A Remark on the Topology of (n,n) Springer Varieties

Stephan M. Wehrli
Syracuse University

Follow this and additional works at: https://surface.syr.edu/mat
Part of the Mathematics Commons

Recommended Citation
https://surface.syr.edu/mat/122
A REMARK ON THE TOPOLOGY OF \((n,n)\) SPRINGER VARIETIES

STEPHAN M. WEHRLI

Abstract. We prove a conjecture of Khovanov [Kho04] which identifies the topological space underlying the Springer variety of complete flags in \(\mathbb{C}^{2n}\) stabilized by a fixed nilpotent operator with two Jordan blocks of size \(n\).

1. Introduction

Let \(E_n\) be a complex vector space of dimension \(2n\) and \(z_n: E_n \to E_n\) a nilpotent linear endomorphism with two nilpotent Jordan blocks, each of them of size \(n\). A complete flag in \(E_n\) is an ascending sequence of linear subspaces \(0 \subsetneq L_1 \subsetneq L_2 \subsetneq \ldots \subsetneq L_{2n} = E_n\). The \((n,n)\) Springer variety is the set

\[B_{n,n} := \{\text{complete flags in } E_n \text{ stabilized by } z_n\}, \]

where a complete flag is said to be stabilized by \(z_n\) if each of the subspaces \(L_j\) is stable under \(z_n\), i.e. if \(z_n L_j \subseteq L_j\) for all \(j \in \{1, \ldots, 2n\}\).

It is known that \(B_{n,n}\) is a complex projective variety of (complex) dimension \(n\), and that the irreducible components of \(B_{n,n}\) are topologically trivial (but algebraically non-trivial) iterated \(\mathbb{P}^1\)-bundles over a point (where \(\mathbb{P}^1\) is the complex projective line, i.e., topologically, \(\mathbb{P}^1 \cong S^2\)). Moreover, a result of Fung [Fun02] (going back to earlier work of Spaltenstein [Spa76] and Vargas [Var79]), describes the irreducible components of \(B_{n,n}\) explicitly in terms of crossingless matchings of \(2n\) points:

Proposition 1.1 (Fung). The irreducible components of \(B_{n,n}\) are parametrized by crossingless matchings of \(2n\) points. Furthermore, the irreducible component \(K_a\) associated to \(a \in B^n\) can be described explicitly, as follows:

\[K_a = \{(L_1, \ldots, L_{2n}) \in B_{n,n}: L_{s_a(j)} = z_n^{-d_a(j)} L_{j-1} \forall j \in O_a\} \]

Here, \(B^n\) is the set of all crossingless matchings of \(2n\) points. Elements of \(B^n\) can be thought of as diagrams consisting of \(n\) disjoint, nested cups, as in Figure 1. Equivalently, elements of \(B^n\) are partitions of the set \(\{1, 2, \ldots, 2n\}\) into pairs, such that there is no quadruple \(i < j < k < l\) with \((i,k)\) and \((j,l)\) paired. For an element \(a \in B^n\), we denote by \(O_a\) the set of all \(i\) appearing in a pair \((i,j) \in a\) with \(i < j\); and if \((i,j) \in a\) is a pair with \(i < j\), then we define \(s_a(i) := j\) and \(d_a(i) := (s_a(i) - i + 1)/2\). Note that \(d_a(i)\) is always an integer because \(s_a(i) - i - 1\) is twice the number of cups that are contained strictly inside the cup with endpoints \(i\) and \(s_a(i)\).
In [Kho04], Khovanov proved that the integer cohomology ring of $\mathcal{B}_{n,n}$ is isomorphic to the center of the ring $H^n = \bigoplus_{a,b \in B^n} b(H^n)_a$, defined in [Kho02]. To show this, Khovanov first proved that $\mathcal{B}_{n,n}$ has the same integer cohomology ring as a topological space $\tilde{S} \subset (\mathbb{P}^1)^{2n} = \mathbb{P}^1 \times \ldots \times \mathbb{P}^1$ ($2n$ factors), defined by $\tilde{S} := \bigcup_{a \in B^n} S_a \subset (\mathbb{P}^1)^{2n}$, where

$$S_a := \{(l_1, \ldots, l_{2n}) \in (\mathbb{P}^1)^{2n} : l_j = l_{s_a(j)} \forall j \in O_a\}.$$

The goal of this paper is to show the following stronger statement, which was also conjectured by Khovanov ([Kho04, Conjecture 1]):

Theorem 1.2. $\mathcal{B}_{n,n}$ and \tilde{S} are homeomorphic.

Our proof of Theorem 1.2 is based on Proposition 1.1 and on the observation of Cautis and Kamnitzer [CK07] that $\mathcal{B}_{n,n}$ can be embedded into a (smooth) complex projective variety Y_{2n} diffeomorphic to $(\mathbb{P}^1)^{2n}$. Besides the diffeomorphism

$$\phi_{2n} : Y_{2n} \rightarrow (\mathbb{P}^1)^{2n}$$

of Cautis and Kamnitzer, whose definition we review in Section 2, we will need an involutive diffeomorphism

$$I_{2n} : (\mathbb{P}^1)^{2n} \rightarrow (\mathbb{P}^1)^{2n}$$

defined by $I_{2n}(l_1, \ldots, l_{2n}) := (l'_1, \ldots, l'_{2n})$ with

$$l'_j := \begin{cases} l_j & \text{if } j \text{ is odd,} \\ l_j^\perp & \text{if } j \text{ is even,} \end{cases}$$

where $l_j^\perp \subset \mathbb{C}^2$ is the orthogonal complement (w.r.t. the standard hermitian product on \mathbb{C}^2) of the complex line $l_j \subset \mathbb{C}^2$ (or, equivalently, the antipode of the point $l_j \in \mathbb{P}^1 \cong S^2$). In Section 3 we prove the following result, which implies Theorem 1.2.

Proposition 1.3. The diffeomorphism $I_{2n} \circ \phi_{2n}$ maps $K_a \subset Y_{2n}$ to $S_a \subset (\mathbb{P}^1)^{2n}$ for all $a \in B^n$, and hence $\mathcal{B}_{n,n}$ to \tilde{S}.

The author had the main idea for this article in Spring 2007 while he was preparing a talk for an informal seminar on link homology and coherent sheaves organized by Mikhail Khovanov at Columbia University. In a recent article [RT08], Russell and Tymoczko studied an action of the symmetric group S_{2n} on the cohomology ring of $\mathcal{B}_{n,n}$. In this context, they also proved Theorem 1.2. Although our proof is similar to theirs, our work is completely independent.

Acknowledgments. The author would like to thank Mikhail Khovanov for helpful conversations and for pointing him to the papers [CK07] and [Fun02]. The author was supported by fellowships of the Swiss National Science Foundation and of the Fondation Sciences Mathématiques de Paris.
2. Diffeomorphism ϕ_m

In the following, E is the complex vector space $E := \mathbb{C}^N \oplus \mathbb{C}^N$ (for some $N > 0$), and $z: E \to E$ is the nilpotent linear endomorphism given by $ze_j := e_{j-1}$ and $zf_j := f_{j-1}$ for all $j \in \{2, \ldots, N\}$, and $ze_1 := zf_1 := 0$, where $\{e_1, \ldots, e_N\}$ is the standard basis for the first \mathbb{C}^N summand in E, and $\{f_1, \ldots, f_N\}$ is the standard basis of the second \mathbb{C}^N summand in E. For $n \leq N$, we denote by $E_n \subset E$ the subspace $E_n := \mathbb{C}^n \oplus \mathbb{C}^n = \text{span}(e_1, \ldots, e_n) \oplus \text{span}(f_1, \ldots, f_n)$, or equivalently, $E_n = z^{-n}(0) = \ker(z^n) = \text{im}(z^{N-n})$, and we denote by $\langle \cdot, \cdot \rangle_E$ the standard hermitian product on E, satisfying
\[
\langle e_i, e_j \rangle_E := \langle f_i, f_j \rangle_E := \delta_{i,j}, \quad \langle e_i, f_j \rangle_E := 0,
\]
for all $i, j \in \{1, \ldots, N\}$, and by $\langle \cdot, \cdot \rangle$ the standard hermitian product on \mathbb{C}^2, satisfying
\[
\langle e, e \rangle := \langle f, f \rangle := 1, \quad \langle e, f \rangle := 0,
\]
where $\{e, f\}$ is the standard basis of \mathbb{C}^2.

2.1. Stable subspaces. A subspace $W \subset E$ is called stable under z if it satisfies $zW \subset W$. Note that this condition also implies $z^2W \subset zW$ and $W \subset z^{-1}W$, so if W is stable under z, then so are its images and preimages under z. Moreover, if a stable subspace W satisfies $W \subset \text{im}(z)$, then $z: z^{-1}W \to W$ is surjective and therefore
\[
\dim((z^{-1}W) \cap W^\perp) = \dim(z^{-1}W/W) = \dim(z^{-1}W) - \dim(W) = \dim(E_1) = 2
\]
where we have used that $z^{-1}W \cap z^{-1}(0) = \ker(z) = E_1$. Let $C: E \to \mathbb{C}^2$ be the linear map defined by $C(e_j) := e$ and $C(f_j) := f$ for all $j \in \{1, \ldots, N\}$. The following lemma is taken from [CK07] Lemma 2.2:

Lemma 2.1. If $W \subset E$ is stable under z and contained in $\text{im}(z)$, then the restriction $C|_{(z^{-1}W) \cap W^\perp}: (z^{-1}W) \cap W^\perp \to \mathbb{C}^2$ is an isometric isomorphism.

For the convenience of the reader, we recall the proof given in [CK07].

Proof. Since $(z^{-1}W) \cap W^\perp$ is two-dimensional, it suffices to show that the restriction of C to $(z^{-1}W) \cap W^\perp$ is an isometry. For this, let $v, w \in (z^{-1}W) \cap W^\perp$ with $v = v_1 + \ldots + v_N$ and $w = w_1 + \ldots + w_N$ where $v_j, w_j \in \text{span}(e_j, f_j)$. Then we have
\[
\langle v, w \rangle_E = \sum_i \langle v_i, w_i \rangle_E = \sum_i \langle C(v_i), C(w_i) \rangle
\]
and
\[
\langle C(v), C(w) \rangle = \langle \sum_i C(v_i), \sum_j C(w_j) \rangle = \sum_{i,j} \langle C(v_i), C(w_j) \rangle.
\]
To prove that the restriction of C to $(zW) \cap W^\perp$ is an isometry, i.e. that $\langle v, w \rangle_E = \langle C(v), C(w) \rangle$, we must therefore show $\sum_{i \neq j} \langle C(v_i), C(w_j) \rangle = 0$. We will actually prove a stronger statement, namely that $\sum_{i=j+k} \langle C(v_i), C(w_j) \rangle = 0$ for each fixed $k \neq 0$. Assuming $k > 0$ (the case $k < 0$ being similar), we can write
\[
\sum_{i=j+k} \langle C(v_i), C(w_j) \rangle = \sum_{i=j+k} \langle v_i, w_j \rangle_E = \langle v, z^k w \rangle_E,
\]
and since \(v, w \in (z^{-1}W) \cap W^\perp \), we have \(v \in W^\perp \) and \(z^k w \in z^k(z^{-1}W) \subset z^{k-1}W \subset W \), whence \(\langle v, z^k w \rangle_E = 0 \), as desired.

\[\square \]

Lemma 2.2. Let \(W \subset E \) be a stable subspace such that \(\ker(z) \subset W \subset \im(z) \). Then \(z \) maps \(W^\perp \cap z^{-1}W \) isomorphically to \((zW)^\perp \cap W \), and the following diagram commutes:

\[
\begin{array}{ccc}
(z^{-1}W) \cap W^\perp & \xrightarrow{z} & W \cap (zW)^\perp \\
\downarrow c & & \downarrow c \\
\mathbb{C}^2 & & \mathbb{C}^2
\end{array}
\]

Proof. It is apparent that \(W \cap (zW)^\perp \cong W/(zW) \) is two-dimensional, and, by the previous lemma, \(C \) restricts to an isomorphism on \((z^{-1}W) \cap W^\perp \), so we only need to prove that \(z \) maps elements of \((z^{-1}W) \cap W^\perp \) to elements of \(W \cap (zW)^\perp \), and that the above diagram commutes. Thus, let \(v \in (z^{-1}W) \cap W^\perp \), and write \(v \) as

\[
v = v_1 + \ldots + v_N
\]

for \(v_j \in \text{span}(e_j, f_j) \). Since \(v \in W^\perp \) and \(W \supset \ker(z) = E_1 = \text{span}(e_1, f_1) \), we have \(v_1 = 0 \), and since \(C(zv_j) = C(v_j) \) for all \(j \geq 2 \), this implies \(C(zv) = C(v) \). We clearly have \(zv \in W \) (because \(v \in z^{-1}W \)), so the only thing that remains to be shown is that \(zv \in (zW)^\perp \). For this, consider any \(w \in W \) and write \(w \) as \(w = w_1 + \ldots + w_N \) for \(w_j \in \text{span}(e_j, f_j) \). Since \((zv_j, zw_j)_E = \langle v_j, w_j \rangle_E \) for all \(j \geq 2 \), and since \(v_1 = 0 \) and \(v \in W^\perp \), we see that \(\langle zv, zw \rangle_E = \langle v, w \rangle_E = 0 \), and thus \(zv \in (zW)^\perp \).

\[\square \]

2.2. \(Y_m \) and \(\phi_m \)

For \(m \leq N \), Cautis and Kamnitzer [CK07] Section 2] define a complex projective variety \(Y_m \),

\[
Y_m := \{(L_1, \ldots, L_m) \in F_m : \dim(L_j) = j \text{ and } zL_j \subset L_j \forall j\},
\]

where \(F_m \) is the set of all partial flags \(0 \not\subset L_1 \not\subset L_2 \not\subset \ldots \not\subset L_m \subset E \). Note that the conditions \(zL_j \subset L_j \) and \(zL_{j-1} \subset L_{j-1} \) imply that \(z \) descends to an endomorphism of \(L_j/L_{j-1} \), and since \(L_j/L_{j-1} \) is one-dimensional and \(z \) nilpotent, this endomorphism must be the zero-map, so the spaces \(L_j \in (L_1, \ldots, L_m) \in Y_m \) actually satisfy the seemingly stronger condition \(zL_j \subset L_{j-1} \). In particular, \(L_m \subset z^{-1}L_{m-1} \subset z^{-2}L_{m-2} \subset \ldots \subset z^{-m}(0) = \ker(z^m) = E_m \), so as far as the definition of \(Y_m \) is concerned, we could restrict ourselves to the space \(E_m = \mathbb{C}^m \oplus \mathbb{C}^m \) instead of working with the bigger space \(E = \mathbb{C}^N \oplus \mathbb{C}^N \). In particular, \(Y_m \) is independent of the choice of \(N \) (as long as \(N \geq m \)).

Note also that the assignment \((L_1, \ldots, L_{m-1}, L_m) \mapsto (L_1, \ldots, L_{m-1}) \) defines a \(\mathbb{P}^1 \)-bundle \(Y_m \to Y_{m-1} \). Indeed, a point in the fiber above \((L_1, \ldots, L_{m-1}) \in Y_{m-1} \) is obtained from \((L_1, \ldots, L_{m-1}) \) by choosing an \(L_m \) such that \(L_m \subset L_{m-1} \subset z^{-1}L_{m-1} \), and since \(z^{-1}L_{m-1}/L_{m-1} \) is two-dimensional, we have a \(\mathbb{P}^1 \) worth of choices. Denoting by \(L_{j-1}^\perp \) the orthogonal complement of \(L_{j-1} \) w.r.t. \(\langle ., . \rangle_E \), we can identify \(z^{-1}L_{m-1}/L_{m-1} \) with \((z^{-1}L_{m-1}) \cap L_{m-1}^\perp \), and by Lemma 2.1 the map \(C : E \to \mathbb{C}^2 \) identifies \((z^{-1}L_{m-1}) \cap L_{m-1}^\perp \) with \(\mathbb{C}^2 \). Therefore, the \(\mathbb{P}^1 \)-bundle \(Y_m \to Y_{m-1} \) is topologically trivial (i.e., topologically, \(Y_m \cong \mathbb{P}^1 \times Y_{m-1} \)), and Cautis and Kamnitzer use
this to define a diffeomorphism
\[\phi_m : Y_m \to (\mathbb{P}^1)^m \]
by \(\phi_m(L_1, \ldots, L_m) := (C(L_1), C(L_2 \cap L_1^\perp), C(L_3 \cap L_2^\perp), \ldots, C(L_m \cap L_{m-1}^\perp)) \).

2.3. Subvarieties \(X_{m,i} \subset Y_m \). For each \(i \in \{1, \ldots, m-1\} \), Cautis and Kamnitzer define a subvariety \(X_{m,i} \subset Y_m \),
\[X_{m,i} := \{(L_1, \ldots, L_m) \in Y_m : L_{i+1} = z^{-1}(L_{i-1})\}, \]
together with a surjection
\[q_{m,i} : X_{m,i} \to Y_{m-2}, \]
given by \(q_{m,i}(L_1, \ldots, L_m) := (L_1, \ldots, L_{i-1}, zL_{i+2}, \ldots, zL_m) \in Y_{m-2} \). The following (easy) Lemma was shown in [CK07, Theorem 2.1].

Lemma 2.3. The map \(\phi_m : Y_m \to (\mathbb{P}^1)^m \) takes \(X_{i,m} \) diffeomorphically to
\[A_{m,i} := \{(l_1, \ldots, l_m) \in (\mathbb{P}^1)^m : l_{i+1} = l_i^\perp\}, \]
where \(l_i^\perp \) denotes the orthogonal complement of the line \(l_i \subset \mathbb{C}^2 \) w.r.t. \(\langle \cdot, \cdot \rangle \).

Let \(f_{m,i} : (\mathbb{P}^1)^m \to (\mathbb{P}^1)^{m-2} \) be the forgetful map sending \((l_1, \ldots, l_m) \in (\mathbb{P}^1)^m\) to \((l_1, \ldots, l_{i-1}, l_{i+2}, \ldots, l_m) \in (\mathbb{P}^1)^{m-2}\), and let
\[g_{m,i} : A_{m,i} \to (\mathbb{P}^1)^{m-2} \]
be the restriction of \(f_{m,i} \) to \(A_{m,i} \).

Lemma 2.4. Let \(\psi_{m,i} : X_{m,i} \to A_{m,i} \) be the restriction of \(\phi_m \) to \(X_{m,i} \subset Y_m \). Then the following diagram commutes:
\[\begin{array}{ccc}
X_{m,i} & \xrightarrow{g_{m,i}} & Y_{m-2} \\
\downarrow{\psi_{m,i}} & & \downarrow{\phi_{m-2}} \\
A_{m,i} & \xrightarrow{g_{m,i}} & (\mathbb{P}^1)^{m-2}
\end{array} \]

Proof. It is straightforward to check that \(g_{m,i} \circ \psi_m \) maps \((L_1, \ldots, L_m) \in X_{m,i}\) to the tuple \((l'_1, \ldots, l'_{m-2}) \in (\mathbb{P}^1)^{m-2}\), where
\[l'_j = \begin{cases}
C(L_j \cap L_{j-1}^\perp) & \text{if } j < i, \\
C(L_{j+2} \cap L_{j+1}^\perp) & \text{if } j \geq i,
\end{cases} \]
and \(\phi_{m-2} \circ g_{m,i} \) maps \((L_1, \ldots, L_m) \in X_{m,i}\) to the tuple \((l''_1, \ldots, l''_{m-2}) \in (\mathbb{P}^1)^{m-2}\), where
\[l''_j = \begin{cases}
C(L_j \cap L_{j-1}^\perp) & \text{if } j < i, \\
C(zL_{j+2} \cap (zL_{j+1})^\perp) & \text{if } j \geq i.
\end{cases} \]
To prove \(g_{m,i} \circ \psi_m = \phi_{m-2} \circ g_{m,i} \), we must therefore show that
\[C(L_{j+2} \cap L_{j+1}^\perp) = C(zL_{j+2} \cap (zL_{j+1})^\perp) \]
holds for all \(j \geq i \). But if \(j \geq i \), then \(L_{j+1} \supset L_{i+1} = z^{-1}(L_{i-1}) \supset z^{-1}(0) = \ker(z) \), and (by increasing \(N \) if necessary) we can also assume that \(L_{j+1} \subset \im(z) \). Thus,
Lemma 2.2 applied to \(W := L_{j+1} \) tells us that \(z \) maps \((z^{-1}W) \cap W^\perp \) to \(W \cap (zW)^\perp \), and that \(C(v) = C(xv) \) for all \(v \in (z^{-1}W) \cap W^\perp \). Now the equality \(C(L_{j+2} \cap L_{j+1}^\perp) = C(zL_{j+2} \cap (zL_{j+1})^\perp) \) follows because \(z \) maps \(L_{j+2} \cap L_{j+1}^\perp \subseteq (z^{-1}W) \cap W^\perp \) to \(zL_{j+2} \cap (zL_{j+1})^\perp \subseteq W \cap (zW)^\perp \). \(\square \)

3. PROOF OF PROPOSITION 1.3

In this section, we use the same notations as before, except that we now assume \(m = 2n \) (and hence \(N \geq 2n \)). Then the Springer variety \(\mathcal{B}_{n,n} \) is naturally contained in \(Y_{2n} \) as
\[
\mathcal{B}_{n,n} := \{ (L_1, \ldots, L_{2n}) \in Y_{2n} : L_{2n} = E_n \},
\]
where \(E_n := \text{span}(e_1, \ldots, e_n) \oplus \text{span}(f_1, \ldots, f_n) \), and Proposition 1.1 tells us that the irreducible component \(K_a \subset \mathcal{B}_{n,n} \subset Y_{2n} \) associated to the crossingless matching \(a \in B^n \) is equal to the set of all \((L_1, \ldots, L_{2n}) \in Y_{2n} \) satisfying
\[
L_{s_a(j)} = z^{-d_a(j)}L_{j-1}
\]
for all \(j \in O_a \), where \(z_a \colon E_n \to E_n \) is the restriction of \(z \) to \(E_n \). A priori, \(z^{-d_a(j)}L_{j-1} \) could a priori be a proper subspace of \(z^{-d_a(j)}L_{j-1} \) (because \(z^{-d_a(j)}L_{j-1} \) might not be contained in \(E_n \)), but it turns out that \(z_n^{-d_a(j)}L_{j-1} \) is equal to \(z^{-d_a(j)}L_{j-1} \) whenever \((L_1, \ldots, L_{2n}) \in K_a \). In fact, we have:

Lemma 3.1. \(K_a = \{ (L_1, \ldots, L_{2n}) \in Y_{2n} : L_{s_a(j)} = z^{-d_a(j)}L_{j-1} \forall j \in O_a \} \).

Proof. Suppose \((L_1, \ldots, L_{2n}) \) is contained in \(K_a \). Then the condition \(z_a^{-d_a(j)}L_{j-1} = L_{s_a(j)} \), combined with \(\dim(L_{j-1}) = j-1 \), \(\dim(L_{s_a(j)}) = s_a(j) \), and \(\dim(\ker(z)) = 2 \), implies
\[
\dim(z^{-d_a(j)}L_{j-1}) = 2d_a(j) + \dim(L_{j-1}) = 2d_a(j) + j - 1 = s_a(j)
\]
and thus \(z^{-d_a(j)}L_{j-1} = z_n^{-d_a(j)}L_{j-1} \). Conversely, suppose \((L_1, \ldots, L_{2n}) \in Y_{2n} \) satisfies \(z^{-d_a(j)}L_{j-1} = L_{s_a(j)} \) for all \(j \in O_a \). Then we must show that \(L_{2n} = E_n \). To prove this, let us call a pair \((k, l) \in a \) *outermost* if there is no pair \((k', l') \in a \) such that \(k' < k < l < l' \). Then the outermost pairs in \(a \) form a sequence \((k_1, l_1), (k_2, l_2), \ldots, (k_r, l_r) \in a \) such that \(k_1 = 1 \), \(l_r = 2n \), and \(k_{s+1} = l_s + 1 \) for all \(s < r \), and \(d_a(k_1) + \ldots + d_a(k_r) = n \). Using \(z^{-d_a(j)}L_{j-1} = L_{s_a(j)} \) successively for \(j \in \{ k_r, k_{r-1}, \ldots, k_1 \} \subset O_a \), we obtain
\[
L_{2n} = z^{-d_a(k_r)}L_{l_{r-1}} = z^{-d_a(k_{r-1})}L_{l_{r-2}} = \ldots = z^{-n(0)} = E_n,
\]
as desired. \(\square \)

From now on, \(a \in B^n \) is a fixed crossingless matching of \(2n \) points, and \(i \) is an index such that \(s_a(i) = i + 1 \), i.e., such that \((i, i + 1) \) is a pair in \(a \). We denote by \(a' \in B^{n-1} \) the crossingless matching obtained from \(a \) by removing the pair \((i, i + 1) \) (and renumbering indices \(j \geq i + 2 \) such that \(j \in \{ i + 2, \ldots, 2n \} \) becomes \(j - 2 \in \{ i, \ldots, 2n - 2 \} \)), and by \(q \) the map \(q_{2n,i} \colon X_{2n,i} \to Y_{2n-2} \), defined as in the previous section.
Lemma 3.2. \(K_a = q^{-1}(K_{a'}) \).

Proof. Since \(s_a(i) = i + 1 \) and \(d_a(i) = (s_a(i) - i + 1)/2 = 1 \), the equality \(L_{i+1} = z^{-1}L_{i-1} \) holds for each \((L_1, \ldots, L_{2n}) \in K_a\), and thus \(K_a \subset Y_{2n} \) is contained in \(X_{2n,i} \).

It remains to show that an element \((L_1, \ldots, L_{2n}) \in X_{2n,i}\) satisfies the conditions \(L_{s_{a,j}} = z^{-d_a(j)}L_{j-1} \) for all \(j \in O_a \setminus \{i\} \) if and only if the element \((L', \ldots, L'_{2n-2}) := q(L_1, \ldots, L_{2n}) = (L_1, \ldots, L_{i-1}, zL_{i+2}, \ldots, zL_{2n}) \in Y_{2n-2} \) satisfies the conditions \(L'_{s_{a,j}'} = z^{-d_{a'}(j)}L'_{j-1} \) for all \(j \in O_{a'} \). We divide the proof into three cases.

Case 1. If \(j < s_a(j) < i \), then the equivalence

\[
L_{s_a(j)} = z^{-d_a(j)}L_{j-1} \iff L'_{s_{a'}(j)} = z^{-d_{a'}(j)}L'_{j-1}
\]

is obvious because the quantities appearing on either side of \(\iff \) are identical.

Case 2. If \(j < i < i + 1 < s_a(j) \), then \(L'_{j-1} = L_{j-1}, L'_{s_{a'}(j)} = zL_{s_a(j)}, \) and \(d_{a'}(j) = d_a(j) - 1 \), so we must show:

\[
L_{s_a(j)} = z^{-d_a(j)}L_{j-1} \iff zL_{s_a(j)} = z^{-d_a(j) + 1}L_{j-1}
\]

But this follows simply by applying \(z \) (resp., \(z^{-1} \)) to the equalities on either side of \(\iff \), and observing that \(z^{-1}(zL_{s_a(j)}) = L_{s_a(j)} \) (because \(L_{s_a(j)} \supset L_{i+1} = z^{-1}L_{i-1} \supset z^{-1}(0) = \ker(z) \)), and that \(z(z^{-d_a(j)}L_{j-1}) = z^{-(d_a(j)+1)}L_{j-1} \) (because, by increasing \(N \) if necessary, we may assume \(z^{-d_a(j)+1}L_{j-1} \subset \text{im}(z) \)).

Case 3. If \(i + 1 < j < s_a(j) \), then \(L'_{j-3} = zL_{j-1}, L_{s_{a'}(j-2)} = zL_{s_a(j)}, \) and \(d_{a'}(j-2) = d_a(j) \), so we must show:

\[
L_{s_a(j)} = z^{-d_a(j)}L_{j-1} \iff zL_{s_a(j)} = z^{-d_a(j)}zL_{j-1}
\]

As in Case 2, this follows by applying \(z \) (resp., \(z^{-1} \)) to the equalities on either side of \(\iff \). \(\square \)

Note that (since \(s_a(j) - j \) is odd for all \(j \in O_a \)) the involutive diffeomorphism \(I_{2n} : (\mathbb{P}^1)^{2n} \to (\mathbb{P}^1)^{2n} \) defined in the introduction exchanges the subset \(S_a \subset (\mathbb{P}^1)^{2n} \) with the subset

\[
T_a := \{(l_1, \ldots, l_{2n}) \in (\mathbb{P}^1)^{2n} : l_{s_a(j)} = l_j^+ \forall j \in O_a\} \subset (\mathbb{P}^1)^{2n}
\]

To prove Proposition 3.3, we must therefore show that \(\phi_{2n} \) maps \(K_a \) to \(T_a \) for all \(a \in B^n \). We will need the following lemma, in which \(a, i \) and \(a' \) are as in the previous lemma, and \(g \) denotes the map \(g_{2n,i} : A_{2n,i} \to (\mathbb{P}^1)^{2n-2} \), defined as in the previous section.

Lemma 3.3. \(T_a = g^{-1}(T_{a'}) \).

Proof. This follows directly from the definitions of \(g, A_{2n,i}, T_a \) and \(T_{a'} \). \(\square \)

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. Induction on \(n \). The case \(n = 1 \) is trivial because the only crossingless matching of 2 points is \(a_1 := \{(1, 2)\} \), and \(\phi_2 : Y_2 \to \mathbb{P}^1 \times \mathbb{P}^1 \) maps \(\Phi_{1,1} = K_{a_1} = X_{2,1} \subset Y_2 \) diffeomorphically to \(T_{a_1} = A_{2,1} \subset \mathbb{P}^1 \times \mathbb{P}^1 \).

Thus, let \(n > 1 \), and suppose we have already proven the proposition for \(n - 1 \). Let \(a \in B^n \). Then there is an \(i \in \{1, \ldots, 2n - 1\} \) such that \(s_a(i) = i + 1 \), i.e., such
that \((i, i+1) \in a\). As above, we denote by \(a' \in B^{n-1}\) the crossingless matching obtained from \(a\) by removing the pair \((i, i+1)\) (and renumbering all \(j \geq i+2\)), and by \(q\) (resp., \(g\)) the map \(q_{2n,i}\) (resp., \(g_{2n,i}\)). By induction, we know that \(\phi_{2n-2}\) maps \(K_{a'}\) to \(T_{a'}\), so Lemma 2.4 gives us the following commutative diagram:

\[
\begin{array}{c}
q^{-1}(K_{a'}) \quad \psi_{2n,i} \quad X_{2n,i} \quad q \quad Y_{2n-2} \quad K_{a'} \\
\downarrow \psi_{2n,i} \quad \downarrow \phi_{2n-2} \\
g^{-1}(T_{a'}) \quad A_{2n,i} \quad g \quad (\mathbb{P}^1)^{2n-2} \quad T_{a'}
\end{array}
\]

Hence we get \(\psi_{2n,i}(q^{-1}(K_{a'})) = g^{-1}(T_{a'})\), and by Lemmas 3.2 and 3.3, this implies

\[
\psi_{2n,i}(K_a) = T_a,
\]

thus completing the inductive step. □

References

Institut de Mathématiques de Jussieu; Université Paris 7; 175 rue du Chevaleret; bureau 7B3; 75013 Paris, France

E-mail address: wehrli@math.jussieu.fr