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Abstract

In recent years, there have been improvements in the methods of obtaining fluid

dynamic data, which has led to the generation of vast amounts of data. Extracting the

useful information from large data sets can be a challenging task when investigating

data from a single source. However, most experiments use data from multiple sources,

such as particle image velocimetry (PIV), pressure sensors, acoustic measurements,

and computational fluid dynamics (CFD), to name a few. Knowing the strengths and

weaknesses of each measurement technique, one can fuse the data together to improve

the understanding of the problem being studied. Concepts from the data fusion

community are used to combine fluid dynamic data from the different data sources.

The data is fused using techniques commonly used by the fluid dynamics community,

such as proper orthogonal decomposition (POD), linear stochastic estimation (LSE),

and wavelet analysis. This process can generate large quantities of data and a method

of handling all of the data and the techniques in an efficient manner is required. To

accomplish this, a framework was developed that is capable of tracking, storing, and,

manipulating data.

With the framework and techniques, data fusion can be applied. Data fusion is

first applied to a synthetic data set to determine the best methods of fusing data.

Data fusion was then applied to airfoil data that was obtained from PIV, CFD, and

pressure to test the ideas from the synthetic data. With the knowledge gained from

applying fusion to the synthetic data and airfoil data, these techniques are ultimately

applied to data for a Mach 0.6 jet obtained from large-window PIV (LWPIV), time-

resolved PIV (TRPIV), and pressure.

Through the fusion of the different data sets, occlusion in the jet data were es-

timated within 6% error using a new POD based technique called Fused POD. In

addition, a technique called Dynamic Gappy POD was created to fuse TRPIV and

LWPIV to generate a large-window time-resolved data set. This technique had less

error than other standard techniques for accomplishing this such as pressure-based

stochastic estimation.

The work presented in this document lays the groundwork for future applications



of data fusion to fluid dynamic data. With the success of the work in this document,

one can begin to apply the ideas from data fusion to other types of fluid dynamic

problems, such as bluff bodies, unsteady aerodynamics, and other. These ideas could

be used to help improve understanding in the field of fluid dynamics due to the current

limitations of obtaining data and the need to better understand flow phenomena.
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Chapter 1

Introduction

With the improvements in data collection techniques in the field of fluid dynamics,

very large data sets are obtained. Determining how to use the data efficiently to

extract information is imperative given the large amounts of data for an experiment.

For a given test case, data can come from multiple sources such as particle image

velocimetry (PIV) [2, 3], pressure sensors, computational fluid dynamics (CFD)[4],

and acoustic measurements. It is a challenging task to extract information from the

typical amount of data collected for a given experiment. One needs to apply a vast

number of analyses to fully comprehend the meaning of this data, which can be time

consuming and tedious.

1.1 Objective

The objective of this work is to use data more efficiently and extract as much infor-

mation as possible from the given data. This is accomplished using the idea of fusion.

Data and technique fusion are two different types of fusion used to obtain this goal.

Data fusion is the combination of data from multiple or single sources. This idea has

been used successfully in other fields and is surveyed throughout section 1.2 to learn

how others have used data fusion in the past. The strengths and weaknesses of the
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different data sources to be fused are then discussed in section 1.3.

The other type of fusion, technique fusion, is the combination of multiple tech-

niques. This idea uses the strengths of different techniques to overcome the weaknesses

in those techniques. The main techniques are explained in section 1.4 and are fused

together in subsection 4.6.1 and subsection 5.5.4 to perform data fusion.

The large number of data sets and the many techniques can become overwhelming

and require an efficient way of handling this. A secondary objective is to design

a framework that is able to efficiently handle large data and perform the analysis

techniques. The framework developed is essential in successfully performing fusion,

and is discussed in chapter 2.

1.2 Data Fusion

As stated, ideas from the data fusion community are used to fuse fluid dynamic data.

Before applying data fusion to fluid dynamic data, it is important to understand the

definition of data fusion and to survey the different applications in which data fusion

has been successful.

To start, the idea of data fusion must be defined, but a formal definition is difficult

to find. Hall and Llinas [5] states data fusion, data integration, and sensor fusion are

ideas for taking diverse data sets and combining them to extract information that

cannot be obtained from any sensor alone. The Joint Directors of Laboratories (JDL)

[6] define data fusion as:

“a process dealing with the association, correlation, and combination

of data and information from single and multiple sources to achieve refined

position and identity estimates, and complete and timely assessments of

situations and threats, and their significance. The process is characterized

by continuous refinements of its estimates and assessments, and the eval-

uation of the need for additional sources, or modification of the process
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itself, to achieve improved results”

In short, data fusion is the process of combining data to refine, estimate, and

achieve a greater understanding of the data. However, as stated by Steinberg et. al. [6]

and Wald [7] there are many different definitions of data fusion. The above just hap-

pens to be the most widely accepted and an attempt to homogenize the data fusion

community.

The JDL defines five levels where data fusion can be performed. The levels ac-

cording to the JDL are stated below [6].

• Level 0 (Sub-Object Data Assessment): estimation and prediction of sig-

nal/object observable states on the basis of pixel/signal level data association

and characterization

• Level 1 (Object Assessment): estimation and prediction of entity states on

the basis of observation-to-track association, continuous state estimation (e.g.

kinematics) and discrete state estimation

• Level 2 (Situation Assessment): estimation and prediction of relations among

entities, to include force structure and cross force relations, communications

and perceptual influences, physical context, etc.;

• Level 3 (Impact Assessment): estimation and prediction of effects on situa-

tions of planned or estimated/predicted actions by the participants; to include

interactions between action plans of multiple players (e.g. assessing susceptibil-

ities and vulnerabilities to estimated/predicted threat actions given one’s own

planned actions);

• Level 4 (Process Refinement): adaptive data acquisition and processing to

support mission objectives

However, these definitions are geared toward target identification and threat as-

sessment . Like many others, such as Synnergren et. al. [8], Abdelgawad [9], and
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Giacobe [10]) who have modified the above levels to fit the fields of bioinformatics,

wireless networks, and cyber security respectively, the definitions that fit within the

field of aerodynamics are:

• Level 0 is the preprocessing of the data. This consists of using the data to

repair itself, such as repairing spurious vectors or particle drop out in a PIV

measurement.

• Level 1 involves looking at relationships between the data to fuse them to-

gether. An example of this is using CFD and PIV to create better data.

• Level 2 involves using the data to extract meaningful physics such as noise

sources and coherent structures in the case of jet noise.

• Level 3 involves determining the type of control to use — closed loop or open

loop — suction, blowing or synthetic jet actuators, etc. — and predicting the

effects of the control.

• Level 4 involves applying the control technique, measuring the outputs, and

adjusting the control to meet the desired results.

This work focuses on performing data fusion on levels zero, one, and two, which are

concerned with merging and interpreting data.

As stated, data fusion techniques have been applied in many fields, including

business intelligence [11], navigation [12], and target recognition [13]. The application

of data fusion is discussed in these fields in the following section.

1.2.1 Business Intelligence

The first field to discuss in which data fusion has been successfully implemented is

business intelligence. Dayal et al. [11] discuss the use of data integration in business

intelligence, which they state is the tools and methods for collecting and analyzing
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data. The example used in the work by Dayal et al. is data flow for an online retail

company. The retail company collects data that includes customer viewing history,

purchase history, inventory, shipping schedules, etc. This data can then be used to

determine prices based on availability and demand, or provide offers to customers

based on the products they have viewed or purchased. Data integration also helps

process this information more quickly and provide real-time feedback, such as dynamic

pricing and special offers to customers before purchase. Using data integration, the

retail company uses all of this information to serve the customer better, ultimately

leading to a more profitable business.

An example of this is amazon.com [14]. If one purchases a computer on ama-

zon.com a week ago and is now viewing keyboards, amazon.com might suggest buying

a mouse. The mouse they suggest will be one that is in stock in a warehouse near

the customer, which allows the costumer to receive the product with minimal delay

and shipping cost.

Another area in which data integration is used for business intelligence is in ship-

ping [11]. Shipping is affected by weather, traffic, and product availability. Using all

of this data together, a shipping company can determine the best time to send out

a shipment and what route to take. In addition, using data integration, a shipping

company could dynamically change routes leading to shipping that is more efficient

by avoiding heavy traffic, bad weather, and construction.

1.2.2 Navigation

Like business intelligence, data fusion is also successfully used in navigation. One

example presented by Herrera et al. [12], is the use of data fusion for a personal po-

sitioning system (PPS). The system uses multiple sensors to determine the location

of an object. The sensors include inertial measurements (accelerometer and gyro-

scopes), magnetic sensors such as a compass, and a global positioning system (GPS).

The inertial measurements have propagation error since they start from an initial
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location and use the sensors to estimate the new location based on how the object

has moved. Compasses are subject to magnetic fluctuations, and GPS can suffer from

signal loss and signal corruption. Fusing this information together using a Kalman

filtering technique and a dead reckoning algorithm, one can have a much better esti-

mate of the location of an object [12]. For example, if one is navigating through the

woods using only inertial measurements and had to travel 1 mile, then turn 10o, and

move another half mile but in reality traveled 0.9 miles, turned 11o, and then traveled

0.6 miles, one would not be where one expected. In fact, all future movements would

be effected by these errors. Using the GPS, one can update the position and remove

the errors created by the inertial measurements if the GPS signal is reliable enough

to be fused.

Sasiadek et al. [15] discuss the use of data fusion in navigation as well. In their

work, GPS and inertial measurements are used to control an unmanned vehicle. The

system uses accelerometer and gyros to navigate, which produces propagation error,

but use the GPS to correct the inertial measurements. Sasiadek demonstrates that

this method is more robust and accurate than using only one sensor on its own.

1.2.3 Target Identification

Target identification is another field that benefits from using data fusion. Fay et al.

[13] discuss target identification by adding color to night vision goggles. They state

that targets usually stand out better in color than they do in the standard green

light of night vision. The system that Fay et al. describe uses combinations of four

different sensors (low light camera, short wave infrared camera, long wave infrared

camera, and medium wave infrared camera). Each camera contributes complementary

and unique information. For example, the short wave is much more adept at picking

out camouflage in low light situations than the other sensors [13]. The model they

use can also enhance the contrast in such a way that targets stand out. Through

the combination of the images, Fay et al. show using all four images are better than
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using any single image.

Data fusion is also used by Abdel-Aleem et al. [16] to locate underground pipes

and determine whether the pipe is damaged. The data comes from ultrasound, ground

penetrating radar, video data, etc. They show through data fusion, one can determine

if damage has occurred, location of the damage, and the type of damage. This is

something that could not have been done with any one piece of data without an

invasive measurement, which could be expensive and time consuming.

The application of data fusion for target identification is also demonstrated in

figure 1.1 [17].

Figure 1.1: Data Fusion and Target Identification Used for Security (Image Ob-
tained from ultra-ccs.com/business/bordersecurity)

The figure demonstrates the use of multiple sensors to detect and locate a threat.

Through the fusion of satellite imagery, motion sensors, and airborne and land-based

radar, a threat can be identified and understood.
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1.2.4 Image Fusion

Data fusion is also used to merge images; a technique to do so is discussed in detail by

Yocky [18]. In this work, multiple images are combined into one, more useful image

using wavelet transforms (which are discussed in subsection 1.4.6). This technique is

useful because one can take advantage of the strengths of the different measurement

techniques. In his work, an image (top left image in figure 1.2) was modified such

that the spatial resolution was decreased (top right image in figure 1.2) and the color

was removed (bottom left image in figure 1.2).

Figure 1.2: Example of Image Fusion on a High Resolution Gray Scale Image and
a Low Resolution Color Image

Using the wavelet data fusion technique, one can combine the low resolution image

and black and white image such that the fused image has both high spatial resolution

and color (bottom right of figure 1.2).
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Image fusion can also be used for detecting hidden weapons as shown by Varshney

[19]. He states the concealed weapon would be difficult to identify using only an

infrared sensor or a millimeter wave sensors. The two images can be fused together

to take advantage of the penetrating power of the millimeter wave sensor and the

higher resolution of the infrared sensor. The fused image clearly shows the concealed

weapon. Image fusion is also used by Chen et al. [20] for detecting concealed weapons.

They used normal light sensors and millimeter wave sensors. These are fused together

to give a human operator a better idea of who is holding a weapon and how to identify

the target.

The fusion is accomplished using a pyramid method first proposed by Burt [21].

A block diagram for the process is shown in figure 1.3. The algorithm works by high

and low pass filtering every row of the original image (Rk) and then removing every

other row. This produces two intermediate images. The filtering and downsampling

process is applied to the columns of the two intermediate images. The image that

was high pass filtered twice produces the details along the diagonal direction of the

image (RDk). High pass filtering the rows and then low pass filtering the columns

gives details in the horizontal direction (RHk). Low pass filtering the rows and the

high pass filtering the columns produces an image with detail in the vertical direction

(RV k). Performing the low pass filtering on the rows and the columns gives the

compressed image (Rk−1). The resolution of all of these images are reduced by a

factor of 4. The compressed image is the representation of the original image after

the resolution is decreased. The detailed images show the information needed to

reconstruct the original image in the horizontal, vertical and diagonal directions.

The process can be repeated for further compressions if Rk−1 is used as the start-

ing image. The pyramid scheme can be done in reverse to decompress the image

and replacing the downsampling with upsampling (add a row/column between every

row/column).
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Figure 1.3: Block Diagram for Pyramid Decomposition

A common filtering technique uses the Haar wavelet [22] or the Daubechies wavelets

[18]. These wavelets are discussed in subsection 1.4.6.

Using the pyramid technique, multiple representations of the same image are de-

composed by filtering and splitting the images into high and low pass information.

Then a final image is constructed using low pass information from one image and high

pass information from another image. Some techniques for doing this are discussed

by Pajares et al. [22] and Zhang et al. [23]. These include averaging the compressed

images, taking the maximum absolute value of each pixel, or taking the maximum

energy levels. The technique creates an image that has information from the different

images. This process is shown in the diagram in figure 1.4 for one-dimensional data.

The process in figure 1.4 works by decomposing the data represented by the largest

black box into compressed data and detailed data. The compression process would be
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repeated until the resolution of the data is equal to that of the data in the largest red

box. Then the compression can be repeated again for both the red and black data.

The data are fused by combining the information from the compressed image and the

detail information for both images. For the case in figure 1.4 the detail information

for the red data is replaced with the detail information from the black data. This is

not the only method for doing the fusion; more complex methods have been used in

the past to do the fusion as stated earlier. The detailed information from the black

data and the compressed red data are then used to decompress the data, which is

also the fused data. It must be stressed though, that this fusion process only works

when the two data sets are different representations of the same image.

CFD 

Compression 1 Compression 2 
D1c 

C1c 

D2c 

C2c 

PIV 

Compression 1 
D1p 

C1p 

Reconstruction 1 Reconstruction 2 

Data Fusion 

C1p 

D2c 

D1c 

F1 

F2 

Figure 1.4: Diagram of the Image Fusion Technique

1.2.5 Data Fusion in Nature

Data fusion also occurs in nature. According to Hall and Llinas [5] human senses are

an example. They describes how all five of our senses work together to keep us safe.

Humans use sight, smell, touch, and taste to identify if an object is edible. Using

a single sense alone, one may not be able to determine the edibility of the food [5].

Hall and Llinas also use the example of identifying threats through bushes or around

corners. Sight may not be able to identify the target, so humans need to use hearing
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and smell to determine the threat. Hall and Llinas argue that data fusion is a natural

process that humans do all the time without realizing.

1.3 Strengths and Weaknesses of Data Sources

Now that data fusion and its application to other fields has been discussed, one can

analyze fluid dynamic data in the context of data fusion. The first step is understand-

ing the different data sources such as time-resolved PIV (TRPIV), large-window PIV

(LWPIV), pressure sensors, and computational fluid dynamics (CFD). The data from

each source has information that cannot be obtained from the others. Furthermore,

each of the techniques have distinct advantages and disadvantages. This work focuses

on range (spatial and temporal), resolution (spatial and temporal), and accuracy. Ta-

ble 1.1 summarizes the strengths and weaknesses of the measurement techniques.

Data Source Temporal Spatial Issues

CFD

Small ∆t for
convergence,
Large domain
→ large
computational
resources

small ∆x for
convergence,
large spatial
domain → large
computational
resources

Modeling error,
Dissipation,
Dispersion

LWPIV

4Hz sample
rate,
Statistically
long time
domain

Multi-point
planar data
(multiple
cameras to
extend domain)

Noise, Particle
drop out,
Reflection

TRPIV
10kHz sample
rate, O(1s)
record length

Multi-point
planar data
(single camera)

Noise, Particle
drop out,
Reflection

Pressure

O(10kHz)
sample rate
O(10s) record
length

Single point
data
(Measurement
at each sensor
only)

Noise,
Uncertainty in
placement

Table 1.1: Strength and Weaknesses of Current Measurement Techniques

The first measurement technique to discuss is the pressure sensor. There are
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many different types of pressure sensors that each have different characteristics. The

pressure sensor has temporal resolution on the order of 10− 100kHz and can take a

large record length, on the order of 10s depending on the particular sensor. Due to the

high sampling rates and large record lengths, the pressure transducer is effective at

measuring temporal data. However, pressure sensors are limited in spatial resolution

since they only measure pressure at a single location in space. Some spatial resolution

can be obtained by using arrays of pressure sensors, but the information would still

be sparse. Uncertainty and noise are associated with the measurement.

PIV is another measurement technique, used to obtain flow velocity, by illumi-

nating particles in the flow with a laser sheet and taking an image of the flow at

two instances in time to determine the velocity. The two types used in this work are

TRPIV and LWPIV. These systems are able to capture data on a two-dimensional

plane. There is a tradeoff between resolution and domain size since the number of

pixels is predefined based upon the camera. When the camera is focused on a smaller

region, the spatial resolution is higher than if the camera is focused on a larger re-

gion. One way to increase the domain without sacrificing resolution is to use multiple

cameras [24–26]. LWPIV is obtained in this manner. The windows must be stitched

together in space, since the data in two adjacent windows does not always match

correctly, despite the cameras sampling simultaneously. These differences are caused

by the cameras not being aligned perfectly, rotation of the camera, the data being

overlapped, and different viewing angles which change the strength of the velocity.

Care must be taken when stitching the windows together or the seam may show up

in the statistics. An algorithm to find the optimal overset and scaling was developed

by Shea et al. [25] to stitch the windows together to eliminate a seam.

The sampling rate of the PIV is low relative to that of the pressure sensor. One

way to increase the sampling rate is to use a TRPIV system, which is currently

capable of sampling at 10kHz. However, the camera is only able to collect on the

order of 1s worth of data, which is an order of magnitude less than the pressure
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sensors. Also, TRPIV systems are expensive and using multiple cameras to acquire

a larger window is not always feasible due to the cost of the system. The energy in

each laser pulse is less than the energy in a standard PIV pulse. This means the laser

sheet for the time-resolved system cannot be made as large as the LWPIV system.

These two factors limit the domain for the TRPIV measurement.

The PIV system, like the pressure sensors, is also plagued by uncertainty and

noise [27] [28]. Usually the uncertainty of the PIV measurement is larger than the

uncertainty of a pressure sensor measurement. In addition, seed dropout, reflection,

or occlusions are some issues that can corrupt the PIV data. Some of these issues are

addressed using data fusion and are discussed throughout this document.

The last data source discussed in this document is CFD, which is a simulation

method. The CFD is able to get a full three-dimensional, time-resolved data set.

The temporal and spatial resolution can be defined as well as the domain size and

temporal range. Increasing the resolution and/or domain in both time and/or space

requires more computational power, either longer run times or a “bigger” machine.

Therefore, there is a tradeoff between resolution, domain size, and computational cost

when using CFD.

One advantage of CFD over experimental data is CFD calculates all values i.e.

velocity, pressure, density, etc. at all times and at all locations in the domain, whereas,

experiments usually only measures a single quantity. Knowing more of the quantities

potentially gives better understanding of the flow physics.

One issue is CFD requires discretization of the Navier-Stokes equations (discussed

in subsection 4.4.2), which introduces errors such as dispersion and dissipation. In

addition, turbulence, combustion, non-Newtonian fluids, etc require modeling, unlike

the other methods that are actual measurements. In other words, a well set up

experiment gives the exact state of the flow within the uncertainty, while the CFD

gives a model of the flow field. However, when setting up experiments one needs to

be careful when taking intrusive measurements, which can alter the flow.
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1.4 Analysis Tools

Now that the idea of data fusion has been discussed as well as the strengths and

weaknesses of different fluid dynamic sources, methods of fusing these sources together

are required. In this section, the standard tools used in fluid dynamic analysis are

discussed. These include proper orthogonal decomposition (POD), linear stochastic

estimation (LSE), and wavelets.

1.4.1 Fourier Analysis

Figure 1.5: Reconstruction of a Square Wave using Fourier Modes

The first technique to discuss is Fourier analysis, which works by using a summation

of sinusoids with varying coefficients, frequency, and phase to construct a more com-

plicated waveform. This is shown graphically in figure 1.5, where a square wave is

created by the summation of sinusoids with different amplitudes and frequencies.

Mathematically, the original signal can be reconstructed using

f(x) = ao +
∞∑

n=1

ancos(2πnfox) + bnsin(2πnfox) (1.1)
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where f(x) is the original signal, n is the mode number, and

ao =
1

T

∫ T
2

−T
2

f(x)dx (1.2)

an =
1

T

∫ T
2

−T
2

f(x)cos(2πnfox)dx (1.3)

bn =
1

T

∫ T
2

−T
2

f(x)sin(2πnfox)dx (1.4)

Why do we use Sinusoids?

Sinusoids are used for reconstruction for multiple reasons. One is that when sinusoids

are used to decompose a signal, the coefficients represent the frequency content of

that signal. Another reason is that sinusoids form a basis, which is required for the

reconstruction process. Functions form a basis if they are orthogonal to one another.

∫ T
2

−T
2

φ(i)(x)φ(j)(x)dx = δij (1.5)

Sinusoids might not always be the best basis to use. In the case of electronics

where pulse signals and switching functions are used, square waves can be used for

reconstruction [29] since the data looks more like a square than a sinusoid. For

solutions to equations in cylindrical coordinates, perhaps Bessel functions would be

appropriate.

1.4.2 Proper Orthogonal Decomposition

There are so many different basis functions that can be used and choosing the best

one may be difficult. This is where POD is useful because it calculate the set of basis

functions that are the most efficient in terms of energy.
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Links between Fourier and POD

There are many links between Fourier and POD. In some cases, such as homogenous

turbulence, POD produces Fourier modes, which means that sinusoids are in fact the

best basis representation of the flow field in terms of energy. This occurs in the r-θ

plane of an axisymmetric jet [30]. In addition, both techniques decompose a signal

into different building blocks, which are usually much easier to understand than the

raw data itself and because of this, the most important physics can be determined.

Similarly, both techniques allow the signal to be reconstructed using the building

blocks as seen in equations 1.6.

f(x) =
nm∑

n=1

anφ
(n)(x) (1.6)

Proper Orthogonal Decomposition

POD is a reduced order modeling technique first introduced to fluid dynamics by

Lumley in 1967 [31]. It is also known as Karhunen-Loève expansion or principal

component analysis depending on the field in which the method is being used. This

technique is used in a variety of applications, anywhere from turbulence [31, 32] to

facial recognition [33]. POD is a way of building a basis for a flow that is based on the

energy content or RMS error, whereas in Fourier analysis the basis is chosen to be a

combination of sines and cosines. One may chose Fourier for various reasons, including

transforming differential equations into algebraic equations, transforming a convolu-

tion into multiplication, or because sines and cosines give the frequency content of

a signal. However, as stated previously, POD give the best energy representation of

the flow.

The first POD mode is the most energetic, and the energy content of higher modes

decrease. The modes (bases) are created by maximizing the mean square projection
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of the velocity [24] or in other words trying to find the best fit for the data set using

〈|−−−−→u(x, t), φ|〉2
||φ||2 (1.7)

where u is the velocity, φ are the eigenvectors, and the inner product (〈|−−−−→u(x, t), φ|〉)
is defined as

∫
u(x)φ∗(x)dx (1.8)

where ∗ is the complex conjugate. The maximization problem is solved using calculus

of variation, which simplifies to an integral eigenvalue problem where the eigenvectors

form the basis.

There are many different variations of POD. One is split POD [34], which looks

for differences in the flow structure of two different flows. Another is Filtered POD

[35], which filters out high frequency noise. A third is snapshot POD [36], which is a

modification to classical POD [31] used to decrease the size of the eigenvalue problem

for data sets with more spatial data than temporal data. Gappy POD, which is

used to estimate missing data [37], is another variation of POD. The methods for

performing some of these techniques are explained in the following sections.

Classical POD

As stated previously, the maximization of the mean squared projection of the velocity

simplifies to an eigenvalue problem

∫
Rij(x, x

′)φ
(n)
j (x)dx′ = λ(n)φ

(n)
i (x) (1.9)

where φ is the eigenvector, λ is the eigenvalue (energy), and Rij(x, x
′) is the time

averaged spatial two-point velocity correlation.

Rij(x, x
′) =< ui(

−→x , to), uj(
−→
x′ , to) > (1.10)
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In equation 1.10, u is the velocity of the flow or any other variable, depending on

what is being studied, to is time, and x is the position vector. If the flow variable

is velocity, the kernel for this problem (Rij(x, x
′)) can be written as a block matrix

where u1 = u, u2 = v, and u3 = w




< u(−→x , to), u(
−→
x′ , to) > < u(−→x , to), v(

−→
x′ , to) > < u(−→x , to), w(

−→
x′ , to) >

< v(−→x , to), u(
−→
x′ , to) > < v(−→x , to), v(

−→
x′ , to) > < v(−→x , to), w(

−→
x′ , to) >

< w(−→x , to), u(
−→
x′ , to) > < w(−→x , to), v(

−→
x′ , to) > < w(−→x , to), w(

−→
x′ , to) >




(1.11)

Solving for the eigenvalues and eigenvectors of equation 1.11 gives the modes (basis

functions) for the flow. The POD coefficients can then be found by projecting the

velocity field onto the modes.

an(t) =
∫
ui(
−→x , t)φ(n)

i (−→x )d−→x (1.12)

With the POD modes and the POD coefficients, the flow can be reconstructed

ui(
−→x , t) =

nm∑

n=1

an(t)φ
(n)
i (−→x ) (1.13)

where nm is the number of mode used in the reconstruction. The flow field is com-

pletely reconstructed if all of the POD modes (nm = N) are used in the reconstruction,

where N is the total number of modes.

Snapshot POD

Snapshot POD (a modification of Classical POD) was introduced in 1987 by Sirovich

[36]. The method transforms the eigenvalue problem from a spatial problem to a

temporal problem. The spatial problem has dimension of the number of spatial

points multiplied by number of velocity components and the temporal problem has

dimension of temporal points. Snapshot POD is preferred over Classical POD when
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analyzing a data set with more spatial data than temporal data, such as two camera

PIV [24], LES [38, 39], or DNS data [40]. This method calculates the eigenfunctions

using a temporal correlation tensor.

∫
C(t, t′)an(t′)dt′ = λ(n)an(t) (1.14)

In equation 1.14, an(t) are the time dependent POD coefficients and C(t, t′) is the

correlation tensor.

C(t, t′) =
1

Ts

∫
ui(
−→x , t)ui(

−→
x′ , t)d−→x (1.15)

In equation 1.15, Ts is the total number of snapshots and u is the velocity field. Notice

in equation 1.15 that the kernel (C(t, t′)) is now the summation of the autocorrelations

of the velocity components in the flow meaning the eigenvalue problem is no longer

coupled. The coupling is taken care of when the spatial modes are calculated. The

uncoupling of the eigenvalue problem along with doing a temporal correlation instead

of a spatial correlation reduces the problem size significantly for data sets with more

spatial data than temporal data.

The time dependent POD coefficients are orthogonal and have a magnitude equal

to the square root of the eigenvalues, which is consistent with Classical POD.

< an · am >= δmnλ
(m) (1.16)

The POD modes are calculated by projecting each component of velocity onto the

temporal POD coefficients.

φ(n)(−→x ) =
1

Tsλ(n)

∫
an(t)ui(

−→x , t)dt (1.17)

The spatial eigenfunctions are orthonormal, as are the spatial eigenfunctions for Clas-

sical POD.
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Split POD

Another variant of POD is known as Split POD. In this version of POD, one can

use two different data sets and find modes that correspond to differences in the data.

This has been used by Camphouse et al. [34] to determine the effects of flow control.

The idea for this came from the fact that the controller is adding very little energy

and the control information is dominated by baseline information. Using the split

POD procedure, the baseline information can be removed from the control data. The

procedure is as follows: perform POD on the baseline data to get basis functions

Φ(b). The control data (secondary data set) is then projected onto the baseline basis

functions.

bij =< Ui,Φ
(b)
j > (1.18)

Ui are snapshots from the secondary data set and <,> denotes an inner product.

The part of the secondary data that is not contained in the baseline data is

extracted.

Ūi = Ui −
Mb∑

j=1

bijΦ
(b)
j (1.19)

Ūi is the part of the secondary data not contained in the baseline information, and

Mb is the number of baseline modes to use. POD is then performed on the new

data (Ūi), giving basis functions for information not contained in the baseline data.

The secondary data can now be expressed in terms of both baseline and secondary

information.

Gappy POD

Another variant of POD, Gappy POD was created by Everson and Sirovich in 1995

[37] to handle “gappy” data. Gappy data is data that has gaps or missing infor-

mation and the technique estimates this missing information. Everson and Sirovich

first demonstrated this technique using marred photographs and repairing them with

Gappy POD. Specifically, they showed missing data from human faces could be de-
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termined from a basis formed by similar types of faces. They also observed that if

not careful, errors can arise. This was shown by attempting to repair an image of a

monkey’s face with a human face basis. This created a repaired image that looked

like a human face.

Gappy POD works by performing POD on non-gappy data. The data with miss-

ing information is then reconstructed using a linear combination of the POD basis

calculated from the non-gappy data. The coefficients of the linear combination are

then determined by solving a least squares problem that minimizes the difference

between the linear reconstruction and the gappy data. The process is shown pictori-

ally in figure 1.6. The “O” box represents the original data set, which can contain a

few gappy snapshots. The non-gappy data (“A”) is then used to generate the POD

modes (“Φ”) of the data set. The gappy snapshot (“B”) is represented as a linear

combination of the POD modes and the coefficients are determined by fitting the

linear combination with the actual data. With the coefficients and the modes, the

gappy data is estimated and then inserted anywhere there is a hole.

B 

ϕ 

Σa(t)ϕ(x) 

O 

A 

Repaired Estimate 

Regression 

POD 

Figure 1.6: Diagram of the Gappy POD Method

The mathematical formulation of Gappy POD is presented below. First, the gappy

points must be located and stored in a mask vector. The mask vector is defined such

that if the data is missing or corrupt the mask is zero and if the data is not missing
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it is one.

maskti =





1 if data is not missing

0 if data is missing
(1.20)

With the mask vector, a “gappy inner product” is defined as:

< u, v >gappy=<< a,mask >,< b,mask >> (1.21)

In equation 1.21, a and b are two vectors. The estimate of the gappy data is then

defined as a linear combination of the non-gappy modes.

g̃ =
nm∑

n=1

bnφ
(n) (1.22)

In equation 1.22, bn is the linear combination coefficient, φ(n) is the POD basis from

the non-gappy data and g̃ is the POD estimated gappy data. Then the error between

the estimate and original is minimized at the non-gappy points.

< g − g̃, g − g̃ >gappy (1.23)

In equation 1.23, g is the original gappy data. The minimization problem is solved

by taking the derivative of the system with respect to bi and setting it equal to zero.

This produces the following linear system that can be solved for bi.

< φ(i), φ(j) >gappy bi =< g, φ(i) >gappy (1.24)

Now, the repaired data can be constructed using the following equation.

g =




g if mask = 1

g̃ if mask =0
(1.25)
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Iterative Gappy POD

In addition to repairing a single marred image, Gappy POD can be extended to repair

a set of marred images using an iterative process. Notice the differences between figure

1.7 and figure 1.6. In the iterative version of Gappy POD (figure 1.7), all of the data

is gappy, but the gaps are distributed in time and space and therefore all of the data

(“O”) is said to be gappy data (“B”). The mising data in “B” is estimated to be a

spatial average which produces the data in “A”. POD is the performed on the data in

“A” and the linear combination coefficients are calculated using equation 1.24. The

estimated data is then inserted into the gaps using equation 1.25 and the process

repeats until the data converges.

ϕ 

Σa(t)ϕ(x) 

O 

B 

A 

Estimate 
Repaired 

POD 

Regression 

Iterate 

ϕ 

POD 

Figure 1.7: Diagram of the Iterative Gappy POD Method

Gappy POD has been used by many different researchers in the past to repair

fluid dynamic data and is discussed in the following paragraphs. Gappy POD was

first used for aerodynamic applications by Bui-Thanh et al. [41] to reconstruct a flow

field based on airfoil surface data and to design optimal airfoils. The Gappy POD

method was successfully used to determine the shape of an airfoil given a desired

pressure distribution. Similar work was performed by Wilcox [42].

Ruscher et al. [43] also applied Gappy POD to fluid dynamic data to perform POD

on a set of snapshots with an airfoil moving through the image. This work attempted

to estimate the POD modes around a plunging airfoil using different techniques. It
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was determined that Gappy POD produced the most accurate results, but other

techniques could be performed orders of magnitude faster with little difference in the

results. However, one should note that the data was generated using a source panel

method, so the faster techniques may not work as well with experimental or high

fidelity CFD data.

Gappy POD was also used by Murray and Ukeiley [44] to repair marred PIV

images in a cavity flow. They saw that using more modes decreased the error in the

estimation. In fact, it was demonstrated that the error in the estimate approached

the experimental uncertainty as more modes were used. Ultimately they concluded

that Gappy POD had improved their data so they could increase their confidence in

the calculated POD modes.

Raben et al. [45] made modifications to slightly improve the results of Gappy

POD by using an adaptive method to determine the optimal number of modes to use

locally. Using this adaptive method, Raben et al. were able to increase the accuracy

of the estimated data. This new technique allowed one to estimate the large scale

structures and the small scale structures separately, which was shown to significantly

reduce the estimation error. All of these works demonstrate that Gappy POD is an

effective method to estimate missing fluid dynamic data.

1.4.3 Stochastic Estimation

Another technique is stochastic estimation, which was first proposed by Adrian in

1977 [46]. In this work, Adrian shows that the velocity at one point can be estimated

from information at another point. Adrian states that the data at a point is a function

of time (t), position (x), and conditional event E.

u(x, t) = F (E, x, t) (1.26)

25



When given E, the best mean square representation is given by a conditional average

[47]. The conditional average can be estimated as a linear combination of the condi-

tional data. Minimizing the error between the actual velocity and the linear estimate

produces the following equation, as stated by Bonnet et al. [48].

ui(x
′) = Aij(x

′)uj(x) (1.27)

In equation 1.27, Aij is given by the following relation: uj(x)uk(x)Aij = uj(x)ui(x′)

where uj(x)uk(x) is the Reynolds stress and uj(x)ui(x′) is the two-point correlation.

This technique was expanded upon by Bonnet et al. [48] by performing POD and

then using another signal to estimate the POD coefficients. Then the field is rebuilt

using the POD basis and estimated coefficients. The modified stochastic estimation,

as it is called, requires that the conditional signal be well correlated with the POD

coefficients. The technique works by assuming the POD coefficients can be written

as a power series expansion of the conditional signal. This was further expanded by

Taylor et al. to use pressure as the conditional signal [49].

ãn(t) ≈ AniPi(t) +BnjkPj(t)Pk(t) + . . . (1.28)

The coefficients (Ani, Bnij, ...) are determined by minimizing the mean square error

between the estimate and actual value of the POD coefficients.

(ãn(t)− an(t))2 (1.29)

The power series estimate is then truncated. If only the first term is used, the

estimate is known as linear stochastic estimation (LSE). If the first two terms are

used, the estimate is known as quadratic stochastic estimation (QSE). Naguib et al.

[50] demonstrated that keeping the quadradic term in the estimation was extremely
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useful when using pressure to estimate velocity. Murray and Ukeiley [51] also showed

this result for a cavity flow. However, Tung et al. [52] shows not much information

is gained from higher order estimates, so this section only focuses on the linear and

quadratic estimation. Using the linear truncation, the minimization problem reduces

to a linear set of equations




< P1P1 > . . . < PqP1 >

...
. . .

...

< P1Pq > . . . < PqPq >







An1

...

Anq




=




< anP1 >

...

< anPq >




(1.30)

where < PiPj > are the pressure-pressure correlations, Ani are the linear mapping

coefficients, and < anPi > are the pressure-POD correlations. Using the quadratic

truncation, the minimization problem reduces to another system of linear equation.




< P1P1 > . . . < PqP1 > < P1P1P1 > . . . < PqPqP1 >

...
. . .

...
...

. . .
...

< P1Pq > . . . < PqPq > < P1P1Pq > . . . < PqPqPq >

< P1P1P1 > . . . < PqP1P1 > < P1P1P1P1 > . . . < PqPqP1P1 >

...
...

...
...

< P1PjPk >
. . . < PqPjPk > < P1P1PjPk >

. . . < PqPqPjPk >

...
...

...
...

< P1PqPq > . . . < PqPqPq > < P1P1PqPq >
. . . < PqPqPqPq >




=




An1

...

Anq

Bn11

...

Bnjk

...

Bnqq







< an1P1 >

...

< anPq >

< anP1P1 >

...

< anPjPk >

...

< anPqPq >




(1.31)

Multi-Time Stochastic Estimation

The LSE/QSE techniques can be limited in complex flows. The technique is improved

by using the multi-time stochastic estimation (mtLSE), which uses multiple lags in-

stead of using a single lag. The multi-time estimation takes advantage of the fact that
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complex flows will have many different lags. If the appropriate lag is used, the cor-

relation between the conditional signal and the signal being estimated is maximized.

The improvement between the single-time correlation and multi-time correlation is

shown in chapter 5.5. However, when using the mtLSE algorithm one needs to assign

the lags a priori and is limited to a set number of lags. The estimation is performed

using

ãn(t) =
Nm∑

k=1

Bn
j (τk)pj(t− τk) (1.32)

where ãn(t) is the estimated POD coefficient, τk is the lag, pj is the conditional

signal, and Bn
j are the mapping coefficients.

This method was used by Tu et al. [53] for the flow behind a cylinder collected

using a TRPIV system. They used the time resolved data to directly compare the

stochastic estimation to the actual data and showed the estimation correctly predicted

the flow field. This technique was also used by Ukeiley et al. [54] for a cavity flow.

Using the technique, they were able to get an estimate of the time resolved velocity

field. Durgesh and Naughton [55] applied this technique to a high-Reynolds number

flow in the wake of a bluff body. They determined using the multi-time approach

the flow dynamics could be estimated more accurately than with the single-time

estimation. The work also showed, to perform the technique efficiently, one must

determine the optimal time lags to use in the estimation.

Spectral Linear Stochastic Estimation

To deal with the issue of determining the optimal lags a priori, one can take the

limit as the number of lags approaches infinity and use all lags. This then transforms

equation 1.32 into a convolution.

ãn(t) =

∞∫

−∞

Bn
j (τ)pj(t− τ)dτ (1.33)
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As suggested by Ewing and Citriniti [56] for LSE and Tinney et al. [57] for mLSE, if

a Fourier transform is applied to both sides of equation 1.33, the convolution become

a multiplication and results in the following equation:

ˆ̃an(f) = B̂n
j (f)p̂j(f) (1.34)

where “ ˆ ” represents the Fourier transform. One should note that the spectral

coefficient is a function of frequency, meaning the equations need to be solved at

every frequency. The process to solve for the spectral coefficients is similar to the

process for the mLSE. The final solution for the spectral coefficients is:

B̂n
j (f) = [Ŝpppk(f)]−1[Ŝppan(f)] (1.35)

where [Ŝpppk(f)] is the cross spectral tensor for pressure

Ŝpppk(f) = lim
T→∞

1

T
< p̂∗p(f), p̂k(f) > (1.36)

and [Ŝppan(f)] is the cross spectral tensor for pressure and POD coefficients.

Ŝ∗ppan(f) =

∞∫

−∞

< an(to), pp(to + τ) > e−2iπfτdτ (1.37)

One should note that the pressure-velocity correlation (equation 1.37) is done in the

temporal domain and not spectral domain like the pressure-pressure correlation. The

pressure is obtained with a sampling rate on the order of 40kHz but the velocity is

obtained with a sampling rate of around 4Hz due to limitations of non-time-resolved

PIV systems. Since the velocity is not time-resolved for most problems, one cannot

obtain the frequency content of the velocity data. This means the spectrum cannot

be computed using spectral methods; it must be calculated in the time domain by

lagging the pressure, which is time-resolved.
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The stochastic estimation technique has been used in many different applications.

Adrian [58] studied the application of stochastic estimation for many flows including

plane and axisymmetric shear layers, pipe flow, and grid turbulence. The modified

technique was used by Bonnet et al. [48] to estimate the shear layer in a jet. The

measurements were obtained using crossed hot wires. The hot wires collect time

resolved velocity measurements, which were used to validate the stochastic estimation

technique in the shear layer of a jet. Stochastic estimation was also used by Gutmark

et al. [59] to estimate the flow field in a swirling jet. They used stochastic estimation

to reconstruct the entire field using hot wires and pressure sensors. The technique

proved useful in identifying large structures in the flow. Another example is work

done by Pinier et al. [24]. They used surface pressure measurements, which were time

resolved, to estimate a time resolved velocity field from non-time resolved PIV. The

time-resolved velocity estimate was then used to create a control system to help reduce

separation on the surface of the airfoil. Tinney et al. [60] used the spectral method

to generate an estimate of a time-resolved, 3-D velocity field for an axisymmetric

jet. They used non-time-resolved PIV and time-resolved near-field pressure to obtain

the time resolved estimate. The time resolved velocity was then used to obtain an

estimate of the time-resolved far field noise to be compared with the actual noise

measurements. The Spectral stochastic estimation was also used by Hall and Ewing

[61] for a wall jet, and Garcia-Sagrado and Hynes [62] for a NACA0012 airfoil. The

many version of the stochastic estimation have been used by multiple researchers to

estimate data for different fluid dynamic applications.

1.4.4 Modeling

Another technique is modeling, which is usually used in flow control applications to

determine how the flow evolves in time. Two typical types are Galerkin and stochastic

models. Both attempt to determine an equation that shows how the flow changes in

time. A Galerkin model estimates the change in time based on the current flow
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characteristics with the following equation:

dan
dt

(t) =
NROM∑

i=1

Lniai(t) +
NROM∑

j=1

NROM∑

k=j

Qnjkak (1.38)

where NROM is the number of modes used in the reconstruction, Lni is the linear map-

ping term, Qnjk is the quadratic mapping term, and dan
dt

(t) is the time derivative of

the POD coefficients. This equation is derived by projecting the Navier-Stokes equa-

tion onto the POD modes, thus creating a low-dimensional version of the equation.

The coefficients Lni and Qnjk can be derived mathematically or can be determined

by training the model. To train the models, data is collected and, then the time

rate of change (dan
dt

(t)) is calculated from either time-resolved data or an estimate of

time resolved data. The coefficients are then determined by solving a least squares

problem to minimize the error between the actual data and the modeled data. This

type of modeling has been done by Pinier et al. [24] for an airfoil flow. They created

the model by first estimating the time-resolved POD coefficients using LSE. The co-

efficients were then used to create the model which was used to reduce the separation

on the airfoil. Modeling was also done by Aubry et al. [63] for a turbulent boundary

layer. In this work they were able to capture intermittencies in the flow structures

using the model. From that they could capture the events that are associated with

the intermittent structures. Rempfer [64] used Galerkin modeling for a transitional

boundary layer. Rempfer used the model to study the different structures occurring

at different downstream locations in the transitional boundary layer. Ukeiley et al.

used modeling for a mixing layer [65], and many others [66–70] have also used this

modeling technique.

As stated by Tu et al. [53] the stochastic modeling approach is applied for exper-

imental data, because the Galerkin approach can diverge when experimental data is

noisy. The stochastic model attempts to model the flow by directly calculating the
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flow field based on the current state using the following equation:

an(t+ dt) =
NROM∑

i=1

Aniai +
NROM∑

j=1

NROM∑

k=j

Bnjkaj(t)ak(t) (1.39)

where Ani is the linear mapping term and Bnjk is the quadratic mapping term.

Tu et al. [53] used this technique to build a model for the flow behind a cylinder.

These modeling techniques work well over a short period of time, but start to

diverge over a long period of time (this will be discussed in section 5.5 in more

detail). The flow field either goes to zero or diverges to plus or minus infinity. As

such, these models need input to help keep them stable. This is generally done using

a Kalman filter.[53, 67]

1.4.5 Kalman Filtering

A Kalman Filter [71] or linear quadratic estimation (LQE) is an algorithm that uses

multiple noisy measurements to make estimates of the measurement with more accu-

racy than any of the measurements alone. The Kalman filter works by estimating the

state of a system at a point in time and then applies the filter to the data based on

the estimated uncertainty. The filtered value should be better than the model or any

of the noisy measurements. This is a common data fusion tool. The Kalman filter

algorithm is as follows: Predict the state using

X̂(k + 1|k) = F (k)X̂(k|k) +G(k)U(k) (1.40)

where F (k) is the model for the state (X̂(k|k)), X̂(k + 1|k) is the predicted state,

and G(k) is the model for the input (U(k)). The measurement is predicted using

Ẑ(k + 1|k) = H(k)X̂(k + 1|k) (1.41)
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where H(k) is the measurement matrix and Ẑ(k+1|k) is the predicted measurement.

The residual between the actual measurement and predicted measurement

V (k + 1) = Z(k + 1)− Ẑ(k + 1|k) (1.42)

is calculated where V (k + 1) is the residual and Z(k + 1) is the actual measurement.

The covariance is predicted at the next state by

P (k + 1|k) = F (k)P (k|k)F (k)T +Q(k) (1.43)

where P (k + 1|k) is the estimate of the covariance at the next time, P (k|k) is the

current covariance, andQ(k) is the process noise. The residual covariance is calculated

by

S(k + 1|k) = H(k + 1)P (k + 1|k)H(k + 1)T +R(k + 1) (1.44)

where S(k + 1|k) is the estimate of the residual covariance and R(k + 1) is the

measurement noise. The optimal gain is then calculated

W (k + 1) = P (k + 1|k)H(k + 1)TS(k + 1)−1 (1.45)

where W (k + 1) is the optimal gain. The covariance is predicted for the next state

P (k + 1|k + 1) = P (k + 1|k)−W (k + 1)S(k + 1)W (k + 1)T (1.46)

where P (k + 1|k + 1) is the covariance at the next time step. Finally the state is

estimated using

X̂(k + 1|k + 1) = X̂(k + 1|k) +W (k + 1)V (k + 1) (1.47)

where X̂(k + 1|k + 1) is the filtered estimate of the state.
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This technique can only be applied to linear systems such as the Galerkin and

stochastic models. Some successful attempts have been made to extend the Kalman

filter to non-linear applications such as the Extended Kalman Filter (uses Taylor series

to linearize the model), Ensemble Kalman Filter [72] which use previous time data

to calculate the covariances, etc. These filters have been used in many applications

such as navigation [73, 74], and aerodynamic control [53, 67].

1.4.6 Wavelets

Continuous Wavelets

Wavelet decomposition is a technique that has been used in signal processing in order

to compress signals, but has also been used as a way of analyzing different scales

in turbulent flows [75]. This tool has been used to extract coherent structures in

turbulence such as work done by Lewalle et al. [76], Meneveau [77], Chainais [78],

and Camussi [79].

There are many different wavelet functions. A couple are the Mexican Hat

wavelet(figure 1.8)

W (σ, t) = (
t2

4σ2
s

− 1

2σs
)

1

2
√
πσs

e
−t2
4σs (1.48)

and the Morlet wavelet (figure 1.9).

W (t) = (e2iπt − e−z20)e−2π2t2/z20 (1.49)

These are two common wavelets used in the analysis of fluid dynamic data.

Notice that the Mexican hat wavelet has one large hump and two smaller humps.

This feature allows this particular wavelet to have good time resolution. The Morlet

wavelet has many humps, which gives the wavelet good frequency resolution.
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Figure 1.8: Mexican Hat Wavelet
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Figure 1.9: Morlet Wavelet

The mathematics defining the wavelet transform involves convolving a signal with

the wavelet function for the scales of interest.

∫ ∞

−∞
u(t′) ∗W (σs, t− t′)dt′ (1.50)

where u is the signal being analyzed, W is the wavelet function and σs is the scale.

As stated earlier, wavelet analysis has been used in fluid dynamics by many re-

searchers, especially to extract coherent structures in turbulence. One such example
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is performed by Schobeiri et al. [80]. They use wavelet analysis to understand the

flow structure in a boundary layer on a concave plate during transition . The wavelet

analysis was chosen for this work due to the complex nature of the transitional flow.

The wavelet analysis was able to pick out the different scales present. Meneveau [77]

uses the wavelet to filter a turbulent flow field and showed that wavelet analysis is a

good method for extracting intermittent features. Lewalle et al. [76] used wavelets

to decompose a flow into coherent structures and a background field to show that

they coexist. They state that the wavelet procedure extracts the coherent structure

from the flow field in an robust manner. They also hypothesize that this may be

used as a way of simulating a flow field using a coherent structure filter instead of

an energy-based filter. A similar idea is discussed by Farge et al. [81]. Schneider et

al. [82] use this idea to simulate a mixing layer flow. They showed that the resulting

simulated data was better than that of the standard simulation methods because the

small scale turbulence was extracted. This work showed wavelet filtering is a viable

technique for simulating flow fields.

Discrete Wavelets

In addition to the continuous wavelets discussed previously, there are also discrete

wavelets. Two common wavelets include the Haar wavelet [83] and the Daubechies

series of wavelets [84]. As stated earlier, discrete wavelets can be used to fuse images

as shown by the work of Yocky [18] Varsheny et al. [19] Ramac et al. [85] as discussed

earlier. Image fusion was also performed by Nunez et al. [86] to show that an additive

method for combining the wavelet components is able to correctly fuse high resolution

black and white images with low resolution color images. Chen et al. [20] used image

fusion to detect hidden weapons using different types of images of the same scene. A

diagram outlining the image fusion procedure is shown again to reinforce this idea.

36



CFD 

CFD Compression 1 CFD Compression 2 

D1c 

C1c 

D2c 

C2c 

    









cC

cD
CFDT

1

1
14

    









cC

cD
cCT

2

2
1

24

PIV 

PIV Compression 1 

D1p 

C1p 

    









pC

pD
PIVT

1

1
24

Reconstruction 1 Reconstruction 2 

Data 
Fusion 

C1p 

D2c 

D1c 

F1 

F 

  1
1

2
24 F

pC

cD
T

T










  F
F

cD
T

T










1

1
14

Figure 1.10: Wavelet Image Fusion Process

This is similar to figure 1.4, but shows how the wavelet filtering is done to compress

the image by using the transformation matrix in equations 1.51. This method simply

swaps the detail information, but there are more advanced methods of doing this as

discussed earlier.

These wavelets have also been used for image compression by Lewis and Knowles

[87] who used a 2-D wavelet to compress images and showed the images could be

reconstructed with minimal losses. Calderbank et al. [88] created wavelets to perform

lossless compression that also transformed an integer value to an value. Wavelets are

also used for image de-noising as seen by the work of Chang et al. [89]. In this work

they used lossy compression to remove noise from an image. Kivanc et al. [90] also

used wavelets and statistical models to remove noise from images. Image stitching

[91, 92] can also be accomplished using discrete wavelets.

The Daubechies wavelet transform is performed by multiplying the data (X) by

an orthonormal matrix.
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


c4 −c3 c2 −c1

c4 −c3 c2 −c1

. . .

c4 −c3 c2 −c1

c2 −c1 c4 −c3

c1 c2 c3 c4

c1 c2 c3 c4

. . .

c1 c2 c3 c4

c3 c4 c1 c2







X




=




Dix

...

Dix

Cix

...

Cix




(1.51)

The matrix in equation 1.51 is the transform for the Daubechies4 wavelet. Higher

order Daubechies wavelets follow a similar pattern.

The bottom half of the transform matrix represents a low pass filter and acts as a

smoothing operation and the top half acts as a high pass filter. These are known as a

quadrature mirror filter [93]. The compressed data (Cix) is given by the bottom half

of the product of the transform matrix and the data (X). The top half of the product

is removed and stored as detail information (Dix), which is used to decompress the

image.

The coefficients c1, c2, c3, c4 are determined by forcing the matrix to be normal,

c2
1 + c2

2 + c2
3 + c2

4 = 1 (1.52)

forcing the columns to be orthogonal,

c3c1 + c4c2 = 0 (1.53)
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and forcing the first 2 moments to be zero.

c4 − c3 + c2 − c1 = 0

0c4 − 1c3 + 2c2 − 3c1 = 0
(1.54)

Solving the equations give the following coefficients: c1 = 1+
√

3
4
√

2
≈ 0.483, c2 = 3+

√
3

4
√

2
≈ 0.837,

c3 = 3−
√

3
4
√

2
≈ 0.224, c4 = 1−

√
3

4
√

2
≈ −0.129.

The data set can be decompressed using an inverse transform. Since the matrix

is orthonormal, the inverse of the matrix is also the transpose of the matrix. Before

the data can be multiplied by the transpose matrix, the compressed image must be

infused with detailed information.




0

0

...

0

y1

y2

...

yn




+




d1

d2

...

dn

0

0

...
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(1.55)

In equation 1.55, yi is the compressed data and di is the detailed information.

The Haar wavelet is similar to the Daubechies wavelets; it actually follows the

same constraints, but with two coefficients. The Haar wavelet ends up taking an

average of adjacent points. The coefficients for the Haar wavelet are c1 = 1√
2

and

c2 = 1√
2
.
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1.4.7 Application to Fluid Dynamics

Using the data from the sources discussed in section 1.3 and the techniques explained

in section 1.4, researchers have already begun to fuse fluid dynamic data on some

level. Stochastic estimation (subsection 1.4.3) may be thought of as a method of

performing data fusion. As stated, the process essentially uses one piece of data to

estimate another piece of data. For example, in standard PIV, one is most often

unable to capture time dependent velocity fields as stated in section 1.3. However,

pressure sensors sample at a much higher rate, also as stated in section 1.3. The

stochastic estimation technique uses the pressure and PIV data in such a way that

an estimate of the velocity data at a sampling rate equal to that of the pressure is

produced. This is shown in work done by Pinier et al. [24] in which PIV and surface

pressure for a NACA airfoil were used to estimate a time dependent velocity field.

This method can be thought of as data fusion because two sources of data are being

used together to produce information that is not obtainable from either measurement

alone.

Another example of data fusion in fluid dynamics is presented by Planquart [94] in

which the use of CFD and wind tunnel tests are used in conjunction to create a better

design. Some examples presented by Planquart include the design of a sun protection

system and a high-speed land vehicle. For the sun protection system, a prototype was

placed in the wind tunnel and experimental values for the critical wind loading and

deformation were recorded. That data was then used in a CFD simulation in which

the geometry of the system was modified to create a better design. The system was

then tested in the wind tunnel to confirm the CFD results [94].

Aerodynamic data fusion is also performed by Zimmermann et al. [95]. Zimmer-

mann used a method similar to Gappy POD to fuse CFD and wind tunnel data. The

CFD was used to generate basis functions and the wind tunnel was used to generate

lift and drag measurements. The idea of this work was to generate the flow field

around an airfoil given the lift and drag based on the CFD results. By generating the
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flow field at many different flow conditions, Zimmermann could create a POD basis

based on the CFD and the residual of the CFD. The data was fused by using the

experimental lift, drag, etc. as a constraint. A similar approach was used by Vendl

and Faßbender [96] to use Gappy POD to estimate the pressure on a surface of a

wing. This was compared with the full CFD result and showed good comparison.

To accomplish the task of fusing fluid dynamic data, a framework to handle the

vast amounts of data and analysis techniques is developed and explained in chapter 2.

Ultimately, data fusion is applied to data from a Mach 0.6 jet in chapter 5, but

the application of data fusion to a few other test cases are explored first to better

understand how to apply data fusion to fluid dynamic data. The test cases include

a synthetic data set (chapter 3), flow over a NACA 4412 airfoil (chapter 4), and the

Mach 0.6 jet. The results of these test cases show data and technique fusion can

improve fluid dynamic data.
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Chapter 2

Orange High Speed Data (HSD)

Framework

As stated in chapter 1, fluid dynamic research produces large amounts of data that

come from many different sources such as PIV, LDA, Pressure, CFD, etc. Sometimes

a large percentage of this is not used. Usually during an experiment, the researcher

is focused on collecting as much data as possible in a given window of time. The

researcher may not have the means to collect data again, making it important to

get all of the data that is needed and more. Experimentalists try to collect enough

data for the current project and possibly a few other projects [97]. In addition, the

researcher may not have time to process the data while collecting it, other than an

initial check. Errors could arise that corrupt the data, and the researcher most likely

would not notice these until after the experiment is disassembled. These are two

reasons why the vast amounts of data collected for fluid dynamic research are not

used.

If all of the data collected is used, it may lead to a better understanding of the

problem under investigation, making it advantageous to have a method that would

increase the amount of data that can be processed. To attempt to create this method,

it is important to understand why data is unused. It is fairly obvious as to why
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corrupt data is unused, so having a method of repairing data accurately and in a

timely manner is important and is discussed throughout this document. But why is

much of the non-corrupt data not processed, especially if using it would be insightful?

Each researcher usually writes his/her own codes to process all of the data, extract

the useful data, perform the analyses, and track the data, which could potentially

take a lot of time. If a standard method for data processing existed the researcher

may spend more time analyzing the data and less time processing it, allowing for the

use of more data.

2.1 ORANGE High Speed Data

One solution is to develop a framework capable of handling large amounts of fluid

dynamic data, and capable of streamlining the repair and analysis process. Such a

framework has been implemented in the tool ORANGE High Speed Data (HSD) de-

veloped using Matlab at Syracuse University by Ruscher [98] (figure 2.1). This allows

one to use different analysis tools and compare them side-by-side allowing the user

to draw conclusions from multiple analyses. ORANGE HSD includes POD (subsec-

tion 1.4.2), LSE (subsection 1.4.3), wavelets (subsection 1.4.6), spectral methods and

other useful tools. ORANGE HSD allows the user to format data, perform analysis,

and view results with the click of buttons and not much effort is required from the

user. The user may have to spend some time reading the manual (Appendix B) to

understand how to use the tool.
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Figure 2.1: Screenshot of ORANGE High Speed Data Main Screen

Some of the different tools incorporated in ORANGE HSD are discussed in the

following subsections. Examples of the output are displayed through out the subsec-

tions. The results come from data collected by Pinier et al. [24] for a NACA 4412

airfoil at an angle of attack of 16◦.

2.1.1 Data Management

ORANGE HSD has a data management system (figure 2.2) that stores and displays

relevant information about the data whenever a new data set is added or created

instead of someone having to record what was done to the data. This allows the user
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to spend less time keeping track of data manipulations and more time understanding

the data. This process is automated and should have less chance for errors in the

recording process. The framework tracks where the new data comes from so the user

can always know where the data came from without having to do extensive searching

through their notes.

Figure 2.2: Screenshot of Data Management: The Data Management Tool Included
in ORANGE HSD

ORANGE HSD also has a formatting tool, to read data from different sources

and automatically put it into a standard format, allowing the user to spend time

on other, more useful tasks, such as analyzing results. The standard format allows

direct comparison of the data, which could require extra processing for the researcher

without the standard format.

In addition, the data management tool allows the user to extract a new data set

from an existing data set. This lets the user trim data or reduce the dimension of

the data. This could be done without a framework, but having this ability coupled

with the tracking system allows for an efficient way of extracting data and storing

its origin. The extraction tool can extract single-point measurements from a plane of

data, allowing for one-dimensional plots and possible comparisons to data collected
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using a single-point measurement technique. For example, one could extract a single

point from a PIV plane to compare it to an LDA measurement or extract a plane

from a 3D CFD data set to compare with PIV data.

The data management tool also allows the user to mask out bad data or an object

that may be in the image such as an airfoil, turret, or nozzle, which could corrupt

some analyses. This is especially useful for POD and Gappy/Fused POD. The mask

generation process is graphically based and only requires the user to click around the

desired region, which could be faster and more efficient than finding the bad points

and creating a mask manually. An example of of the masking process is shown in

figure 2.3.

Figure 2.3: Generating a Mask for the NACA 4412 Data

2.1.2 ORANGE POD

The first of the four major analyses included in ORANGE HSD to discuss is ORANGE

POD (figure 2.4), which is the POD tool for ORANGE HSD. The tool’s main purpose

is to compute the POD modes using the snapshot method (1.4.2). The user can then

view the modes and temporal coefficients and compare them for the different data
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sets. ORANGE HSD is capable of computing the POD modes for large data sets

which is very attractive for TRPIV data sets and has been implemented by Low et al.

[99], Berger et al. [100, 101], and Berry [102]. The tool also includes other variations

of POD (subsection 1.4.2), such as iterative Gappy POD, Classical POD, Split POD,

and Fused POD (subsection 4.6.1).

Figure 2.4: Screenshot of ORANGE POD: The Proper Orthogonal Decomposition
Tool Included in ORANGE HSD
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Figure 2.5: First POD Mode for the Streamwise Velocity Over the NACA 4412 Air-
foil
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The first POD mode for the NACA 4412 airfoil data is shown in figure 2.5. One

can see the large structure in the wake which is the dominant feature in the flow field.

2.1.3 ORANGE Wavelets

Figure 2.6: Screenshot of ORANGE Wavelets: The Wavelet Tool Included in OR-
ANGE HSD

The next major tool included in ORANGE HSD is ORANGE Wavelets (figure 2.6),

which is used to calculate the continuous wavelet transform for a signal. The tool

is currently capable of using the Morlet transform (subsection 1.4.6) and the Mexi-

can hat transform (subsection 1.4.6), which produce time-frequency relationships for

signals. The code is designed in a such a way that other transforms can be added

without much effort.

The wavelet tool has been used to generate the wavelet map for the pressure on

the surface of the NACA 4412 airfoil. The results of this are shown in figure 2.7. One

can see a time frequency representation of the data.
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Figure 2.7: Mexican Hat and Morlet Wavelet Map for NACA 4412 Surface Pressure

2.1.4 ORANGE Correlate

The third major tool is ORANGE Correlate (figure 2.8), which performs auto- and

cross-correlations, auto- and cross-spectrum, and Fourier transforms. The user again

can compare the results of multiple data sets and determine how the spectral content

and time lags in a signal compare with one another. The tool also allows the user to

obtain smooth results by performing block averaging and using a moving filter.
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Figure 2.8: Screenshot of ORANGE Correlate: The Spectral Methods Tool Included
in ORANGE HSD
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Figure 2.9: Autospectrum for NACA 4412 Surface Pressure

An autospectrum for the surface pressure data for the NACA 4412 airfoil was

computed using ORANGE Correlate. One can see the dominant frequency in this
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plot as well as the energy cascade. This is shown in figure 2.9.

2.1.5 ORANGE LSE

The last major tool included with ORANGE HSD is ORANGE LSE (figure 2.10),

which performs LSE (subsection 1.4.3) on a data set. One can use a signal to generate

a mapping from one signal to another that can be used as an estimation technique

when one signal is known and the other unknown. This can be useful to estimate

time-resolved velocity using high-speed pressure measurements and non-time-resolved

PIV.

Figure 2.10: Screenshot of ORANGE LSE: The Stochastic Estimation Tool Included
in ORANGE HSD

The surface pressure can be used to estimate the velocity field using ORANGE

LSE. The results of this are shown in figure 2.11. One can see an original snapshot of

the fluctuating velocity field on the top, the POD reconstruction of the same velocity

field, and the LSE of the same field. It can be seen that that three images are similar

and the LSE is estimating the large scale structures correctly.
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POD Reconstruction
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Figure 2.11: Comparison of the Actual, POD Reconstruction, and LSE Velocity
Fields

ORANGE HSD allows the user to perform these analyses at a push of a few

buttons, saving time because the user no longer has to search for codes they wrote

and modify them for new data. One should note that even though the code makes

it easy to run these analyses, the user still needs to understand the techniques and

results. The user of the tool should have an understanding of the techniques before

using them. The code is not intended to be a substitute for learning the techniques,

but rather as an implementation of a framework to streamline a researcher’s analysis

process, allowing the researcher to analyze more data. A more in depth description of

ORANGE HSD is included in appendix B which is the user’s manual for ORANGE

HSD.

As a final note, the main advantage of the framework is the automation. Some
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of the analyses may take about the same time to run, but the user does not have to

spend all of that time watching the code. In other words, the code is reducing the

man hours required to perform the analyses allowing the researcher to spend more

time understanding the data and less time processing.

2.2 Examples

The framework has been used in a few different cases including the comparison of

LDV and TRPIV measurements in a high-speed jet taken in 2004 by Hall et al. [103]

and in 2011 by Low et al. [99] respectively. These two experiments measured the same

quantity (velocity) using two different techniques. Despite this, the two measurements

were not compared since the researchers were focused on processing their own data

and did not have the time to make the comparison. However, using this framework,

the preprocessing required to compare the two data sets was accomplished in a day.

The preprocessing included shifting the PIV grid to match the LDV data, extracting

single point data from the PIV (figure 2.12 shows the mean Mach number contours

and the black points are where the data was extracted), computing the auto-spectrum,

and comparing the auto-spectrum on a single plot. Ruscher et al. [104] could focus on

the analysis of the data sets instead of the processing the data. Since the framework

was in place, the research shifted to understanding the differences in the data and

the errors associated with the measurement techniques. Without the framework it is

unlikely this work would have been done.
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Figure 2.12: Extraction of Data from the TRPIV for Comparison with LDV Data

The framework also helps perform data fusion since many of the data fusion

processes discussed in this document require data to be manipulated in such a way

that the creation of a new data set make the processes more efficient. In the case of

using Fused POD to estimate missing data where a sensor was located, (section 5.4)

the data was rotated, split into two parts (the top and bottom halves) and the POD

modes were calculated for the bottom half. Then Fused POD was performed on

the top half of the data using the bottom half modes. The two halves were then

joined together, creating a new data set, the repaired data. This required many

manipulations and by using the framework this was accomplished with little effort

and the newly created data files were stored by the framework for future analysis.

Fused POD could have been done without the framework, but it made the task easier,

allowing more time to focus on the analysis of the new data and the technique. This

allowed for an increased understanding of the fusion tool by looking at the effects of

hole size, where to split the data, and convergence of the POD modes. All of this is

discussed in section 5.4.

The framework also aided in the repair of TRPIV jet data that was corrupted

by random dropouts of seeding (subsection 5.4.2). This can be repaired using the

iterative Gappy POD, but Fused POD is able to repair the data faster albeit with

slightly different results as shown in subsection 5.4.2. To use Fused POD, a subset

of the data was extracted and iterative Gappy POD was performed on the smaller

data set, which was used to create a POD basis used to repair the entire data set
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two order of magnitudes faster then using iterative Gappy POD alone. Again, the

framework was helpful in extracting the necessary data and tracking the new data

sets that were created. All of this could have been done without the framework, but

would have taken more time and man hours.

The framework, also was used to estimate a time-resolved large-window data set

using dynamic Gappy POD (subsection 5.5.4). In the Dynamic Gappy POD the

LWPIV was shifted to match that of the (TRPIV). Then a smaller window, the

desired size of the large-window time-resolved data, was extracted from the LWPIV.

POD was then performed on the TRPIV windows, which are used to generate a

model, and the LWPIV which gives the mode shapes for the new data set. With

the modes, the model, and the TRPIV data, a large-window time-resolved data set

is generated. The framework again was used to create and track new data sets that

were required for DGP, streamlining the fusion process.

The framework provided by ORANGE HSD allows researchers to focus more on

the actual analysis and understanding of the data instead of focusing on processing

the data. This allows researchers to use more of the data that was collected as shown

by the number of data sets processed by Berger [1], who used this framework, as

opposed to Low [105], who did not. Low was able to process about 13 TRPIV data

sets for a Mach 0.6 jet, which included 7 baseline data sets that range from the lip

of the jet to 7.5D downstream and six open loop control cases for the same range.

During the data collection phase, 7 data sets were taken for the jet at Mach 0.85

and Mach 1.0, which were not processed until a later time by Berger et al.[101, 106].

In addition to processing the data collected in 2011 by Low et al. [99], Berger also

was able to collect and process data from another set of TRPIV experiments [100] as

well as a set of LWPIV experiments [107]. Approximately 80 different data sets were

acquired for the 2013 TRPIV experiments and five data sets were acquired for the LW-

PIV experiments. These included baseline, open- and closed-loop control, off-center

planes, and asymmetric nozzles. According to private communication with Berger,

55



approximately 2/3 of this data have been processed and analyzed [97]. The processing

includes formatting the data, computing the POD modes, data extraction, spectral

tools, vorticity calculation, assessment of data quality, data repair/estiamtion, and

more. The framework implemented in ORANGE HSD allowed Berger to process more

data and make comparisons between the data, which would not have been possible

in the given time frame of a typical Ph.D. thesis without this framework. Because

Berger was required to spend less time processing data, more time was spent looking

at results and understanding the data, leading to a deeper understanding of the jet

flow.

An example of the processing done by Berger [1] is shown in figure 2.13. All of

the mods were generated using ORANGE POD. These correspond to 10 different off

center data sets that each had 15,000 snapshots. Using ORANGE POD Berger was

able to process the data efficiently. As a note, figure 2.13 was not generated using

ORANGE POD. It was generated using a code written by Berger. However, the

calculation of all of the modes were done using ORANGE POD.

  

Figure 2.13: First Four Spatial Modes in the Radial Direction (Figure 6.54 in Berger
[1])
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In addition, some of the TRPIV data collected by Berger et al. [100] was corrupted

due to particle drop out and/or laser misalignment, which caused non-physical veloc-

ities in all of the snapshots (subsection 5.4.2). The framework and the idea of Gappy

POD/Fused POD was used by Berger to repair these snapshots in a reasonable time.

If not for the framework and the fusion techniques, those few data sets most likely

would not have been used.

Some of the 2011 TRPIV [99] data was processed by Berry [102] to see the effects

of the flow control on the TRPIV experiments using split POD (subsection 1.4.2).

Using the framework, Berry was able to perform the split POD in an efficient manner

for multiple control cases, due to the frameworks ability to track and handle multiple

data sets.
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Figure 2.14: Mode One for the Split POD Between Baseline and Control for a Mach
0.6 Jet

A sample of this work is shown in figure 2.14. This shows the first split POD

mode for the difference between the baseline and control case for a Mach 0.6 jet. One

can see structures forming at r/D = 0.5 and −0.5. This is the effect of the control
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system which is a synthetic jet actuator. These results could be used to develop a

more robust controller in the future.

In addition to the split POD, Berry [102] also processed the asymmetric nozzle

data sets from the 2013 TRPIV experiments. The data sets had many “bad” data

points on the edges of the plane due to the nozzle being in the images and the laser

plane not illuminating the entire window. The framework allowed the images to

be cut and then processed using POD. This was done for multiple configurations of

asymmetric jet nozzles. The framework allowed Berry to process the data efficiently

and focus his attention on understanding the results. This work provided insight

for future asymmetric nozzle work that will be done at Syracuse University’s Skytop

Anechoic facility.
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Chapter 3

Synthetic Data

The techniques described in section 1.4 are ultimately applied to jet data in chap-

ter 5, but to test the validity of the techniques and determine how they work for a

given scenario they are first applied to synthetic data. The test cases described in

subsection 3.1.1 are designed to mimic problems that are faced in real data. Various

techniques are applied to the synthetic data to determine which one works best for a

given scenario. The findings from this work ultimately guide the creation of the fused

techniques discussed and applied in chapter 4 , and chapter 5.

3.1 One-Dimensional Test Case

The synthetic test cases try to mimic the strengths and weaknesses of computational

and experimental data, which are two different sources of data that could be used

in the fusion process. The test signal is a combination of sinusoids with varying

frequency and amplitudes and is given by

sin(t−τ)+0.7sin(2(t−τ))+0.5sin(4(t−τ))+0.3sin(7(t−τ))+0.2sin(9(t−τ)) (3.1)

and represents non-corrupt data. This signal is modified to incorporate errors that

can occur in PIV and CFD data. The different PIV errors include: downsampled data
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(represents data with less resolution than the other), noisy and downsampled data

(represents uncertainty in measurements), data that is missing (represents dropout,

reflections, or sensor occlusions), and a data set that is downsampled, noisy, has

missing data, and has multiple windows (represents two PIV windows adjacent to

one another but not synchronized in time).

The original signal is modified to represent CFD by adding dispersion, which is a

numerical error that occurs from the discretization of the flow field. The dispersion

is added by running the original signal through the advection equation

∂u

∂t
+ U

∂u

∂x
= 0 (3.2)

using a forward-time backward-space scheme

un+1
i = CFL(uni−1 − uni ) + uni (3.3)

with a Courant Friedrichs Lewy (CFL = U∆t
∆x

) number of 0.5.

The PIV-inspired signal, CFD-inspired signal, and fused signal are compared to

the original signal by the root mean square (RMS) error

√√√√
∑Ns
i=1(xi − yi)2

Ns

(3.4)

where xi represents the actual signal, yi represents the signal being compared with

the original, and Ns represents the number of data points in the signal. The RMS

error is used as a metric to determine how well a signal matches the original.

3.1.1 Test Case 1: Downsampled/Dispersed Signal

The first test case uses a downsampled signal and a dispersed signal. The downsam-

pled signal represents the fact that a PIV signal is limited in the number of pixels

that can be captured. In this test, the actual signal is downsampled by a factor of
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four to produce the PIV-inspired signal and separately run through the advection

equation (equation 3.3) to obtain the CFD-inspired signal. The signals for this test

case are shown in figure 3.1.
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Figure 3.1: Test Case 1: Downsampled Signal and Dispersed Signal

Note the CFD-inspired signal becomes smoother than the original signal as time

increases due to the dispersion.

3.1.2 Test Case 2: Noisy Downsampled/Dispersed Signal

The second test case uses a downsampled and noisy signal to represent PIV data and

a dispersed signal to represent CFD data. This test case adds the complication of

noise that may be experienced when taking experimental measurements. For this test

case, the noise is 10% of the signal with a Gaussian distribution centered around zero.

This is a conservative estimate of the uncertainty in a PIV measurement of a jet flow

based on the method outlined by Raffel et al. [28] and the calculation performed by

Ruscher et al. [104]. The signals for this case are in figure 3.2.
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Figure 3.2: Test Case 2: Downsampled and Noisy Signal and Dispersed Signal

3.1.3 Test Case 3: Gappy/Dispersed Signal

The third test case has gaps or missing data to represent PIV data that has dropouts,

reflections, or sensor occlusions that corrupted the data and a dispersed signal to

represent CFD data, as shown in figure 3.3.
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Figure 3.3: Test Case 3: Gappy Signal and Dispersed Signal

3.1.4 Test Case 4: Gappy, Multiple Windows, Noisy, Down-

sampled/ Dispersed Signal

The final test case investigated is a signal that has all of the errors discussed in the

previous test cases and it has multiple windows that are not aligned to represent PIV

data. A dispersed signal is used to represent CFD data. These signals are displayed

in figure 3.4. Notice in figure 3.4, the PIV data has a dashed line which represent the

boundary between the two pseudo-windows.
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Figure 3.4: Test Case 4: Gappy, Multiple Window, Noisy, Downsampled Signal and
Dispersed Signal

3.2 Discrete Wavelet Fusion

The first technique discussed is the discrete wavelet transform. The process starts by

using the discrete wavelet transform to compress the CFD-inspired signal to match the

same resolution as the PIV-inspired signal. Then the CFD-inspired signal and PIV-

inspired signal can be compressed further if desired (secondary compression, described

in subsection 3.2.2). The PIV-inspired signal is reconstructed using the detailed

information from the CFD-inspired signal. This produces a signal that resembles

the actual signal. The data in the test cases discussed in section 3.1 are now fused

together using the wavelet fusion outlined in the block diagram in figure 1.10.
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3.2.1 Test Case 1
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Figure 3.5: Wavelet Fusion of a Downsampled Signal and Dispersed Signal without
Secondary Compressions

Using the Daubechies10 discrete wavelet transform, the CFD-inspired signal and PIV-

inspired signal from test case one are fused together. Using zero secondary compres-

sions, the fused signal looks similar to the original signal (figure 3.5).

Performing one secondary compression increases the RMS error slightly, but the

signals still look the same (figure 3.6). Performing five secondary compressions on

the data increases the RMS error, such that it is nearly the same as the RMS error

of the CFD-inspired signal. In addition, the fused signal now closely resembles the

CFD-inspired signal (figure 3.7). This is expected because the CFD-inspired signal

and PIV-inspired signal are similar. The further one compresses the signals the more

similar they will become. Using a compressed signal that is similar to the CFD-

inspired signal and the detailed information from the CFD-inspired signal will create

a fused signal that looks like the CFD-inspired signal.
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Figure 3.6: Wavelet Fusion of a Downsampled Signal and Dispersed Signal with One
Secondary Compression

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Comparison of CFD PIV and Fused signal for D10

time

A
m

p
lit

u
d

e

D10 with 5 PIV Compression 

RMS error=0.142 

0 5 10
-2

0

2
Comparison of CFD PIV and Fused signal for D2

 

Original Signal

PIV Inspired Signal

CFD Inspired Signal

Fused Signal

Figure 3.7: Wavelet Fusion of a Downsampled Signal and Dispersed Signal with Five
Secondary Compressions
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Figure 3.8: Effect of Secondary Compressions on a Downsampled Signal and Dis-
persed Signal

The RMS error increases as the number of secondary compressions increases, as

is shown in figure 3.8. With no secondary compressions, the RMS error is equal to

the RMS error for a linear interpolation of the downsampled data (the wavelet fusion

is much smoother though). As the number of secondary compressions increase, the

RMS error increases and converges to the RMS error of the CFD-inspired signal.

3.2.2 Test Case 2

The wavelet fusion technique is also used on the noisy downsampled PIV-inspired

signal. The CFD-inspired signal and PIV-inspired signal are fused in the same manner

as for test case 1. For test case 2 with no secondary compressions, the fused signal

has some noise but still is close to the original signal (figure 3.9). Performing one

secondary compression removes the noise from the signal and the RMS error decreases

(figure 3.10). Five secondary compressions cause an increase in the RMS error (figure

3.11) for the same reasons as test case 1.
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Figure 3.9: Wavelet Fusion of a Noisy Downsampled Signal and Dispersed Signal
with no Secondary Compressions
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Figure 3.10: Wavelet Fusion of a Noisy Downsampled Signal and Dispersed Signal
with One Secondary Compression
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Figure 3.11: Wavelet Fusion of a Noisy Downsampled Signal and Dispersed Signal
with Five Secondary Compressions

Performing secondary compressions on noisy data decrease the RMS error of the

fused signal by filtering the noise. Performing too many secondary compressions will

cause the RMS error to increase until the fused signal and the CFD-inspired signal

are the same. This is because performing more compressions filters out information

that is not noise. The fused signal created using one secondary compression is better

than both the CFD- and PIV-inspired signals as shown in figure 3.12.
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Figure 3.12: Effect of Secondary Compressions of Wavelet Fusion for a Noisy
Downsampled Signal and Dispersed Signal

3.2.3 Test Case 3

The wavelet fusion technique is applied to the data set with missing data, which to

the author’s knowledge is the first time this has been done. The two signals are fused

in a similar manner as before. However, if care is not taken to treat the gappy region

correctly, the missing information from the PIV-inspired signal will transfer over to

the fused signal (figure 3.13). The fusion algorithm can be improved by only using

CFD-inspired data in the gappy regions. This is equivalent to inserting the CFD-

inspired data into the PIV-inspired data in the gappy regions (figure 3.14). This

would help improve the PIV-inspired signal by having data in the field, but it is not

taking advantage of fusion techniques.
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Figure 3.13: Wavelet Fusion Applied to Gappy Data
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Figure 3.14: Wavelet Fusion Applied to Gappy Data by Inserting Another Signal in
the Gappy Region

3.2.4 Comparison of Different Daubechies Wavelets

The Daubechies10 wavelet has been used for the fusion so far, but what about other

wavelets? The differences in using various wavelets were studied for the noisy down-

sampled case to determine the best wavelet to fuses the signals. This was performed

for the Haar, Daubechies4, Daubechies6, Daubechies8, and Daubechies10 wavelets.

It was found that as the complexity of the wavelet increased, the RMS error between

the fused signal and original signal decreased. However, the RMS error reaches an

asymptote, and using higher order wavelets does not improve the error as much (fig-
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ure 3.15). This could be due to the fact that the higher order Daubechies wavelets

use more of the neighboring points in the filtering process. The data points further

away have less influence on the filtering process. If the signals have low frequency

noise, perhaps higher order wavelets may be useful to smooth out the data.
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Figure 3.15: RMS Error Using Different Wavelets for Fusion of a Noisy Downsam-
pled Signal and Dispersed Signal

3.3 Gappy POD Fusion

Wavelet fusion has been discussed in the previous section. The Gappy POD fusion

technique is now explored in this section. The fusion process works by creating a

POD basis for the CFD-inspired signal. The fused signal is then generated using

a linear combination of the basis functions using the Gappy POD method outlined

earlier (figure 1.6). This work was the initial inspiration for Fused POD.
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3.3.1 Test Case 1

The test cases are fused with Gappy POD. The fusion requires that each image have

the same resolution, which is not the case with the downsampled signal. However,

if one assumes that the points missing from the downsampled signal are the gappy

points, then Gappy POD can be used for the fusion process. The fused signal that

is created is worse than the signal produced from the wavelet fusion. It has many

discontinuities, which causes a large RMS error (figure 3.16).

0 2 4 6 8 10
-2

-1

0

1

2

time

A
m

p
lit

u
d
e

 

 

RMS error=0.142 

0 5 10
-2

-1

0

1

2

time

A
m

p
lit

u
d
e

 

 

Original Signal

PIV-Inpired Signal

CFD-Inspired Signal

Fused Signal

Figure 3.16: Gappy POD Fusion Applied to a Downsampled Signal

3.3.2 Test Case 2

The fusion of test case 2 has the same issue as test case 1 regarding the resolution of

the signals; and the issue is solved using the same idea as in test case 1, where the

missing resolution is treated as a gap. The Gappy POD fusion process again shows

the fused signal has many discontinuities and the wavelet fusion technique is a better

way to perform the fusion (figure 3.17).
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Figure 3.17: Gappy POD Fusion Applied to a Downsampled and Noisy Signal

3.3.3 Test Case 3
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Figure 3.18: Gappy POD Fusion Applied to a Gappy Signal

Test case 3 benefits from the Gappy POD fusion technique the most. Using the

Gappy POD fusion technique, the RMS error decreases. The fused signal is better

than the PIV-inspired signal, which has no data in the gappy region, and it is also

better than the CFD-inspired signal. The fused signal behaves more like the original
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signal than the CFD-inspired signal (figure 3.18). One can see that the fused signal

is capturing the peaks in the gappy region better than the CFD-inspired signal. The

Gappy POD fusion technique works better than the wavelet fusion for this test case.

The Gappy POD fusion method works well in this case. However, if the CFD-

inspired signal is very different from the PIV-inspired signal, then the region estimated

by the Gappy POD looks too much like the CFD-inspired signal (figure 3.19). This is

essentially what Everson and Sirovich [37] saw in their work with Gappy POD using

a human face basis to repair a monkey image.
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Figure 3.19: Gappy POD Fusion Applied to a Gappy Signal with a “Bad” CFD-
inspired Signal

The last thing to mention when using Gappy POD is how many modes to use

in the fusion process. The RMS error is minimized when the energy in the POD

modes is nearly 100%. Looking at figure 3.20, one can see a plot of energy and RMS

error as a function of number of modes used in the reconstruction. The RMS error

is minimized when five modes are used in the reconstruction, which corresponds to a

corner in the energy convergence plot. Any mode higher than this is really noisy and

does not add any useful information. In fact, it actually makes the estimate worse.
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Figure 3.20: Convergence Rate of POD vs. the RMS Error

3.4 LSE Fusion

Wavelet fusion and Gappy POD fusion have been applied to the test cases. In this

section, LSE (subsection 1.4.3) is used as a method of fusion. The fusion process

works by using the CFD-inspired data to calculate the two point correlation tensor

(uj(x)ui(x′)) and the Reynolds stress (uj(x)uk(x)). The two terms are calculated at

the points where the PIV-inspired data is also known. The PIV-inspired data can

then be used as the conditional signal.

The LSE fusion does not work as well as the other methods. If the first few

points of the PIV-inspired signal are used in the estimate (figure 3.21), the fused

signal is similar to the original signal at the points used in the estimate, but starts to

diverge from the original signal after that region. Despite this, the fused signal and

original signal still have similar trends. Using more PIV-inspired data for the estimate

increases the RMS error, but the fused signal diverges later than the previous case

(figure 3.22). When half of the PIV-inspired data is used in the estimate, the RMS

error of the fused signal increases even more (figure 3.23).
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Figure 3.21: LSE Fusion for a Downsampled Signal Using the First 12% of the
PIV-inspired Signal
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Figure 3.22: LSE Fusion for a Downsampled Signal Using the First 25% of the
PIV-inspired Signal
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Figure 3.23: LSE Fusion for a Downsampled Signal Using the First 50% of the
PIV-inspired Signal

One would expect that adding more information would create a better estimate,

which is not the case here. The error increases in this case because the correlation

between the PIV-inspired signal and CFD-inspired signal decreases with increasing

lag as seen in figure 3.24.
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Figure 3.24: Correlation Between the CFD- and PIV-Inspired data
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The fused signal matches well between one to two seconds, which is where the correla-

tion is strong. The signals match again between six to eight seconds, which is where

the correlation is “large” again. This is also the point where the flow is starting

another period and should have a strong correlation.

3.5 Fusing Techniques Together for Test Case 4

The three different techniques have been applied to the different data sets and the

strengths and weaknesses of each technique has been shown. In the spirit of fusion, the

techniques discussed above have been fused together in a way that takes advantage of

each of the techniques. In this method, the wavelet technique is used to compress the

signals to the same resolution and smooth any discontinuities produced from splicing

together the other techniques and reduce any noise that may exist in the experimental

data. The Gappy POD fusion is used to fill missing information in the PIV-inspired

signal and to extend the PIV domain when necessary. In future work, a modified LSE

technique that uses pressure as a conditional signal [24, 57] could be added to give

another estimate of the flow field. The fused technique is shown pictorially in figure

3.25. This idea is the basis for the fused techniques to be discussed in subsection 4.6.1

and subsection 5.5.4.

The fused technique is used to fuse the data described in test case 4, which in-

cludes; a dispersed signal (CFD-inspired) and, noisy, downsampled, multi-windowed,

and gappy signal (PIV-inspired). The fused technique first uses a wavelet decompo-

sition to compress the data to have the same resolution as all of the other signals as

is shown by the “Compression 1” step in figure 3.25. A second compression is done

on all of the data using the wavelet decomposition as shown in the “Compression 2”

step to reduce any noise in the signal. POD modes are then calculated from the com-

pressed CFD data (the black boxes). Those modes are then used to fill the missing

information in the other signals using the Gappy POD method. Another compression
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is performed on all of the data to remove any gradients caused by the Gappy POD

method. The four compressed signals are now combined using a weighted average.

The signals are then decompressed using detail information from the CFD-inspired

signal using the inverse wavelet decomposition as is shown in the “Reconstruction”

steps in figure 3.25.

CFD 

Compression 1 Compression 2 
D1c 

C1c 

D2c 

C2c 

Pressure 

PIV Window 1 

Compression 1 
D1p1 

C1p1 

Reconstruction 2 Reconstruction 1 

Data 
Fusion 

F1 

D2c 

D1c 

F2 

F3 PIV Window 2 

Compression 1 
D1p1 

C1p1 

LSE 

Compression 1 
D1L 

C1L 

Gappy POD 

Gappy POD 

G1 

G2 

C2c 

C1L 

Compression 3 

Compression 2 

Compression 2 

Compression 2 

D1G1 

C1G1 

D1G2 

C1G2 

D2L 

C1L 

D3c 

C3c 

+ 

α4 

α1 

α2 

α3 

D3c 

Reconstruction 3 
∑ 

Figure 3.25: Diagram of a Technique that uses Wavelet Fusion and Gappy POD

Using this fusion technique creates a fused signal that is better in terms of RMS

error than any signal on its own and the fused technique is better than using any

one technique on its own (figure 3.26). In addition to reducing the RMS error, the

fused signal also fills in gappy regions, reduces measurement noise, and combines two

windows for the PIV-inspired data. The fused signal also reduces the dispersion error

that is present in the CFD-inspired data.
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Figure 3.26: Fusion of Downsampled, Noisy, Multiple Window, Gappy Data and
Dispersed Data using the Fused Technique

3.6 Summary of Fusion Techniques

Different techniques are used to fuse signals inspired by CFD and PIV. Most of the

techniques produced a fused signal that is better than the signals used to create the

fused signal. The wavelet fusion technique works very well in fusing two signals to

increase the resolution of a noisy signal while reducing the noise or smoothing out

discontinuities. Of the wavelets studied in this work, the Daubechies10 was found

to be the best wavelet to perform the fusion. Each higher order Daubechies wavelet

produced better results, but approaches an asymptote and minimal improvement is

gained by using higher order Daubechies wavelets.

The Gappy POD fusion method fills in missing data well if the two signals have

similar POD modes. If the two signals are too dissimilar the fusion process produces

results that have higher RMS errors than both the CFD- and PIV-inspired signals.

The LSE fusion technique did not work very well with the given signals. The

correlation matrices of the two signals are very different which creates a fused signal

with large RMS errors. LSE might be used to create an estimate of the flow field

using pressure sensors as the conditional measurement. This technique will be used

later for the airfoil data and shows better results.
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3.7 Inspiration for the Application of Fusion on

Real Fluid Dynamic Data

The work presented in this chapter was used to determine which tools worked well

at handling the different scenarios that could arise in fluid dynamic data obtained

experimentally and/or numerically. Most of the techniques used on the synthetic data

did not work on the real data because of issues that were not considered. One such

issue is the use of wavelet fusion needs two images of the same flow field, which is

not the case for the available data. The data was taken at different times because

of limitations in the measurement techniques and could not be synchronized in time.

Wavy POD, which is not applied to the real data because of time constraints was

conceived to account for this by performing wavelet fusion in POD space instead of

time which would eliminate the need to synchronize the data in the time domain.

Another issue experienced specifically in the airfoil data chapter 4 is the CFD

and PIV having different modes, making Gappy POD fusion produce results with

gradients around the holes being estimated with the Gappy POD fusion. A wavelet

fusion technique was added to smooth over the gradients caused by differences in the

data from the two sources. The effect of this is discussed in section 5.4 and is also

discussed in section 3.5 while fusing all of the techniques used on the synthetic data.

One final issue experienced is trying to perform Gappy POD fusion to stitch two

PIV windows together that are not synchronized in time. The work in this chapter

the data is able to be shifted and is easily synchronized in time due to the periodic

nature of the synthetic data. In the real data, the PIV windows are not able to be

synchronized in time since data is only correlated with itself for short periods of time.

This was solved by using the second half of the data to build a model which could

be used to estimate the time in conjunction with Gappy POD which was called DGP

(section 5.5).

The issues listed are why most of the techniques applied to the synthetic data are
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not used on the actual data. Despite this, the lessons learned from the synthetic data

allowed for the development of the more sophisticated techniques.
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Chapter 4

Fusion for Airfoil Data

The results from the synthetic data demonstrated that fusion can be used to improve

data that comes from typical fluid dynamic data sources. Holes in the data were

repaired using gappy POD. These holes represented seed dropout, reflections, or sen-

sor occlusions that can occur in PIV data. Resolution of data was increased using a

wavelet fusion technique and another data set with higher resolution. As stated, the

techniques worked with synthetic data, but that data were generated using periodic

functions and the data were one-dimensional. With that in mind, it is now important

to show how fusion techniques work on real fluid dynamic data.

Ultimately fusion is applied to a high-speed jet flow. However, jet flows are very

complicated and trying to apply fusion to the jet problem directly from the may prove

to be too large of a jump. This would make it difficult to fully understand how fusion

works with fluid dynamic data. In addition, the jet data were still being processed

at the time this work started. To account for this, airfoil data was used as an initial

attempt to apply fusion to real data, because the flow is less complex, and the data

was already available.

In this chapter, the airfoil is introduced, the experimental and computational

setup for the data is described, and fusion is applied to the data. It was discovered

through this work, that some of the techniques applied to the synthetic data did
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not work, or were invalid with this data set. New fusion techniques were developed

based on the existing techniques to accomplish fusion because of this issue. One such

technique that was developed is Fused POD and is described later in this chapter.

4.1 Definition of an Airfoil

Before fusing the airfoil data, it is important to know a little about them. An airfoil

is a common geometrical structure in fluid dynamics and has been studied over the

years since these are the means by which lift is produced for an airplane [108]. These

were studied extensively in the 1900s by Abbott et al. [109], Jacobs et al. [110], and

Theodorsen [111] of the National Advisory Committee for Aeronautics (NACA) to

generate a database of lift and drag characteristics. One classification of airfoil is the

NACA 4-series airfoils. Other types exist, but this work focuses on a NACA 4412,

which is a 4-series airfoil, so this discussion focuses on this particular series of airfoil.

The numbering of the 4-series airfoil correspond to the geometry and to understand

this, one must know the basic parts of an airfoil, which are defined in figure 4.1.
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Figure 4.1: Airfoil Nomenclature

The camber line is a line equidistance between the top and bottom surface of the

airfoil. The chord line is a line that connects the leading edge (front) and the trailing

edge (back). This line is horizontal and is not restricted to be contained inside the

airfoil. The next things to define is the chamber, which is the distance between the

chord line and the mean camber line. The thickness of an airfoil is the perpendicular
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distance between the mean chamber line and the top and bottom surface of the airfoil.

The last thing to describe is the angle of attack (α), which is the angle the airfoil

makes with the freestream velocity.

With that information and the number of the airfoil, the geometry can be de-

scribed. The first digit represents the maximum camber in percent chord; the second

digit represents the location of the maximum chamber multiplied by 10 in percent

chord, and the last two digits represent the maximum thickness in percent chord. So

the NACA 4412 airfoil has four percent maximum chamber located at 40% of the

chord and has a maximum thickness of 12% of the chord. The geometry for a NACA

4-series airfoil can be generated based on the information in the naming convention

using

yc =





m
p2

(2px
c
− x

c
2), if 0 ≤ x ≤ p

m
(1−p)2 (1− 2p+ 2px

c
− x

c
2), if p ≤ x ≤ c

(4.1)

where m is the maximum camber, p is the location of the maximum camber, x is the

position, yc is the camber line and c is the chord length. To add thickness to the

airfoil

xU = x− ytsin(θ) (4.2)

yU = yc + ytcos(θ) (4.3)

xL = x+ ytsin(θ) (4.4)

yL = yc − ytcos(θ) (4.5)

yt =
ta
0.2

(0.2969
√
x− 0.126x− 0.3516x2 + 0.2843x3 − 0.1015x4) (4.6)

are used, where xU is the x-coordinate on the upper surface, xL is the x-coordinate on

the lower surface, yU is the y-coordinate on the upper surface, yL is the y-coordinate

on the lower surface, yt is the thickness, ta is the thickness in percent chord, and
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θ = arctan(dyc
dx

) [110].

4.2 Flow Over an Airfoil

Lift is generated by air moving faster on the top surface of the airfoil than on the lower

surface. This produces a pressure difference since the faster air has a lower pressure

than slower moving air. Suction is created on the top of the airfoil due to the pressure

difference, producing lift. The reason the airfoil causes the air to move faster on the

top surface is due to the Kutta condition, which prohibits infinite acceleration around

the trailing edge of the airfoil due to viscosity [108]. As the angle of attack of the

airfoil increases, the lift increases up until a point. At some angle of attack the flow

over the airfoil separates, causing a loss of lift. This is known as stall as is shown in

figure 4.2. One can see the vortices that form on the surface of the foil. The region

where is occurs is the separation region.

V∞ 

Figure 4.2: Diagram of Stall on a NACA 4412 Airfoil

Airfoils have been studied for many years as stated earlier in this chapter and

airfoil theory can be found in any aerodynamic textbook such as Anderson [108],

Bertin [112], Robinson and Laurmann [113], and Abbott and Von Doenhoff [114].

Since the focus of this work is data fusion and not airfoils, a comprehensive review of

airfoil theory is not included in this document. The purpose of this section is to give

the reader enough information to understand the basics of an airfoil.
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4.3 Experimental Setup

The data used in this chapter was acquired by Pinier et al. [24] and Ausseur [67] to

reduce the separation on a stalled NACA 4412 airfoil using flow control. Reducing

the separation causes an increase in the maximum lift coefficient by allowing an airfoil

to operate at higher angles of attack. This could allow shorter takeoff and landing

distances, reduce the effect of drag due to pressure difference and create a more

efficient airfoil, ultimately decreasing the fuel burned by an aircraft. Ausseur [67] also

states that flow control on the airfoil may replace the typical control surfaces (aileron,

elevator, and rudder) by changing the flow characteristic to mimic the effect of the

controls. The removal of the control surfaces could potentially have weight saving

effects due to the removal of mechanical components used to drive the controls.

The experimental work was performed in the Syracuse University subsonic wind

tunnel, which has a test section of 2ft x 2ft x 8ft. The airfoil has a span of about 2ft,

so it spans the tunnel to neglect three-dimensional effects and has a chord of 0.67ft.

The test velocity is 32.8ft/s (10m/s), corresponding to a Reynolds number based on

chord of 135,000. Multiple angles of attack ranging from 10◦ to 18◦ were tested in

the experiment. The flow field was measured using a Dantec Dynamic PIV system

which used two charge coupled device (CCD) cameras (1280 x 1024 pixels) and a

pulsed New Wave Research 200mJ Neodymium-Doped Yttrium Aluminum Garnet

(Nd:YAG) laser as stated by Pinier et al. [24]. The PIV system is traversed with the

airfoil so the velocity field is always in the frame of the airfoil. The test setup for the

PIV system is displayed in figure 4.3, which is figure 2 of Pinier et al. [24].

In addition to PIV, surface pressure was measured for the airfoil using 11 unsteady

integrated circuit piezoelectric (ICP) pressure sensors from PCB Piezotronics. The

sensors were placed on the suction (top) surface of the airfoil at 29% of the chord to

78% of the chord using even spacing as seen in figure 4.4 courtesy of Pinier et al. [24].
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Figure 4.3: Diagram of the Experimental Setup for the NACA 4412 Test

Figure 4.4: Schematic of the Pressure Sensors on the NACA 4412 Airfoil

The experiment focuses on understanding the baseline flow as well as applying

flow control via piezoelectric disks (operating as synthetic jet actuators). As such,

many different data sets were collected for the various angles of attack as well as

the different control cases. Data fusion is applied to the baseline case at an angle of
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attack of 16◦ in this chapter.

4.4 Computational Setup

In addition to the experimental work, a simulation of the airfoil at an angle of attack

of 16◦ is performed to fuse with the experimental data. The simulation is performed

using the NASA flow solver OVERFLOW [115], which is capable of using OVERSET

grids [116, 117].

4.4.1 Grid Generation

The airfoil grid is generated using transfinite interpolation (TFI), which is an algebraic

technique for structured grids [118]

x(i, j) = (1− ξ)x(1, j) + ηx(i, J) + ξx(I, j)+

(1− η)x(i, 1)− (1− η)(1− ξ)x(1, 1)−

(1− ξ)ηx(1, J)− ξ(1− η)x(I, 1)− ηξx(I, J)

(4.7)

where ξ and η are the grid coordinates, x is the physical coordinate, I and J are the

largest index, and i and j are the index. The coordinates are described in figure 4.5.
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Figure 4.5: Definition of the Coordinate System for the TFI Algorithm

The grid generated by the TFI algorithm can then be used as a starting point for

an elliptic grid generator.

∂2ξ

∂x2
+
∂2ξ

∂y2
= 0 (4.8)

∂2η

∂x2
+
∂2η

∂y2
= 0 (4.9)

Equations 4.8 and 4.9 need to be transformed into equations that can be solved

for x and y.

a
∂2x

∂ξ2
− 2b

∂2x

∂ξ∂η
+ c

∂2x

∂η2
= 0 (4.10)

a
∂2y

∂ξ2
− 2b

∂2y

∂ξ∂η
+ c

∂2y

∂η2
= 0 (4.11)

where

a =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

(4.12)
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b =
∂x

∂ξ

∂x

∂η
+
∂y

∂ξ

∂y

∂η
(4.13)

c =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

(4.14)

The elliptic grid equations are typically solved using an iterative technique. The

elliptic grid algorithm improves the grid quality by creating grids that are more

orthogonal than those created by the TFI algorithm.

The grid generated for the airfoil consists of roughly 200,000 nodes, extending 2

chords upstream, 3 chords downstream, and 1.5 chords above and below the airfoil;

a subsection is displayed in figure 4.6. The grid displayed in figure 4.6 was down-

sampled to show the structure of the grid; the actual grid is more dense, by a factor

of 10. The extent of the computational domain is rather small so some errors are

expected in the CFD; however, the purpose of the simulation is to fuse it with the

experimental data. The small domain is also chosen because of computational costs

and the limitations of the computational resources at hand.
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Figure 4.6: Airfoil Computational Grid
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4.4.2 Computational Setup

With the grid, the flow field can be simulated using CFD by discretizing the Navier-

Stokes equations, which consist of mass balance,

∂ρ

∂t
+
∂ui
∂xi

= 0 (4.15)

momentum balance,

∂ρui
∂t

+
∂ρuiuj
∂xj

= −∂P
∂xi

+
∂τij
∂xj

(4.16)

and energy balance

∂e

∂t
+
∂uie

∂xi
= −∂uip

∂xi
− ∂qxi
∂xi

+
∂ujτjk
∂xi

(4.17)

The shear stress (τij) can be approximated as the rate of strain or velocity gradient

τij = µ
∂ui
∂xj

(4.18)

if the fluid is Newtonian. A fluid is Newtonian if the stress is proportional to the rate

of strain and the stress for zero strain is zero.

The equations can be discretized and the flow field can be solved. One needs to

discretize in such a way that all scales are resolved in both time and space. This

becomes a problem for turbulent flows, which have many scales that need to be cap-

tured; this can require very fine resolution. To work around this, one usually models

the smaller scales with turbulence modeling. A common turbulence modeling tech-

nique is eddy viscosity modeling, which models the turbulence as an additional stress

term. The eddy viscosity is modeled in many different ways, ranging in complexity

from simple algebraic equations to complex transport equations. A few models in-

clude the mixing length, Spalart-Allmaras, k−ε, k−ω, and the shear stress transport

(SST) models (combination of k− ε, and k−ω [119]). These techniques are known as
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Reynolds Averaged Navier-Stokes (RANS) turbulence models. These models break

the flow into a mean and fluctuating part; this is known as Reynolds decomposition.

When performing the Reynolds averaging, a new term is created in the equations.

This term is generally thought of as a turbulent stress and is called Reynolds stress

(
∂u′iu

′
j

∂xj
), which is modeled using eddy viscosity.

∂ui
∂t

+
∂u′iu

′
j

∂xj
+
∂uiuj
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2ui
∂x2

j

(4.19)

Large Eddy Simulation

A more complex way of handling turbulence is large eddy simulation (LES), which

filters the flow equations into turbulence that is modeled and turbulence that is sim-

ulated. Unlike the RANS equations which are temporally filtered, the LES equations

are spatially filtered. The most common type of filter used in LES is a Top-hat filter

[4].

G(x,x’,∆) =





1/∆3 |x− x’| ≤ ∆/2

0 |x− x’| > ∆/2
(4.20)

G is the filter function, ∆ in equation 4.20 is the cutoff width of the filter which

is based on the size of the grid. This is usually defined as 3
√

∆x∆y∆z since any

structures smaller than the grid cannot be resolved. Any turbulence smaller than

that is modeled using a sub-grid model. Usually, the large scale turbulence is more

specific to the type of flow being simulated and the smaller scale turbulence is usually

more general. LES usually produces a more accurate simulation of the flow because

of this. However, it takes more computational resources to perform an LES than a

RANS simulation due to the increased number of nodes required to resolve the large

eddies.

The Navier-Stokes equations must be filtered in order to use the LES technique.

The filtering process breaks the flow into two parts (resolved scales and the sub-grid
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scales), which is similar to Reynolds averaging used for RANS turbulence modeling.

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

− ∂

∂xj

(
(ūiūj − ūiūj) +

(
u′iūj + ūiuj ′

)
+ u′iu

′
j

)
(4.21)

The first term in equation 4.21 is the time rate of change of the filtered velocity; the

second term is the transport of the filtered velocity by convection; the third term is

the filtered pressure gradients; the fourth term is the transport of filtered velocity by

diffusion. The last three terms are caused by the sub-grid scale stresses. The fifth term

(first term of sub-grid scale stress) is a result of the double filtering and the fact that

double filtering is not the same as filtering only once. The sixth term (second sub-grid

scale term) is caused by the interactions of the sub-grid stresses and resolved stresses.

The last term is similar to the Reynolds stress, and is the interaction between the

unresolved scales. The sub-grid stresses can then be modeled using various modeling

techniques. A common technique for modeling them is the Smagorinsky model [120].

This models the sub-grid stress by assuming they are proportional to the local rate

of strain of the resolved flow [4].

τij = −µSGS
(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

3
τiiδij (4.22)

where

µSGS = ρ (CSGS∆)2

√√√√1

2

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

+
∂uj
∂xi

)
(4.23)

Detached Eddy Simulation

Another way to handle the turbulence is detached eddy simulation (DES), which is a

combination of LES and RANS modeling developed by Spalart [121] in the 1990s to

simulate higher Reynolds number flows. A DES is a step between LES and RANS. At

the one extreme, RANS can simulate very high Reynolds number flows by modeling

all of the turbulence. At the other extreme, LES is limited by computing power since

the LES resolves the larger scales of a flow and models the smaller more general scales.
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To combine the two, a DES uses a switching function,

FDES = max(
Lt

CDES∆
, 1) (4.24)

where CDES is a constant (order 1) [122], Lt is the length scale, and ∆ is the grid

size, to determine how much turbulence to resolve. The switching function (FDES)

serves as a multiplier, which modifies the dissipation term in the kinetic energy equa-

tion. If the dissipation term increases, the energy modeled by the kinetic energy

equation decreases, which decreases the eddy viscosity term in the momentum equa-

tion meaning more turbulence is simulated instead of being modeled. So if the grid is

too coarse, RANS is used at that location; otherwise LES is used. Usually RANS is

used near an object since the integral length scales are much smaller in that region.

This method of using both RANS and LES allows for much higher Reynolds number

simulations with the incorporation of much more physics than using either method

by itself.

In the simulation of the airfoil, the turbulence is initially handled using the SST

RANS model to simulate the initial transient solution. The simulation switches to a

DES once the aerodynamic forces stabilize (mean lift and drag do not change more

than 5%).

Boundary Conditions

The boundary conditions for the airfoil simulation include setting the velocity at the

inlet of the domain to match that of the experimental work, the exit of the domain

is modeled as a pressure outlet, the top and bottom of the domain are modeled as

walls, and the airfoil surface is modeled as a wall.
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Figure 4.7: Airfoil Boundary Conditions

Simulation Results

The results of the simulation are displayed in figure 4.8, which shows an instantaneous

snapshot of streamwise velocity for the flow over the NACA 4412 airfoil at an angle

of attack of 16◦ and is compared with an instantaneous snapshot of PIV data.

One should notice the CFD and PIV results are qualitatively similar. Both show

a recirculation region near the surface of the airfoil and show structures of similar

size being shed from the surface. It should also be stated that the snapshots are not

synchronized in time so one should not expect to see the same flow field between the

CFD and PIV. One last thing to state is that the CFD domain is larger than that of

the PIV and the PIV has a blue color around the edge of the data that represent a

region of space where velocity was not measured by PIV but was by the CFD.
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Figure 4.8: Instantaneous Streamwise Mach Number for a NACA 4412 Airfoil at
16◦ AOA Obtained with CFD and PIV
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Figure 4.9: Comparison of Mean Streamwise Mach Number for a NACA 4412 Air-
foil at 16◦ AOA Obtained with CFD and PIV
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The mean velocity is also similar; a separation region is present in both flow fields.

However, the separation region on the CFD is smaller than the PIV, which could be

an issue with the computational domain being too small, not enough resolution, or

poor modeling of the turbulence. Despite the differences, the CFD is still useful

and can be used in data fusion, since the two sources of data are showing the same

qualitative results.

4.5 Data Fusion Applied to the Airfoil

With the PIV data, CFD data, and surface pressure, a few different techniques are

applied to fuse the data together. This chapter focuses on how to fill artificial holes

in the PIV, used to represent sensor occlusions, reflections, and dropouts, all of which

are seen in the jet data. This tests how well CFD data performs at estimating missing

data in PIV data.

The pressure and PIV data are used to determine the time dependence of the flow

using sLSE. The time dependence is also estimated by using CFD data to train a

stochastic model that can be used with the PIV data. The pressure and the CFD

both have time dependence, but the PIV data does not, albeit the PIV does have good

spatial resolution. The spatial information from the PIV and the time information

from the pressure and CFD are fused using various techniques.

These are shown pictorially in the Venn diagram in figure 4.10
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Figure 4.10: Venn Diagram Showing the Different Fusion Techniques applied to the
Airfoil Data

where FP is Fused POD, which is discussed in the subsection 4.6.1, mLSE is the mod-

ified stochastic estimation subsection 1.4.3, and WP is wavy POD which is explained

later in the document section 6.3.

4.6 Hole Filling

The first thing to study is how to fill missing data from real fluid dynamic sources.

In the synthetic data (chapter 3), Gappy POD was used. However, Gappy POD is

not applicable in some cases. To account for this, a new technique called Fused POD

was developed.

4.6.1 Fused POD

Fused POD is a new data processing technique developed to improve fluid dynamic

data. It estimates missing experimental data caused by sensor occlusions, reflections,

or poor data as shown in figure 4.11. The technique is inspired by the Gappy POD
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technique and work done by Wilcox [42], Vendl and Faßbender [96], and Zimmermann

[95]. Wilcox used Gappy POD and basis functions from CFD to predict aerodynamic

performance on a wing; Zimmermann used a modeling technique based on CFD

modes to estimate steady aerodynamics; Vendtl used Gappy POD to get the pressure

distribution on a wing-body configuration for steady flow.

Gappy POD and Fused POD both use a linear regression to determine the POD

coefficients that best fit the data.

Figure 4.11: Errors That Can Arise in PIV Data

However, the application of the techniques are very different. The Gappy POD tech-

nique uses only the corrupted data set to estimate the “bad” data. The Gappy POD

procedure requires that only a few bad snapshots exist, meaning the statistics of the

rest of the data are “good” enough to calculate the POD modes. Then those modes

can be used to estimate the data in the “bad” snapshots. Gappy POD can also be

used if all the snapshots have missing data randomly distributed in time and space

via an iterative process. (For more information on Gappy POD see subsection 1.4.2.)

If corruption exists at the same spatial location in all snapshots, one would not

be able to use Gappy POD because the statistics are unknown in that area; this

is where Fused POD is needed. In Fused POD, one obtains the POD modes from

another source. The other source can be another set of data that is capturing the
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same phenomena or from the same data set and some physical knowledge of how

the data is related. This gives statistical information about the data in the missing

regions allowing estimation in that region.

The other difference between the two techniques is the implementation of a wavelet

fusion process to help smooth some of the data. When filling in the data, a disconti-

nuity can form, which is a product of the estimated data not fitting the actual data

perfectly, and the fact the estimated data is low-dimensional and missing high energy

information. The wavelet fusion helps alleviate this problem (figure 4.13).

A diagram of Fused POD is shown in figure 4.12. The red box (data set “B”) is

data that has gaps at the same spatial location in all of the data. These gaps are

represented by the white box in the middle of the red box. The black box (data “A”)

comes from a source of data that does not have any gaps. The data from “A” should

be statistically similar to the data in “B” since data set “A” is used to generate the

POD modes (φ). With the POD modes from “A”, a linear regression is performed

to fit data “B” to the modes of “A”, using the same algorithm as Gappy POD. The

regression gives the POD coefficients that are then used with the POD modes of “A”

to reconstruct an estimate of the data from “B” (green box). The data from the es-

timate of “B” is inserted into the holes in data set “B”, which produces the repaired

data (red and green box). However, there can be discontinuities in the repaired data,

especially if there is much difference in the data. To alleviate this issue, an image

fusion technique is applied using wavelet fusion. The estimate and the repaired data

are fused together using a wavelet decomposition. The wavelet fusion is accomplished

by decomposing the repaired data and estimate into compressed and detail informa-

tion. Since these are different representations of the same image, the compressed

information from repaired data and the detail information from the estimate can be

used to reconstruct a fused image. The swapping of the detail information is a prim-

itive method. More sophisticated techniques can be applied in future works. Some

of these methods are described in Ramac et al. [123]. One might be able to take a
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linear combination of the data in wavelet space based on the confidence in the data

at various points in space. The fused data no longer has a hole and is smooth. An

example of the wavelet fusion is shown in figure 4.13. The repaired data on the top

is fused with the estimate on the bottom producing a smooth image.
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Figure 4.12: Diagram of the Fused POD Technique
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Figure 4.13: Gappy POD and Wavelet Fusion for a NACA 4412 Airfoil
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4.6.2 Application to Airfoil Data

Now this technique is applied to real data but, the PIV data for the airfoil does not

have any holes due to reflections, sensor occlusions, or dropout. However, the jet data

does and to test this technique artificial holes are placed in the airfoil PIV data. This

will test how well a CFD solution is able to fill missing data and see if Fused POD

works with real fluid dynamic data.

The first thing to discuss is how well the POD modes from the PIV and CFD

match. If the POD modes are too different, the technique does not work well (can

only estimate the data with the energy in the similar modes). In other words, the

modes need to have similar trends for Fused POD to work. A correlation plot between

the PIV and CFD, seen in figure 4.14, show the modes are not well correlated. The

correlation between the CFD and PIV modes based on the inner product. If the

modes are exactly the same, one would see a line at a 45◦ angle. This would mean

mode one from the CFD data would have a correlation of 100% with mode one from

the PIV data and would not have any correlation with the other modes. However,

looking at figure 4.14, one can see this is not the case. Only the first few modes have

a “good” correlation.
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Figure 4.14: Correlation between CFD and PIV POD Modes

The first five POD modes have a correlation of about 50%. After mode five the

correlation drops off rather rapidly. The low correlation could be due to the lack of

time support for the CFD data (only have 0.6s worth of data which is approximately

30 independent snapshots due to the computational limit of the available machines

and time constraints) or modeling issues. Despite the poor correlation, the modes are

still used to fill the artificial holes since the first five modes still seem to match well.

The effect of using better modes is discussed in more detail later in this section and

section 5.4.

Since the first five modes match, the next thing to discuss is how to use Fused

POD on the airfoil data. The CFD data is in the same spatial location as the PIV

data, which is imperative for this technique to work. The two data sets are fused by

letting the CFD be “A” in figure 4.12 and the PIV data are “B”. Using the modes

from the CFD data and the Fused POD technique, the missing data in the PIV can

be estimated.

Now the technique can be applied to determine the effects of the size of the hole.

As expected, the larger the hole, the larger the difference between the actual and
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estimated data (figure 4.16). If less data is used for the fit, the fused data is less

accurate. This is again discussed in greater detail in section 5.4.
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Figure 4.15: Effect of Hole Size on Fused POD for PIV and CFD of a NACA 4412
Airfoil

The fused data is better (in terms of RMS error) than the CFD data for windows

that are smaller than 5% (∼ 1 length scale) of the entire domain when using 100 modes

in the reconstruction. If the hole is larger than one length scale, the information

surrounding the hole is no longer correlated with what should be in the hole. What

happens if more or fewer modes are used in the fusion process? It turns out that 100

is the optimal number of modes for the available airfoil data.
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Figure 4.16: Effect of Number of Modes on the Estimation of Missing Data for a
NACA 4412 Airfoil using Fused POD with CFD Modes

The convergence plot (figure 4.17) is constant after 100 modes, implying the infor-

mation contained in the higher modes is very high wave number information and/or

noise. If more modes than this are used the noise can corrupt the fusion process. If

fewer modes are used, not all of the energy is captured which can cause errors. This

is seen in figure 4.16, which shows the effect of the number of modes and the effect

of window size on the fused data. It makes sense that there is an optimal number of

modes to use when using CFD data and PIV data for fusion since the CFD is not

going to capture the small scale flow features correctly and the PIV has noise. The

small scale structures show up in the higher modes, meaning only the low energy

modes of the CFD and PIV match well. A similar issue was shown with the synthetic

data (chapter 3).
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Figure 4.17: POD Convergence Rate of a CFD simulated NACA 4412 Airfoil

Looking at the flow field around the airfoil after performing data fusion (figure

4.18), it can be seen that the hole was not filled in perfectly; there is evidence of

the hole in the estimated data based on the large gradients in the image. If fewer

modes are used, the estimate begins to look correct because the gradients are smaller,

meaning the fusion process is obtaining the low-dimensional characteristics of the flow

(figure 4.18(b)). A plot of rms error distribution in time and space (only in the hole

region) shows the fused data (∼ 400, 000 points) matches the actual data better than

the CFD (∼ 800 points) (figure 4.19). The error distribution for the Fused POD

results has a standard deviation of 25% while repairing the hole by injecting the CFD

data into the hole has a standard deviation of 40%. Therefore, the fused solution is

doing better than the CFD solution. It should be noted however, the CFD only had

two snapshots that were comparable to the PIV due to the limited time support of

the CFD data. This is actually another advantage of using fusion; even though the

CFD only had two snapshots that are in the range of the PIV, Fused POD made

it possible to repair all of the PIV snapshots, not just the matching ones; using the

CFD alone only two snapshots would be repairable.
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Figure 4.18: Instantaneous Repaired Snapshot for a NACA 4412 Airfoil
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Figure 4.19: Distribution of Error using Fused POD or CFD to Repair a Snapshot

To check the convergence of this technique, the POD modes were calculated from

the PIV data before the hole was introduced. Using these modes in the Fused POD

technique produced the results in figure 4.20. One can see that as the number of

modes increases, the Fused POD results converge to the actual data.

108



0 5 10 15 20
0

1

2

3

4

5

6

7

8

Percent of Window Missing

E
rr

o
r

 

 

Fused

CFD

500 modes 

0 5 10 15 20
0

1

2

3

4

5

6

7

8

Percent of Window Missing

E
rr

o
r

 

 

Fused

CFD

1000 modes 

20 modes 

0 5 10 15 20
0

1

2

3

4

5

6

7

8

Percent of Window Missing

E
rr

o
r

 

 

Fused

CFD

0 5 10 15 20
0

1

2

3

4

5

6

7

8

Percent of Window Missing

E
rr

o
r

 

 

Fused

CFD

100 modes 

Figure 4.20: Effect of Number of Modes on the Estimation of Missing Data for a
NACA 4412 Airfoil using Fused POD with Exact Modes

4.7 Temporal Estimation

The holes have been filled using Fused POD. Now the data needs to become time-

resolved since the PIV data is sampled using a standard PIV system that samples at

4Hz, meaning there is a quarter of a second time step between each snapshot, which is

not fast enough to obtain time-resolved information for the flow. Ultimately, a model

based on low-dimensional velocity is desired as was done for this data by Ausseur

[67]. For flow control purposes, the model should have time-resolved information to

understand how the flow changes with time and as such, the velocity data used to

build the model must be time-resolved. To obtain time-resolved velocity from the PIV

data, one must use an estimation technique. Ausseur used sLSE to get an estimate

of the time-resolved velocity. This is repeated in this work for validation purposes

before applying the technique to the jet data. Another attempt to obtain time-
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resolved velocity is performed using the CFD, which is time-resolved, to generate a

stochastic model. The PIV data is then injected into the model to get a time-resolved

estimate of the flow based on the PIV measurement.

4.7.1 Stochastic Estimation

When performing stochastic estimation, it is important to have a high correlation

between the estimated value and the conditional signal. In the case of using pressure

to estimate velocity, one can use a correlation plot to see the strength of the correlation

over the entire spatial domain.
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Figure 4.21: Correlation between the Surface Pressure and the Velocity for a NACA
4412 Airfoil

In figure 4.21(a) the single time correlation between pressure and velocity is displayed

for the airfoil data. The correlation function is

ρupj(x, τ) =
< u(x, to), pj(to − τ) >√
< pj(to)2 >< u(x, to)2 >

(4.25)
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where u is the velocity, p is the pressure, τ is the time lag, and j is the pressure sensor

number. In figure 4.21(a) the airfoil is shown in white, and the pressure sensors are

displayed by the black dots. The single time correlation only compares pressure and

velocity at a single lag (set τ to one value, one in this case). This plot shows the

velocity is correlated well with the pressure locally. The correlation has a maximum

value of 50% at the pressure sensor, and the correlation drops off from there. After

about one length scale, the correlation drops to zero and there is no correlation

between pressure and velocity. The correlation can be extended by using multiple

time lags. This means the maximum correlation is taken instead of only focusing on

a single lag (take the maximum of equation 4.25. As one can see in figure 4.21(b),

the correlation levels have been increased further away from the pressure sensor.

By finding the optimal lag, which is done in sLSE, the extent of the high correlation

region is larger than the high correlation region from the single time correlation,

which is used in LSE. This implies sLSE predicts the flow better than LSE since the

correlations are higher. This was shown for the airfoil data by Aussuer [67].

Spectral LSE is performed on the airfoil data. All of the sensors were correlated

with the POD coefficients of the airfoil data to find the mapping terms for the sLSE.

In the sLSE algorithm, the lags were allowed to vary between −128 and 128 time

steps. Once the mapping coefficients are calculated, the pressure sensors are used

to estimate the POD coefficients. These are then used with the POD modes to

reconstruct a time-dependent velocity field.

Even though the sLSE can be performed on the airfoil data, it cannot be validated

since the PIV is not time-resolved. However, some qualitative statements about the

sLSE results can be made. First, the large scale structures appear to move in a

manner that is expected as seen in figure 4.22.

Secondly, by tracking one structure in figure 4.22, we can see it moves 0.06m in

0.012s in the recirculation zone, which is a speed of about 5 m/s and as stated by

Ausseur [67] the correct convection speed in the recirculation zone of a stalled airfoil

111



is 0.6u∞ (6 m/s in this case). Since the large scale structures are propagating as

expected, this technique seems to work, at least in a qualitative sense. The results

of this estimation could be used in a controller because the dynamics seem correct.

The sLSE is discussed in more depth in subsection 5.5.1 for the jet flow.
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Figure 4.22: Fluctuating Streamwise Velocity Estimated using sLSE

4.7.2 Stochastic Modeling

Another method of estimating the time dependence using data fusion is stochastic

modeling, where a model is generated from the CFD data and then the PIV data

is injected into the model to give an estimate of how the PIV data should evolve

in time. This work uses a linear model. A quadratic model was attempted, but it

was unstable and diverged to infinity. The CFD data has time resolution, but the

results may have modeling issues. The PIV data has the correct structures, but it is

not time-resolved. Using the idea of fusion, the CFD time information is to be fused

with the PIV spatial information. This works by using the CFD data to generate a

stochastic model (subsection 1.4.4), which shows how the flow will transition between
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time steps. POD is performed on the PIV data and the POD coefficients are used

as initial conditions for the stochastic model. The idea is to model the flow until

another PIV snapshot is available after 0.25s and then re-initialize the model using

the next snapshot with a Kalman filter (subsection 1.4.5). The model results are

shown in figure 4.23, which shows the estimated POD coefficient and the actual POD

coefficient. Looking at the figure, one can see the model does not predict the correct

value after 0.25s. The estimated coefficients at times between the two PIV snapshots

cannot be compared with real data because it does not exist. Also, the model seems

to lose amplitude as time increases, which most likely is not occurring in the actual

flow.
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Figure 4.23: Comparison of the First Two POD Modes for the PIV Data and the
Stochastic Model Estimate for a NACA 4412 Airfoil

As a check of this technique, the model is applied to the CFD data set and

compared with the POD coefficients calculated directly from the CFD. In this case

the CFD is still used to generate a stochastic model. However, the POD coefficients

from the CFD data are used as an initial condition for the model. The data is then

propagated using the stochastic model. Since the CFD data has time information,

the estimate can be directly compared to the actual data. This shows the modeled

results are matching the actual data for an integral time scale and then diverge from

the actual data as seen in figure 4.24. A time scale is a length of time in which the
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flow is correlated with itself. After one time scale, the flow is no longer correlated.

A plot of the cumulative error between the estimate and the actual POD modes is

shown in figure 4.25. This shows that the error increases after one integral time scale.

Even though the time trace in figure 4.24 is not correct, the spectral domain of the

signal is qualitatively similar.
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Figure 4.24: Comparison of the First Two POD Modes for the CFD Data and the
Stochastic Model Estimate for a NACA 4412 Airfoil
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Figure 4.25: Cumulative Error Between the Estimated and Actual POD coefficients
for Modes 1 and 2

Since the model seems to be predicting the POD coefficients with reasonable

accuracy in the short time, a Kalman filter is applied by feeding the CFD POD
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coefficients back every 0.03s which is about one time scale. This improves the long

time behavior of the estimate as seen in figure 4.26.
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Figure 4.26: Comparison of the First Two POD Modes for the CFD Data and the
Stochastic Model Estimate with a Kalman Filter for a NACA 4412
Airfoil

This seems like a viable option of predicting the time dependent velocity field

as long as data is fed back into the system every time scale to correct the model.

However, in the actual problem velocity is not available for feedback after every time

scale, which potentially poses a problem for this technique. This result is the basis

for the creation of DGP (to be discussed in subsection 5.5.4), which uses a model

for “short” time behavior and actual data to correct the “long” time behavior. The

technique is not applied here because it was developed to fuse multiple PIV windows

together as will be discussed in the next chapter.

4.8 Summary of Data Fusion on a Flow Over an

Airfoil

Data fusion is applied to a NACA 4412 airfoil at an angle of attack of 16◦. The

conditions were such that the airfoil was stalled and a recirculation region formed

on the suction surface of the airfoil. The data used in this test included PIV, CFD,
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and surface pressure. Techniques such as Fused POD, sLSE, and stochastic modeling

were applied to the data to test the effects of data fusion for fluid dynamic data, test

the abilities of the various techniques, and get inspiration for new techniques.

Holes were cut in the PIV data, which were repaired using Fused POD and the

CFD data. It was found that the CFD did not match the data as well as expected.

Despite that, the holes were repaired well enough to get an idea of how the flow was

behaving in the missing region. Using the exact basis, one could repair missing data

exactly by using all of the modes. At some point when the modes differ too much, the

repaired data does not improve. This shows that one must be careful to use modes

that match the data correctly.

An estimate of time-resolved velocity was generated using sLSE and stochastic

modeling. The sLSE showed the anticipated behavior based upon the propagation of

flow structures, but data was not available for direct comparison. The same is true for

the stochastic modeling technique. However the model generated from the CFD data

was injected with CFD data and the corresponding estimate compared well for one

time scale. The addition of a Kalman filter improved the accuracy of the technique,

but this would not be applicable since standard PIV does not have a small enough

time step to feedback velocity data after every integral time scale. This result is the

inspiration that lead to the development of DGP.

The airfoil work is meant to be another stepping stone and test bed for some of

the techniques that are applied to the jet data. This work showed that Fused POD

could produce reasonable results when filling in missing data, sLSE produces results

that could potentially be correct for the airfoil, and stochastic modeling works well

in the short time scales, but more information is needed to make sure the long time

is captured correctly.
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Chapter 5

Fusion of Mach 0.6 Jet Data

In the previous chapters, fusion, the methods of fusion, and the application of fusion to

fluid dynamic data have been discussed. Now that this has been accomplished, fusion

can be applied to data obtained from a Mach 0.6 jet flow. However, before fusion

is applied to the jet data it is important to understand the jet flow and past work

that has been done in this field. One of the largest issues with the jet is the noise it

produces. Jet noise has been an issue for decades and is a problem in both military and

commercial applications [101]. On the commercial side, airports were originally built

outside of residential areas. However, residential areas have begun to encroach upon

airports [124] causing an increased concern about jet noise, especially for the people

living near airports [125, 126]. To counteract this, the goal is to decrease aircraft

noise by 6–9 decibels by the year 2017 according to Viswanathan and Pilon [127].

Jet noise is a military concern as well. The obvious reasons for this are tactical

purposes. Military aircraft should be as quiet as possible so they can approach a

target without detection. However, there are other reasons which lead to a desired

decrease in the sound levels of aircraft. One reason, specific to the Navy, is the large

number of aircraft carrier crew members reporting hearing damage [128]. According

to Trost and Shaw [128] military personnel serving on an aircraft carrier are 13%

more likely to report hearing damage in some capacity than a person not stationed
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on an aircraft carrier.

5.1 Jet Flow

The flow field produced by a jet is a phenomena that has been studied by many

different researchers over the years both experimentally [30, 60, 99, 101, 129–140]

and numerically [141–147]. Jet research has focused on determining the structure

of jet flows [30, 131, 132, 134], sound generation [60, 129, 130, 133], sound source

identification [99, 101, 142], and flow control to reduce noise [135–139].

5.1.1 Jet Flow Structure
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Figure 5.1: Schematic of an Axisymmetric Jet Flow Field
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A jet is a complicated flow that includes many features including shear layers, po-

tential flow, and coherent structures (see figure 5.1 for a schematic of a typical jet

flow). The potential core is part of the jet that is assumed to be potential flow as

the name suggests. This means the flow is irrotational (∇ × ~U = 0) and the flow

remains unmixed. Another feature of the jet is the shear layer, which is caused by the

large difference (shear) in velocity between the potential core and the ambient air.

The difference in velocities cause mixing and the formation of vortices and coherent

structures in the shear layer. As the flow moves downstream the structures grow

causing the shear layer to expand. The shear layer grows approximately as 0.1z [148].

Eventually, the shear layer becomes large enough that it overtakes the potential core.

The point at which this occurs is called the collapse of the potential core.

The standard definition of the coordinate system for an axisymmetric jet is (r, θ, z)

where r is the radial direction coming out from the center of the jet. θ is the azimuthal

direction, and z is the streamwise direction. This definition is displayed in figure

5.1. Now that the important features of a jet have been described, a discussion

of some notable work done to understand these features is presented. Crow and

Champagne noted that there had been evidence for coherent structures in a jet flow

from previous work, but their work was the first to show these structures [131]. In

their work, they were able to see turbulent structures that propagate downstream

with a Strouhal number of 0.3, which was independent of Reynolds number. Work

done by Brown and Roshko [132] looked at coherent structures in the mixing layer

and found structures grow as they propagate downstream. The structures grow by

merging with neighboring structures. Further work was done by Glauser et al. to

identify large-scale structures in a jet shear layer [134]. Using POD (discussed in

subsection 1.4.2) Glauser showed most of the energy in the shear layer is contained

in the largest structures. This shows that the large structures are the dominant

feature in the jet shear layer. This was studied further by Citriniti and George

where they showed an azimuthal structure exists near the collapse of the potential
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core using a low-dimensional model [149]. In between these structures exists a pair

of counter-rotating streamwise vortex structures. It was shown that the azimuthal

structure causes fluid to be ejected in the streamwise direction, which is thought to be

a source of jet noise. Work done by Tinney et al. [30, 57] also showed this explosion

phenomenon by creating a 3D time-resolved estimate of the flow field using sLSE

(discussed in subsection 1.4.3). Tinney et al. also observed that flow structures did

not change with Mach number nor Reynolds number for a subsonic high Reynolds

number jet.

5.1.2 Aeroacoustics

One of the main reasons to study the jet flow field is to determine how the fluid

dynamics create noise. One of the first researchers to try to understand the connection

between fluid dynamics and noise generation was Lighthill. Lighthill discusses how

sound is generated by aerodynamics [129]. To do this, Lighthill created an acoustic

analogy by rearranging the mass and momentum balance equations and combining

them in such a way that looks similar to a wave equation.

∂2ρ

∂t2
− c2

o

∂2ρ

∂x2
i

=
∂2

∂xjxi
(ρuiuj + Pij − c2

oρδij) (5.1)

where Pij is the physical stress, uiuj is the Reynolds stress, and c2
oρδij is the stress in

a stationary uniform acoustic medium.

Further work was done by Ffowcs-Williams and Hawkings in which Lighthill’s

acoustic analogy was modified for use with rotating machinery [130]. Before this, the

acoustics were solved using the homogenous wave equation (∂
2p
∂t2
− a2∇2p = 0) and

the pressure on the surface of the blade as a boundary condition. Ffowcs-Williams

points out that in order to apply the homogenous wave equation, the fluid speed must

be significantly less than the speed of sound. Usually, the flow speed is on the same

order as the speed of sound. They solved this problem by using Lighthill’s equation
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above the blade surface with the addition of source terms introduced by the flow

surface interaction. The surface terms are monopole terms and dipole terms where

the Lighthill source term is a quadrupole term. Using the Ffowcs-Williams-Hawkings

method, the volume integral required by Lighthill is no longer required, instead a

surface integral can be performed, resulting in less computational work.

Computational Aeroacoustics

Recently, researchers have been attempting to simulate the jet flow field and calculate

the noise produced by the flow. There are three main ways to accomplish this, as

discussed by Colonius et al. [141]. One is to simulate the noise production directly.

This would involve solving the Navier-Stokes equations extending to the far-field,

which is computationally expensive. A second method is to solve only the near

field region and use an acoustic analogy discussed previously to estimate the far-

field acoustics. This can cause a problem because any errors in the flow field can

act as source terms. These terms can be larger than the actual source terms and

cause errors in the sound propagation. A third method is a hybrid method. This

simulates the near field and a small portion of the acoustic region, which again can

be computationally expensive. Colonius et al. showed in their work that the acoustic

field produced by a direct numerical simulation (DNS) and directly calculating noise

was similar to using an acoustic analogy for the same DNS data.

Bodony and Lele discuss the work done by computational aeroacousticians and

the methods used to simulate the flow field [150]. They discuss the various methods to

propagate the sound and show researchers have used methods that range in complexity

from Ffowcs-Williams-Hawkings to a scaling factor that is dependent on the distance

from a source. Bodony and Lele also discuss the use of turbulence modeling and

shows that the models used are usually a dynamic or constant Smagorinsky model.

However, many researchers have also used a no-model approach in which the sub-

grid scales are ignored because modeling can cause more errors than not modeling
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the small-scale turbulence. Bodony and Lele also state that the boundary conditions

in computational aeroacoustics are a critical factor in producing correct simulation

results.

Freund simulated a low Reynolds number, subsonic jet directly and used the

Lighthill analogy to calculate the far-field noise. This is compared with the direct

method and experimental data [142]. All three showed similar results. Freund also

filters out the part of the source terms that are radiated to the far-field and shows

the filtered source has peaks at different locations than the unfiltered sources. The

filtered noise terms seemed to be similar to the source terms in a laminar mixing flow.

Bodonoy and Lele also looked at separating the source terms [146] and showed the

momentum term was the dominant term in noise propagation in the flow direction

of the jet. They also show for a cold jet the sound propagation is dominated by

momentum even in shallow angles. However, for a hot jet this was not the case.

One should note, this is not a comprehensive review of jet flow and jet noise.

There has been many more studies done on these topics. This section is meant

to familiarize the reader with jets and jet noise since jet data is used to test the

data fusion techniques. The real focus of this is the application of the data fusion

techniques on jet data.

5.2 Experimental Setup

The data used in this study was collected in the Syracuse University anechoic cham-

ber at the Skytop facilities seen in figure 5.2. The dimensions of the chamber are

7.9m x 6.1m x 4.3m. The chamber is treated with fiberglass wedges to absorb any

sound that is echoing above 150Hz and allows for the study of the noise being pro-

duced by the jet.

The jet is a blow down facility, meaning the jet works by pressurizing a reservoir

(not shown in figure 5.2) and then releasing air from it to produce the flow. A valve
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is used to control the back pressure (air leaving the tanks) so the Mach number of

the jet remains constant despite the decreasing stagnation pressure in the tank. The

nozzle is a converging nozzle with an interior profile that uses a matched 5th order

polynomial as stated by Tinney et al. [151]. The nozzle has a contraction ratio

of 3:1 with a two inch diameter at the exit. The jet facility is capable of running

between Mach 0.3 and Mach 1.1 and temperatures ranging from approximately room

temperature (∼ 70◦F) to ∼ 1000◦F. The current work uses a jet at Mach 0.6 and a

temperature of ∼ 70◦F.

Figure 5.2: Syracuse University Anechoic Chamber at the Skytop Facility

Two sets of experiments done in this facility are used for the data fusion work.

One set of experiments were performed by Berger et al. [107] and involves using

far-field microphones, near-field pressure sensors, and large-window PIV (LWPIV).

The other set were performed by Low et al. [99] and includes far-field microphone,

near-field pressure sensors and time-resolved PIV (TRPIV) data.

5.2.1 Large Window PIV

The LWPIV was acquired using three 8-bit, HiSense cameras and a New Wave Gemini

Nd:YAG laser. The setup of this experiment is seen in figure 5.3, which shows the jet

in the middle of the image, the three cameras on the top left, and the PIV laser on the
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bottom right. Three cameras were used in this study to increase the spatial domain

without sacrificing spatial resolution, which produced three separate images that are

stitched together as stated earlier in section 1.3. The use of multiple cameras and the

stitching algorithm [25] allows for a window that has 7 diameters in the streamwise

direction and 2 diameters in the radial direction.

Figure 5.3: 2013 LWPIV Experimental Setup for the Jet at the Syracuse University
Anechoic Chamber at the Skytop Facility

In addition to the LWPIV data, near-field pressure was acquired using 13 Kulite

transducers as seen in figure 5.4. Five sensors were arranged in an azimuthal array at

z/D = 6, another five were arranged in an azimuthal array at z/D = 8, and five were

arranged in a linear array at z/D = 6, 6.5, 7, 7.5, and 8. The sensors at z/D = 6

and z/D = 8 were in both the linear array and azimuthal array. This means that

even though 15 sensors were mentioned, two are actually duplicates. The sensors

are placed outside the shear layer first by using the 0.1z expansion and then the

placement is fine tuned by ensuring the RMS of the pressure signals are the same,

due to the axisymmetric nature of the jet.

Far-field noise was also acquired in this experiment using G.R.A.S. type micro-

phones. The far-field noise is not used in the data fusion work, but the ultimate goal

is to reduce the noise levels of the jet. The microphones are used to determine the

sound levels and how the flow is generating noise. These are seen in figure 5.3 on the

left side of the image.
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Figure 5.4: Kulite Array Configuration for the Jet at the Syracuse University Ane-
choic Chamber at the Skytop Facility

5.2.2 Time-Resolved PIV

The TRPIV was acquired using a Quantronix Hawk-Duo series PIV laser capable of

collecting data with a sampling rate of 10kHz. The camera used to capture the data

was a Photron FastCam CCD camera. Only one camera was used in this experiment

and as a result a smaller domain (2 diameters x 2 diameters) was captured. The

camera was limited to 0.86 seconds (8623 snapshots) worth of velocity data due to

the size of the buffer in the camera (data the camera can hold before having to

download to a computer). The experimental set up for the TRPIV experiments is

seen in figure 5.5.

The availability of the one camera limited the size of the PIV window as previously

stated, but a large portion of the jet in the streamwise direction is still desired. To

compensate for this, seven windows of data were acquired at different downstream

locations. Each window was overlapped with the previous window by 0.5 diameters

(∼ 1 length scale). Each window was taken at different points in time so each window

is time-resolved but not synchronized with one another.
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(a) Setup (b) Laser path

Figure 5.5: 2011 Time-Resolved PIV Experimental Setup at the Syracuse University
Anechoic Chamber at the Skytop Facility

In addition to the PIV measurements, near-field, and far-field pressure were ac-

quired similar to the LWPIV experiment.

In this test, the near-field pressure was acquired using 13 Kulite transducers. How-

ever, the placement of the sensors for the TRPIV experiment is different from the

placement for the LWPIV experiment. Nine of the sensors were arranged in an az-

imuthal array at z/D = 6 and five were arranged in a linear array at z/D = 4, 5, 6, 7, 8.

The sensor in the linear array at z/D = 6 is also included in the azimuthal array where

the two arrays overlap.

The data collected for the jet is not what is ideally desired. Despite the richness

of these data sets, there are deficiencies caused by limitations of the measurement

techniques. There are holes in the data, large-window data that is not time-resolved,

and time-resolved data that is acquired over a “small” spatial domain. Still, much in-

formation is obtained from these data sets, which is evident by the works of Low et al.

[99], Berger et al. [100], Kan et al. [152], Lewalle et al. [153], and Shea et al. [25]

but using data fusion can allow for an improved data set that can potentially lead to

a better understanding of the physics.
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5.3 Summary of Data Fusion for the Jet

In the following sections, the techniques used to repair and improve the jet data are

discussed. A summary of this is shown in figure 5.6, where FP is Fused POD, sLSE is

spectral linear stochastic estimation, GP is Gappy POD, and DGP is Dynamic Gappy

POD. The diagram shows how the three different data types were fused together and

the techniques used to accomplish the fusion.

Pressure 

sLSE 

FP 
sLSE 
DGP 

FP FP 

GP 

sLSE 

Figure 5.6: Data Fusion and Technique Fusion used on the Mach 0.6 Jet Data

The techniques highlighted in red are discussed in the sections to follow. They

focus on Fused POD to fill in holes in the LWPIV and the TRPIV. DGP and Gappy

POD are used to estimate a large-window time-resolved data set using the LWPIV

and TRPIV. Spectral LSE is used to estimate a large-window time-resolved data

set with the near field pressure and TRPIV data. The techniques in black were

attempted, but the results are omitted because they did not work as well as the ones

to be presented in this chapter. These include using Fused POD to fill holes in the
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LWPIV based on the modes from the TRPIV data set, using velocity from the time-

resolved window to estimate a large-window time-resolved data set, and using sLSE

to estimate a large-window time-resolved data set with the near-field pressure and

LWPIV data. Most of the tests cases that are omitted from this chapter were unable

to be verified and could not show how well the techniques work, since data was not

available for comparison.

A few deficiencies are present in the data sets, many of which are discussed in

section 1.3. The specific deficiencies in the data from these experiments include: sen-

sor occlusions, reflections, particle drop out, small window size, and “slow” sampling

rate.

5.4 Hole Filling

Let us first discuss what caused the sensor occlusions. The sensor occlusions are

caused by one of the Kulites being between the camera and the laser sheet. This

means the camera takes an image of the Kulite in every frame, effectively producing

an occlusion or region of missing data in that area. Figure 5.7 shows an instantaneous

image of streamwise velocity captured by the LWPIV system. In the image the sensor

occlusions are circled. These spots need to be masked out so the analyses are not

corrupted by the incorrect data.

Figure 5.7: Sensor Occlusions in the LWPIV data of a Mach 0.6 Jet

Despite the appearance of the data, the sensors are actually not in the flow field.
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They are outside the jet at a different azimuthal angle than the PIV, so the flow was

not disturbed by the sensors.

Another issue is reflection. This is caused by the laser, as the name suggests,

reflecting off an object and creating a bright spot in the PIV images. This error is

not always seen in instantaneous PIV snapshots. One sometimes has to compute the

mean or higher order statistics to see the reflection. An example of a reflection is seen

in figure 5.8. This image shows the mean streamwise velocity for a Mach 0.6 jet. The

reflections are located in the circled areas in figure 5.8. Reflections are usually hidden

in the instantaneous velocity (figure 5.7). The reflections also need to be masked out

to prevent corruption in future analyses.

Figure 5.8: Reflections in the LWPIV Data for a Mach 0.6 Jet

5.4.1 Sensor Occlusion Estimation

Ideally, one would like to sample pressure and velocity simultaneously for many rea-

sons that include correlating velocity and pressure, using pressure to help understand

the time dependence of the flow, creating models for velocity based upon pressure

(because pressure is easily measured in real world applications), etc. However, to get

pressure and velocity simultaneously for the jet, sensor occlusions and reflections are

inevitable without very complex laser and camera placements [154]. These occlusions

can cause issues even if they are masked. For example, the POD modes can change

if parts of the flow are masked, as shown in figure 5.9, where the mask causes mode

1 and mode 2 to swap as seen in figure 5.9. However, the energies of the two modes

129



are only different by about a percent, but still something to be accounted for.
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Figure 5.9: Comparison of POD Modes Calculated With and Without a Mask

Since the jet is axisymmetric, the top and bottom half of the jet should be mirror

images of one another in a statistical sense (see figure 5.11 and the explanation of said

figure). In the instantaneous velocity, the flow fields do not look alike, which is why

the repair process depends on the POD modes. The fact that the jet is axisymmetric

is fused with the PIV data using Fused POD.

The fusion process starts by splitting the jet data in half along the centerline of the

jet and flipping the data from the bottom half. The flipping process involves spatially

flipping the data and negating the sign of the cross-stream velocity component (radial

direction). This should create two data sets with very similar statistics. The flipped

bottom half data is then used to compute the POD modes. These modes should also

130



represent the top half of the data since the jet is symmetric. The modes are then

used in the Fused POD algorithm by fitting the top data to the bottom modes. The

effects of where to split the data are discussed as well as how sensitive the process

is to the location of the split. The number of snapshots needed to converge is also

discussed as well as the use of wavelet fusion on the data. The fusion process use 500

modes unless stated otherwise, since 500 modes is where the energy convergence plot

levels out. This was shown to be the optimal number of modes to use in the synthetic

data set.

Location of the Jet’s Axis of Symmetry

The location of the split should be along the centerline of the jet, which is the line of

symmetry in the data. Three different cutting methods are discussed. One method

cuts the data along the center of the domain. Another technique cuts the data at the

center of potential core at the beginning of the domain. The final method cuts the

data along the center of the potential core. The center of the potential core in this

work was defined by the maximum mean streamwise velocity at different streamwise

locations. This method could be effected slightly by noise, a more advanced method of

finding the potential core could be used in the future. The different splitting methods

are defined in figure 5.10.
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Centerline 

Center of Domain 

Center of Jet Upstream 

Potential Core Edge of the Domain 

Figure 5.10: Three Ways of Splitting the Jet Data into Symmetric Top and Bottom
Halves

After the data is split and flipped, the POD modes from the top and bottom

planes are compared. They are compared by correlating each mode from the top

with each mode on the bottom. If the top and bottom are perfectly symmetric the

correlation matrix is an identity matrix. The correlation matrices are plotted in figure

5.11. The darker color implies a higher correlation. The correlations in figure 5.11

show that splitting the jet along the centerline is better than splitting at the center,

which is better than splitting along the center of the domain. This is quantified using

two different methods, one compares the RMS error of the correlation plot versus an

identity matrix √√√√√
n∑
i=1

n∑
j=1

(rij − dij)2

n2
∗ 100% (5.2)

where n is the number of modes being compared, dij is distance from the diagonal,

and rij is the correlation. The second method compares the trace of the correlation

matrix

(1− Tr(r)

n
) ∗ 100% (5.3)

where the trace is the sum of the diagonal elements, and n is the number of modes

used in the correlation.
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(a) Data Split Along the Center of the domain
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(b) Data Split Along the Center of the Jet
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(c) Data Split Along the Centerline of the Jet

Figure 5.11: Correlation Plots Between POD Modes from Top and Bottom of an
Axisymmetric Jet Using Different Splitting Methods
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Using these metrics, splitting along the centerline has a trace error of 48% and

an RMS error of 34%, splitting along the center has a trace error of 64% and an

RMS error of 37% and, splitting along the center of the domain has a trace error of

67% and an RMS error of 38%. This further demonstrates the symmetry of the jet

and the importance to split the jet along the actual line of symmetry to get similar

modes from the top and bottom of the symmetric jet. If the top and bottom modes

do not match, the estimation does not produce results that correctly fill the hole in

the higher order statistics.

To validate Fused POD, estimated data was compared with actual data. This was

accomplished by introducing an artificial hole with an area that is 1 length scale x 1

length scale, 250 pixels and for 500 snapshots that was treated as if it was another

occlusion. The data in the artificial occlusion is estimated using Fused POD and

compared with the actual data using equation 5.4

eijt =
(Ufij(t) − Uoij(t))
(Umax − Umin)

100% (5.4)

where Ufij(t) is the estimated velocity, Uoij(t) is the actual velocity, Umax is the maxi-

mum velocity and Umin is the minimum velocity.

The error at each point in time and space was then placed into bins to create the

error distribution chart in figure 5.12. The distribution shows the majority of the error

is contained between 0 − 3%. The distribution of error when splitting the jet along

the centerline is more concentrated near zero error (σ = 2.5) and has a maximum

error of about 20%. The error distribution for cutting the jet across the center of the

jet at the beginning of the domain has a slightly larger distribution (σ = 4.5) with

a maximum error of about 23%. The distribution for cutting along the center of the

domain has a even fatter distribution (σ = 5.0) and a maximum error of about 25%.

This implies that splitting the jet along the centerline is a better approach than the

other two methods in terms of error distribution. This further supports the findings
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from the correlation plot that splitting the jet along the centerline is the best method

of finding the modes used to reconstruct the “bad” data.

After performing the Fused POD technique on the data, the occlusions from the

sensors are no longer seen in the instantaneous snapshots. This is demonstrated in

the figure 5.13, which shows an instantaneous snapshot of streamwise velocity for the

three different splitting methods. This demonstrated that in the instantaneous sense,

the Fused POD is doing a very good job estimating the velocity in the occlusion

region. The error is quantified using a distribution of RMS error in figure 5.12 as

discussed previously.

Despite the success in the instantaneous sense, Fused POD is not predicting the

flow in the statistical sense correctly. This is seen in figure 5.14. In figure 5.14 the

RMS of the streamwise velocity is displayed. One can readily see the sensors in these

images. The extent at which the sensors stick out is decreased as the splitting method

gets more complex. The best splitting method for recovering the data in the occluded

region in terms of RMS error is the centerline split as was shown in figure 5.14 and

figure 5.12.

This further supports what is found from the modal correlation plot (figure 5.11)

and the distribution of error (figure 5.12); finding the centerline of the jet is important

when using this technique. As such, the rest of this work uses the centerline to cut

the data.
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Figure 5.12: Error Distribution for Fused POD using Different Splitting Methods in
an Axisymmetric Jet
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Figure 5.13: Instantaneous Streamwise Velocity Estimated with Fused POD using
Different Splitting Methods on an Axisymmetric Jet

137



RMS of U

X/D

Y
/D

 

 

4 5 6 7 8 9

-0.5

0

0.5

0

10

20

30

(a) Split Along the Center of the Domain
RMS of U

X/D

Y
/D

 

 

4 5 6 7 8 9

-0.5

0

0.5

0

10

20

30

(b) Split Along the Center of the Jet
RMS of U

X/D

Y
/D

 

 

4 5 6 7 8 9

-0.5

0

0.5

0

20

RMS of U

X/D

Y
/D

 

 

4 5 6 7 8 9

-0.5

0

0.5

0

10

20

30

(c) Split Along the Centerline of the Jet

Figure 5.14: RMS of the Streamwise Velocity Estimated with Fused POD using Dif-
ferent Splitting Methods in an Axisymmetric Jet

The Effect of Wavelet Fusion

The next thing to discuss is the effect of using a wavelet fusion process on the data.

As stated earlier, there is a potential for a discontinuity while using Gappy/Fused

POD. The wavelet fusion process reduces the discontinuity as seen in figure 4.13. The

wavelet fusion uses information from another source to do the smoothing. This means

one is not simply smoothing the image with an arbitrary function. The wavelet fusion

was accomplished with the Daubechies10 wavelet and one level of compression.
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When filling-in data in the location of the sensor occlusions, the wavelet fusion

reduces errors in the higher order statistics. Without using the wavelet fusion process,

one can see a more distinct jump in the RMS of the streamwise velocity. The wavelet

fusion alleviates this problem. This is shown in figure 5.15. There is slight improve-

ments in the error as seen in figure 5.16, which shows the wavelet fusion increases the

percentage of points that have 0 − 3% error from 57% to 59%. The maximum error

is reduced slightly from 28.7% to 28.5% and the standard deviation is reduced from

3.7% to 3.5%.
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(b) After Wavelet Fusion

Figure 5.15: RMS of Streamwise Velocity Estimated with Fused POD Before and
After using Wavelet Image Fusion on a Mach 0.6 Jet
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(a) After Wavelet Fusion
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Figure 5.16: The Effects of Using the Wavelet Fusion in Fused POD

Effect of the Size of the Hole

Window size is an important factor in how well the data can be estimated, as seen

in the work with the airfoil data set (section 4.6). If the missing data is larger, the

accuracy of the estimated data decreases. This is studied by varying the size of the

artificial occlusion and looking at the error distribution. The size of the artificial

window ranges from 0.5 to 2 integral length scales in the streamwise direction and is

held constant at 0.5 length scales in the radial direction. The effect of domain size is

also studied by splitting the domain in half. The different configurations are shown in

figure 5.17, where the hole is represented by a white box. The error distribution plots

in figure 5.18 show as the size of the missing area range increases, the error increase.

This is shown by the increasing standard deviation in the distribution plots. The

plots also show that if domain is smaller, then the error in the estimated data is

increased.
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Figure 5.17: The Different Artificial Hole Configurations Used to Test the Effect of
Hole Size

In both the large and small domain, the error (based upon the number of points

with error less than 3%) is increased significantly between a 0.5 length scale hole and

a 1.0 length scale hole (figure 5.18). Increasing the hole size more increases the error

but not as noticeably as the jump in error between 0.5 and 1.0. The flow is correlated

within one length scale; this is why the error reaches an asymptote after the hole is

greater than 1.0 length scale as seen in figures 5.18 and 5.19.
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(a) Full Domain 0.5 Length Scale Hole

0 10 20 30 40 50
0

10

20

30

40

50

60

Error (%)

D
is

tr
ib

u
ti
o
n
 o

f 
E

rr
o
r 

(%
)

Error Distribution for Fused POD using 499 Modes for an Axisymetric Jet

(b) Half Domain 0.5 Length Scale Hole
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(c) Full Domain 1.0 Length Scale Hole
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(d) Half Domain 1.0 Length Scale Hole
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(e) Full Domain 1.5 Length Scale Hole
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(f) Half Domain 1.5 Length Scale Hole
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(g) Full Domain 2.0 Length Scale Hole
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(h) Half Domain 2.0 Length Scale Hole

Figure 5.18: Distribution of Error for Different Size Holes and Different Domain
Sizes

Figure 5.19 shows that the error between the actual data and the estimated data

increases if the hole gets larger, and reaches an asymptote near one length scale. After
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one length scale, the flow inside the center of hole begins to become uncorrelated with

the data surrounding the hole. This makes it difficult to estimate the data, which is

causing larger errors. When comparing the results for the large and small domain,

the estimation using the large domain gives less error. So more information about

the flow gives a better estimate. The larger domain has more information to fit and

should give a more accurate estimation, which it does.

0 0.5 1 1.5 2
0

20

40

60

80

100

Length Scale

P
e
rc

e
n
t 
o
f 
d
a
ta

 w
it
h
 l
e
s
s
 t
h
a
n
 3

%
 e

rr
o
r

 

 

Full Domain (10L)

Half Domain (5L)

Figure 5.19: Effect of Hole Size on Fused POD Estimate

Convergence of the POD Modes

The convergence of the modes is also an important factor in the Fused POD process.

The Fused POD assumes the modes are, in the case of the axisymmetric jet, the same

top and bottom. If that is not the case, the Fused POD does not produce as accurate

estimations. If the modes are not converged, then the modes may not match top and

bottom. One of the reasons that the modes might not converge is due to lack of time

support, (not enough snapshots). This is observed in figure 5.20, which shows the

convergence plots when using a different number of snapshots to calculate the modes,

as well as the RMS of the streamwise velocity. The convergence plots show how well
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the modes are correlated with the modes calculated using half as many snapshots.

If the modes are perfectly correlated, then the modes have converged. However, one

would not expected to see a perfect correlation because the higher order modes will

always have some noise associated with them and the energies are so small, that it

becomes difficult to obtain those modes. Some modes may have very similar energies

and may switch position (i.e. mode 5 may become mode 6 if using more snapshots).

In general, the correlation plot will become more narrow as the modes converge as is

seen in figure 5.20.

Figure 5.20 also displays the distribution of error in the artificial hole using dif-

ferent number of snapshots and the associated trace error, RMS error, and standard

deviation are shown in table 5.1. One can see that as more snapshots are used the er-

ror decreases. This implies that using modes that are more converged produce better

results when using Fused POD, which is consistent with what is qualitatively seen in

RMS plots in figure 5.20.

Snapshots Trace Error (%) RMS Error (%) σ
510 49 33 6.5
255 58 36 7.0
128 64 38 7.9
32 71 43 8.7

Table 5.1: Effect of Modal Convergence on the Accuracy of Fused POD Estimates
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Figure 5.20: Effect of POD Modal Convergence When using Fused POD to Fill-in
Missing Data for an Axisymmetric Jet

Using the Average in the Fitting Process

Another point to address is the effect of fitting the instantaneous (mean included)

or fluctuating (mean subtracted) velocity. When fitting the instantaneous velocity,

the average is used as mode 0, which contains most of energy. This makes the other

modes less important in the fit and the results have higher error than if the average

was subtracted. This is seen in figure 5.21, which shows an image of the streamwise

RMS velocity using instantaneous velocity and fluctuating velocity in the Fused POD

algorithm. The discontinuity in the RMS is more noticeable when using the instanta-

145



neous velocity. This is quantified in figure 5.22, which shows the distribution of error

in the artificial hole.
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Figure 5.21: The Effects of using the Average in Fused POD

As a note, sometimes subtracting the mean is not possible if the instantaneous

field is required after the fusion process. In the case of the axisymmetric jet, it is

possible because the mean flow is symmetric about the top and bottom, meaning

information about the relationship between the mean of the two data sets (top and

bottom) is known; the mean is the same top and bottom.
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(a) Using Instantaneous Velocity
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(b) Using Fluctuating Velocity

Figure 5.22: Error Distribution for Fused POD using Instantaneous vs. Fluctuating
Velocity

The error distribution when using Fused POD with the instantaneous velocity

is worse than if using the fluctuating velocity. The error distribution for the in-

stantaneous velocity is spread out further (σ = 3.25%) than the distribution for the

fluctuating velocity (σ = 2.5%), has fewer points with low error, and has a higher

maximum error (figure 5.22).

Why Higher Order Statistics Show the Hole

The last point to discuss is why the sensor is seen in the higher order statistics,

specifically the RMS, even though it is not seen in the instantaneous. One would

expect using more POD modes in the estimate would decrease the error. However,

this is not the case unless the modes are exactly correct as shown with the airfoil

data in section 4.6. Since the modes for the bottom are not the same as the modes
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for the top of the jet, there is no guarantee of convergence. Using the higher modes

does not aid the estimation since they are not correct and therefore the higher energy

of the flow is cannot be estimated. This causes an under prediction of the RMS and

the other higher order statistical moments.

(a) Instantaneous

(b) RMS

Figure 5.23: Noisy Sine Wave Repaired with Sinusoidal Basis

One can see a similar effect in the simple case of using sines and cosines as basis
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functions to fill in the missing data in a sine wave with random noise. Since the basis

functions do not have any connection to the random noise that was added to the sine,

they are unable to estimate said noise. However, the noise levels are large enough

that the error in the estimate is hidden in the noise. Therefore, the instantaneous

image looks correct (figure 5.23a) but the hole is seen in the RMS (figure 5.23b).

With this in mind, the jet data is filtered using POD. In this particular case

20 modes are used in the reconstruction, which corresponds to 40% of the energy.

Twenty modes were chosen because this is where the correlation between the top and

bottom modes is 50%, which has gives the best representation of the estimated flow

field without sacrificing too much of the higher order information. This is shown

in figure 5.24, which shows the low-dimensional representation of the instantaneous

streamwise velocity after Fused POD is applied. Observing figure 5.25, which shows

the RMS of the streamwise velocity using 20 modes, one can see the RMS no longer

has evidence of the occlusion from the sensor.
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Figure 5.24: Low-Dimensional Representation of the Streamwise Velocity
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Figure 5.25: Low-Dimensional Representation of the RMS of the Streamwise Veloc-
ity

5.4.2 Estimation of Spurious Vectors/Particle Dropout

In addition to filling-in missing data where the holes are the same in every snapshot,

Fused POD can also be used to fill in data when the missing points are “randomly”

distributed in time and space. This can also be done with the iterative version of

Gappy POD. However the iterative method can take a long time (O(weeks)) depend-

ing on the number of images in the ensemble. The processing time is proportional

to approximately the number of snapshots squared because the two-point correlation

matrix needs to be computed for every iteration and the least squares has to be solved

as well. Both of these calculation require n-squared operations. The iterative analysis

took eight hours on 1,000 of the 15,000 snapshots of the time-resolved data. If all of

the data was used it could take about 12 weeks. This is not a practical time to wait

to repair the data. To work around this, Fused POD is used.

To repair the time-resolved data set, 1,000 snapshots are extracted from the orig-

inal 15,000. They were extracted by taking every 15th snapshot of the ensemble. The

snapshots should be independent since about three times scales are between them

in the 1,000 snapshot ensemble. It is assumed that 1,000 snapshots represented the

data set well enough statistically. The iterative Gappy POD process is applied to

the extracted snapshots, which only takes about eight hours to perform. Once the
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snapshots are repaired, they are treated as a second data set in which the statistics

are known at all points in space. These snapshots are used to created a basis that all

15,000 snapshots are projected onto; this process takes about two hours.

Using the Fused POD technique instead of the Gappy POD technique, the snap-

shots were repaired in a much faster time. This makes it feasible to repair the snap-

shots since the Gappy POD technique would take about 12 weeks to repair a single

test case. Also, recollecting the data could be difficult since the TRPIV system was

loaned to Syracuse University and the data may not be collected again. Even if the

system was acquired again, it would take a few days to setup and a few more days to

acquire and process the data. These data can be repaired in a matter of hours using

the Fused POD technique.

The TRPIV data had many data that was lost due to seed drop out or laser

misalignment. If the lasers are not aligned, the PIV software will compare the motion

of the particles on two different planes. This, as expected, can cause some error since

the velocity is being calculated incorrectly. If there is drop out in the seeding, the

velocity cannot be calculated correctly. This is seen in figure 5.26, which shows an

instantaneous snapshot of streamwise velocity without performing any type of post

processing to account for the data that does not physically make sense because of

large velocity gradients, large velocities, and high fluctuations all in regions where

this should not exist. This is seen in figure 5.26, which shows the instantaneous

streamwise velocity in a Mach 0.6 jet. One can see many “bad” spots in the image

that are shown as the zero vectors in the image.
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Figure 5.26: PIV Data for a Mach 0.6 Jet with no Post Processing to Compensate
for Errors

The PIV software can be used to improve the data by performing interpolation or

looking for other maxima in the correlation process. The result of this post processing

technique is seen in figure 5.27, which shows the same instantaneous snapshots in

figure 5.26 after the post processing is performed. This process removes some of the

non-physical data, but there are still regions that do not make physical sense. These

regions are blanked out with a mask (figure 5.28) defined by any point in the flow with

a fluctuating (mean subtracted) velocity larger than 75 m/s. Fluctuating velocities

greater than 75 m/s should not theoretically exist in this flow. A better method of

finding the “bad” points could be used such as a method suggested by Lewalle et

al. [155], which involves finding points where the flow changes more than a desired

percent of the local flow. This would be a more rigorous method for generating the

mask and would possibly find more non-physical points. As one can see in figure 5.28,

there are still some bad points that should have been masked out.

Fused POD is applied to the data and improves the spots that were masked

in figure 5.28. The repaired image is shown in figure 5.29, which shows the same

instantaneous snapshot as figures 5.26, 5.27, and 5.28 after the PIV post processing
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and Fused POD were applied. The number of non-physical points have been reduced

by about 80% using the PIV post processing and then another 15% using the Fused

POD.

Figure 5.27: PIV Data for a Mach 0.6 Jet with PIV Post Processing to Compensate
for Errors

Figure 5.28: PIV Data with Bad Vectors Masked Out
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Figure 5.29: PIV Data with Gappy POD Corrections

Looking at the statistics shown in figure 5.30, one can see the improvements

provided by Fused POD. The mean is very similar for both data sets (RMS difference

is 1.5%) therefore the Fused POD did not change anything in the mean sense (figure

5.30). However, the Fused POD makes the RMS of the streamwise velocity more

symmetric. This is what is expected since the jet is axisymmetric and should have

similar RMS values in the shear layer.

In figure 5.30 one will notice a red streak in the RMS after using Fused/Gappy

POD in the lower portion of the figure. This is caused by the fact that the masking

method is not finding some of the “bad” points in that area. These points have not

been repaired and are causing an increase in the RMS in that area. Using a better

method of masking, perhaps the one suggested by Lewalle [155], may decrease the

red strip in the RMS.
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Figure 5.30: Statistics for the TRPIV Before and After using Fused/Gappy POD
for a Mach 0.6 Jet

One may question the validity of this technique. Iterative Gappy POD has been

shown to work by past researchers (see subsection 1.4.2), but how well does the Fused

POD procedure work in the case of repairing data using a subset of the snapshots

to generate the modes? The Fused POD technique produces results faster, but the

results need to be similar to that of iterative Gappy POD to be a viable substitute.

To test this, 1,250 snapshots are extracted from the entire 15,000 snapshot ensemble.

Iterative Gappy POD is performed on the 1,250 snapshots and allowed to converge

6 orders of magnitude. This process is accomplished using 50 modes, approximately

35% of the total energy and took about 28 hours. The result of this test is said
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to be the “correct” result, the benchmark for comparison. The POD modes are

calculated from the iterative Gappy POD case and used to repair the original, un-

repaired snapshots. The comparison shows 95% (2σ) (both space and time) of the

Fused POD repaired data is within 9% of the Iterative Gappy POD data. The 1,250

snapshot ensemble is cut in half and iterative Gappy POD is used to repair the smaller

ensemble. The repaired 625 snapshot ensemble is used to create a POD basis. This

basis is then used to repair the original 1,250 snapshots using Fused POD. These

results are compared with the 1,250 snapshot ensemble repaired with the iterative

Gappy POD. The comparison shows 95% of the Fused POD repaired data is within

10% of the Iterative Gappy POD data. There is a slight increase in the error when

using fewer snapshots to generate the POD basis. This process is repeated using 312

and 156 snapshots to create a POD basis. The results of this are shown in figures

5.31, 5.32, and 5.33.
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Figure 5.31: Error Between Fused POD and Iterative Gappy POD at the Cumula-
tive Sum of the Percent of “Bad” Points

Figure 5.31 shows the error between the velocity generated with iterative Gappy

POD using 1,250 snapshots and the velocity generated with Fused POD using a

varying number of snapshots. The plot shows the percentage of points that have an
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error less than a specified error. Each line in figure 5.31 corresponds to the number

of snapshots repaired with iterative Gappy POD that were then used to generate

the POD modes. For example, the 625 snapshot line used iterative Gappy POD to

repair 625 snapshots. Those snapshots are then used to generate a set of modes that

are used with Fused POD to repair the 1,250 snapshots originally extracted from the

entire ensemble. Using a smaller subset of the data decreases the consistency between

the data generated by the two methods. This makes sense because less information

about the flow is being used in the repair process. Despite that fact, the error is not

increasing much. Repairing an eighth of the snapshots using iterative Gappy POD

only increases the error by four percent but decreased the computation time by two

orders of magnitude. This test was repeated for 625 snapshots and 312 snapshots.

The results are shown in figure 5.32, which show the number of snapshots being

reconstructed do not change the error more than a few percent. Figure 5.32 shows

a plot of how the number of snapshots repaired using Gappy POD to create a basis

affect the accuracy of the snapshots repaired using Fused POD and the aforementioned

basis. The different symbols represent a different number of snapshots repaired using

Fused POD; the abscissa shows the number of snapshots used to generate the basis.

Each point was repaired using approximately 50% of the energy. The plot shows

using fewer snapshots to create the basis increases the error but not by a substantial

amount.
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Figure 5.32: The Error Associated with Using Fused POD Instead of Iterative
Gappy POD to Repair PIV Snapshots with Missing Data

This shows the Fused POD and iterative Gappy POD give slightly different results.

However, the length of time that is saved by using Fused POD greatly outweighs the

error between the Fused POD and iterative Gappy POD. In fact, it would be imprac-

tical to try to repair the entire 15,000 snapshot ensemble using only iterative Gappy

POD. This is shown in figure 5.33, which shows the time required to repair varying

numbers of snapshots using iterative Gappy POD and Fused POD. The time re-

quired to repair the data using Fused POD is nearly constant with increasing number

of snapshots, while the time required for Iterative Gappy POD increases as number

of snapshots squared as stated earlier.
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Figure 5.33: The Computational Time Savings from Using Fused POD Instead of
Iterative Gappy POD to Repair PIV Snapshots with Missing Data

5.5 Domain Extension/Estimation

Another issue with the jet data is the small window size of the TRPIV and the

“slow” sampling rate of the LWPIV. One would prefer a large-window, time-resolved

data set if possible. Many reasons exist as to why this is desirable, such as better

understanding of the flow physics, and the ability to create better low-dimensional

models for control purposes.

For modeling, many researchers use low-dimensional models that are POD based

(see subsection 1.4.4). The POD modes are spatially dependent, especially for the

r-z plane of the jet flow. This means the POD modes change depending on how large

of a window is used. Since the model would be dependent on the POD modes, it

is also dependent upon the size of the window. These models are typically used for

control applications. Obtaining a large-widow time-resolved data set should improve

the model and its predictive capabilities.

The ultimate goal is to use the TRPIV, LWPIV, and pressure to obtain a large-

window time-resolved data set that could be used to generate a model for flow control.
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This work will focus on the techniques that are used to obtain the large-window time-

resolved data set.
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Figure 5.34: The Ultimate Goal of the Estimation Techniques: Combine Pressure,
TRPIV, and LWPIV to Obtain a Large-Window Time-Resolved Data
Set

Figure 5.34 shows an image of the LWPIV data (top). This is a contour of the

streamwise velocity and the flow is from left to right. Two snapshots of TRPIV are

shown (left and right images), which also depict streamwise velocity. Each TRPIV

window fits in the LWPIV. TRPIV1 fits in the left most dotted box on the LWPIV

and TRPIV 2 fits in the right most dotted box. It should also be noted that each

TRPIV and the LWPIV are at different times, meaning they cannot directly be

stitched together. A signal from one of the pressure signals is also shown (bottom).

This signal was obtained simultaneously with the LWPIV. Similar pressure data was

acquired for the TRPIV.
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The techniques described in section 1.4, such as LSE, stochastic modeling, and

POD are used to estimate a large-window time-resolved data set. The techniques are

compared to determine the best technique to use and why the techniques give the

results they are giving. The estimations ultimately will be used to develop control

algorithms so the estimates do not have to match exactly, only a basic understanding

of the flow structure, time scales, and spectral content are required.

5.5.1 Stochastic Estimation Results

The first technique used is spectral linear stochastic estimation (sLSE). This technique

is discussed in subsection 1.4.3. The goal of the stochastic estimation is to combine

the time resolution of the pressure signals and the spatial resolution of the LWPIV

as is shown in figure 5.35. In this particular case, the TRPIV data is not used in the

estimation. However, in future work one may want to use the time-resolved velocity

to accomplish the estimation, which may give higher correlations than the pressure.

This has been done in the past by Tinney et al. [57] using the r − θ plane of a jet

flow, and Ausseur et al. on a flow over an airfoil [67]. However, time-resolved velocity

data was not available to make a direct comparison. Therefore, to start, the sLSE

technique is first verified using the TRPIV data.
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Figure 5.35: The Ultimate Goal of the sLSE: Combine Pressure and LWPIV to
Obtain a Large-Window Time-Resolved Data Set

To accomplish this, the POD modes of the TRPIV data are computed at a window

6 to 7.5 diameters downstream of the jet nozzle. This gives the spatial eigenfunctions

(the shape) and the time-dependent POD coefficients (the magnitude). A mapping

is then generated from pressure to POD coefficients using the sLSE technique (equa-

tion 1.35). With this mapping, the POD coefficients can be estimated based on the

pressure (equation 1.34) and then an estimate of the velocity can be acquired using

equation 1.13.

This procedure allows the comparison of the actual POD coefficients (which are

time-resolved) with the POD coefficients estimated using sLSE. The first two POD

coefficients are seen in figure 5.36. The top half of the figure shows the time trace of

the two modes and the bottom half shows the frequency space of the two coefficients.

Looking at these plots, it is determined that the sLSE did not do a very “good”
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job estimating the POD coefficients. There was an O(20%) error between the actual

coefficients and the estimated coefficients. The error is defined in the following manner

√√√√
T∑
i=1

(an(ti)−ãn(ti))
2

T

max(an(ti), ãn(ti))−min(an(ti), ãn(ti))
(5.5)

where an(ti) is the actual coefficient at time i and ãn(ti) is the estimated POD coef-

ficient at time i.

It is interesting to note that the POD coefficients appear to have similar behavior

in time. However, upon closer observation one can see the estimate is not capturing

the signal well. This is shown in the frequency domain. Here it is observed that the

estimate is missing the low frequency information and the estimate is picking up large

peaks in the frequency domain (figure 5.36).
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Figure 5.36: Actual POD Modes 1 and 2 Compared with Estimated Mode 1 and 2
Using the sLSE Approach

The velocity field is reconstructed using the spatial eigenfunctions and the esti-

mated POD coefficients. In this work, five modes are used in the reconstruction which

corresponds to O(20%) of the energy. The estimated velocity is then compared to
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the actual velocity using the following

√√√√
T∑
i=1

(u(~x,ti)−ũi(~x,ti))
2

T

max(ui(~x, ti), ũ(~x, ti)−min(U(~x, ti), Ũ(~x, ti))
(5.6)

where u(~x, ti) is the actual velocity and ũ(~x, ti) is the estimated velocity.

The RMS error between a 5 mode reconstruction of the actual velocity and the

sLSE estimate using 5 modes is shown in figure 5.37. The plot shows the RMS error

over space at different instances in time. One can see large fluctuations in the error,

implying that sometimes the estimate is really close to the actual data, but other

times the estimate is completely wrong. On average, the error is about 80%.
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Figure 5.37: Error Between the Actual Velocity and the Estimated Velocity Using
the sLSE Approach with 5 POD Modes

The reason for using five modes, is because it is the fewest number of modes

where the flow structures still propagate in the direction of the flow and using more

modes increases the error between the actual velocity and the estimated velocity.

The increasing error is caused by the fact that higher order modes are including more

information. The estimate is unable to capture that information correctly causing a

compounding effect. Similar trends in the error are seen in the cross-stream velocity.

This is shown in figure 5.38, which shows the average RMS error between the actual
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velocity and the estimated velocity using different number of modes in the estimation.
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Figure 5.38: The Average Error in Velocity as a Function of Modes used in the
sLSE Estimate

The effect of using different pressure sensors can also be studied. In this test, the

pressure sensors at z/D = 5 and z/D = 6 are used in the estimation. These sensors

had the largest correlation with velocity as one would expect since the velocity field

between 6 and 7.5 is being estimated. Using more sensors did not improve the results.

This is because the higher correlated sensors are weighted much higher than the

sensors with a lower correlation. In other words, the estimation relies more heavily

on the strongly correlated signals than the poorly correlated signals. Figure 5.39

shows the average error between the actual velocity and the estimated velocity using

five modes and a varying numbers of pressure signals. The average error does not

vary much based on the number of sensors used.
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Figure 5.39: The Effect of Using a Different Number of Pressure Signals in the
sLSE Estimate

Figures 5.40 and 5.41 shows the correlation between the pressure at five and

six diameters downstream of the nozzle and velocity using a single- and multi-time

approach. The single-time correlation images show a much weaker correlation than

the multi-time correlation. This is because the multi-time determines the best lag to

use depending on the location in the flow. The correlation plots in figures 5.40 and

5.41 show that the maximum correlation is 30% and the highest levels of correlation

are near the lower shear layer. The low levels of correlation and the fact that the

highest correlations are localized in the shear layer show using sLSE will not give

great results.
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Figure 5.40: Correlation Between the Pressure Sensor at 5 Diameters Downstream
of the Jet Nozzle and the Velocity
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Figure 5.41: Correlation Between the Pressure Sensor at 6 Diameters Downstream
of the Jet Nozzle and the Velocity

Looking at the correlations shows that the given pressure and velocity data are not

correlated well. This means the estimate will not produce a reliable model because

the spectral information is incorrect. This is troubling because the work by Tinney

et al. [57] showed the sLSE worked well at predicting the jet data and was expected

to produce “good” results with this data. However, after studying the different cases,

there are some big differences that attribute to the conflicting results.

First, the work by Tinney et al. [57] was done in the r − θ plane whereas the

data for this work is from the r − z plane. It has been shown that the velocity
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modes in the r − θ plane are Fourier modes. Since this is the case, Tinney et al.

was able to filter the pressure and velocity to improve the correlations using Fourier

modes. The pressure Fourier modes were then used to estimate the velocity Fourier

modes. Tinney et al. was able to exploit that fact and get a reasonable estimation. In

this work, the pressure is still arranged in an azimuthal array. Feeding back Fourier

filtered pressure did not improve the results in this study because the velocity modes

are not Fourier modes in the r − z plane.

A second issue that could decrease the accuracy of the technique is the location

of the linear pressure array. One would assume the linear pressure array would have

the highest correlation with the velocity field since the array is in a similar direction.

However, the linear array is shifted 20◦ away from the PIV plane in the azimuthal di-

rection, which reduces the correlation strength as shown by the work done by Ukeiley

et al. [156]. The shift was done so the laser dose not reflect off the sensor array. In

hindsight, it would have been better to get the linear array closer to the PIV plane

and increase the correlation.

5.5.2 Stochastic Modeling

A large-window time-resolved data set could not be estimated with the given jet

data for the reasons discussed above. However, a large-window time-resolved data

set is still desired from this data. Spectral LSE is not the only technique available

to accomplish this task. Modeling is another candidate technique to accomplish the

goal. As shown in figure 5.42, the TRPIV data will now be used as an estimator,

instead of using pressure due to the poor pressure-velocity correlations and the poor

results from the sLSE approach.
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Figure 5.42: The Ultimate Goal of the Stochastic Modeling, Gappy POD, and Dy-
namic Gappy POD: Combine Pressure and LWPIV to Obtain a Large-
Window Time-Resolved Data Set

The modeling approach, which is outlined in figure 5.43, uses the TRPIV to

produce a model for the jet data. The modeling approach will start with the LWPIV

data (pink box) and the data is cut to match the size of the two TRPIV windows that

are next to one another. Next the two TRPIV windows TRPIV1 and TRPIV2 (black

boxes) are used to create two different stochastic model using equation 1.39. The

procedure to create the model is explained in subsection 1.4.4. This produces two

sets of modeling coefficients. POD is performed on the two portions of the LWPIV

data and the POD coefficients from them are used as initial condition for the models.

The modeled POD coefficients can then be used with the spatial POD modes to

reconstruct the velocity (green boxes Fused1 and Fused2). The two modeled velocity

fields are sampled at the same time and can therefore be stitched together to create
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a large-window time-resolved velocity field (green box, Fused).
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Figure 5.43: Method of Using Stochastic Modeling to Perform Data Fusion using
TRPIV and LWPIV

Again before this approach is applied to the LWPIV data set, the technique is

validated using the TRPIV data which allows a direct comparison between the actual

velocity and the estimated velocity. This is accomplished by using the TRPIV data

to generate a stochastic model. The POD coefficients from the TRPIV are then used

as initial conditions for the modeling problem. The data is then propagated in time

using the model and the estimated coefficients can be directly compared to the actual

coefficients.
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Figure 5.44: Comparison of the Estimated Mode 1 and Mode 2 Using Stochastic
Modeling and the Actual Mode 1 and Mode 2
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Figure 5.44 shows the actual time dependent POD coefficients and the estimated

POD coefficients for mode one and two. One should note that the time of the estimate

is 0.25s. This number is not arbitrarily chosen. For the technique to be viable, the

estimate must produce reliable results out to 0.25s since the sampling rate of the

LWPIV is 4Hz. No velocity information is known until the next snapshot.

Doing this analysis on the TRPIV gives “bad” results. The error in the POD

modes are O(20%) (The error is calculated using equation 5.5). In the short time

(about one to two integral time scales), the estimation is in reasonable agreement with

the actual data. After that, the estimation decays to zero. This is not surprising,

since many researchers have discovered this fact as discussed in subsection 1.4.4. The

important point is the good short time performance of the technique.

5.5.3 Gappy POD

The stochastic modeling method did not work in the long time, so Gappy POD is

used as another method of obtaining a large-window time-resolved data set using the

LWPIV and TRPIV. The approach to accomplish this is displayed pictorially in figure

5.45. The technique works by using the LWPIV data to obtain the POD modes for a

large domain (equivalent to two TRPIV windows in figure 5.45). The TRPIV1 data

is placed in a domain that is the same size as the LWPIV with the right half being

unknown. A mask vector is created stating that the TRPIV1 data is non-gappy data

and the unknown data is said to be a gap, albeit a large gap. This data is used in

the Gappy POD procedure outlined in figure 1.6 and the results should give a large

window time-resolved velocity field.
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Figure 5.45: Method of using the TRPIV Data to Verify the Effectiveness of Gappy
POD as an Estimation Technique

This techniques first needs to be verified. To acomplish this, the TRPIV data

taken at the 6D-7.5D window is cut in half. This produces three sets of data. The

original TRPIV data is similar to the large-window, the left half of the window is

similar to the TRPIV1 data, and the right half of the window is similar to the TRPIV2

data. The original, non-cut window is used to calculate the POD modes for the entire

window. The left half of the data is then used to estimate the right half of the window

using the procedure described previously. The estimated data can now be compared

to actual data to see how well the technique works.

Similar to the sLSE and stochastic modeling techniques, the results of the Gappy

POD estimation are compared using the POD coefficients. The estimated POD modes

in both time and frequency domain have similar shapes to that of the actual coeffi-

cients as seen in figure 5.46. This shows the Gappy POD is estimating the largest

flow structures. It is found that Gappy POD has reduced the error in the modes from

O(20%) for the sLSE and stochastic modeling to O(15%). So Gappy POD is doing
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better than the previous estimation techniques. It should also be noted that the POD

coefficients estimated with the Gappy POD match in the frequency domain whereas

the sLSE estimates did not capture the low frequency correctly and had many dom-

inate frequency that were not present in the velocity. This is good news especially

from a control/modeling standpoint as was stated earlier.
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Figure 5.46: Comparison of the Estimated Mode 1 and Mode 2 using Gappy POD
and the Actual Mode 1 and Mode 2

Using the POD modes and estimated coefficients, an estimated velocity is gen-

erated. The estimated velocity is created using five modes and compared to a five

mode reconstruction of the actual velocity.

The error can be quantified in both time and space. The spatial variation in error

is shown in figure 5.47 by extracting the estimated velocity and actual velocity along

streamwise lines and calculating the RMS error along each line and then averaging the

error in time. Looking at the error in space, the error increases further downstream

(figure 5.47). This is not surprising; the data being used for the estimation is coming

from the upstream side of the estimate. It makes sense that the estimation gets worse

further from the data. Another thing to notice is the error is higher near the region of

the potential core because the high energy POD modes do not represent the potential
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core as well as the shear layer because the shear layer has much more energy than the

potential core. This is shown in figure 5.48, which shows the first five POD modes

and mode 20. The POD modes do not have much structure near the centerline of

the jet until the higher modes are observed. Since the estimation is based on POD

modes, it is difficult to estimate the flow where much information is not present. The

error in the potential core is similar to the error in other regions of the flow (figure

5.49) if 20 modes are used to estimate the flow. In figure 5.49 one can see a jump in

error from z/D = 6.75 to z/D = 7.25 and then the error levels off. This is caused by

the length scale.

One should not expect to estimate the flow with great accuracy after one integral

length scale, because after one integral length scale the flow is no longer correlated.

Inside one length scale, it is known that the flow is correlated and has statistical

knowledge of the points surrounding it. This is why the Gappy POD technique works

better with data that is within one length scale than data further away.
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Figure 5.47: Error Between the Actual Velocity and the Estimated Velocity using
the Gappy POD Approach with 5 POD Modes in Space
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Figure 5.48: The First 5 POD Modes and Mode 20 for a Mach 0.6 Jet
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Figure 5.49: Error Between the Actual Velocity and the Estimated Velocity using
the Gappy POD Approach with 20 POD Modes in Space

In addition, one may notice a slight increase in error in the downstream data when

using the 20 mode reconstruction as opposed to the 5 mode reconstruction. This has

to do with the spatial POD modes. Looking at the modes (figure 5.48) one can see

there are zeros scattered throughout space. Since there are zeros in the spatial modes,

any error in the POD coefficient is not accounted for in the velocity reconstruction at
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that point in space because it would be multiplied by a zero or a comparatively small

number. The error increases slightly when more modes are added because there are

modes with large magnitudes in all spatial areas. This is why the error in certain

regions is smaller using fewer modes. This is clearly seen in figure 5.47 by looking at

the error at r/D = 0.1, z/D = 6.6, where a decreased error exists. Looking at the

spatial modes (figure 5.48), the modes at that point are small relative to other points

in space.

In time, the comparison shows the average error in the velocity is O(20%) as seen

in figure 5.50. This figure shows the RMS error over space as a function of time.

This shows the results from Gappy POD are a huge improvement over the sLSE

result. (The better results might be due to using velocity to estimate with Gappy

POD instead of using pressure with the sLSE.) However, one should note the error

is fluctuating quite a bit. There are 15 fluctuations larger than five percent error

per every 100 snapshots. Five percent was chosen as a threshold because that is

when the velocity showed a noticeable discontinuity in time. Using more modes, the

number of fluctuations decrease as is seen in figure 5.59, which compares the number

of fluctuations in the RMS error as the number of modes used in the estimation and

reconstruction increases.

Despite the short time errors (fluctuations), the result has “good” long time be-

havior because data is always injected into the estimate (similar to a Kalman filtering

approach) unlike the stochastic modeling approach. This produces an accurate esti-

mate of velocity that can be used for long time since the estimate does not degrade

after a few time scales.
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Figure 5.50: Error Between the Actual Velocity and the Estimated Velocity using
the Gappy POD Approach with 5 POD Modes in Time
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Figure 5.51: Fluctuations Larger than 5% per 100 Snapshots Using the Gappy POD
Approach

The Gappy POD is producing results with some errors; one would expected Gappy

POD to give the correct results, given a correct basis. If all of the POD modes are

used, the flow should be reconstructed exactly. In this case, the basis is coming
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directly from the same data that is being estimated, which suggests the repaired data

should be the same as the original data, within the rounding of error of the computer.

If more modes are used the estimation error decreases. In fact if all of the modes are

used the estimation gives the original velocity. Due to computational constraints, this

cannot be tested for the entire data set. To test this, 50 snapshots are extracted from

the entire ensemble and the Gappy POD repair process was repeated. It was found

that if all 50 modes were used in the estimation process the estimation produced the

actual data (figure 5.52).

With this in mind, the estimation should be done with all of the modes. However,

two issues prevent this. One is practicality and the other is imperfections in the data

collection process. Using all of the modes is impractical because of the computational

resources required. For the 50 snapshot case all modes could be used and the esti-

mation process takes about 5 minutes. However, the time to complete the process is

proportional to the number of modes used squared. In the case of the entire ensem-

ble (8623 snapshots), the process would take about 6 months to repair 50 snapshots

based on extrapolation of figure 5.53, which shows how much time is required to do

the Gappy POD procedure for different number of modes. This is impractical.
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Figure 5.52: Convergence of the Gappy POD Estimation Technique for the Jet Data
using Only 50 Snapshots
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Figure 5.53: Computational Time to Run the Gappy POD Estimation Technique
for the Jet Data using Only 50 Snapshots

In addition, the LWPIV and the TRPIV may have some inconsistencies between
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them. The techniques are similar but data was taken at different times. The place-

ment of the cameras and laser sheet may be a little different, the jet speed may be

slightly different, and other differences may be present. This means the modes from

the LWPIV and TRPIV can be different, especially the higher order modes. In gen-

eral, the lower modes are similar because they represent the large scale structures

which are less susceptible to errors.
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Figure 5.54: Correlation Between the POD Modes Calculated from the Large-
Window PIV and the Time-Resolved PIV

Figure 5.54 shows the correlation between the modes of the TRPIV and the LW-

PIV. The data for the LWPIV was extracted from the entire window such that it

was the same size spatially as the TRPIV. To mitigate some error, the LWPIV was

shifted in space so it would match the TRPIV data because the experiments were

performed at different times. The optimal shift is actually zero, meaning the TRPIV

and LWPIV data were taken in the same spatial location. The modes are in “good”

agreement (∼ 90% correlation) for the first 10 modes, which account for about 60%

of the energy. Modes higher than 10 began to lose correlation and after mode 25 the
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correlation was minimal. This shows that the two different experiments match well

for the large scale physics, but there are difference in the smaller scales. This could

be due to coarser resolution in the LWPIV system, slight errors in the location of the

windows, or convergence issues due to the number of snapshots used and different

ambient conditions.

If the modes are not the same, then some of the information in the LWPIV modes

will not match with the TRPIV data, which means the snapshots cannot be written

as a linear combination of the modes. This implies that the error will not improve if

more modes are used in the estimation.
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Figure 5.55: Error Between the Estimated Velocity using LWPIV Modes and the
Actual Velocity using Differing Number of Modes

In figure 5.55 the error does not improve by using more modes. This is because

the LWPIV modes are different from the TRPIV modes as seen in figure 5.54. Adding

more modes gives information about the finer structures in the flow, but the modes

being used are not the right modes. Eventually using more modes should cause an

increase in error since the correlation between the LWPIV modes and TRPIV modes
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is decreasing. This is not shown here because the computational resources did not

allow for the estimation with more than 30 modes.

5.5.4 Dynamic Gappy POD

The previous two sections showed that stochastic modeling worked well in the short

time and Gappy POD worked well in the long time. Using the idea of feeding back in-

formation into the model the Dynamic Gappy POD (DGP) technique was conceived.

The Gappy POD technique is used for the long time (keep the model from deviating)

and the stochastic modeling is used for the short time (correct for the fluctuations in

Gappy POD). The two techniques are fused together simply by taking a linear combi-

nation of the two techniques. Basically DGP seeks to minimize the error between the

results from the stochastic model and the results from Gappy POD as shown below:

min
ãn

[
(g − g̃2) +

N∑

n=1

(â′n − aLSEn )2

]
(5.7)

such that

g̃ =
N∑

n=1

ânφn (5.8)

ân
′ =

N∑

i=1

âiφ
h
i φ
′
n (5.9)

where φhi are the eigenfunctions for the large window evaluated in the region where

the velocity is unknown and φ′n are the eigenfunctions from the small window in the

region where the velocity is unknown. These two different eigenfunctions are needed

due to the windowing effects. In other words, if the modes are calculated from the

large window data and then compared with the small window they will be different.

A schematic of how DGP work is shown below in figure 5.56
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Figure 5.56: Diagram for the Dynamic Gappy POD Technique

Dynamic Gappy POD works first by calculating the POD modes of “A” (the black

data), which gives “aA(t)” and “Φa” The POD coefficients “aa(t)” are then used to

generate a stochastic model for the right side of the data. POD is then done on “B”

(the red data). This gives the POD modes for the entire domain (“ΦB”). The right

half of the mode (“Φh
B”) is extracted and will be used to compare the data on the

from the right half of the window. The estimated POD coefficient (”an(t)”) can be

estimated two ways. One way is to use data “C” (the blue box) and Gappy POD

to minimize the least square error between the known locations of velocity (“C”)

and the estimated velocity (“
∑
an(t)ΦB(x)”), which gives the value for “an”. The

other way is to project the right half of the estimated velocity onto “ΦA”. This

is done using equation 5.9. The projected value is then compared to the modeled

value of the POD coefficient (“aLSE”) by minimizing the least square error. These

two methods are fused together solving the minimization problem simultaneously as

shown in equation 5.7.

The DGP technique will be applied to the TRPIV and LWPIV data set in a

similar manner that the Gappy POD is applied. The one difference is the TRPIV
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data is used to generate a stochastic model. The technique is applied to one TRPIV

window that is cut in half to validate the technique. The left side of the window is

used in the Gappy POD part of the algorithm and the right side is used to generate

a stochastic model.

The DGP technique decreased the error in the POD modes to O(10%). This is a

decrease from the O(15%) error for Gappy POD and O(20%) for sLSE and stochastic

modeling. The DGP is also capturing the correct frequency just as the Gappy POD

did. Again the time and frequency traces have the correct shapes and trends.
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Figure 5.57: Comparison of the Estimated Mode 1 and Mode 2 using Dynamic
Gappy POD and the Actual Mode 1 and Mode 2

The velocity is reconstructed using the estimated POD coefficients and the first

five modes. The actual low-dimensional velocity is compared with the estimated

velocity and a time trace of the error is generated (figure 5.58). The average error

is O(20%). This is not a significant improvement over Gappy POD in terms of the

mean error. However, the advantage of the DGP technique is the reduction of the

short time fluctuations in the velocity. In this estimation there are 10 fluctuations

greater than five percent error per 100 snapshots. This is a 33% improvement over

the Gappy POD technique.
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Figure 5.58: Error Between the Actual Velocity and the Estimated Velocity using
the Dynamic Gappy POD Approach with 5 POD Modes
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Figure 5.59: Fluctuations Larger than 5% per 100 Snapshots using the Dynamic
Gappy POD Approach
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5.5.5 Comparison of Results

The results of the different fusion techniques applied to the TRPIV jet data are

compared and show the DGP is the best candidate to obtain a large-window time-

resolved data set given the available data. The sLSE technique resulted in high errors

due to low correlations between the pressure and the velocity. The low correlation

may be due to the set up of the experiment and the PIV and pressure being sampled

in different planes. Moving the pressure sensors closer to the PIV laser sheet may

improve the correlations and the results of the sLSE estimation. In addition, perhaps

velocity data from the TRPIV data could be used to do this estimation in the future.

The stochastic modeling technique was able to capture the short time behavior of

the flow. After a few integral time scales the model did not give correct results as is

typical with models of this type. To improve the technique data is usually injected

into the model, typically by using a Kalman Filter. However, data is only available

every 0.25 seconds due to the sampling rate of the LWPIV, which is much larger than

an integral time scale.

Gappy POD is used to estimate the missing portion of a data set using the POD

modes (statistics). This technique provides data at every time step and in the ideal

world gives the exact answer. However, doing so requires using all of the POD modes

and performing Gappy POD using all of the modes is computationally expensive.

The modes between the LWPIV and TRPIV also have inconsistencies that lead to

incorrect estimations as well.

DGP is a fused technique that takes advantage of the long time behavior of Gappy

POD and the short time behavior of the stochastic modeling. The technique modestly

reduces the errors but reduces the short time fluctuations in the flow significantly as

shown in figure 5.60. This makes the DGP technique attractive for fusing the TRPIV

and LWPIV data sets. In figure 5.60 only the error of Gappy POD and Dynamic

Gappy POD are shown. Spectral LSE is not compared here because the comparison

may be unfair to the sLSE method since it used pressure data and the other techniques
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used velocity data to do the estimation.
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Figure 5.60: Error for Different Estimation Techniques for a Mach 0.6 Jet Flow
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Figure 5.61: Comparison of Fluctuations Larger than 5% per 100 Snapshots using
the Gappy POD Approach and the Dynamic Gappy POD Approach

One can see the fluctuations reduce as the number of modes are increased (figure

5.61). However as the number of modes increase, smaller fluctuations in the error

correspond to discontinuities in the velocity field because the higher energy modes

have finer structures. The finer structures are more sensitive and thus discontinuities

in the finer structures lead to smaller fluctuations in the error. This means that even
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though the Gappy POD and DGP converge towards each with increasing number of

modes, the criterion to define the fluctuation should change if more modes are used.
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Figure 5.62: Comparison of Error Between the Actual Velocity and the Estimated
Velocity using the Gappy POD Approach and the Dynamic Gappy POD
Approach with 5 POD Modes in Space at r/D=0.8

Figure 5.62 shows a plot of the spatial dependence of the RMS error between the

actual data and the estimated data for the Dynamic Gappy POD and Gappy POD

using POD modes from the LWPIV and the TRPIV. This shows a few interesting

results. The first of which is using the actual modes give better results, which makes

sense because the modes are coming directly from the data. However, in the real

problem, it is not possible to calculate the real modes. Using the modes from the

LWPIV, gives results with slightly more error especially in the known portion of the

estimate. This is because the modes are different and the flow is not reconstructed

as efficiently using the different modes.

The biggest thing to note is the Dynamic Gappy POD technique is actually doing

worse then Gappy POD away from the actual data. This is because the model

corrupts the Gappy POD process. Gappy POD produces the correct data if all of the
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correct modes are used, but Dynamic Gappy POD does not. The model is relied on

more heavily far from the known data because that is where more fluctuations are

occurring. Figure 5.62 is also an average of the error in time and does not account

for the large fluctuations that are present in the Gappy POD techniques. Looking at

the fluctuations, (figure 5.61) one can see the Gappy POD technique is prone to large

small-time fluctuations despite the lower average error.

5.6 Summary of Data Fusion on a High Speed Jet

Flow

A new technique, Fused POD that is inspired by Gappy POD was used to fuse PIV

data and the theoretical knowledge that the jet is axisymmetric. This allowed for

estimation of the velocity in the occluded region caused by pressure sensors. A rea-

sonable estimate of the velocity data allows one to have the pressure data and a

non-obstructed PIV window. Gappy POD would not be applicable in this situation

because the error is located at one point in space for all snapshots. Gappy POD re-

quires statistical knowledge of the flow which is not available in this situation without

obtaining it from another source.

The idea of Fused POD was also applied to a problem were iterative Gappy POD

was applicable. However, using the iterative approach would take months to complete.

Using the idea of Fused POD the time required to repair the jet data took on the

order of hours. There was a tradeoff though; Fused POD did not give the same result

as iterative Gappy POD, which should be correct in the limit of using all modes and

infinite iterations. The time savings decidedly were worth the slight error.

Methods of estimating a time-resolved large-window PIV data set were discussed.

The methods included sLSE, stochastic modeling, Gappy POD and Dynamic Gappy

POD. LWPIV, TRPIV, and pressure were fused together to accomplish the task.

Because the TRPIV data was available, the estimates could be directly compared
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with the actual data allowing for one to determine the accuracy of the methods. It

was found that the sLSE did not work as well due to the low correlations between the

pressure and the velocity. Stochastic modeling also was unable to predict the velocity

due to poor long time behaviors with the model. Gappy POD was able to predict the

velocity for long time periods, but was unable to capture the short time flow physics.

Dynamic Gappy POD was able to take advantage of the stochastic modeling’s short

time behavior and fuse it with the long time behavior of Gappy POD thus creating

a better estimation tool and a better estimate of the data.
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Chapter 6

Concluding Remarks

In this chapter the fusion work is first summarized. All of the techniques used to

perform the fusion are briefly discussed and it is shown how all of the techniques fit

together. Then the different test cases where data fusion was applied are discussed

briefly. The summary of this work is followed by the conclusions from this work and

the chapter ends with suggestions for future work.

6.1 Summary

This work showed the usefulness and power of data fusion and technique fusion for

fluid dynamic data and the importance of having a framework that is capable of

performing the analysis tools and managing data efficiently. The techniques used in

this study are POD, LSE, and Wavelet fusion. The connection between the fused

techniques are shown in figure 6.1.

Gappy POD is fused with Wavelet fusion to create Fused POD, which looks to

extend Gappy POD to problems with holes in the same location in all of the data

as discussed in subsection 4.6.1 and section 5.4. Dynamic Gappy POD is the fu-

sion of LSE and Gappy POD, which is used to improve the short time behavior of

Gappy POD and long time behavior of stochastic modeling (subsection 5.5.4 and
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section 5.5). Wavy POD is the idea to fuse POD and wavelets, which could allow the

fusion of high frequency information and low frequency information for two data sets

unable to be synchronized in time. The last fused technique mLSE was developed by

Bonnet et al. [48] and Taylor et al. [49], which combine POD and LSE to increase

the computational efficiency and allow for low-dimensional estimates.

Wavelets 

WP 

mLSE 

DGP 

FP 

DGP: Dynamic Gappy POD 

mLSE:  Modified Stochastic Estimation 

FP:  Fused POD 

WP:  Wavey POD 

IGP: Iterative Gappy POD 

IGP 

Figure 6.1: Overview of the Fused Techniques

Throughout the document three different cases are studied to derive, test, and

understand the various techniques described herein. These include synthetic data,

three-dimensional (one-time, two-space) airfoil data, and three-dimensional (one-

time, two-space) jet data with the ultimate goal of using data fusion on the jet data.

The diagrams below summarize the fusion techniques that are applied to each case.

The first case was a synthetic case (figure 6.2(a)) meant to represent CFD and PIV,

where the CFD was represented by a diffused signal and the PIV was represented by
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a noisy, down-sampled signal. These were supposed to represent some of the different

limitations associated with PIV and CFD and determine if data fusion is a viable idea

to compensate for the limitations. The noise in the PIV-inspired signal was removed

by using wavelet fusion to fuse the CFD and PIV. This also reduced the effects of

diffusion in the CFD, effectively creating a more resolved PIV-inspired signal. An

early variant of Fused POD was applied to the synthetic case to remove holes in the

PIV-inspired data using the CFD-inspired data, which filled in the holes better than

just filling in with the CFD-inspired data. Modified LSE was applied to the problem

as well, but did not produce as good of results as the other techniques.

“CFD” 

“PIV” 

FP 
mLSE 

WF 

(a) Synthetic

Pressure 
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FP 
mLSE 
WP 

(b) Airfoil

Pressure 

sLSE 
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(c) Jet

Figure 6.2: Overview of the Fusion Test Cases

The second case is a stationary airfoil in a stalled configuration, which produces
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unsteady flow in the wake region. This case included LWPIV, pressure measurements

along the surface of the airfoil [24], and a CFD simulation of the airfoil. Fused POD

was used to fill an artificial hole in the PIV data meant to represent an occlusion,

reflection or particle drop out. The CFD was used to generate the POD modes

used with Fused POD. This shows the holes could be filled with reasonable accuracy,

better than inserting the CFD solution into the hole, and if the CFD was improved

the results of the Fused POD improved as well. Spectral LSE was applied to the

problem as well to fuse pressure and LWPIV, which was done previously by Ausseur

[67]. Similar results were shown, but the results could not be validated due to a lack

of time dependent velocity measurements. A similar process was used to fuse velocity

signals from the CFD and the LWPIV, which gave results that made physical sense

but again were not validated.

The jet data which included TRPIV (Low et al.[99]), LWPIV (Berger et al. [107]),

and pressure measurements is the final case used in this study. Fused POD was used

to fill sensor occlusions, reflections, and erroneous data due to particle drop out. An

artificial hole was cut in the data to understand how accurate the technique is for

the jet data by comparing the Fused POD results to the experimental data. Spectral

LSE, stochastic modeling, Gappy POD, and Dynamic Gappy POD were applied to

the jet data to obtain a large-window, time-resolved data set, which showed the DGP

produced the best results by reducing the small time fluctuations. The estimations

were able to be directly compared to the actual data since time-resolved data was

available.

6.2 Conclusions

Fused POD, an extension of Gappy POD, is able to repair data that traditional Gappy

POD is unable to repair. Gappy POD requires either enough non-corrupt snapshots

to perform POD or snapshots that have missing data randomly distributed in time
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and space such that the statistics can be calculated at all points. Fused POD can

handle cases where data is missing at one location in space in all snapshots, some-

thing that Gappy POD cannot do since statistical information is not available for

the missing data. The missing data needs to come from another source. Fused POD

was demonstrated in the LWPIV jet data for which data is missing due to a pressure

sensor obstructing the field of view. These results are shown in section 5.4 for the

high-speed jet.

Fused POD can repair gappy data orders of magnitude faster than Gappy POD.

The Fused POD and Gappy POD technique are used on the TRPIV jet data. The

snapshots had missing “bad” vectors scattered in space and time in the bottom half

of the plane. Iterative Gappy POD was used to estimate the “bad” data for a subset

of the data. The repaired data was then used to calculate the POD modes for the

entire data set, which was then repaired using the modes and the Fused POD method.

Using Gappy POD on the entire data set could have been done, but would have taken

on the order of months to complete. Using Fused POD as an alternative, the analysis

was done on the order of hours.

Fusing Gappy POD and LSE creates a technique (Dynamic Gappy POD) that

estimates the time dependence of a flow field with about 20% fewer fluctuations in

error than either technique alone. Dynamic Gappy POD looks to take advantage

of the short time behavior of stochastic modeling and the long time behavior of

Gappy POD. This is used to stitch time-resolved windows together that were not

sampled simultaneously, creating a time-resolved data set with a larger inspection

region. This was attempted using LSE, sLSE, Gappy POD, and Dynamic Gappy

POD. The Dynamic Gappy POD method worked the best in terms of predicting the

flow. This method uses both data fusion and technique fusion. The Dynamic Gappy

POD method is able to produce an estimate of the velocity field closer to the original

than any of the other techniques.

A framework is useful for tracking data and performing data fusion efficiently.
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The data for the fusion process required many manipulations such as extraction,

masking, interpolation, etc, which created many new data sets. The vast amount of

data needed to be tracked, or it could get lost and the fusion process would become

more difficult. The framework is capable of tracking the data in an efficient manner

and allowed for fusion to be accomplished efficiently.

The framework has allowed researchers to process twice as much data. Using a

framework has allowed researchers to look at larger, more diverse data sets, such as

multiple off-center plane windows to understand how a jet evolves away from the

centerline. The framework made comparisons between PIV data taken in 2011 and

LDA data taken in 2005 less time consuming. The framework allows the comparison

of multiple data sets with less man power, allowing more data to be used, ultimately

leading to better understanding of the data and physics.

The current study shows fusion can increase the usefulness of fluid dynamic data

as well as decrease the time required to process the data. The study also shows a

framework which tracks data, allows data manipulations, and allows multiple data

sets to be viewed at a time is imperative to performing data fusion and analyzing

fluid dynamic data, due to the vast quantity of data that is collected and created.

6.3 Suggested Future Work

Data fusion was performed on some shock tube data as stated throughout the doc-

ument, but with very poor results that are shown in Appendix A. Using different

techniques may prove useful in helping to understand the data better. Moving for-

ward, one can look at the effect of uncertainty in the initial pressure ratio. It is very

likely that the pressure was not read or even calibrated correctly. Using the model,

theory, data, and perhaps something similar to a Kalman filter, the error in the pres-

sure ratio can be calculated, then used in the theory and model to produce results

similar to the experiment.
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An idea that combines discrete wavelet fusion and POD that has not been present

in this paper has been called Wavy POD. To increase the resolution of an image, one

can use the wavelet fusion technique. However, to do the wavelet fusion technique,

two images are needed, one that has the high resolution information and another

with low resolution. In the case of fluid dynamics, a high resolution data set and a

low resolution data set with a larger spatial domain are obtained. More than likely,

the two data sets are acquired separately, meaning the wavelet fusion technique does

not apply. However, perhaps the wavelet fusion could be done in POD space. The

process would be to break the large window data into smaller windows that match

the high resolution images. POD would then be performed on the data. The POD

modes would be fused using the wavelet fusion process. This would effectively increase

the resolution of each POD mode. Then the flow field could be reconstructed using

the POD modes and POD coefficients. This process could be repeated for each of

the small window data sets. This technique could be useful in the case of trying to

get LWPIV with one camera while still resolving the flow spatially. However, this

technique has not been studied sufficiently to determine its effectiveness. This idea

is shown in figure 6.3. Data set “A” (the black box) represents a large window of

data and “B” (pink box) and “C” (blue box) represent two smaller windows with

more resolution taken at different locations and different times. “B” and “C” are

both in the domain of “A” though. Data set “A” is cut to match the domains of the

“B” and “C” producing “AB.” and “AC”. POD is then performed on the cut data

sets and “B” and “C”. The POD modes are then fused together using the wavelet

fusion process discussed in subsection 1.4.6. This produces two new modes “ΦFB”

and ”ΦFC”, the velocity is reconstructed using the POD coefficients from “AB” and

“AC” producing the fused velocities “FB” and “FC”. These two velocity fields are

then stitched together to obtain the full velocity field “F”.
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Figure 6.3: Wavy POD

The idea for Wavy POD came from the work done on the synthetic data in chap-

ter 3, which used wavelet fusion to increase the resolution of data that had been

smoothed by adding diffusion. Using the wavelet fusion, the resolution of the smooth

data was increased and noise was removed from a noisy filter. The data used in the

test was synthetic and periodic and could be synchronized in time. However, the flow

is real data, and in general cannot be synchronized in time with another data set.

However, in the POD domain, the modes may be able to be synchronized and some of

the high frequency, low energy modes could be merged together, which may increase

the resolution of the modes and the velocity after reconstruction.

Another suggestion for future work is to incorporate pressure into the DGP tech-

nique. Data fusion work in other fields have shown using more sensors, even “bad”

sensors increase the accuracy of the estimate. If pressure could be included into the

technique, the accuracy of the technique may increase, especially in areas near the

pressure sensor where the velocity-pressure correlation is highest.

In the spirit of using the pressure sensors, the near-field pressure sensors should

be placed in the same azimuthal plane as the PIV to increase the correlation. The

azimuthal displacement coupled with the radial displacement decreases the correlation

strength; increasing the correlation strength may improve the sLSE results, and make

using the pressure signals in the DGP more attractive.
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In addition, a lot of this work was done using the 2011 experiments from Low et al. [99]

since this data has been published. The new 2013 TRPIV from Berger et al. [100]

data has only been presented at conferences and not presented yet. Therefore in the

future, it would be interesting to see how data fusion could be used for that particular

data set since this included more data such as, longer time records, multiple samples

of the same test (to increase the time record even more), and off-center planes that

could perhaps be used to estimate a full three-dimensional data set instead of the

planar data provided in the study.

The last thing to mention is the fact I believe the work presented will help set the

foundation for future data and technique fusion work in fluid dynamics. This work

only scratches the surface of what I believe will become a major field in the coming

years. Even if the techniques used above are not used, the biggest takeaway should

be data and technique fusion and creating an efficient framework are imperative to

improving the field of fluid dynamics, especially since it seems that no one measure-

ment technique is capable of extracting all of the knowledge needed to understand

the increasingly challenging problems fluid dynamists are facing.
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Appendix A

One Dimensional and Unsteady

(Shock Tube)

Data fusion is now used on an unsteady one-dimensional test case. A shock tube is

used in this study because the shock tube can be considered one dimensional if the

wall effects are ignored, which is usually a reasonable assumption. Like the synthetic

data (chapter 3), this work helps understand how to apply fusion to fluid dynamic

data sets and is done before moving to the more complex jet problem.

A.1 Shock Tube Theory

A brief introduction of shock tube theory is discussed before fusion is performed. A

shock tube is a piece of equipment used to study moving shocks, which are important

in detonations and acoustic propagation. [157].
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Figure A.1: Diagram of a Stationary and Moving Shock

A moving shock follows the same theory as a stationary shock but in a moving

frame of reference. In fact, the shock only depends on the incoming velocity experi-

enced by the shock.

The shock tube works by creating a large pressure difference in the tube that

moves towards the low pressure section, forming a shock. In addition to the shock,

an expansion wave is formed and travels into the high pressure section. The shock

and expansion wave travel until they hit the wall of the tube and are reflected away

from the wall. The strength and speed of the shock depends on the original pressure

ratio in the tube (P4

P1
). A schematic of the pressure distribution in the tube is shown

in figure A.2 at the initial condition, after the shock is formed, and after the shock is

reflected.
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Figure A.2: Diagram of a Shock Tube Before the Shock Wave is Released, Before
the Wave is Reflected, and After the Wave is Reflected

Now that the shock tube has been described physically, the underlying theory can

be explained. The theory is derived by performing a mass, momentum, and energy

balance on a control volume that moves with the shock [157].
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Figure A.3: Control Volume Around a Shock
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The mass balance is

ρ2(W − up)− ρ1W = 0 (A.1)

where ρ is the density, W is the speed of the shock, and up is the velocity induced by

the shock. The momentum balance is

ρ1W
2 + P1 − ρ2(W − up)2 − P2 = 0 (A.2)

where P is pressure. The energy balance is as follows,

W 2

2
+ h1 −

(W − up)2

2
− h2 = 0 (A.3)

where h is the enthalpy.

Equations A.1,A.2, and A.3 can be rearranged in order to get the Hugoniot equa-

tion

e2 − e1 =
P1 − P2

2
(

1

ρ1

− 1

ρ2

) (A.4)

where e is the internal energy and is related to enthalpy by the following relation

h = e + P/ρ. The Hugoniot equation can be simplified by assuming a calorically

perfect gas, using the following relationships, e = cpT and P = ρRT which gives

T2

T1

=
P2

P1




γ+1
γ−1

+ P2

P1

1 + γ+1
γ−1

P2

P1


 (A.5)

where T is the temperature. The speed of the shock wave can also be calculated from

equations A.1,A.2, and A.3 and the perfect gas relations.

W = a1

√
γ + 1

2γ

(
P2

P1

− 1
)

+ 1 (A.6)

where a1 is the speed of sound. The induced velocity behind the shock can be calcu-
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lated from the shock speed and density ratio by rearranging equation A.1.

up = W

(
1− ρ1

ρ2

)
(A.7)

A similar analysis gives the speed of the reflected shock wave. The rise in pressure

due to the shock wave hitting the wall must satisfy the condition that the velocity of

the wall is zero as is the air behind the reflected shock. Using this fact and a control

volume analysis similar to the incident shock, the reflected shock Mach number is

calculated using

MR

M2
R − 1

=
Ms

M2
s − 1

√√√√1 +
2(γ − 1)

(γ + 1)2
(M2

s − 1)

(
γ +

1

M2
s

)
(A.8)

With the isentropic relations, the shock strength
(
P2

P1

)
can be defined based on the

initial pressure condition of the shock tube
(
P4

P1

)
with the following relation:

P4

P1

=
P2

P1


1− (γ4 − 1)(a1/a4)(P2/P1− 1)√

2γ1[2γ1 + (γ1 + 1)(P2/P1 − 1)]



−2γ4/(γ4−1)

(A.9)

which can be solved for the shock strength using a numerical approach. With these

equations, the properties of the shock tube can be defined based on the initial pressure

ratio and other initial thermodynamic quantities.

A.2 Experimental setup

The experiment for this test case was performed in the Syracuse University shock tube

facility as part of an undergraduate lab. The experiment was focused on determining

the speed of the incident and reflected shocks formed in the tube. A schematic of the

tube is shown in figure A.4.
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Figure A.4: Schematic of the Syracuse University Shock Tube

The driving section of the tube was separated from the driven section of the tube

with a diaphragm made of acetate film. The driven section was then pressurized to

various pressure ratios
(
P4

P1

)
. In this work a pressure ratio of 1.75 is studied.

The diaphragm is punctured once the pressure ratio is at the correct level, sending

a blast of high pressure air down the shock tube, which produces a moving shock wave.

The shock wave then passes pressure transducer 1, which is used to trigger pressure

transducer 2. The pressure in the tube is then measured by both of the pressure

transducers. The test lasts long enough for the incident shock and reflected shock

to pass both transducers. The pressure signals from both transducers are shown in

figure A.5, where the first set of peaks represent the shock passing and the second set

of peaks are the reflected shock.
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Figure A.5: Pressure Measurements at the Two Transducers

A.3 Simulation Setup

The Shock tube experiment is simulated by discretizing the Euler equations, which

are the Navier-Stokes equations with the inviscid assumption. The one-dimensional

Euler equations in the conservative form

∂U

∂t
+
∂F

∂x
= 0 (A.10)

where U =




ρ

ρu

E




and F =




ρu

ρu2 + P

(E + P )u




=




U2

0.5(3− γ)
U2
2

U1
+ (γ − 1)U3

γ U2U3

U1
− 0.5(γ − 1)

U3
2

U2
1




are

solved for this simulation using the Lax-Wendroff method. The above equation is
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non-linear and cannot be solved in it current form using the Lax-Wendroff method.

Therefore, the equations are rearranged using the chain rule (∂F
∂U

∂U
∂x

= ∂F
∂x

) where ∂F
∂U

is the Jacobian

∂F

∂U
= A =




0 1 0

0.5(γ − 3)u2 (3− γ)u γ − 1

(γ − 1)u3 − γ uet
ρ
−3

2
(γ − 1)u2 + γ et

ρ
γu



. (A.11)

The Euler equations can now be written as a Quasi-linear equation,

∂U

∂t
+ A

∂U

∂x
= 0 (A.12)

which can be discretized using the Lax-Wendroff method.

Un+1
i = Un

i −
1

2

∆t

∆x
(F n

i+1−F n
i )+

1

2

∆t2

∆x2

[
Ai + Ai+1

2
(F n

i+1 − F n
i )− Ai + Ai−1

2
(F n

i − F n
i−1)

]

(A.13)

Notice in equation A.13, that the Lax-Wendroff acts like a forward difference scheme

with the addition of a diffusion term, to help keep the scheme stable. For stability

purposes, the Lax-Wendroff scheme requires the CFL number to be less than one for

a linear system. However, since the Euler equations are non-linear, the CFL needs to

be less than one to account for non-linear effects.

A.3.1 Boundary and Initial Conditions

For the one-dimensional case, there are two boundary conditions, the wall at each end

of the tube. They are simulated by setting the velocity at the wall equal to zero and

setting the derivatives of density and energy to zero at the wall causing an increase

in pressure, making the shock bounce off the wall.

The pressure on the driven side of the diaphragm is initially set to ambient and

the pressure on the driven side is set to a desired pressure. The density is initially
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set using the pressure ratio and the isentropic relationship; the velocity is initialized

by setting it equal to zero everywhere in the tube.

A.3.2 Computational Results

The pressure from the simulation (figure A.7) is extracted at the same location as the

pressure transducers in the experimental work.
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Figure A.6: Computational Pressure Measurements at the Two Pressure Transduc-
ers

The simulated pressure and experimental pressure have similar shape. Each profile

has a constant pressure after the shock passes the first sensor and a decreasing pressure

after the second sensor. However, the shock arrival time for the two different cases

do not match.
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Figure A.7: Comparison of Pressure Measurements obtained using CFD and Pres-
sure Transducers

P4

P1
Measurement Incident Speed (ft/s) Reflected Speed(ft/s)

1.74 Experiment 1272 1162
1.74 CFD 1196 1157
1.74 Theory 1208 1153
2.48 Experiment 1358 1133
2.48 CFD 1281 1142
2.48 Theory 1303 1163
3.21 Experiment 1420 1096
3.21 CFD 1328 1113
3.21 Theory 1375 1170

Table A.1: Comparison of Shock Speed Predicted by CFD and Pressure Transducers

The discrepancy in the shock arrival time causes an even larger discrepancy in the

speed of the shock (see table A.1). Trying to fuse the signals without correcting this

issue produced poor results, due to the large gradients. To account for this the data

are shifted to match the data.
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A.4 Fusion Results

A.4.1 Shock Arrival Time

The experimental shock has a slightly different shock speed than theory because

theory assumes the flow is lossless. In reality, the walls of the tube have friction,

causing a boundary layer to form, which acts as a constriction in area. Since the

shocks are moving at supersonic speeds, this should cause the shock speed to be

smaller than theoretical. This is not the case, the experiment is predicting larger

speeds.

This may mean something is not correct in the experiment. Perhaps it has some-

thing to do with the spacing of the sensors, build up on the back wall of the shock

tube, or errors in reading the initial pressure ratio. Changing the sensor location

is studied in this analysis and shows that if the sensors are moved a few inches the

computational, experimental, and theoretical results are about the same. A change

in pressure could have similar effects and will be studied in future work.

A change in the distance between the sensors and between the wall could greatly

effect the calculated shock speed. Using multiple pressure ratios and the correspond-

ing speed, the RMS difference between the CFD and experimental results is minimized

by changing the location of the sensors. A contour plot is generated to see the level

of error vs. the position of the sensors (figure A.8). This shifting of the data will be

called zero level fusion because it was required to make the data consistent for further

fusion processes.
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Figure A.8: Level Zero Data Fusion for the Shock Tube Data

By shifting the sensors a few inches the experimental, CFD, and theoretical data

match more closely. The difference between the CFD and experimental results for

both the fused case and non-fused case are displayed below in table A.3.
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Figure A.9: Fusion by Changing the Pressure Sensor Location
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P4

P1
Measurement Incident Speed (ft/s) Reflected Speed(ft/s)

1.74 Experiment 1221 1116
1.74 CFD 1223 1111
1.74 Theory 1208 1153
2.48 Experiment 1304 1088
2.48 CFD 1276 1133
2.48 Theory 1303 1163
3.21 Experiment 1353 1096
3.21 CFD 1334 1105
3.21 Theory 1375 1170

Table A.2: Comparison of Shock Speed Predicted by CFD, Theory, and Pressure
Transducers After Data Fusion

P4

P1
Fused

Difference in Incident
Speed (ft/s)

Difference in Reflected
Speed(ft/s)

1.74 Fused 2 5

1.74 Non-Fused 76 5

2.48 Fused 28 45

2.48 Non-Fused 77 10

3.21 Fused 19 9

3.21 Non-Fused 25 17

Table A.3: Difference in Shock Speed Predicted by CFD and Pressure Transducers
After Data Fusion

A.4.2 Kalman Filter Fusion

Now that the shock arrival times between the CFD and experiments are more consis-

tent, data fusion is applied. A Kalman filter is applied to the CFD and pressure data

to decrease the noise levels in the experimental data while adding some of the physics

that are missing in the CFD model. However the Euler equations are non-linear and

the Kalman filter requires a linear system of equations. To get around this, the CFD

is used to generate a stochastic model (subsection 1.4.4). However, the model does

not predict the shock (figure A.11) well.
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Figure A.10: Stochastic Model Applied to the Shock Tube Data

Applying a Kalman filter to this should help, but the model does such a poor job

that Kalman Filter does not help.
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Figure A.11: Kalman Filter Applied to the Shock Tube Data

This could be due to the non-stationary nature of the shock tube, which does

not seem to work well with this type of model. I believe the modeling is acting in

this manner because of the shock which acts as an infinite jump. This could be

investigated more and a model that better predicts the shock could be employed, but

the focus of this work is ultimately applying data fusion to the jet.
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Gappy POD Fusion

Gappy POD is able to estimate missing information as shown in chapter 3. Since

the modeling and Kalman filtering approach did not work well, Gappy POD is used

to estimate the pressure data using a CFD basis and the two experimental pressure

sensors.

The results of the Gappy POD fusion in this case are rather disappointing. The

two sensor are not able to get a reasonable estimate of the pressure trace. This

technique was used to see if Gappy POD is capable of estimating a signal instead of

using the Kalman filtering approach as attempted previously.
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Figure A.12: Gappy POD Fusion using a CFD Basis and Two Pressure Transduc-
ers

The Gappy POD fusion technique was only able to capture the pressure correctly

at the two sensors. The Gappy POD fusion technique produced a signal that had

many oscillations, which makes sense though. First, only two sensors are being used

to estimate the whole domain, which is not a lot of information and as shown by the

results not enough information for fusion. Second, the physics of the problem are

such that the different locations do not sense the effects of the pressure wave until it
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passes the location in question.

CFD information is used as virtual pressure sensors to determine if a lack of

information is really the issue causing the sub-par estimation. This results is also

disappointing. Again, the Gappy POD fusion was unable to predict the missing

information.
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Figure A.13: Gappy POD Fusion using a CFD Basis and Two Pressure Transducers
and 5 CFD Virtual Sensors

The addition of the virtual sensors does however show an improvement over the

fusion using only two sensors. The pressure has a similar trend to that of the pressure

predicted by CFD. However, the fusion is still unable to capture the sharpness of the

shock.
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Figure A.14: Gappy POD Fusion using a CFD Basis and Two Pressure Transducers
and 10 CFD Virtual Sensors

The addition of more virtual sensors, does not improve the shock capturing abil-

ities of the fused signal. Although, more information did make the signal look more

like the actual signal. This shows that to use Gappy POD, enough sensor information

is required to predict the flow. The use of Gappy POD to estimate missing data is

discussed in more detail in chapter 4 and chapter 5.

A.4.3 Summary and Lessons Learned

The study of the shock tube allowed for the use of the data fusion techniques on real

fluid dynamic data. This work shows that some of the techniques that worked for the

proof of concept did not work as well on the shock tube data. However, the technique

had great success on the airfoil data (4) and the jet data (5). This demonstrates that

one needs to think about how data fusion is applied and techniques that work well

with one data set will not necessarily work well with another data set. One needs to

understand the data and how data fusion will effect it.

The first technique presented used computational data and various experimental

data to align the different data sets. Changing the location of the sensors in the
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analysis of the data produced results that were more consistent between the CFD

and experimental pressure in terms of incident shock speed. Using the data in this

simple way greatly increased the consistency between the data. This idea is applied

to the jet work to align the different data sets that are used in the fusion process.

Next, a Kalman filtering technique was applied to the data using a linear stochastic

model based on the CFD to overcome the issue of non-linearity. The model used in

this technique did not predict the flow and the Kalman filter was unable to help

improve the model. However, the shock tube problem and the jet problem have very

different physics and as such, this technique should not be ruled out for the jet work.

Next the Gappy POD technique estimates data not captured by the sensor using

CFD information and the pressure measurements. These techniques seemed to give

better results than the Kalman filter, but still were unable to capture the shock. This

was due to lack of data to perform the fitting process. When more data was added,

the Gappy POD did a better job of estimating the signal. This technique is used on

the jet data and is described in more detail in section 5.4.
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Appendix B

ORANGE HSD User Manual:
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I. Introduction

The improvement of experimental and numerical techniques have led to an increase in the amount of data collected
for test cases. The increased size of data sets can become an issue when doing post processing. The data needs to be
processed in an efficient manner as well as utilized in such a way that both numerical and experimental data are used
to gain a deeper understanding of the phenomena being analyzed.

ORANGE High Speed Data (HSD) is a tool that was developed to deal with fluid dynamic data. Its purpose is
to make performing some of the typical fluid dynamic analyses easier. The program is also designed to look at data
from different data sets side-by-side and help make comparisons. The tool is also a good way to keep track of data.
The code includes: proper orthogonal decomposition (POD), stochastic estimation, wavelet analysis, spectral analysis,
statistics, and a custom function creator.

II. Installation and Execution

A. Folder Content

All of the necessary Matlab functions should be contained in the ORANGE HSD folder. The folder should be placed
in an accessible, writable location such as the Desktop or My Documents. The contents of the folder should be:

1. Folders:

(a) Subfunction: This folder contains the codes that run the various analyses

(b) pivmat2.01: This folder contains the Matlab toolbox that processes PIV data

(c) readimx4matlab_v1.5R1_2009: This folder contains an image processing toolbox

(d) readimx4matlab_v1.5R1_2009_64: 64 bit version of the above toolbox

(e) Test: A zipped folder that contains the data used in the manual and video

2. Matlab code files:

(a) High_Speed_Data.m: This is the code that creates the main GUI screen

3. Matlab figure files:

(a) High_Speed_Data.fig: This is the main GUI Screen

4. Documentation

(a) High Speed Data Manual.pdf: This is the user manual for the software

(b) ORANGE_HSD_Tutorial.mpg This is a movie tutorial of the basic functionality of ORANGE HSD

B. Installation

The user

The user must extract the pivmat2.01 zipped folder and one of the readimx4matlab zipped folders (whichever cor-
responds to your version of MATLAB, 32-bit or 64-bit). Only unzip and install the readimx version that corresponds
to your version of MATLAB to prevent bugs. They should be unzipped into the ORANGE HSD, so that all paths are
added together. With these files accessible and unzipped, their paths can now be added to MATLAB.

ADDING THE FILE PATHS

1. Open MATLAB

2. Select File>>Set Path

3. Select "Add with subfolders"

4. Browse to the ORANGE HSD folder with all the MATLAB functions. Select it.

5 of 48



5. Select "OK"

6. Select "Save"

7. Close out of Set Path

If the updated paths do not save, you can perform the installation manually. The Steps to do this are as follow:

1. Open the file “path.def”. This should be located in MATLABroot\toolbox\local

2. Before %%%END ENTRIES%%% add the following lines

‘local;’, . . .
‘local\Subfunctions;’, . . .
‘local\Subfunctions\Calculator;’, . . .
‘local\Subfunctions\Orange_LSE _QSE;’, . . .
‘local\Subfunctions\Orange_POD;’, . . .
‘local\Subfunctions\Orange_Correlations;’, . . .
‘local\Subfunctions\Orange_Wavelet;’, . . .
‘local\Subfunctions\Conversion;’, . . .
‘local\Subfunctions\Data_View;’, . . .
‘local\Subfunctions\Conditioning;’, . . .
‘local\Subfunctions\Statistic;’, . . .
‘local\Subfunctions\Data_Extraction;’, . . .
‘local\pivmat2.01;’, . . .
‘local\pivmat2.01\pivmat;’, . . .
‘local\pivmat2.01\pivmat\html;’, . . .
‘local\pivmat2.01\pivmat\sample;’, . . .
‘local\pivmat2.01\pivmat\sample\jet;’, . . .
‘local\pivmat2.01\pivmat\sample\surf;’, . . .
‘local\pivmat2.01\pivmat\sample\turb;’, . . .
‘local\readimx4matlab_v1.5R1_2009;’, . . .
‘local\readimx4matlab_v1_5R1_2009\readimx4matlab_v1.5R1_2009;’, . . .
‘local\readimx4matlab_v1.5R1_2009\readimx4matlab_v1.5R1_2009\images;’ . . .

3. ‘local’ is the location of ORANGE HSD

4. Save path.def

C. Note on Additional Toolboxes

pivmat2.01 is a toolbox readily available to download for free. It is a toolbox developed specifically to handle large
velocity fields created by LaVision by F. Moisy. See www.fast.u-psud.fr/pivmat for more details. In addition, piv-
mat2.01 comes with its own readme and MATLAB help sections.
readimx is software developed directly by LaVision. It is made to read LaVision’s images into MATLAB. It also
comes with a detailed ReadMe pdf. Those with LaVision accounts can download the most up-to-date version directly
from LaVision’s website.
A number of other functions included were also developed from other sources; credit and author information is given
in the opening comments of those functions.
MATLAB toolboxes required to process PLIF data: Image Processing Toolbox, Signals Processing Toolbox
MATLAB toolboxes required to process PIV and Pressure data: Signals Processing Toolbox

D. Using the Software

Setup and General Information:
To begin using ORANGE HSD, either manually open the function "High_Speed_Data.m" and run it or type in
"High_Speed_Data" in the command window. This will open the main menu (figure 1). All of the functions available
in ORANGE HSD are accessed from this menu. The options on the main menu are color coded in order to let the user
know which options are available. Green means the options is available, red means the option is not available yet, and
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brown means the option might be available or it has already been used.

When the program is first opened, the user has two options, select an already existing file using the . . . button
(button 2 in figure 1) or use the “Setup Data Directory” button (button 3 in figure 1). Use the second option if you are
starting with a new set of data. This option will ask the user to name the directory of the new data set. Then the user
will be prompted to select the data set that will be moved or copied into the newly created directory. Whenever the
user adds data to the directory, the user will be asked a few questions in order to register the data. (The next time the
user opens the program it will automatically open to the the directory the user was using last)

1 

2 3 

4 

5 

7 

8 

9 

10 

11 

12 

13 

14 

6 

Figure 1. Main GUI Interface (High Speed Data)

1. About ORANGE HSD: This will bring up a screen with a short description of ORANGE HSD

2. Select the main folder: Select the directory that contains all of the data that will be used

3. Setup Data Directory: This option allows the user to setup a new data directory by moving/coping data

4. Data Management: This option opens the data management screen

5. View Temporal Signal: This option opens a window to view the raw data signal

6. View Field Data: This option opens a window to view the raw data contours

7. Run ORANGE POD: This option opens the POD GUI.

8. Run ORANGE Wavelet: This option opens the wavelet GUI

9. Calculate Statistics: This option opens the statistics GUI

10. Run ORANGE LSE: This option opens the linear stochastic estimation (LSE) GUI

11. Run ORANGE Correlation: This option opens the correlation GUI

12. Create Custom Function: This option opens a GUI to create custom functions

13. EXIT: This option close ORANGE HSD.

14. Color Scheme: These buttons allow the user to change the color from black-on-white to white-on-black
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III. Using ORANGE HSD

To start ORANGE HSD the user must first open Matlab. Once Matlab is open, the user can type “High_Speed_Data”
into the Matlab command window. This displays the ORANGE HSD splash screen for a couple of seconds and then
brings up the main menu.

The user should notice that most of the options are not available at this time. If this is a new project, the user must
push the “Setup Data Directory” button. This will guide the user in creating a new project and importing the data to
use for the project.

The first prompt asks the user to select where the folder for the new project will be located. The user then selects
the directory to create the new project.

Figure 2. Where to Create a New Project

The user will then be asked to give the project a name. This process creates a new folder with the same name as
the project name in the directory selected in the pervious step.

Figure 3. Name the New Project

The user is then asked to locate the data that will be used in the project. The user must decide whether to copy or
move the data into the project folder from its current location. The user will then select the data. This is then repeated
until the user has loaded in all of the desired data.
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Figure 4. Move or Copy the Data Set

The user will then be asked a series of questions that will be used to register the data in the system. A few of these
questions are shown in figure 6.

Figure 5. Some Questions to Register the Data

When the user finishes answering all of the questions for all of the data sets the main menu will appear again.
Notice the Change in the color of the buttons. More options are now available.
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Figure 6. Main GUI Interface (High Speed Data) After Registering Data

Now that there are more options, let’s start to look at them. We first look at the data management tool.

A. Data Management

Large amounts of data can be produced when processing your data, which can become confusing and hard to keep
track of. To help the user track the data better the data management page has been added. The data management tool
stores and displays important information about the data. It is shown in figure 8. The tool also has links to some other
important features, which will be discussed later.

10 of 48



1 

2 

3 

4 

5 7 

8 

9 

10 

11 12 

13 

14 

15 

17 6 

Figure 7. Data Management Page

1. Import: This button will allow the user to add more data to the current data set (when the data is added, the
user will have to answer questions to initialize the data

2. Format Data: This displays a GUI that will help format recognized data (This is discussed later)

3. Edit User Data: This allows the user to edit the data stored in the data management page

4. Rescale Grid: The user can use this option to change the axis scaling of the data

5. Remove File: The user can use this option if one or more snapshots in a data set are “bad”

6. Mask: The user can use this option to generate a mask for a data set.

7. Extract Data 3D-2D: Extract a 2D slice from a 3D data set

8. Extract Data 2D-2D: This tool can be used to extract a plane from another plane of data

9. Extract Data 2D-1D: Extract a signal from a set of snapshots

10. Extract Data 1D-1D:Extract part of a 1D data set

11. Signal Conditioning: This option allows the user to filter and/or smooth a signal

12. View Temporal Signal: View 1D data (This options is also on the main screen)

13. View Field Data: View 2D data (This options is also on the main screen)

14. Exit: Close the data management page and opens the main screen

15. Extract to Excel: Writes the information about the data to an excel sheet

16. Delete Data: Delete the selected data

17. Show/Collapse Time Data: This option allows the user to view a list of 1D signals contained in a data set
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1. Import Data:

If the user needs to add a new data set to the current project, the user can use the “Import” button (button 1 in figure
8). This process is similar to starting a new project. The user is asked to locate the new data and whether to move or
copy the data. The user is then asked questions about the data.

2. Format Data:

The data must be converted to the correct format before any analysis can be performed. All of the analyses are
performed on .mat files. The format tool include in the ORANGE High Speed Data package will perform the file
conversions. This can be done without the code as well. The format tool is capable of formatting PIV data (.vc7 files,
.txt files), PLIF data (.tif files), CFD data (OVERFLOW files, fluent data formatted as point or block tecplot files, and
GE CFD data), and pressure data (.txt file where the pressure data is stored in columns). The following screen capture
(Figure 9) shows the layout of the format tool.
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Figure 8. Format Data GUI

1. Format Lavision .vc7 file (vorticity): This will read the Lavision .vc7 file and write a .mat vorticity file

2. Format Lavision .vc7 file (velocity): This converts the vc7 data into a .mat grid file and .mat velocity files

3. Format .txt file (Velocity): This converts a PIV file stored in a text file to a .mat file.

4. Convert Pressure Data: This converts a text file with data into a .mat file for each column of the text file

5. Format PLIF (.tif): This converts the pixel brightness of a .tif file into a .mat file

6. Convert OVERFLOW Data: This will convert the plot3d formatted file from OVERFLOW into a .mat file.

7. Convert Fluent Data: This opens a GUI that will help convert Fluent data

8. GE CFD: This will convert a text file that contains columns of data to a .mat file. data file (index,Density,Pressure,U,V,W)
grid file (index,X,Y,Z)

The conversion of the PIV, PLIF, CFD, etc. data will create a grid.mat file as well as a file for each vector
component at each time step. For example, a data set with N snapshots with three components of velocity requires
files called grid.mat, U1.mat, V1.mat, W1.mat . . . UN.mat, VN.mat, WN.mat. (V and W are only needed if the data
has three components. The program will run with just U data.) The format of the .mat files is shown below in figure
10.
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Figure 9. File Format for ORANGE HSD Field Data

Similarly, the conversion of pressure signals, and other signals will be converted into a P1.mat, P2.mat, . . . ,
PN.mat. These files will each represent a different pressure signal. The format of these .mat file is shown below in
figure 11.

Figure 10. File Format for ORANGE HSD signal data

3. Edit User Data:

The user may want to change the value stored in the data management tool. This option allows the user to change
some of the desired values. The user needs to select the cell that will be changed and press the “Edit User Data” button
(button 3 in 8) if it is allowed to be changed. A pop-up window will appear and the user can type the new value. The
user can then click the “ok” button for the change to occur. The data management page will disappear and the reappear
as the change is made.
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Figure 11. Edit the User Data

4. Rescale Grid:

The user can change the scaling of the x and y coordinates. This could be useful to get normalized units, for example
X/D. To do this the user can select the Name cell of the data to be scaled and push the “Rescale Grid” button.

Figure 12. Rescale the Grid Data

14 of 48



The user enters max and min values and the grid is scaled accordingly. (This assumes a uniformly spaced grid.)
The user then pushes the “ok” button when done.

5. Remove File:

The user can remove specific snapshots from a data set if they need to. The user needs to select the Name cell of the
desired data set and push the ”Remove File” button. The user will enter the snapshot numbers that are to be removed
and press “ok”. This process is permanent, so make sure this is what you really want to do.

Figure 13. Remove Snapshots from a Data set

6. Mask

Sometimes data can have portions that are undesirable for some reason. The data could have been caused by a
reflection, or a solid body could show up as zeros in the data. This tool allows the user to create a mask. This mask
tells the program to ignore the masked data points when performing analyzes and when plotting the data.

To create a mask, select a data set on the data management screen. If the data set is a candidate for a mask (2 spatial
dimensions) the “Mask” button will turn green. Press the “Mask” button and an image of the data will be displayed
with a cursor. Place the cursor at one of the corners and left click to place the first corner. Then repeat for the other
corners.
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Figure 14. Create a mask for a data set (Step 1)

Figure 15. Create a mask for a data set (Step 2)

The last cursor is selected by using a right click (figure 16).
The Mask is then generated by selecting the points closest to the selected corners. All of the points inside the

closed shape will be masked out (figure 17).
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Figure 16. Create a mask for a data set (Step 3)

One should note that sometimes for a complex shape the mask may not select all of the infernal points. The process
can be repeated to select the points that were not masked on the first try.

7. Extract Data 3D-2D

This tool extracts a set of planes from a set of 3D data. The GUI that performs this task is shown in figure 18. Running
the extractor creates a new data set registered with ORANGE HSD.
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Figure 17. 3D to 2D extraction tool

1. Extract: Perform the extraction

2. Data ID: Select the data that will be extracted

3. Plane Index: Select the index of the plane that will be extracted

4. Plane: Select the plane that will be extract (i.e. XY plane)

5. Exit: Close the data extractor and return to the data management page
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8. Extract Data 2D-2D

This tool will extract a plane of data from a larger plane of data. The size of the plane can be reduced by removing
rows or columns or clipping the edges of the plane. This tool is shown in figure 19.
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Figure 18. 2D to 2D extraction tool

1. View Extraction: View the extraction before spending the time to write the new data

2. Extract: Run the extraction program

3. Data ID: Select the data file to extract from

4. I information: Input the first location, how many points to skip, and the ending point in the I direction for the
extraction

5. Plane: Select which plane to view (you can extract XY, XT, or YT planes)

6. J information: Input the first location, how many points to skip, and the ending point in the J direction for the
extraction

7. Convection Speed: This is used to look at a plane at an angle (i.e. XY plane, but the time is changing as you
move downstream)

8. Time information: Input the first location, how many points to skip, and the ending point in the time extraction

9. EXIT: Close the extractor and return to the data management page

10. Color Scheme: Change the color scheme

After running the extractor and returning to the data management pager one can notice the addition of a new data
set; the one just created. All of the information for this data set was automatically registered in ORANGE HSD.
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Figure 19. Data Management Page

9. Extract 2D-1D

The 2D-1D option allows the user to pick spatial locations in a plane and extract temporal information at that point.
This is shown in figure 21. The user must select the Name cell of the data set to extract from and push the “Extract
Data 2D-1D” button.

Figure 20. Extract Temporal Information

In order to extract the points click on the “ok” button and then left mouse click where you want to extract a tempo-
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ral signal. You can repeat this as many times as desired. After each click, a window will pop up asking if the selected
point is ok. At this point the select “yes” if the point is the desired point, “no (repick)” if the point is not what is
desired and repick the point, or “no (enter)” to manually input the coordinates. The last point desired should be chosen
with the right mouse click. This will exit the sampling window and write the data.

After returning to the data management screen one can notice that a new data set was added. This is the temporal
data that was just extracted.

Figure 21. Data Management Screen

10. 1D-1D Extraction

This tool is used to extract data from time series. This can be used to downsample or extract a portion of a signal. The
tool is displayed in figure 23.
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Figure 22. 1D to 1D extraction tool

1. View Extraction: View the extraction before spending the time to write the new data

2. Extract: Run the extraction program

3. Data ID: Select the data file to extract from

4. Time information: Input the first location, how many points to skip(ratio of current sampling frequency to
desired sampling frequency), and the ending point in time for the extraction

5. EXIT: Close the extractor and return to the data management page

6. Color Scheme: Change the color scheme

Once again, this creates a new entry on the data management page, which represents the newly created data.

Figure 23. Data Management Screen

11. signal Conditioning

This tool is used to condition a signal. The tool is used to filter and smooth signals. The tool is displayed in figure 25.
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Figure 24. Signal Conditioning

1. Run: Perform the desired conditioning

2. Preview: look at the conditioned signal before saving the data

3. Data ID: Select the data to condition

4. Filter Left Bound: Select the lowest frequency in the range (it is possible to use multiple entries)

5. Filter Right Bound: Select the highest frequency in the range (it is possible to use multiple entries)

6. Smoothing Factor: The larger this number the more smoothing that will be applied to the signal

7. Color Scheme: Change the color scheme

This will also create a new entry on the data management screen.

12. View Temporal Signal

This tool is used to view signals such as time series. The tool is displayed in figure 26.
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Figure 25. Temporal Viewer
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1. Plot: Plot the selected data

2. Plot PDF: Creates a bar plot showing the distribution of a signal

3. Bin Size: This sets the size of the bins used to plot the distribution bar plot

4. Data ID: Select the data to view

5. Data: Select the data file to view

6. EXIT: Close the viewer and return to the previous page

7. Data Management: View the data management screen

8. Color Scheme: Change the color scheme

13. View Field Data

This tool is used to view field data such as velocity contours. The tool is displayed in figure 27.
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Figure 26. View Field Data

1. Plot: Plot the selected data

2. Data Management: View the data management screen

3. Data ID: Select the data to view

4. Movie Select: Select a movie to play if one exists

5. Play: Play the selected movie (This will open the default video player)

6. Movie: Select this if you want to create a movie

7. Vector Index Select the vector component to plot

8. Snapshot Number: Plot the selected snapshot or the number of frames if creating a movie

9. EXIT: Close the viewer and return to the data management page

10. Color Scheme: Change the color scheme

When the user presses the “Plot” button, the user will be asked a few questions. The user is asked if instantaneous
or fluctuation contours should be plotted (if the average has been calculated).
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Figure 27. Instantaneous or Fluctuating

The user is then asked what to use as a maximum and minimum value, the number of contours, and the color
scheme to use.

Figure 28. Scaling the Contour Plots

The windows shown in figure 28 and 29 are used throughout ORANGE HSD when creating contour plots.

14. Show/Collapse Time Data:

The user can use the “Show/Collapse Time Data button” to show the signals that are stored in a data set.

Figure 29. Data Management Screen

After finishing with the data management page, the user will go back to the main screen. One can notice that even
more options are now available.
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Figure 30. High Speed Data Main GUI Screen

B. ORANGE POD

Let’s move on to ORANGE POD. ORANGE POD is a tool that will perform Proper Orthogonal Decomposition
(POD). POD is a tool that is used to decompose a data set into a set of optimal basis functions. The basis functions are
optimal in the sense of the mean square error. POD is discussed in more depth in section IV subsection A. It is highly
recommended that a user unfamiliar with POD read this section!

1. Capabilities of ORANGE POD

Here is a list of the current capabilities of ORANGE POD

• Compute the basis functions and POD coefficients

• Plot the basis functions

• Plot the time dependent POD Coefficients

• Plot reconstructed velocity image

• Create a reconstructed velocity movie

• Create a low dimensional data set

• Perform Snapshot, Classic, Split, and Gappy POD
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2. Using Orange POD

A screen shot of the ORANGE POD GUI is displayed in figure 32.
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Figure 31. ORANGE POD GUI

1. Run ORANGE POD: This button calculates the basis functions and coefficients

2. Data Management: This button opens the data management page

3. Data ID: Select the data set that POD will be performed on

4. Number of Snapshots: The use can input the number of snapshots to be used in the calculations. The default
is to use all of the snapshots

5. Modes to Save: Enter the number of modes that you want to save (Use this if you know you want to look at the
first N modes)

6. How many modes to save: a.) Enter the percent of energy for the calculated modes; or b.) Enter the number of
modes to calculate. ***This helps large data sets run faster and usually the higher modes are not of interest

7. Mode Index: The user can select from the drop down menu which modes to look at the modes(U component,
V component or W component).

8. Mode Number: Enter the mode number to plot (Mode 0 is the mean)

9. Plot: This will plot the selected spatial mode

10. Temporal Mode Number: Input the mode number to be plotted

11. Temporal Plot: Plot the selected time dependent POD coefficient

12. Plot Energy: Plot the energy convergence

13. Mode Start: Input the first mode to use in the reconstruction
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14. Mode Last: Input the last mode to use in the reconstruction

15. Snapshot Number: Input the snapshot that will be reconstructed

16. Modal Filter: Input the modes in the selected range that are not desired in the reconstruction

17. Reconstruction Plot: Plot the reconstruction

18. Movie Name: Input a name for the reconstruction movie file

19. Mode Start: Input the first mode to use in the reconstruction

20. Mode Last: Input the last mode to use in the reconstruction

21. First Snapshot: Input the first snapshot to use in the reconstruction

22. Number of Frames: Input the number of snapshots to be used in the reconstruction movie

23. Modal Filter: Input the modes in the selected range that are not desired in the reconstruction

24. Generate Movie: This generates a reconstruction movie

25. Generate Data: This generates a new data set based on the movie criterion.

26. Data ID 1: Select a POD data set

27. Data ID 2: Select another POD data set

28. Modes: Input the number of modes to compare

29. Plot: Pressing the plot button creates a contour plot showing the correlation between the two sets of modes.

30. Control Data ID: Select the control data if you are performing Split POD

31. Baseline Modes: Select the number of baseline modes to be used in the split POD

32. Split POD: Perform Split POD

33. Classic POD: This will perform classic POD on the data set selected in Data ID

34. Iterations: Number of iteration for the Gappy POD process

35. Modes: Number of modes to use in the Gappy POD process

36. Snapshots: Number of snapshots to use in the Gappy POD process

37. Gappy POD: This button will run Gappy POD and create and new estimate of the data using Gappy POD

38. Correct Format: This is used if the data has already been processed for POD. This should generally be set to
"No"

39. Snapshots per file: Enter how many snapshots are processed at one time. ***This helps speed up the code.
The higher the number the faster the code will perform. However, this number is limited by memory.

40. POD modes Calculated: This is used if the modes have been processed. This is generally set to "No". This
can be used if more spatial modes need to be plotted than were originally plotted(not used anymore).

41. Repair Data: This is the data set that has missing or corrupt data. The data set must have a “gappy_mask” file.

42. POD Data: This is the data that will be used to repair the corrupted data.

43. Modes: The number of modes to use in the repair process.

44. Snapshots: The number of snapshots to be repaired. This will always start with the first snapshot and repair the
number of snapshots desired

45. Average: If this is yes the average will not be subtracted from the data set.
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46. Reduced: If this is yes, the repair process will repair a reconstructed data set using the selected amount of
modes. (The POD must have been performed on the data set)

47. Fused POD: Perform fused POD

48. Color Scheme: This will change the color scheme

3. Running ORANGE POD

Below is set of instructions to run ORANGE POD after the installation process.

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main screen(figure 1).

4. Select the data set you are working with

5. Perform any formatting that needs to be done

6. Click the “Run ORANGE POD” button

7. This will open ORANGE POD

8. Select the data ID to be processed (3 in figure 32)

9. Button 1 in figure 32 should turn green if POD has not been performed yet and brown if POD has been performed
on the data already

10. Press the “Run ORANGE POD” button (1 in figure 32)

11. This can take a long time depending on the size of the data set.

4. Outputs

Below is a list of the important outputs from ORANGE POD.

• “Data ID”_POD_data: ORANGE POD will create this folder in order to store the data that will be output by
the code. This folder will be located in the project directory

• CSnapPOD.mat: This file is the kernel of the eigenvalue problem used to determine the basis function. It is
located in the POD_data directory for the correct data type

• mode#.fig: This is a Matlab figure of the basis function. These are located in the POD_data directory for the
correct data type. This file is created when one views the basis function using the button 9.

• mode#.tif: This is a .tif figure of the basis function. These are located in the POD_data directory for the correct
data type. This file is created when one views the basis function using the button 9.

• PhiU.mat: This contains the basis functions in the i direction. The different columns correspond to the mode
number. It is located in the POD_data directory for the correct data type

• PhiV.mat: This contains the basis functions in the j direction. The different columns correspond to the mode
number. It is located in the POD_data directory for the correct data type

• aPOD.mat: This is the time dependent POD coefficients. Each column corresponds to the mode number. It is
located in the POD_data directory for the correct data type

• Energy.mat: This contains the relative energy contained in each mode. It is located in the POD_data directory
for the correct data type
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When done using ORANGE POD press the exit button to return to the main screen. One will notice that ORANGE
LSE is now usable if you performed POD on a data set.

Figure 32. ORANGE HSD Main Screen

Let’s now look at the stochastic estimation tool.

C. ORANGE LSE

ORANGE LSE is code that will perform modified linear stochastic estimation (mLSE), and modified quadratic
stochastic estimation (mQSE). This technique estimates the field from a few points and is useful for flow control
applications, but can also be useful in processing “slow” data. For example, the velocity field can be estimated from a
pressure signal in order to get time dependent velocity information if PIV data is taken simultaneously with pressure.
It is highly recommended that a user unfamiliar with the technique read section IV subsection B to understand the
basics of stochastic estimation before using the code.

1. Capabilities of ORANGE LSE

Here is a list of the current capabilities of ORANGE LSE:

• Perform stochastic estimation: The user can use mLSE and mQSE

• Plot the coefficients The user can plot the coefficients that are used for each pressure sensor

• Plot Temporal Estimates: The user can plot the temporal POD coefficient from the estimate and compare it
with the original in spectral and temporal space.

• Reconstruction: The user can create a static image or movie of the estimated field. This is compared with the
POD reconstruction and the original field.

• Estimate the field: The user can take a time signal and use it to estimate the field.
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2. Using ORANGE LSE

A screen shot of ORANGE LSE is shown below in figure 34.
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Figure 33. ORANGE LSE Screen Shot

1. Run: This runs ORANGE LSE after the all inputs have been entered

2. Data Management: This opens the data management window

3. mLSE mQSE sLSE sQSE: Click the appropriate bubble for mLSE or mQSE

4. POD Data ID: Use the drop down list to select which POD coefficients estimate

5. Number of Modes: Input the number of modes to be estimated.

6. Observer Data ID: Use the drop down list to select the conditional signals to estimate the POD coefficients

7. Time Signals: Select which time signals will be used in the estimation

8. Pressure Sensor: Enter the sensor number for the coefficients that will be plotted

9. Plot Coefficient: Press this button to generate the coefficient plot

10. POD Coefficient: Input the mode number to be plotted

11. Plot aPOD: Press this button to plot the time dependent coefficients of the estimate and original in time and
spectral domain

12. Snapshot: Enter the snapshot that will be reconstructed. If the movies option is selected (15) this is how many
frames will be in the movie

13. Modes: This is how many modes will be used in the reconstruction.

14. Recon_LSE: Pressing this button will create a static image or movie of the estimate, POD Reconstruction, and
Original field

15. Movie: If this box is checked, a movie of the reconstruction will be created.

16. Time Signal: Enter the number of the time trace that will be used for the estimation. This does not have to be
the same time trace as 7, but must be from the same sensor.
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17. Number of Snapshots: Enter the number of snapshots to be estimated.

18. Estimate Field: Press this button to write velocity files created by stochastic estimation. These files will be
registered in the data management tool

19. EXIT: Exit ORANGE LSE and return to the main menu

20. Color Scheme: Change the color scheme of ORANGE LSE

The signal files should be down sampled to match the aPOD time trace if it is going to be used to generate the
coefficient matrix. This can be done in the data extraction tools that were discussed earlier. If the signal is being used
to estimate the field, the sampling frequency does not have to match the aPOD signal.

3. Running ORANGE LSE

Below is a set of instructions to run ORANGE LSE.

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main menu

4. Select the desired data folder

5. Perform any formatting that needs to be done

6. Compute the POD coefficients using ORANGE POD

7. Click the “Run ORANGE LSE” button

8. This will open ORANGE LSE

9. select the POD Data ID (4 in figure 34)

10. Enter the number of modes to be estimated (5 in figure 34)

11. Select the data type to estimate with (6 in figure 34)

12. Select the whether to mLSE, mQSE, sLSE, or sQSE (3 in figure 34)

13. Select the sensors to be used (7 in figure 34) ***The sensors used in the estimation should have a high correlation

14. Press “Run” to begin the analysis.

4. Outputs

Below is a list of the important outputs from ORANGE LSE.

• “Data ID”_LSE_QSE: This is a folder that is created and contains the outputs from ORANGE LSE. This is
contained in the project directory.

• A.mat: This is the coefficient matrix that is output by the ORANGE LSE. This is located in the LSE_QSE
directory inside the project directory.

• a_LSE.mat: This is the estimate of the time dependent POD coefficients. This is located in the LSE_QSE
directory inside the project directory.

• Data_ID__LSE_number of modes_Number of sensors: A new folder is created for the estimated data when
using button 18 in figure 34

When the user exits the ORANGE LSE, the main screen will appear again. The user can the choose to perform
more analyses on the data. Let’s now move to ORANGE Wavelet.
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D. ORANGE Wavelet

ORANGE Wavelet is a code that can perform a wavelet transform on a temporal data signal. The tool creates plots of
the wavelet coefficients, which can be used to show a time-frequency relationship.

1. Capabilities of ORANGE Wavelet

• Mexican Hat Wavelet

• Morlet Wavelet

• View wavelet coefficients

2. Using ORANGE Wavelet

The gui used to run ORANGE wavelet is displayed in Figure 35.
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Figure 34. ORANGE Wavelet

1. Run: This will perform the wavelet transformation on the selected data

2. Data Management: This opens the data management page

3. Data ID: Select the data set on which wavelet analysis will be performed

4. Wavelet Type: Select the type of wavelet to use (currently you can use Mexican Hat or Morlet)

5. Data Selection: Select the signal on which wavelet analysis will be performed (You can select multiple signals
and perform the analysis in batch)

6. Lowest Frequency: Select the smallest frequency that will be resolved (This needs to be larger than zero)

7. Number of Frequencies: Select how many frequencies will be resolved

8. Mode number: If performing wavelet analysis on the POD coefficient enter the mode numbers it will be
performed on

9. Wavelet Maps: This will list all of the wavelet maps that have been computed. The user can select one and
press plot (button 10)
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10. Plot: This will plot the selected wavelet map

11. Generate List of Figures: This will generate a list of all the wavelet maps

12. Delete: This will delete the selected wavelet map

13. EXIT: This closes ORANGE Wavelet and opens the main screen

14. Color Scheme: Change the color scheme

3. Running ORANGE Wavelet

To run ORANGE Wavelet, follow the directions below:

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main menu

4. Select the data folder

5. Perform any formatting that needs to be done

6. Click the “Run ORANGE Wavelet” button

7. This will open ORANGE Wavelet

8. Select the Data ID (3 in figure 35)

9. Select the files that will be processed (5 in figure 35)

10. Enter the lowest frequency to be measured (6 in figure 35)

11. Enter the number of frequencies to be used between the cut off and lowest frequency (7 in figure 35)

12. If these are time dependent modes, enter the mode numbers to be processed (8 in figure 35)

13. Press the run button (1 in figure 35)

14. Once finished processing the data, you can view the plots by selecting the plot to be viewed (9 in figure 35)

15. Then Press the plot button (10 in figure 35)

4. Outputs

Below is a list of the important outputs from ORANGE Wavelets.

• Wavelet_data: This is a folder that is created and contains the outputs from ORANGE Wavelet. This is con-
tained in the project directory.

• Mex_Wavelet_X.fig: This is a Matlab figure file that contains the wavelet map and time trace where “X” is
a description of the time trace that was put through the Wavelet analysis. This is located in the Wavelet_data
directory inside the project directory.

• Mex_Wavelet_X.mat: This is a Matlab data file that contains the wavelet coefficients where “X” is a description
of the time trace that was put through the Wavelet analysis. This is located in the Wavelet_data directory inside
the project directory.

• Morlet_Wavelet_X.fig: This is a Matlab figure file that contains the wavelet map and time trace where “X” is
a description of the time trace that was put through the Wavelet analysis. This is located in the Wavelet_data
directory inside the project directory.

• Morlet_Wavelet_X.mat: This is a Matlab data file that contains the wavelet coefficients where “X” is a descrip-
tion of the time trace that was put through the Wavelet analysis. This is located in the Wavelet_data directory
inside the project directory.

When done the user can press the Exit button and return to the main menu and select a different option. Let’s look
at ORANGE Correlate.
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E. ORANGE Correlate

ORANGE correlate is the tool to perform correlations, fast Fourier transforms (FFT), and spectrum

1. Capabilities of ORANGE Correlate

• FFT

• Auto and cross correlations

• Auto and cross spectrum

• plot multiple sets of data on a single axes

2. Using ORANGE Correlate

The gui to use ORANGE correlate is shown in figure 36.
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Figure 35. ORANGE Correlate

1. Run: This button will run the selected analysis

2. Data Management: This will bring up the data management page

3. Analysis Type: Select Correlation, Spectrum, or FFT from the drop down menu

4. Block Size: Enter the size of the block you will use for block averaging (This defaults to the size of the signal)

5. Moving Filter Width: This is used to smooth the output if the record length is too small. It will average the
data in over the width of the filter

6. Data ID 1: Select the data that will be analyzed

7. Signal Selection : Select the first signal that will be analyzed (more than one can be selected)

8. Mode number 1: If using POD coefficients, enter the mode numbers here

9. Data ID 2: Select the data to be analyzed
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10. Signal Selection 2: Select the second set of signals that will be analyzed (This is only for correlations and
spectrum)

11. Mode number 2: If using POD coefficients, enter the mode numbers here

12. Plot Analysis: Select the analysis that will be plotted (This matches item 3)

13. Plot: Plot the data from the selected analyses

14. Delete: Delete the selected data

15. Plot Selection: Select what to plot (more that one can be selected)

16. EXIT: This will close the ORANGE Correlate window and open the main menu

17. Color Scheme: Change the color scheme

3. Running ORANGE Correlate

To run ORANGE correlate follow the directions below:

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main menu.

4. Select the data folder

5. Perform any formatting that needs to be done

6. Click the “Run ORANGE correlate” button

7. This will open ORANGE Correlate

8. Select the analysis to be performed (3 in figure 36)

9. Select the Data ID (6 in figure 36)

10. Select the files that will be processed (7 in figure 36)

11. If these are time dependent modes, enter the mode numbers to be processed (8 in figure 35)

12. Select the data set to correlate against if performing correlations or spectrum (9 in figure 36)

13. Select the data files to correlate against if performing correlations of spectrum (10 in figure 36)

14. If these are time dependent modes, enter the mode numbers to be processed (11 in figure 36)

15. Press the run button (1 in figure 36)

16. Once finished processing the data, you can view the plots by selecting the plot to be viewed (you may select as
many as you want (15 in figure 36)

17. Plot the data (13 in figure 36)
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4. Outputs

Below is a list of the important outputs from ORANGE Correlate.

• Correlation This is a directory inside the project directory that contain all of the correlation data

• Correlation_name_name1.mat: This file contains the correlation between name and name1. It is located in
the directory Correlation

• Spectrum This is a directory inside the project directory that contain all of the spectrum data

• Spectrum_name_name1.mat: This file contains the spectrum between name and name1. It is located in the
directory Spectrum

• FFT This is a directory inside the project directory that contain all of the FFT data

• fft_name.mat: This file contains the FFT of name. It is located in the directory FFT

The user can exit ORANGE Correlate and return to the main screen and use another tool. Let’s look at the statistics
tool

F. ORANGE Statistics

The ORANGE HSD tool includes a statistics tool. This tool calculates the average, RMS, skew, and kurtosis of field
data. The tool also shows a convergence of the various statistics. The tool is shown in figure 37.
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Figure 36. Statistics Tool

1. Calculate Statistics: This will calculate the statistics for the selected data set

2. Data ID: Select the data for which the statistics will be calculated

3. Moment: Use this to select which statistic to calculate. One can chose Average, RMS, Skewness, Kurtosis, or
all. This is also used to determine which statistic to view.

4. View: View the selected statistic

5. EXIT: Close the statistics screen and return to the main menu

6. Color Scheme: Change the color scheme

1. Running ORANGE Statistics

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main menu

4. Select the data folder

5. Perform any formatting that needs to be done
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6. Push the “Calculate Statistics” button (this opens ORANGE Statistics)

7. Select the Data ID (2 in figure 37)

8. Select which statistic to calculate (3 in figure 37)

9. Push “Calculate Statistics” (1 in figure 37)

The user can exit ORANGE Statistics and return to the main screen and select another tool. Let’s look at the
custom function tool.

G. Custom Functions

The ORANGE HSD tool also comes with a custom function tool. This can be used to calculate different functions for
the data sets. (i.e. curl) The tool is shown in figure 38.
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Figure 37. Custom Function

1. Create Equation: This will calculate the custom function on the desired data set

2. Data ID: Select the data that the calculator will use

3. Custom Function: Enter the custom function in this location using Matlab syntax

4. EXIT: Close the ORANGE Calculator screen and return to the main menu

5. Color Scheme: Change the color scheme

1. Running ORANGE Calculator

1. Open Matlab

2. Type “High_Speed_Data” in the command window

3. This will open the main menu

4. Select the data folder

5. Perform any formatting that needs to be done

6. Push the “Create Custom Function” button (this opens ORANGE Calculator)

7. Select the Data ID (2 in figure 38)
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8. Input you equation into the equation box (3 in figure 38)

9. Press the “Create Equation” button (1 in figure 38)

10. This will create a new data set that is stored in the data management tool

2. Creating a New Function

A new function can be created and placed in the ORANGE calculator folder in the subfunction folder in the ORANGE
HSD folder. This new function can then be used by the custom function tool. See q_criterion.m for an example of
how to do this.

The above section describes the tools included in ORANGE HSD and how to use them. A video tutorial will also
be available to show the execution of the code.

We now will briefly discus the theory behind some of the tools.

IV. Theory

A. Proper Orthogonal Decomposition

POD is a reduced order modeling technique first introduced to fluid dynamics by Lumley in 1967.1 It is basically a
Karhunen-Loeve expansion or principle component analysis depending on the field the method is being used. This
can be used for a variety of applications, anywhere from turbulence1 to facial recognition.2 POD is a way of building
a basis for a flow that is based on the energy content of the flow. POD will create bases based on energy content unlike
Fourier analysis ,for example, where the basis is arbitrarily chosen to be a combination of sines and cosines. The first
mode will be the most energetic and the energy content of the higher modes will continue to decrease. This method is
used to capture the structures that have the most energy but not necessarily the dynamics of the flow field.
The basis is created by maximizing the mean square projection of the velocity3 or in other words trying to find the
best fit for your data set. The maximization of this becomes an eigenvalue problem that must be solved to determine
the basis. There are many different variations of POD, some that can be used to study flow control such as split POD,4

Filtered POD5 which filters out higher frequency noise, snapshot POD6 which is a modification to classical POD1

used in order to decrease the size of the eigenvalue problem for data sets with large amounts of spatial resolution. The
method for performing Classical POD, Snapshot POD, split POD, and Gappy POD will be explained in the following
sections.

1. Classical POD

As stated above, the maximizing of the mean squared projection of the velocity creates an eigenvalue problem that can
be seen below in equation 1.

∫
Ri j(x,x′)φ

(n)
j (x)dx′ = λ nφ (n)

i (x) (1)

Where φ is the eigenvector, λ is the eigenvalue (energy), and Ri j(x,x′) is the time averaged spatial two-point
velocity correlation give by equation 2. The two point correlation is a tensor that includes the autocorrelations for all
the components in the data field as well as the cross correlations between the components.

Ri j(x,x′) =< ui(
−→x , to),u j(

−→
x′ , to)> (2)

In equation 2 u is the velocity of the flow or any other variable depending on what is being studied, to is time, and
x is the position vector. The kernel for this problem Ri j(x,x′) can be written as a block matrix shown in equation 3.




< u(−→x , to),u(
−→
x′ , to)> < u(−→x , to),v(

−→
x′ , to)> < u(−→x , to),w(

−→
x′ , to)>

< v(−→x , to),u(
−→
x′ , to)> < v(−→x , to),v(

−→
x′ , to)> < v(−→x , to),w(

−→
x′ , to)>

< w(−→x , to),u(
−→
x′ , to)> < w(−→x , to),v(

−→
x′ , to)> < w(−→x , to),w(

−→
x′ , to)>


 (3)

Solving for the eigenvalues and eigenvectors for equation 3 will give the spatial modes for the flow. With the
spatial modes, the POD coefficients can be found by projecting the velocity fields onto the spatial modes. This can be
seen in equation 4.
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an(t) =
∫

ui(
−→x , t)φ (n)

i (−→x )d−→x (4)

With the POD modes and the POD coefficients, the flow can be reconstructed. If all of the POD modes are used in
the reconstruction, the flow field is reconstructed completely. The reconstruction is shown below in equation 5.

ui(
−→x , t) =

Nm

∑
n=1

an(t)φ
(n)
i (−→x ) (5)

2. Snapshot POD

Another method of POD that is a modification of Classical POD is called Snapshot POD. This method was introduced
in 1987 by Sirovich.6 The method transforms the eigenvalue problem from dimension of the number of spatial points
multiplied by number of components to dimension of temporal points or snapshots. This method is preferred over
Classical POD when analyzing a large spatial data set, such as two camera PIV3 or large eddy simulation (LES) or
direct numerical simulation (DNS) data sets. This methods starts first by calculating the temporal eigenfunctions using
equation 6.

∫
C(t, t ′)an(t ′)dt ′ = λ (n)an(t) (6)

In equation 6, C(t, t ′) is defined in equation 7 and an(t) are the temporal modes or time dependent POD coefficients.
You can notice in equation 7 that the kernel C(t, t ′) is not the summation of the autocorrelations of the velocity
components in the flow. This means that the eigenvalue problem is no longer coupled. This coupling will be taken
care of when the spatial modes are calculated. The uncoupling of the eigenvalue problem along with doing a temporal
correlation instead of a spatial correlation reduces the problem size significantly for data sets with a large amount of
spatial resolution.

C(t, t ′) =
1
T

∫
ui(
−→x , t)ui(

−→
x′ , t)d−→x (7)

In equation 7, T is the total number of snapshots and u is the velocity field.
In order to ensure the modes are the same for both Snapshot and Classical POD, equation 8 is used to scale the

temporal modes correctly.

< an ·am >= δmnλ (m) (8)

Equation 8 basically states that the temporal modes should be orthogonal (which they are by definition) and have
a magnitude equal to the square root of the eigenvalues, which is consistent with Classical POD.

Equation 9 is used to get the spatial modes. By projecting each component onto the temporal POD coefficients,
the spatial POD modes can be found. This takes care of the coupling as mentioned earlier.

φ (n)(−→x ) =
1

T λ (n)

∫
an(t)ui(

−→x , t)dt (9)

The spatial eigenfunctions are orthogonal as are the spatial eigenvalues for Classical POD.

3. Split POD

Another variant of POD is known as Split POD.4 In this version of POD, one can use two different data sets and find
modes that correspond to differences in the data sets. This has been used by Camphouse et. al. to determine the effects
of flow control. The idea for this came from the fact that the controller is adding very little energy and the control
information will be dominated by baseline information. Using the split POD procedure, the baseline information can
be removed from the control data. The procedure is as follows: Perform POD on the baseline data. This will give
basis functions Φ(b). The control data (secondary data set) will then be projected onto the baseline basis functions.

bi j =<Ui,Φ
(b)
j > (10)

Ui are snapshots from the secondary data set and < , > denotes an inner product.
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The part of the secondary data that is not contained in the baseline data is extracted.

Ūi =Ui−
Mb

∑
j=1

bi jΦ
(b)
j (11)

Ūi is the part of the secondary data not contained in the baseline information, and Mb is the number of baseline modes
to use.

POD is then performed on the new data (Ūi). This gives basis functions for information not contained in the
baseline data. The secondary data can now be expressed in terms of both baseline and secondary information.

4. Gappy POD

Gappy POD was created by Everson and Sirovich in 19957 to handle “gappy” data. Gappy data is data that has gaps or
missing information for one reason or another. The technique estimates the missing information. Everson and Sirovich
first demonstrated this technique using marred photographs and repairing them with Gappy POD. Specifically, they
showed missing data from human faces could be determined from a basis formed by similar types of faces. They also
observed that if not careful, errors can arise. This was shown by attempting to repair an image of a monkey’s face
with a human face basis. This created a repaired image that looked like a human face. Gappy POD was also used for
aerodynamic applications by Bui-Thanh et. al.8 to reconstruct a flow field based on airfoil surface data and was used
by Ruscher et. al.9 to perform POD on a set of snapshots with an airfoil moving through the image.

Gappy POD works by performing POD on non-gappy data. The data with missing information is then recon-
structed using a linear combination of the POD basis calculated from the non-gappy data. The coefficients of the
linear combination are then determined by solving a least squares problem that minimizes the difference between the
linear reconstruction and the gappy data. The data will be repaired correctly if the data is contained in the span of the
original non-gappy data.

B 

ϕ 

Σa(t)ϕ(x) 

O 

A 

Repaired Estimate 

Regression 

POD 

Figure 38. Diagram of the Gappy POD Method

The math behind Gappy POD is presented below. First, the gappy points must be located and stored in a mask
vector. The mask vector is defined such that if the data is missing the mask is zero and if the data is not missing it is
one.

maskt
i =

{
1 if data is not missing
0 if data is missing

(12)

With the mask vector, a “gappy inner product” is defined as:

< u,v >gappy=<< u,mask >,< v,mask >> (13)

In equation 13, u and v are two vectors. The estimate of the gappy data is then defined as a linear combination of the
non-gappy modes.

g̃ =
n

∑
i=1

biφ (i) (14)
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In equation 14, b is the linear combination coefficient, φ is the POD basis from the non-gappy data and g̃ is the POD
estimated gappy data. Then the error between the estimate and original is minimized at the non-gappy points.

< g− g̃,g− g̃ >gappy (15)

In equation 15, g is the original gappy data. The minimization problem is solved by taking the derivative of the system
with respect to bi and setting it equal to zero. This will produce the following linear system that can be solved for bi.

< φ i,φ j >gappy bi =< g,φi >gappy (16)

Now, the repaired data can be constructed using the following equation.

g =

{
g if mask = 1
g̃ if mask =0

(17)

In addition to repairing a single marred image, Gappy POD can be extended to repair a set of marred images using
an iterative process (figure 40). The process works by filling in the missing data with a spatial average for each image.
Then POD is performed on the images producing a POD basis. Then equation 16 is solved for each image and each
image is modified using equation 17. Once this has been done for all of the images, the process is repeated until the
solution has converged.
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Figure 39. Diagram of the Iterative Gappy POD Method

5. Fused POD

Fused POD is a new data processing technique developed to improve aerodynamic data. It estimates missing experi-
mental data caused by shadows, reflections, or poor data. The technique is inspired by the Gappy POD technique. The
techniques both use a linear regression to determine the POD coefficients that best fit the data, so the math is quite
similar.

However, the application of the techniques are very different. The Gappy POD technique uses only the corrupted
data set to estimate the “bad” data. The Gappy POD procedure requires that only a few bad snapshots exist,meaning
the statistics of the rest of the data are “good” enough to calculate the POD modes. Then those modes can be used to
estimate the data in the “bad” snapshots. Gappy POD can also be used if all the snapshots have missing data randomly
distributed in time and space. An iterative process can be used to estimate the missing data.

If you have corruption at a spatial location in all snapshots, one would not be able to use Gappy POD. This is
where Fused POD is needed. In Fused POD, one obtains the POD modes from another source. The other source can
be another set of data that is capturing the same phenomena or from the same data set and some physical knowledge of
how the data is related. This gives statistical information about the data in the missing regions and allows estimation
in that region.

The other difference between the two techniques is the implementation of a wavelet fusion process to help smooth
some of the data. When filling in the data, a discontinuity can form. The discontinuity is a product of the estimated
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data not fitting the actual data perfectly, and the fact the estimated data is low dimensional and missing high energy
information.

A diagram of Fused POD is shown in figure 41. The technique works by calculating the POD modes from another
source of data. In figure 41, the other data set is represented by CFD data though it could come from any source.
The POD coefficients are then calculated using a linear regression (this is the same way Gappy POD fits the data).
The estimated POD coefficients and modes are used to reconstruct the data (Green box). The estimated data is then
inserted where the missing data is located. As stated before, this can cause a discontinuity. So, the reconstructed data
(green data) and filled-in data (pink with green) are fused using wavelet image fusion.
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Figure 40. Fused POD Data Fusion Technique Flow Chart

B. Stochastic Estimation

Stochastic estimation is a tool first proposed by Adrian in 1977.10 In this work, Adrian show the velocity at a new
point can be estimated from information at the current location. Adrian states the velocity at a point is a function of
time, ∆x, and conditional event E.

u(x, t) = F(E,x, t) (18)

When given E, the best mean square representation is given by a conditional average.11 The conditional average can
be estimated as a linear combination of the conditional data. Minimizing the error between the actual velocity and the
linear estimate produces the following equation as stated by Bonnet et. al.12

ui(x′) = Ai j(x′)u j(x) (19)

In equation 19, Ai j is given by the following relation: u j(x)uk(x)Ai j = u j(x)ui(x′) where u j(x)uk(x) is the Reynolds
stress and u j(x)ui(x′) is the two-point correlation. This technique was expanded upon by Taylor et. al.13 Taylor’s
technique involves performing POD and then using another signal to estimate the POD coefficients. Then the field
is rebuilt using the POD basis and estimated coefficients. The modified stochastic estimation, as it is called, requires
the conditional signal be well correlated with the POD coefficients. The technique works by assuming the POD
coefficients can be written as a power series expansion of the observer signal.

ãn(t)≈ AniPi(t)+Bni jPi(t)Pj(t)+Cni jkPi(t)Pj(t)Pk(t)+ . . . (20)

The coefficients (Ani, Bni j, Cni jk, ...) are determined by minimizing the mean square error between the estimate and
actual value of the POD coefficients.

(ãn(t)−an(t))2 (21)

The power series estimate is then truncated. If only the first term is used, the estimate is known as linear stochastic
estimation (LSE). If the first two terms are used, the estimate is known as quadratic stochastic estimation (QSE). Tung
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et. al. shows not much information is gained from higher order estimates.14 The minimization problem reduces to a
linear set of equations (LSE equation 22 and QSE equation 23).




< P1P1 > .. . < PqP1 >

...
. . .

...

< P1Pq > .. . < PqPq >







An1

...

Anq







< anP1 >

...

< anPq >


 (22)




< P1P1 > .. . < PqP1 > < P1P1P1 > .. . < PqPqP1 >

...
. . .

...
...

. . .
...

< P1Pq > .. . < PqPq > < P1P1Pq > .. . < PqPqPq >

< P1P1P1 > .. . < PqP1P1 > < P1P1P1P1 > .. . < PqPqP1P1 >

...
...

...
...

< P1PjPk >
. . . < PqPjPk > < P1P1PjPk >

. . . < PqPqPjPk >

...
...

...
...

< P1PqPq > .. . < PqPqPq > < P1P1PqPq >
. . . < PqPqPqPq >



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
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< anPjPk >

...

< anPqPq >




(23)

The stochastic estimation technique has been used for many different reasons in the fluid dynamic community.
One such example is work done by Pinier et. al.3 where mLSE was used to estimate the time resolved velocity field
around a stalled NACA4412 airfoil.

Bonnet et. al.12 also used stochastic estimation. This was done to estimate the shear layer in a jet. The mea-
surements were obtained using “X” wires. This work shows the stochastic estimation can be used for shear layer type
flows.

Stochastic estimation was used by Gutmark et. al. to estimate the flow field in a swirling jet.15 They used stochastic
estimation to reconstruct the entire field using hot wires and pressure sensors. The technique proved useful in identify
large structures in the flow.

An axisymmetric jet was estimated using stochastic estimation by Tinney et. al.16 Using PIV measurements and
pressure sensors, a full 3D time resolved estimate of the jet flow was created.

C. Wavelets

Wavelet decomposition is a technique that has been used in signal processing in order to compress signals, but has
also been used as a way of analyzing different scales in turbulent flow.17 This tool has been used to extract coherent
structures in turbulence such as work done by Lewalle et. al.18

There are many different wavelet functions . A few are the Mexican Hat wavelet

W (σ , t) =
1

2
√

πσ
e
−t2
4σ (24)

and the Morlet wavelet.
W (t) = (e2iπt − e−z2

0)e−2π2t2/z2
0 (25)

These are two common wavelets used in the analysis of fluid dynamic data.
The math behind the wavelet transform involves convolving a signal with the wavelet function for the scales of

interest. ∫ ∞

−∞
u(t ′)∗W (σ , t− t ′)dt ′ (26)

where u is the signal being analyzed, W is the wavelet function and σ is the scale.
Schobeiri et. al. uses wavelet analysis to understand the flow structure in a boundary layer on a concave plate

during transition.19 The wavelet analysis was chosen for this work due to the complex nature of the transitional flow.
The wavelet analysis was able to pick out the different scales present.

Schneider et. al. uses wavelets to show that a flow field can be decomposed into two parts, coherent structures and
background structures. Schneider et. al. further demonstrates that this decomposition can be used to simulate a 3D
mixing layer. A similar idea is discussed by Farge et. al.20
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V. Trouble Shooting

The code may at times not work in the desired way at times. Here is a list of things that can be done to fix the code.

1. Make sure the Matlab path is set to the project directory

(a) If the path is incorrect the code will not find the data correctly. The path can change if another error occurs

(b) Usually typing “cd ..” into the command window will solve the issue

2. Make sure the files are correctly named.

(a) If a file is created manually the names of the required files could be incorrect.

3. Try restarting ORANGE HSD

4. Try restarting Matlab

VI. Useful hints

1. When viewing a spacial image, the average can be viewed by typing a “0” into the box. (8 in figure 32 and 8 in
figure 27)

VII. Possible Future Work

1. Continue to fix bugs that are found

2. Add spectral stochastic estimation to the LSE tool

3. Add a data fusion tool to the code

4. Add an OID tool to the code

VIII. Code Listing

Folder ORANGE HSD 3.0: This is the Main directory for ORANGE HSD

High_Speed_Data.m: This is the code that calls the ORANGE HSD main screen

Subfunctions: This directory contains all of the functions that are used in the program

Calculator: This directory contains the files used to run the custom function tool
Calculator.m: This creates and controls the custom function GUI
Custom_function.m: This will apply a function to the selected data set
Flip_data.m: This will flip a data data set. It will place the data located at the bottom on top and top

on the bottom. It also negates the v velocity.
q_criterion.m: This is a user defined function that calculates q criterion on 2D data sets
Rotate_data.m: This rotates the data some desired degree. It uses interpolation to accomplish this.
Swirl_L2.m: This a user defined function that calculates the swirl on 2D data sets

Conditioning: This directory contains the codes that run the signal-conditioning tool
Conditioning.m: This will perform the signal conditioning on the selected data set
ORANGE_Conditioning.m: This controls and runs the signal conditioning GUI.
Preview_Conditioning.m: This shows what the conditioned signal looks like.

Conversion: This directory contains the files used to convert data into a format usable by ORANGE
HSD

Create_Velocity_file.m: This function will write the .mat file when converting OVERFLOW data
Extract_Velocity_Temporal.m: This function will extract a temporal signal at user-selected loca-

tions
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Format_Data.m: This function controls the format data GUI
Format_Fluent.m This controls and runs the gui for converting Fluent data
format_GE_data.m: This will read an ascii grid file (i x y z) and an ascii data file (i rho P U V W)
format_lumin_pod2.m: This function converts the .tif files into the .mat files needed to run OR-

ANGE HSD
Format_OVERFLOW.m: This function controls the GUI for formatting the OVERFLOW data(Not

used anymore)
format_piv_pod_dantec.m: This function formats Dantec PIV data stored in a text file
format_piv_pod_lavision.m: This function converts the Lavision .vc7 files into .mat files
format_piv_pod_vort.m: This function calculates the vorticity for the Lavision files and writes the

vorticity as a .mat file
Format_Pressure_Data.m: This function converts pressure data stored as .txt files into .mat files
OVERFLOW_Converter.m: This will read overflow files and convert them to .mat files
OVERFLOW_Converter_Pressure.m: This will read overflow files, calculate the pressure and

convert it to .mat files
Read_Fluent_Data.m: This will read data from fluent that is in block-formatted tecplot
Read_Fluent_Data_tecplot_point.m: This will read data from fluent in point formatted tecplot
Read_OVERFLOW_Data.m This function reads the OVERFLOW grid and solution files(not used

anymore)

Data_Extraction: This folder contains the files to perform data extraction
Data_Extract.m: This performs the 2D-2D extraction
Data_Extract_View.m: This previews the 2D-2D extraction
Data_Extract_View1D.m: This previews the 1D-1D extraction
Data_Extract1D.m: This performs the 1D-1D extraction
Extract3D_2D.m: This performs the 3D-2D extraction
ORANGE_1D_Extraction.m: This runs and controls the GUI to perform the 1D-1D extraction
ORANGE_Extraction.m: This controls and runs the GUI to run perform the 2D-1D extraction
ORANGE_Extraction_1D.m: This controls the 1D-1D extraction GUI (not used anymore)
ORANGE_Extraction_3D_2D.m: This controls and runs the 3D-2D extraction GUI

Data_View: This directory contains the files used to view the data
Field_Data_Viewer.m: This controls and runs the GUI used to view contours plots
Plot_PDF.m: This separates the data into bins and plots a bar graph of the bins (PDF plot)
Plot_signal.m: This plots the 1D data
Plot_Spatial.m: This plots the 2D data
Time_Trace_Data_Veiwer.m: This controls and runs the gui to plot line plots

Orange_Correlations: This directory contains the files to run ORANGE Correlations
cor_Data.m: This function calculates the correlation function
FFT_Data.m: This function calculates the Fourier transform of the data
Orange_Correlate.m: This function controls the ORANGE Correlate GUI
plot_sfc.m: This function plots the correlation, fft, or spectrum for the data
spectrum_Data.m: This function calculates the spectrum of the data

Orange_LSE_QSE: This directory contains the files to run ORANGE LSE
estimate_field.m: This function uses the POD eigenfunctions and estimate POD coefficients to

estimate the velocity field
LSE.m: This function performs the LSE analysis and outputs the estimate POD coefficients and

mapping LSE mapping matrix
Orange_LSE.m This function controls the ORANGE LSE GUI
plot_aPOD_Estimate.m: This plots the estimated POD coefficients on the same axis as the actual

POD coefficients
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QSE.m: This function performs the QSE analysis and outputs the estimate POD coefficients and
mapping QSE mapping matrix

recon_pic_LSE: This functions plots a reconstructed velocity field using the original POD coeffi-
cients and the estimated coefficients and compares it with the original velocity field

Orange_POD: This directory contains the files to run ORANGE POD
aPOD_plot.m: This function will plot the time dependent POD coefficients
AVE_Fluc_Kernel.m: This function calculates the average and POD kernel
Classic_POD.m: This runs the classic version of POD
Fused_POD.m: This runs the fused POD process
Gappy_POD.m: This runs Gappy POD
kernel.exe: This is the executable that calculates the kernel in Fortran
kernel.F90: This is the source code for the kernel calculation in Fortran
load_data.m This function reads .mat files for the parallel version of Matlab
Modal_correlation.m: This compares two different sets of modes and produces a correlation plot
ORANGE_POD_V1_1_Beta.m: This function controls all of the inputs
ORANGE_POD_V2_2.m: This function controls the POD GUI
ORANGE_Split_POD.m: This runs split POD
parallel_AVE_Fluc_Kernel.m: This function calculates the average and POD kernel for parallel

Matlab
Parallel_Snapshot_POD.m: This function calculates the POD modes and coefficients for parallel

Matlab
Plot_POD_modes.m: This function creates plots of the POD modes (not used anymore)
recon_data.m: This function creates a reconstruction of a data set, which can be used in later

analyses
recon_pic.m: This function creates a reconstruction of an individual snapshot
recon_plif_pic.m: This function creates a .tif image of the reconstructed PLIF data
recon_vid_contour.m: This function creates a reconstructed video of the data
reconpicmov.m: This function creates a reconstructed video of the PLIF data
Snapshot_POD.m: This function calculates the POD modes and coefficients
Write_output_file.m: This function writes an output file that tells the time it took to compute the

POD modes
Orange_Wavelet: This directory contains the files to run ORANGE Wavelet

Mexhat_wavelet.m This function computes the Mexican hat wavelet coefficients
Morlet_wavelet.m This function computes the Morlet wavelet coefficients
Orange_Wavelet.m This function controls the ORANGE wavelet GUI
plot_wavelet.m This function plots the wavelet map

Statistics: This directory contains the files to run the statistics tool
ORANGE_Stats.m: This is the file that controls and runs the statistics GUI
Statistics.m: This file calculates the statistics

Data_management.m: This registers the data when it is first imported
Data_management_screen.m: This controls and runs the data management GUI
Masking.m: This is used to create a mask for a data set
Organize_data.m: This sets up new projects and loads in the new data
progressbar.m: This makes a progress bar when the code is running (Created by Steve Hoelzer)
Splash.m: This creates a splash screen at the start up of the program
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         

        

   

       

      

        

       

       

         

       

       

     

        

         

         

        

           

           

         

           

         

          

         



        

       

          

        

        

         

         

         

         

        

      

        

          

      

       

    

      

           

           

           

    

        

         

            

       

           

       

          

       

        

         

   

     

          

         

        

         

           

      

           

        

   

           

           

        

       

         

        

       

     

       

        

          

         

        



        

          

       

       

  

        

        

        

        

         

        

          

          

         

         

        

         

 

         

         

          

           



Z

         

  

       

        

         

        

          

        

      

          



Pressure

sensors

LDA

        

       

         

       

         

           

         

       

       

  

       

       

       

         

         

  

Pressure ring

Laser sheetCamera

      

     

         

         

        



     

          

        

        

         

       

          

          

        



         

         

        

        

          

 

  

        

         

        

          

        

       

        

           

       

       

          

  

     

        

       

        

        

         

       

   

           

        

         

         

        

             

         

           

        
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



 




 




 





 





    

    

    

    

       

   



 




 




 





 





    

    

    

    

       

       



     

    

















 

    

















 

    

















 

       

















 

 

    

















 

    

















 

    

















 

       

















 

 



        

       

          

       

        

   

          

        

       

          

          

         

         

       

    

         

         

        

       

      

          

        

          

         

        

        

         




   

  

  

  

  

      

         

          

          

      

         

         

         

 

  

          

          

        

        

       



         

      

          

    

   




 
     

         

     

        

          

          

           

            
             

         

         

           

      

         

         

            

            

   

       

        

       

        

        

          

      

         

         

           

       

         

       

         

        

      



     

        

        

         

        

        

       



       

        

         

         

         

      

         

      
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         

 



     

          

         

         

      

        

 

           

     

         

         

     

          

         

        

         

        

     

          

        

   

           

         

        

        

   

            

         

    

           

         

          

      

            

        

        

 

         

       

          

         

          

          

       

        

 

        

         

   

        

    

        

         

         

         

 

         

     

          

      

   

        

 

       



           

      

  
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