Syracuse University **[SURFACE](https://surface.syr.edu/)**

[Mathematics - Faculty Scholarship](https://surface.syr.edu/mat) [Mathematics](https://surface.syr.edu/math) Mathematics

8-15-2009

A Remark on the Topology of (n,n) Springer Varieties

Stephan M. Wehrli Syracuse University

Follow this and additional works at: [https://surface.syr.edu/mat](https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Wehrli, Stephan M., "A Remark on the Topology of (n,n) Springer Varieties" (2009). Mathematics - Faculty Scholarship. 122. [https://surface.syr.edu/mat/122](https://surface.syr.edu/mat/122?utm_source=surface.syr.edu%2Fmat%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact [surface@syr.edu.](mailto:surface@syr.edu)

A REMARK ON THE TOPOLOGY OF (n,n) SPRINGER VARIETIES

STEPHAN M. WEHRLI

ABSTRACT. We prove a conjecture of Khovanov [\[Kho04\]](#page-8-0) which identifies the topological space underlying the Springer variety of complete flags in \mathbb{C}^{2n} stabilized by a fixed nilpotent operator with two Jordan blocks of size n .

1. INTRODUCTION

Let E_n be a complex vector space of dimension $2n$ and $z_n: E_n \to E_n$ a nilpotent linear endomorphism with two nilpotent Jordan blocks, each of them of size n. A *complete flag* in E_n is an ascending sequence of linear subspaces $0 \subsetneq L_1 \subsetneq L_2 \subsetneq$ $\ldots \subsetneq L_{2n} = E_n$. The (n, n) *Springer variety* is the set

 $\mathfrak{B}_{n,n} := {\text{complete flags in } E_n \text{ stabilized by } z_n},$

where a complete flag is said to be *stabilized* by z_n if each of the subspaces L_j is stable under z_n , i.e. if $z_nL_j \subset L_j$ for all $j \in \{1, \ldots, 2n\}$.

It is known that $\mathfrak{B}_{n,n}$ is a complex projective variety of (complex) dimension n, and that the irreducible components of $\mathfrak{B}_{n,n}$ are topologically trivial (but algebraically non-trivial) iterated \mathbb{P}^1 -bundles over a point (where \mathbb{P}^1 is the complex projective line, i.e., topologically, $\mathbb{P}^1 \cong S^2$). Moreover, a result of Fung [\[Fun02\]](#page-8-1) (going back to earlier work of Spaltenstein [\[Spa76\]](#page-8-2) and Vargas [\[Var79\]](#page-8-3)), describes the irreducible components of $\mathfrak{B}_{n,n}$ explicitly in terms of crossingless matchings of 2n points:

Proposition 1.1 (Fung). *The irreducible components of* $\mathfrak{B}_{n,n}$ *are parametrized by crossingless matchings of* $2n$ *points. Furthermore, the irreducible component* K_a associated to $a \in B^n$ can be described explicitly, as follows:

$$
K_a = \{(L_1, \ldots, L_{2n}) \in \mathfrak{B}_{n,n} : L_{s_a(j)} = z_n^{-d_a(j)} L_{j-1} \,\forall j \in O_a\}
$$

Here, B^n is the set of all crossingless matchings of $2n$ points. Elements of B^n can be thought of as diagrams consisting of n disjoint, nested cups, as in Figure [1.](#page-2-0) Equivalently, elements of B^n are partitions of the set $\{1, 2, \ldots, 2n\}$ into pairs, such that there is no quadruple $i < j < k < l$ with (i, k) and (j, l) paired. For an element $a \in Bⁿ$, we denote by O_a the set of all i appearing in a pair $(i, j) \in a$ with $i < j$; and if $(i,j) \in a$ is a pair with $i < j$, then we define $s_a(i) := j$ and $d_a(i) := (s_a(i) - i + 1)/2$. Note that $d_a(i)$ is always an integer because $s_a(i) - i - 1$ is twice the number of cups that are contained strictly inside the cup with endpoints i and $s_a(i)$.

FIGURE 1. Crossingless matching $\{(1,4), (2,3)\}.$

In [\[Kho04\]](#page-8-0), Khovanov proved that the integer cohomology ring of $\mathfrak{B}_{n,n}$ is isomorphic to the center of the ring $H^n = \bigoplus_{a,b \in B^n} \mathfrak{b}(H^n)_a$, defined in [\[Kho02\]](#page-8-4). To show this, Khovanov first proved that $\mathfrak{B}_{n,n}$ has the same integer cohomology ring as a topological space $\widetilde{S} \subset (\mathbb{P}^1)^{2n} = \mathbb{P}^1 \times \ldots \times \mathbb{P}^1$ (2n factors), defined by $\widetilde{S} :=$ $\bigcup_{a \in B^n} S_a \subset (\mathbb{P}^1)^{2n}$, where

$$
S_a := \{ (l_1, \ldots, l_{2n}) \in (\mathbb{P}^1)^{2n} : l_j = l_{s_a(j)} \, \forall j \in O_a \}.
$$

The goal of this paper is to show the following stronger statement, which was also conjectured by Khovanov ([\[Kho04,](#page-8-0) Conjecture 1]):

Theorem 1.2. $\mathfrak{B}_{n,n}$ and \widetilde{S} are homeomorphic.

Our proof of Theorem [1.2](#page-2-1) is based on Proposition [1.1](#page-1-0) and on the observation of Cautis and Kamnitzer [\[CK07\]](#page-8-5) that $\mathfrak{B}_{n,n}$ can be embedded into a (smooth) complex projective variety Y_{2n} diffeomorphic to $(\mathbb{P}^1)^{2n}$. Besides the diffeomorphism

$$
\phi_{2n}\colon Y_{2n}\longrightarrow (\mathbb{P}^1)^{2n}
$$

of Cautis and Kamnitzer, whose definition we review in Section [2,](#page-3-0) we will need an involutive diffeomorphism

defined by
$$
I_{2n}(l_1, \ldots, l_{2n}) := (l'_1, \ldots, l'_{2n})
$$
 with

$$
l'_j := \begin{cases} l_j & \text{if } j \text{ is odd,} \\ l_j^{\perp} & \text{if } j \text{ is even,} \end{cases}
$$

where $l_j^{\perp} \subset \mathbb{C}^2$ is the orthogonal complement (w.r.t. the standard hermitian product on \mathbb{C}^2) of the complex line $l_j \subset \mathbb{C}^2$ (or, equivalently, the antipode of the point $l_j \in$ $\mathbb{P}^1 \cong S^2$). In Section [3,](#page-6-0) we prove the following result, which implies Theorem [1.2:](#page-2-1)

Proposition 1.3. The diffeomorphism $I_{2n} \circ \phi_{2n}$ maps $K_a \subset Y_{2n}$ to $S_a \subset (\mathbb{P}^1)^{2n}$ for *all* $a \in B^n$, and hence $\mathfrak{B}_{n,n}$ to \widetilde{S} .

The author had the main idea for this article in Spring 2007 while he was preparing a talk for an informal seminar on link homology and coherent sheaves organized by Mikhail Khovanov at Columbia University. In a recent article [\[RT08\]](#page-8-6), Russell and Tymoczko studied an action of the symmetric group S_{2n} on the cohomology ring of $\mathfrak{B}_{n,n}$. In this context, they also proved Theorem [1.2.](#page-2-1) Although our proof is similar to theirs, our work is completely independent.

Acknowledgments. The author would like to thank Mikhail Khovanov for helpful conversations and for pointing him to the papers [\[CK07\]](#page-8-5) and [\[Fun02\]](#page-8-1). The author was supported by fellowships of the Swiss National Science Foundation and of the Fondation Sciences Mathématiques de Paris.

2. DIFFEOMORPHISM ϕ_m

In the following, E is the complex vector space $E := \mathbb{C}^N \oplus \mathbb{C}^N$ (for some $N > 0$), and $z: E \to E$ is the nilpotent linear endomorphism given by $ze_i := e_{i-1}$ and $z f_j := f_{j-1}$ for all $j \in \{2, ..., N\}$, and $ze_1 := z f_1 := 0$, where $\{e_1, ..., e_N\}$ is the standard basis for the first \mathbb{C}^N summand in E, and $\{f_1,\ldots,f_N\}$ is the standard basis of the second \mathbb{C}^N summand in E. For $n \leq N$, we denote by $E_n \subset E$ the subspace $E_n := \mathbb{C}^n \oplus \mathbb{C}^n = \text{span}(e_1, \ldots, e_n) \oplus \text{span}(f_1, \ldots, f_n)$, or equivalently, $E_n = z^{-n}(0) = \ker(z^n) = \text{im}(z^{N-n})$, and we denote by $\langle .,.\rangle_E$ the standard hermitian product on E , satisfying

$$
\langle e_i, e_j \rangle_E := \langle f_i, f_j \rangle_E := \delta_{i,j} \quad , \quad \langle e_i, f_j \rangle_E := 0,
$$

for all $i, j \in \{1, ..., N\}$, and by $\langle.,.\rangle$ the standard hermitian product on \mathbb{C}^2 , satisfying

$$
\langle e, e \rangle := \langle f, f \rangle := 1 \quad , \quad \langle e, f \rangle := 0,
$$

where $\{e, f\}$ is the standard basis of \mathbb{C}^2 .

2.1. Stable subspaces. A subspace $W \subset E$ is called *stable* under z if it satisfies $zW \subset W$. Note that this condition also implies $z^2W \subset zW$ and $W \subset z^{-1}W$, so if W is stable under z , then so are its images and preimages under z . Moreover, if a stable subspace W satisfies $W \subset \text{im}(z)$, then $z: z^{-1}W \to W$ is surjective and therefore

 $\dim((z^{-1}W) \cap W^{\perp}) = \dim(z^{-1}W/W) = \dim(z^{-1}W) - \dim(W) = \dim(E_1) = 2$

where we have used that $z^{-1}W \supset z^{-1}(0) = \ker(z) = E_1$. Let $C: E \to \mathbb{C}^2$ be the linear map defined by $C(e_j) := e$ and $C(f_j) := f$ for all $j \in \{1, ..., N\}$. The following lemma is taken from [\[CK07,](#page-8-5) Lemma 2.2]:

Lemma 2.1. *If* $W \subset E$ *is stable under* z *and contained in* im(z), *then the restriction* $C|_{(z^{-1}W)\cap W^{\perp}}: (z^{-1}W)\cap W^{\perp}\to \mathbb{C}^2$ is an isomotric isomorphism.

For the convenience of the reader, we recall the proof given in [\[CK07\]](#page-8-5).

Proof. Since $(z^{-1}W) \cap W^{\perp}$ is two-dimensional, it suffices to show that the restriction of C to $(z^{-1}W) \cap W^{\perp}$ is an isometry. For this, let $v, w \in (z^{-1}W) \cap W^{\perp}$ with $v = v_1 + \ldots + v_N$ and $w = w_1 + \ldots + w_N$ where $v_j, w_j \in \text{span}(e_j, f_j)$. Then we have

$$
\langle v, w \rangle_E = \sum_i \langle v_i, w_i \rangle_E = \sum_i \langle C(v_i), C(w_i) \rangle
$$

and

$$
\langle C(v), C(w) \rangle = \langle \sum_i C(v_i), \sum_j C(w_j) \rangle = \sum_{i,j} \langle C(v_i), C(w_j) \rangle.
$$

To prove that the restriction of C to $(zW) \cap W^{\perp}$ is an isometry, i.e. that $\langle v, w \rangle_E =$ $\langle C(v), C(w) \rangle$, we must therefore show $\sum_{i \neq j} \langle C(v_i), C(w_j) \rangle = 0$. We will actually prove a stronger statement, namely that $\sum_{i=j+k}^{\infty} \langle C(v_i), C(w_j) \rangle = 0$ for each fixed $k \neq 0$. Assuming $k > 0$ (the case $k < 0$ being similar), we can write

$$
\sum_{i=j+k} \langle C(v_i), C(w_j) \rangle = \sum_{i=j+k} \langle v_i, w_j \rangle_E = \langle v, z^k w \rangle_E,
$$

and since $v, w \in (z^{-1}W) \cap W^{\perp}$, we have $v \in W^{\perp}$ and $z^k w \in z^k (z^{-1}W) \subset z^{k-1}W \subset Y$ W, whence $\langle v, z^k w \rangle_E = 0$, as desired.

Lemma 2.2. *Let* $W ⊂ E$ *be a stable subspace such that* $\text{ker}(z) ⊂ W ⊂ \text{im}(z)$ *. Then* z maps $W^{\perp} \cap z^{-1}W$ *isomorphically to* $(zW)^{\perp} \cap W$ *, and the following diagram commutes:*

Proof. It is apparent that $W \cap (zW)^{\perp} \cong W/(zW)$ is two-dimensional, and, by the previous lemma, C restricts to an isomorphism on $(z^{-1}W) \cap W^{\perp}$, so we only need to prove that z maps elements of $(z^{-1}W) \cap W^{\perp}$ to elements of $W \cap (zW)^{\perp}$, and that the above diagram commutes. Thus, let $v \in (z^{-1}W) \cap W^{\perp}$, and write v as

$$
v = v_1 + \ldots + v_N
$$

for $v_i \in \text{span}(e_i, f_i)$. Since $v \in W^{\perp}$ and $W \supset \text{ker}(z) = E_1 = \text{span}(e_1, f_1)$, we have $v_1 = 0$, and since $C(zv_j) = C(v_j)$ for all $j \ge 2$, this implies $C(zv) = C(v)$. We clearly have $zv \in W$ (because $v \in z^{-1}W$), so the only thing that remains to be shown is that $zv \in (zW)^{\perp}$. For this, consider any $w \in W$ and write w as $w = w_1 + \ldots + w_N$ for $w_j \in \text{span}(e_j, f_j)$. Since $\langle zv_j, zw_j \rangle_E = \langle v_j, w_j \rangle_E$ for all $j \geq 2$, and since $v_1 = 0$ and $v \in W^{\perp}$, we see that $\langle zv, zw \rangle_E = \langle v, w \rangle_E = 0$, and thus $zv \in (zW)^{\perp}$.

2.2. Y_m and ϕ_m . For $m \leq N$, Cautis and Kamnitzer [\[CK07,](#page-8-5) Section 2] define a complex projective variety Y_m ,

$$
Y_m := \{ (L_1, \dots, L_m) \in F_m : \dim(L_j) = j \text{ and } zL_j \subset L_j \,\forall j \},
$$

where F_m is the set of all partial flags $0 \subsetneq L_1 \subsetneq L_2 \subsetneq \ldots \subsetneq L_m \subset E$. Note that the conditions $zL_j \subset L_j$ and $zL_{j-1} \subset L_{j-1}$ imply that z descends to an endomorphism of L_j/L_{j-1} , and since L_j/L_{j-1} is one-dimensional and z nilpotent, this endomorphism must be the zero-map, so the spaces L_j in $(L_1, \ldots, L_m) \in Y_m$ actually satisfy the seemingly stronger condition $zL_j \subset L_{j-1}$. In particular, $L_m \subset$ $z^{-1}L_{m-1} \subset z^{-2}L_{m-2} \subset \ldots \subset z^{-m}(0) = \text{ker}(z^m) = \tilde{E}_m$, so as far as the definition of Y_m is concerned, we could restrict ourselves to the space $E_m = \mathbb{C}^m \oplus \mathbb{C}^m$ instead of working with the bigger space $E = \mathbb{C}^N \oplus \mathbb{C}^N$. In particular, Y_m is independent of the choice of N (as long as $N \geq m$).

Note also that the assignment $(L_1, \ldots, L_{m-1}, L_m) \mapsto (L_1, \ldots, L_{m-1})$ defines a ^{p1}-bundle $Y_m \to Y_{m-1}$. Indeed, a point in the fiber above $(L_1, \ldots, L_{m-1}) \in Y_{m-1}$ is obtained from (L_1, \ldots, L_{m-1}) by choosing an L_m such that $L_{m-1} \subset L_m \subset z^{-1}L_{m-1}$, and since $z^{-1}L_{m-1}/L_{m-1}$ is two-dimensional, we have a \mathbb{P}^1 worth of choices. Denoting by L_{j-1}^{\perp} the orthogonal complement of L_{j-1} w.r.t. $\langle .,.\rangle_E$, we can identify $z^{-1}L_{m-1}/L_{m-1}$ with $(z^{-1}L_{m-1}) \cap L_{m-1}^{\perp}$, and by Lemma [2.1,](#page-3-1) the map $C: E \to \mathbb{C}^2$ identifies $(z^{-1}L_{m-1}) \cap L_{m-1}^{\perp}$ with \mathbb{C}^2 . Therefore, the \mathbb{P}^1 -bundle $Y_m \to Y_{m-1}$ is topologically trivial (i.e., topologically, $Y_m \cong \mathbb{P}^1 \times Y_{m-1}$), and Cautis and Kamnitzer use

this to define a diffeomorphism

 $\phi_m \colon Y_m \longrightarrow (\mathbb{P}^1)^m$ by $\phi_m(L_1,\ldots,L_m) := (C(L_1), C(L_2 \cap L_1^{\perp}), C(L_3 \cap L_2^{\perp}), \ldots, C(L_m \cap L_{m-1}^{\perp})).$

2.3. Subvarieties $X_{m,i} \subset Y_m$. For each $i \in \{1, \ldots, m-1\}$, Cautis and Kamnitzer [\[CK07,](#page-8-5) Section 2] define a subvariety $X_{m,i} \subset Y_m$,

$$
X_{m,i} := \{ (L_1, \ldots, L_m) \in Y_m : L_{i+1} = z^{-1}(L_{i-1}) \},
$$

together with a surjection

$$
q_{m,i} \colon X_{m,i} \longrightarrow Y_{m-2},
$$

given by $q_{m,i}(L_1,...,L_m) := (L_1,...,L_{i-1},zL_{i+2},...,zL_m) \in Y_{m-2}$. The following (easy) Lemma was shown in [\[CK07,](#page-8-5) Theorem 2.1].

Lemma 2.3. The map $\phi_m: Y_m \to (\mathbb{P}^1)^m$ takes $X_{i,m}$ diffeomorphically to

$$
A_{m,i} := \{ (l_1, \ldots, l_m) \in (\mathbb{P}^1)^m : l_{i+1} = l_i^{\perp} \},
$$

where l_i^{\perp} *denotes the orthogonal complement of the line* $l_i \subset \mathbb{C}^2$ *w.r.t.* $\langle .,.\rangle$ *.*

Let $f_{m,i}$: $(\mathbb{P}^1)^m \to (\mathbb{P}^1)^{m-2}$ be the forgetful map sending $(l_1,\ldots,l_m) \in (\mathbb{P}^1)^m$ to $(l_1, \ldots, l_{i-1}, l_{i+2}, \ldots, l_m) \in (\mathbb{P}^1)^{m-2}$, and let

$$
g_{m,i}: A_{m,i} \longrightarrow (\mathbb{P}^1)^{m-2}
$$

be the restriction of $f_{m,i}$ to $A_{m,i}$.

Lemma 2.4. *Let* $\psi_{m,i} : X_{m,i} \to A_{m,i}$ *be the restriction of* ϕ_m *to* $X_{m,i} \subset Y_m$ *. Then the following diagram commutes:*

$$
X_{m,i} \xrightarrow{q_{m,i}} Y_{m-2}
$$
\n
$$
\downarrow \phi_{m,i} \qquad \qquad \downarrow \phi_{m-2}
$$
\n
$$
A_{m,i} \xrightarrow{g_{m,i}} (\mathbb{P}^1)^{m-2}
$$

Proof. It is straightforward to check that $g_{m,i} \circ \psi_m$ maps $(L_1, \ldots, L_m) \in X_{m,i}$ to the tuple $(l'_1, ..., l'_{m-2}) \in (\mathbb{P}^1)^{m-2}$, where

$$
l_j'=\begin{cases}C(L_j\cap L_{j-1}^\perp) &\text{if $j
$$

and $\phi_{m-2} \circ q_{m,i}$ maps $(L_1, ..., L_m) \in X_{m,i}$ to the tuple $(l''_1, ..., l''_{m-2}) \in (\mathbb{P}^1)^{m-2}$, where

$$
l_j''=\begin{cases}C(L_j\cap L_{j-1}^\perp)\quad&\text{if }j
$$

To prove $g_{m,i} \circ \psi_m = \phi_{m-2} \circ q_{m,i}$, we must therefore show that

$$
C(L_{j+2}\cap L_{j+1}^\perp)=C(zL_{j+2}\cap (zL_{j+1})^\perp)
$$

holds for all $j \geq i$. But if $j \geq i$, then $L_{j+1} \supset L_{i+1} = z^{-1}L_{i-1} \supset z^{-1}(0) = \text{ker}(z)$, and (by increasing N if necessary) we can also assume that $L_{j+1} \subset \text{im}(z)$. Thus, Lemma [2.2](#page-4-0) applied to $W := L_{j+1}$ tells us that z maps $(z^{-1}W) \cap W^{\perp}$ to $W \cap (zW)^{\perp}$, and that $C(v) = C(zv)$ for all $v \in (z^{-1}W) \cap W^{\perp}$. Now the equality $C(L_{j+2} \cap L_{j+1}^{\perp}) =$ $C(zL_{j+2} \cap (zL_{j+1})^{\perp})$ follows because z maps $L_{j+2} \cap L_{j+1}^{\perp} \subset (z^{-1}W) \cap W^{\perp}$ to $zL_{j+2} \cap (zL_{j+1})^{\perp} \subset W \cap (zW)$ [⊥].

3. Proof of Proposition [1.3](#page-2-2)

In this section, we use the same notations as before, except that we now assume $m = 2n$ (and hence $N \geq 2n$). Then the Springer variety $\mathfrak{B}_{n,n}$ is naturally contained in Y_{2n} as

$$
\mathfrak{B}_{n,n} := \{ (L_1, \ldots, L_{2n}) \in Y_{2n} : L_{2n} = E_n \},\
$$

where $E_n := \text{span}(e_1, \ldots, e_n) \oplus \text{span}(f_1, \ldots, f_n)$, and Proposition [1.1](#page-1-0) tells us that the irreducible component $K_a \subset \mathfrak{B}_{n,n} \subset Y_{2n}$ associated to the crossingless matching $a \in Bⁿ$ is equal to the set of all $(L_1, \ldots, L_{2n}) \in Y_{2n}$ satisfying

$$
L_{s_a(j)} = z_n^{-d_a(j)} L_{j-1}
$$

for all $j \in O_a$, where $z_n \colon E_n \to E_n$ is the restriction of z to E_n . A priori, $z_n^{-d_a(j)} L_{j-1}$ could a priori be a proper subspace of $z^{-d_a(j)}L_{j-1}$ (because $z^{-d_a(j)}L_{j-1}$ might not be contained in E_n), but it turns out that $z_n^{-d_a(j)} L_{j-1}$ is equal to $z^{-d_a(j)} L_{j-1}$ whenever $(L_1,\ldots,L_{2n})\in K_a$. In fact, we have:

Lemma 3.1. $K_a = \{(L_1, \ldots, L_{2n}) \in Y_{2n} : L_{s_a(j)} = z^{-d_a(j)} L_{j-1} \ \forall j \in O_a\}.$

Proof. Suppose (L_1, \ldots, L_{2n}) is contained in K_a . Then the condition $z_n^{-d_a(j)} L_{j-1} =$ $L_{s_a(j)}$, combined with $\dim(L_{j-1}) = j - 1$, $\dim(L_{s_a(j)}) = s_a(j)$, and $\dim(\ker(z)) = 2$, implies

$$
\dim(z^{-d_a(j)}L_{j-1}) = 2d_a(j) + \dim(L_{j-1}) = 2d_a(j) + j - 1 = s_a(j)
$$

=
$$
\dim(L_{s_a(j)}) = \dim(z_n^{-d_a(j)}L_{j-1}),
$$

and thus $z^{-d_a(j)}L_{j-1} = z_n^{-d_a(j)}L_{j-1}$. Conversely, suppose $(L_1, \ldots, L_{2n}) \in Y_{2n}$ satisfies $z^{-d_a(j)}L_{j-1} = L_{s_a(j)}$ for all $j \in O_a$. Then we must show that $L_{2n} = E_n$. To prove this, let us call a pair $(k, l) \in a$ *outermost* if there is no pair $(k', l') \in a$ such that $k' < k < l < l'$. Then the outermost pairs in a form a sequence $(k_1,l_1), (k_2,l_2), \ldots, (k_r,l_r) \in a$ such that $k_1 = 1, l_r = 2n$, and $k_{s+1} = l_s + 1$ for all $s < r$, and $d_a(k_1) + \ldots + d_a(k_r) = n$. Using $z^{-d_a(j)}L_{j-1} = L_{s_a(j)}$ successively for $j \in \{k_r, k_{r-1}, \ldots, k_1\} \subset O_a$, we obtain

$$
L_{2n} = z^{-d_a(k_r)} L_{l_{r-1}} = z^{-d_a(k_r)} z^{-d_a(k_{r-1})} L_{l_{r-2}} = \dots = z^{-n}(0) = E_n,
$$
 as desired.

From now on, $a \in B^n$ is a fixed crossingless matching of 2n points, and i is an index such that $s_a(i) = i + 1$, i.e., such that $(i, i + 1)$ is a pair in a. We denote by $a' \in B^{n-1}$ the crossingless matching obtained from a by removing the pair $(i, i + 1)$ (and renumbering indices $j \geq i + 2$ such that $j \in \{i + 2, ..., 2n\}$ becomes $j-2 \in \{i,\ldots,2n-2\}$, and by q the map $q_{2n,i}: X_{2n,i} \to Y_{2n-2}$, defined as in the previous section.

Lemma 3.2. $K_a = q^{-1}(K_{a'})$.

Proof. Since $s_a(i) = i + 1$ and $d_a(i) = (s_a(i) - i + 1)/2 = 1$, the equality $L_{i+1} =$ $z^{-1}L_{i-1}$ holds for each $(L_1,\ldots,L_{2n}) \in K_a$, and thus $K_a \subset Y_{2n}$ is contained in $X_{2n,i}$. It remains to show that an element $(L_1,\ldots,L_{2n}) \in X_{2n,i}$ satisfies the conditions $L_{s_a,j} = z^{-d_a(j)} L_{j-1}$ for all $j \in O_a \setminus \{i\}$ if and only if the element $(L'_1, \ldots, L'_{2n-2}) :=$ $q(L_1,..., L_{2n}) = (L_1,..., L_{i-1}, zL_{i+2},..., zL_{2n}) \in Y_{2n-2}$ satisfies the conditions $L'_{s_{a'}(j)} = z^{-d_{a'}(j)} L'_{j-1}$ for all $j \in O_{a'}$. We divide the proof into three cases.

Case 1. If $j < s_a(j) < i$, then the equivalence

$$
L_{s_a(j)} = z^{-d_a(j)} L_{j-1} \Longleftrightarrow L'_{s_{a'}(j)} = z^{-d_{a'}(j)} L'_{j-1}
$$

is obvious because the quantities appearing on either side of \iff are identical.

Case 2. If $j < i < i + 1 < s_a(j)$, then $L'_{j-1} = L_{j-1}$, $L'_{s_{a'}(j)} = zL_{s_a(j)}$, and $d_{a'}(j) = d_a(j) - 1$, so we must show:

$$
L_{s_a(j)} = z^{-d_a(j)} L_{j-1} \Longleftrightarrow z L_{s_a(j)} = z^{-d_a(j)+1} L_{j-1}
$$

But this follows simply by applying z (resp., z^{-1}) to the equalities on either side of \iff , and observing that $z^{-1}(zL_{s_a(j)}) = L_{s_a(j)}$ (because $L_{s_a(j)} \supset L_{i+1} = z^{-1}L_{i-1} \supset L_{i+1}$ $z^{-1}(0) = \text{ker}(z)$, and that $z(z^{-d_a(j)}L_{j-1}) = z^{-d_a(j)+1}L_{j-1}$ (because, by increasing N if necessary, we may assume $z^{-d_a(j)+1}L_{j-1} \subset \text{im}(z)$).

Case 3. If $i + 1 < j < s_a(j)$, then $\tilde{L}'_{j-3} = z\tilde{L}_{j-1}$, $L_{s_{a'}(j-2)} = zL_{s_a(j)}$, and $d_{a'}(j-2) = d_a(j)$, so we must show:

$$
L_{s_a(j)} = z^{-d_a(j)} L_{j-1} \iff z L_{s_a(j)} = z^{-d_a(j)} z L_{j-1}
$$

As in Case 2, this follows by applying z (resp., z^{-1}) to the equalities on either side of \Longleftrightarrow . $□$

Note that (since $s_a(j) - j$ is odd for all $j \in O_a$) the involutive diffeomorphism $I_{2n} : (\mathbb{P}^1)^{2n} \to (\mathbb{P}^1)^{2n}$ defined in the introduction exchanges the subset $S_a \subset (\mathbb{P}^1)^{2n}$ with the subset

$$
T_a := \{ (l_1, \ldots, l_{2n}) \in (\mathbb{P}^1)^{2n} : l_{s_a(j)} = l_j^{\perp} \forall j \in O_a \} \subset (\mathbb{P}^1)^{2n}
$$

To prove Proposition [1.3,](#page-2-2) we must therefore show that ϕ_{2n} maps K_a to T_a for all $a \in Bⁿ$. We will need the following lemma, in which a, i and a' are as in the previous lemma, and g denotes the map $g_{2n,i}: A_{2n,i} \to (\mathbb{P}^1)^{2n-2}$, defined as in the previous section.

Lemma 3.3. $T_a = g^{-1}(T_{a'})$.

Proof. This follows directly from the definitions of g, $A_{2n,i}$, T_a and $T_{a'}$. \Box

We are now ready to prove Proposition [1.3.](#page-2-2)

Proof of Proposition [1.3.](#page-2-2) Induction on n. The case $n = 1$ is trivial because the only crossingless matching of 2 points is $a_1 := \{(1,2)\}\$, and $\phi_2: Y_2 \to \mathbb{P}^1 \times \mathbb{P}^1$ maps $\mathfrak{B}_{1,1} = K_{a_1} = X_{2,1} \subset Y_2$ diffeomorphically to $T_{a_1} = A_{2,1} \subset \mathbb{P}^1 \times \mathbb{P}^1$.

Thus, let $n > 1$, and suppose we have already proven the proposition for $n - 1$. Let $a \in Bⁿ$. Then there is an $i \in \{1, ..., 2n-1\}$ such that $s_a(i) = i + 1$, i.e., such

that $(i, i + 1) \in a$. As above, we denote by $a' \in B^{n-1}$ the crossingless matching obtained from a by removing the pair $(i, i + 1)$ (and renumbering all $j \geq i + 2$), and by q (resp., g) the map $q_{2n,i}$ (resp., $g_{2n,i}$). By induction, we know that ϕ_{2n-2} maps $K_{a'}$ to $T_{a'}$, so Lemma [2.4](#page-5-0) gives us the following commutative diagram:

$$
q^{-1}(K_{a'}) \longrightarrow X_{2n,i} \longrightarrow Y_{2n-2} \longrightarrow K_{a'}
$$

$$
\downarrow \psi_{2n,i} \qquad \qquad \downarrow \psi_{2n,i} \qquad \qquad \downarrow \phi_{2n-2} \qquad \qquad \downarrow \phi_{2n-2}
$$

$$
g^{-1}(T_{a'}) \longrightarrow A_{2n,i} \longrightarrow (\mathbb{P}^1)^{2n-2} \longrightarrow T_{a'}
$$

Hence we get $\psi_{2n,i}(q^{-1}(K_{a'})) = g^{-1}(T_{a'})$, and by Lemmas [3.2](#page-6-1) and [3.3,](#page-7-0) this implies $\psi_{2n,i}(K_a) = T_a,$

thus completing the inductive step. \Box

REFERENCES

- [CK07] Sabin Cautis and Joel Kamnitzer. Knot homology via derived categories of coherent sheaves I, sl(2) case, 2007. arXiv:math/0701194.
- [Fun02] Francis Fung. On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, 2002. arXiv:math/0204224.
- [Kho02] Mikhail Khovanov. A functor-valued invariant of tangles. Algebr. Geom. Topol., 2:665–741 (electronic), 2002. arXiv:math/0103190.
- [Kho04] Mikhail Khovanov. Crossingless matchings and the cohomology of (n,n) Springer varieties. Communications in Contemporary Math., 6(2):561–577, 2004. arXiv:math/0202110.
- [RT08] Heather M. Russell and Juliana S. Tymoczko. Springer representations on the Khovanov Springer varieties, 2008. arXiv:0811.0650.
- [Spa76] Nicolas Spaltenstein. The fixed point set of a unipotent transformation of the flag manifold. Proc. Kon. Ak. Wet. Amsterdam, 79(5):452–456, 1976.
- [Var79] Jose Antonio Vargas. Fixed points under the action of unipotent elements of SL_n in the flag variety. Bol. Soc. Math. Mex., 24(1):1–14, 1979.

INSTITUT DE MATHÉMATIQUES DE JUSSIEU; UNIVERSITÉ PARIS 7; 175 RUE DU CHEVALERET; bureau 7B3; 75013 Paris, France

 $E-mail$ address: wehrli@math.jussieu.fr