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Nonlinear System Identification 
Using Recurrent Networks 

Hyukjoon Lee, Yongseok Park 1 

Kishan Mehrotra, Chilukuri Mohan, Sanjay Ranka 

Abstract 

This paper presents empirical results on the application of neural networks to 

system identification and inverse system identification. Recurrent and Feedforward 

network models are used to build an emulator of a simple nonlinear gantry crane 

system, and for the inverse dynamics of the system. Recurrent networks were observed 

to perform slightly better than feedforward networks for these problems. 

1 Introduction 

Classical linear control provides robustness over a relatively small range of uncertainty. 

Adaptive control techniques have been developed for systems that must perform over large 

ranges of uncertainties due to large variations in parameter values, environmental condi-

tions, and signal inputs. Neural networks are employed in adaptive control systems to 

increase the range of uncertainty that can be tolerated without sacrificing fast response, 

and without requiring human intervention. 

Many successful works in the application of neural networks to various control problems 

have been reported, e.g., pole-balancing [1], robot arm control [2], truck backing-up [3], 

and inverse robot kinematics [5]. These systems have been successful due to (i) realization 

of fast decision making and control by parallel computation, (ii) fast adaptation to a large 

number of parameters as the convergence rate to a steady state is independent of the num

ber of neurons in the network, (iii) adaptation to parameter variations over continuous and 

1Currently at the Dept. of Computer Engg., Purdue University 
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discrete domains (iv) natural fault tolerance due to the distributed representation of infor

mation, (v) robustness to variations in parameters not modeled, due to the generalization 

properties of networks. 

The process of incorporating a neural network into an adaptive control system consists of 

building neural networks that can recognize change in parameter values as well as estimate 

the inverse function of a system. Nonlinear functions applicable to control problems may 

be serial order or time-varying, and neural networks with recurrent connections have been 

known to have good performance for such problems in other fields. Nevertheless only a few 

applications of recurrent networks to practical problems have been reported (and almost 

none in control), e.g., in speech recognition [7], temporal pattern recognition [8, 9], and 

forecasting sunspot numbers [10]. 

In this paper we compare a recurrent network and a multilayer feedforward network 

(trained by error backpropagation [4]) to emulate and approximate the direct and inverse 

transfer function of a simple time-varying system, which can be represented as 

X(t) = A[X(t), U(t), t] (1) 

Y(t) = B[X(t), t] (2) 

The purpose of system identification is to find the optimal solution for A and B from the 

data of input U(t) and output Y(t). 

2 Gantry Crane Problem and Recurrent Networks 

We address the problem of controlling a gantry crane system. The gantry crane is used to 

move large parts and assemblies from one location to others on a factory floor. A cable is 

attached to the load to be moved which is then hoisted several feet in the air (See Figure 

1). The control system is responsible for controlling the horizontal motion of the crane and 

load so that (i) the load is moved to a new site specified by given coordinates; (ii) load 

motion is well damped using position and velocity sensors; (iii) the closed loop bandwidth 
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X 

Force Crane 

Load 

Figure 1: Gantry Crane System 

is as large as possible while achieving reasonable crane (and load) stability; (iv) it can cope 

with variable load mass and cable length. This system can be represented by nonlinear 

differential equations as 

F = M X+ m[X + L(O cos 0- iP sin 0)] + c1X + c2(X +LOcos 0) (3) 

m[LO +X cosO]+ mgsinO + c2[LO +X cosO]= 0 (4) 

where X is the position of crane, 0 is the angle of the cable, L is the cable length, M is the 

crane mass, m is the load mass, g is the gravity constant, c1 is the viscous damping of the 

crane, c2 is the viscous damping of the load, and F is the force applied to crane. 

Networks with recurrent connections have been known to have important capabilities 

not found in feedforward networks [4). Recurrent connections allow information about 

events occurring at arbitrary times in the past to be retained and used in current com

putations. Recurrent connections also allow networks to produce complex, time-varying 

outputs in response to simple static input, an important component in generating complex 

behaviors. For the gantry crane problem, performance of a feedforward network trained 

by the well-known error back-propagation algorithm was compared with the training al-
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output (x) 

input (u) +1 

Figure 2: A fully recurrent network with one input, one output and two hidden units 

gorithm described by Williams and Zipser [6] for a fully recurrent network in which any 

unit can receive external input (See Figure 2). These recurrent networks run continually 

in the sense that they sample their inputs on every update cycle, and any unit can receive 

training signals on any cycle. 

3 Experiments and Results 

By rewriting Eq. (3) and (4), we obtain expressions for the velocity of the crane v1 (t+1) and 

the velocity of the load v2 ( t + 1) at time t + 1 as functions of voltage applied to the crane's 

motor u(t), the velocities v1(t) and v2(t) at timet, and other parameters. We assume that 

the voltage and the velocities of crane and load can be measured while the system is driven. 

All the other parameters of the system are to be realized by the internal representations 

of neural networks. We generated 240 data points. The first 120 were used in training 

networks and the remaining 120 in testing. The value of voltage at each time point was 

generated randomly ranging from 0 to 200 and the two corresponding velocity measures 

were generated accordingly. In the case of test data, sinusoidal voltage (sin(t/3)) was also 
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MSEinTest 
Velocities MSE in Training 

Random Input Sinusoidal Input 

Crane 0.000605 0.000493 0.000635 --------- ----------- ------------ -----------
Load 0.000578 0.000296 0.001126 

Table 1: Mean square errors in system identification by a recurrent net 

used to compare the results in more realistic situations. The values of the constants i.e., 

M, m, L, c17 c2 were chosen arbitrarily. Then a recurrent network was trained to emulate 

the system behavior. Using the same data set, we also trained a feedforward network using 

the back-propagation algorithm. All values were normalized to range between 0.01 and 

0.99 to be used by neural networks. 

3.1 System Identification 

A recurrent network with Williams and Zipser's training algorithm was implemented and 

run on the data set produced by the above description. A network with one input (for 

input voltage), two output (for crane's velocity or load's velocity) and five hidden units 

was trained. The number of hidden layers and nodes in the network were chosen after 

trying many possibilities. Performance results on training data were very good (but graphs 

portraying them have been omitted due to lack of space.) Results on test cases are shown 

in Figure 3a and 4a. 

Next a feedforward network with 4 hidden nodes was trained and tested. The inputs to 

the network were u(t), v1(t), v2(t), v1(t -1), and v2(t -1). The outputs from the network 

were Vt(t + 1) and v2(t + 1). The test results are shown in Figure 3b and 4b. The graphs 

show that the feedforward networks did not perform as well as the recurrent networks in the 

test, although the former performed better than the latter in the training. The mean square 

errors for each case are given in Tables 1 and 2 for the case of recurrent and feedforward 

networks, respectively. 
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MSEin Test 
Velocities MSE in Training 

Sinusoidal Input Random Input 

Crane 0.000364 0.00024 5 0.000966 --------- ~-----------· ------------ -----------· 
Load 0.000560 0.000348 0.000784 

Table 2: Mean square errors in system identification by a feedforward net 

MSE in Test 
Neural Networks MSE in Training 

Sinusoidal Input Random Input 

Recurrent 0.000494 0.000939 0.001419 ----------- ------------ ----------- ------------
Feedforward 0.000554 0.001168 0.002168 

Table 3: Mean square errors in approximation of the inverse system 

3.2 Inverse System Identification 

For inverse system identification the previously generated data set was used to train and 

test performances of the networks. For the recurrent network with three hidden nodes the 

inputs were v1(t), v2(t) and the output was u(t-1). The test results are depicted in Figure 

3a and 4a (bottom). A feedforward network was applied to the same task with inputs v1(t), 

v2(t), v1(t- 1), v2(t- 1), v1(t- 2) and v2(t- 2), output u(t- 1), and two nodes in the 

hidden layer (so that the total number of weights in the feedforward network and that of 

the recurrent network are approximately equal). The graphs for test results are given in 

Figure 3b and 4b (bottom), and the mean square errors are given in Table 3. The recurrent 

network performed slightly better than the feedforward net. 

4 Conclusions 

We studied the applications of two kinds of neural networks in two important problems in 

control. The gantry crane system was chosen as the model for a simple non-linear time

varying system. The relevant data were artificially generated from the differential equations 

describing the system. Two major problems of interest- i.e., system identification and in-
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verse system identification- were successfully solved using both recurrent and feedforward 

networks. 

Our experimental results show that recurrent networks performed marginally better than 

feedforward networks, in terms of the mean square errors, for the system identification 

problem, as well as for the inverse system identification problem. 

There are other advantages of recurrent networks over a feedforward networks. First, 

a recurrent network does not require a priori knowledge about the time structure of the 

system which is essential in using the feedforward network to determine the number of past 

data as the input to the network. Second, the past data need not be fed into a recurrent 

network while it must be explicitly given to the feedforward network. While the results 

from a single case study cannot be overly generalized, our work has shown that recurrent 

neural networks can be successfully used to solve practical control problems. 
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Figure 3: (a) Performance of the Recurrent Network, (b) Performance of the Feedforward 
Network with Sinusoidal Input Voltage; Solid lines and dashed lines represent the desired 
values and the actual values, respectively. 
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Figure 4: (a) Performance of the Recurrent Network, (b) Performance of the Feedforward 
Network with Sinusoidal Input Voltage; Solid lines and dashed lines represent the desired 
values and the actual values, respectively. 
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