the
interior) of S2.

• There exists an orientation-reversing homeomorphism, φ : F1 −→ F2, preserving
the labelings of the boundary graphs.

Then one forms a new 3–manifold, Y1#F Y2 by identifying Y1−(F1×I) with Y2−(F2×I)
along their common boundary, as follows.
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2

T
1

T 2

T

1TL1

L2

L1 +2 L2

Figure 11. The annular link projection on the right is obtained by cutting
open projections of L1 and L2, offset stacking the resulting balanced tangles,
and regluing the result. In the example above, the offset for the stacking
operation is 2 and the overlap is 2.

(1) Note that, for i = 1, 2,

∂(Yi − Fi × I) = (Fi × {0}) ∪ (∂Fi × I) ∪ (Fi × {1}).

(2) Identify F1 × {0} with F2 × {0} and F1 × {1} with F2 × {1} using φ.
(3) Identify ∂F1 × I with ∂F2 × I using the canonical (orientation-reversing) level-

preserving homeomorphism.

The generalized Murasugi sum, S1 ∗F S2, is the imbedded surface in Y1#F Y2 obtained
by identifying S1 × {0} and S2 × {0} along φ : (F1 × {0}) −→ (F2 × {0}). Note that the
boundary of S1 ∗F S2 is a link,

L1 ∗F L2 =
⋃

i=1,2

∂Si − (∂Si ∩ Fi),

which we also call the generalized Murasugi sum of L1 and L2.

Note that when F1
∼= F2 is a disk, Y1#F Y2 is the connected sum operation, and S1 ∗F S2

is the standard Murasugi sum.

Remark 5.12. Let L1 +k L2 be any link obtained from L1, L2 by a k–offset composition.
Then Σ(A× I, L1 +k L2) is a generalized Murasugi sum of Σ(A × I, L1) and Σ(A × I, L2).

More specifically, projection to the θ coordinate endows A × I with an S1–valued Morse
function with fibers Dθ. For a generic isotopy class representative of L ⊂ A × I, this S1–
valued Morse function can be lifted to one for Σ(A × I, L) whose fibers are Σ(Dθ, Dθ ∩ L).

If L is obtained as a k–offset composition of L1 and L2 with overlap m, then Σ(A× I, L)
is obtained from Σ(A× I, Li) for i = 1, 2 by a generalized Murasugi sum along a subsurface
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T

T

2

2

1

1T

T
γ2

γ1

Figure 12. To obtain the figure on the right, we begin with two annular
link projections, remove a neighborhood of a trivial product region in each,
and identify the result. In the double-branched cover, this corresponds to
performing a generalized Murasugi sum along a subsurface of the double-
branched cover of γi × I for i = 1, 2.

of Σ(Dθ, Dθ ∩ L) of genus g with b boundary components, where

g =

⌊
m − 1

2

⌋
, and

b =

{
1 if m is odd, and
0 if m is even.

See Figures 12 and 13.
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