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Abstract 

The importance of proper management of projects has not gone unrecognized in industry 

and academia. Consequently tools like Critical Path Method ( CPM) and Program Eval­

uation Review Technique (PERT) for project planning have been the focus of attention 

of both practitioners and researchers. Determination of the Time to Complete the Job 

{TCJ) in PERT networks is important for planning and bidding purposes. The complexity 

involved in accurately determining the TCJ has led to the development of many approx­

imating procedures. Most of them ignore the dependence between paths in the network. 

We propose an approximation to determine the TCJ which explicitly recognizes this de­

pendency. Experimental results which demonstrate the accuracy of our approximation for 

a wide variety of networks are presented. 



1 Introduction 

Program Evaluation and Review Technique (PERT) was developed in the 1950's. An early 

application of PERT was made by the U.S. government in planning and scheduling the re­

search project for developing the Polaris Ballistic Missile. Soon PERT became the primary 

tool for planning and scheduling of projects, especially those which were funded by the U.S. 

government. PERT networks have been used to represent large projects in the industry and 

hence have a lot of applicability in the business world [see Elmagrabhy (1977)]. Analysis 

of PERT networks, also known as stochastic activity networks, has received considerable 

attention in the literature. 

PERT is based on the concept that a project is divided into a number of 

activities which are arranged in some order according to the job requirements. A PERT 

network is graphically represented using a set of nodes and arcs where a node represents 

the beginning or completion of one or more activities and an activity is represented by an 

arc (arrow) connecting two nodes. The project starts at the initial node and ends at the 

terminal node. A path is a set of nodes connected by arrows which begin at the initial node 

and end at the terminal node. This collection of arcs, nodes and paths is collectively called 

an activity network. A project is deemed complete if work along all paths is complete. 

If activity times are deterministic, the duration of the project completion time 

is determined by the length of the longest path in the network. However, things become 

complicated when activity times are stochastic in nature. For a stochastic activity network, 

Kulkarni and Adlakha (1986) have identified three important measures of performance. 

(a) Distribution of the project completion time 

(b) The probability that a given path is critical 

(c) The probability that a given activity belongs to a critical path. 

Performance measures derived from (a) are the most commonly used measures and most of 

the work has concentrated on the properties of the Time to Completion of the Job (TCJ). 

Determination of the exact distribution of TCJ is complicated by the fact 

that different paths are correlated and also because of the need to find the maximum of a 

set of random variables, as we shall see later. Hence one cannot easily determine the exact 

distribution of the TCJ. The research has primarily branched off in three directions: 
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(i) Exact methods: Martin (1965), Dodin (1985), Fisher at el (1985), and Hagstrom (1990) 

are some of the papers that deal with these methods. Most of their results are limited 

in that they make quite restrictive assumptions. For example Martin (1965) assumes 

that the arc duration density functions are polynomial. Hagstrom (1990) assumes 

task durations have discrete distributions. 

(ii) Approximating and bounding approaches: These have been the most prolific in the 

literature. Malcolm et al. (1959), Sculli (1983), Golenko-Ginzburg (1989), Dodin 

(1985b), Sculli and Wong (1985), and Dodin and Sirvanci (1986) determine approxi­

mations for the distribution and moments of the TCJ. Kamburowski (1985), Shogan 

(1977), Kleindorfer (1971), and Robillard and Trahan (1977), on the other hand, try 

to find upper and/or lower bounds for the distributions and moments of the TCJ. 

(iii) Simulation methods: These methods have been discussed in the literature by Van 

Slyke (1963), Burt and Garman (1971), and Sigal et al. (1979) 

We adopt approach (ii) above and present a simple and practical method to 

determine close approximations for the first two moments of the TCJ. We do not undertake 
the task of determination of the bounds for these moments. Though it is informative to 

know the best and worst completion times for a project, a single approximation for the 

TCJ is more useful for bidding purposes as compared to a range. In general researchers are 

more interested in the moments of the TCJ rather than completely specifying the exact 

distribution. In fact, the distribution is merely a first step towards obtaining the moments. 

Dodin and Sirvanci (1986) propose the extreme value distribution as an ap­

proximation to the TCJ. They claim that the distribution of the TCJ varies from a normal 

to an extreme value distribution depending on factors like the size of the network, the 

dependence between paths and the number of dominating paths. We explicitly take into 

account this dependence between paths which occurs due to common activities on various 

paths. We show, using simulation results as a benchmark, that the distribution of the TCJ 

is better approximated by a mixture of distributions. In addition, we use the critical path 
concept which is easier to comprehend and extremely simple to operationalize, as opposed 

to a dominating path concept (Dodin and Sirvanci, 1986). Section 2 presents the theoretical 

underpinnings of our approach and illustrates its use by an example. Section 3 compares 

the simulation results and those obtained using our approximation for a wide variety of 

networks appearing in the literature. Section 4 presents the conclusions and additional 

mathematical details are presented in the appendices. 
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2 Development of the Proposed Approximation 

In this section we lay down the theoretical arguments underlying our approach. We then ex­

plicate the concepts using a widely cited network in the literature - Kleindorfer's network, 

as an illustrative example. 

2.1 Theoretical Concepts 

Let T be a random variable that stands for the time to complete the job; let Xij be the 

time required to finish the j-th activity in the i-th path, where ni represents the number of 

activities in the i-th path, and N represents the total number of paths in the network; and 

define }i = :Lj,:,.1 Xij· Then we can write T = maxtSiSN }'i. We make use of the critical path 
concept, as opposed to the dominating path concept used by Dodin and Sirvanci (1986), in 

trying to determine the distribution of T. The traditional definition of the critical path is 

that path which takes the longest expected time (see Elmagrabhy (1977)]. This is obtained 

by summing the expected times of the activities on that path. As stated earlier this is a 

much simpler concept and less cumbersome from an analytical point of view. 

Now consider the situation where there is more than one critical path. In 

this case, the time to complete the job will depend heavily upon that critical path which is 

completed last. In fact, the TCJ will be determined by any path which takes the longest 

time. To complicate matters, it may be possible that several activities of two critical 

paths are identical. Therefore, it becomes necessary to treat the common and non-common 

activities separately. Consider an "ideal" situation as shown in Figure 1. Now consider the 

Figure 1: The "Ideal" Setting of Several Critical Paths 

set of K critical paths of the given network. Let Ui be the the sum of the "non-common" 
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activities in the i-th critical path and V be the sum of the "common" activities for the I< 

critical paths. Then we can approximate T = max1:5i:5N }i where N is the total number of 

paths in the network by T ~ max1:5i:5K(Ui) + V where I< is the number of critical paths 

in a network. So far we have discussed only the ideal condition. In practice however, the 

critical paths do not have exactly the same activities common to all of them. Typically 

observed critical paths are as shown in Figure 2. 

Path 1 

Figure 2: Typically Observed Critical Paths 

Here it is observed that all paths do not have exactly the same number 

of common activities. For example paths P1 and P2 have only three common activities, 

whereas P2 , and P3 have two common activities. Also, all common activities are not exactly 

the same - paths P1 and P2 have activities 4 - 5, 5 - 6 and 6 - 7 common whereas paths 

P2 and P3 have 1 - 2 and 6- 7 as common activities. In such cases a subjective assessment 

can be made and then the results of the ideal situation can be used. For example, for the 

network whose critical paths are represented in Figure 2, it would be reasonable to argue 

that among three paths comprising six activities each, there are three common activities 

and three non-common activities. Although this is a subjective assessment, however, in 

section 3 we observe that it provides a close approximation for the first two moments of 
T. We will shortly discuss an example which will provide some guideline on choosing the 

number of common activities. 

The beta distribution has been traditionally suggested to model the durations 

of the stochastic activities comprising the PERT network. However, there is a preponderant 

usage of the normal distribution in the literature. Sculli (1983) states that 

... this can be justified by the fact that most large networks can be reduced 
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to a guide network where a completely independent path becomes one activity. 

The central limit theorem justifies the normality assumption for the duration 

of activities in the guide network. 

Moreover, as observed in Golenko-Ginzberg (1989), the beta distribution is not stable with 

respect to convolution and maximization. Therefore, for the purposes of our analysis, 

we assume that the activity durations are iid normal random variables. The assumption 

of iid distributed activities is not overly restrictive. It was made only for purposes of 

computational ease in illustrating our approach. The proposed approximation can be used 

with non-iid distributed activities with equal facility. Subsequently we also consider the 

setting of iid exponential activities. We summarize the following theoretical properties 

about the distribution of U = max1<i<K(U,), V, and T. 

Properties of V: The distribution of V is, in general, given by the distribution of the 

sum of the Xi;s that are common to the critical paths. Therefore, we know that the 

distribution of Vis (a) normal if each Xi; is normal, and (b) gamma if each Xi; is 

exponential, and (c) approximately normal, by the Central Limit Theorem, if the 

number of common activities is large. The expected value and variance of V are 

obtained by adding the expected values and variances of the common activities. 

Properties of U: Properties of Ui's, for each value of i, are the same as properties of 

v. The distribution of u = maxl~i~K ui, is given by some appropriate distribution 

obtained from the theory of order statistics. For example, if each Ui is a normal 

random variable; i. e. P(Ui < x) = N(x;p.,u2 ), then the distribution of U is given 

by 

P(U::::; x) = {N(x; p., u2)}K =. NK (x; p., u2). 

More generally, if P(U, < x) = F(x) fori= 1, 2, ... , K; then 

P(U < x) = {F(x)}K = _rK(x). 

For large values of K, the distribution of U can be approximated by the extreme value 

distribution. 

Properties ofT: The distribution ofT= U +Vis therefore represented by the con­

volution of distribution of U and V. The exact form of the distribution of T is not 

easy to assess, because the convolution distributions are, in general, not of any well 

known standard family of distributions or of closed forms. However, the moments of 

the distribution, particularly the first two moments, can be evaluated relatively easily 
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because 

E(T) = E(U) + E(V), and Var(T) = Var(U) + Var(V). 

Calculation of E(U) and Var(U) may cause difficulties for larger values of K because 

expected values of the largest observation in a sample are not available for all distri­

butions. In these cases a reasonably accurate approximation can be used as suggested 

in appendix A.3. 

2.2 Illustrative Example 

We now present an example of the theoretical distribution ofT using a widely cited network, 

Kleindorfer's network (See Figure 3). Figure 4 shows all possible paths in this network. 

an activity 

node 

Figure 3: Kleindorfer's Network 
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Figure 4: All Possible Paths on Kleindorfer Network 

PATH# 1: 1 2 4 5 10 12 17 20 
PATH# 2: 1 2 4 5 12 17 20 
PATH # 3: 1 2 4 5 13 16 18 19 20 
PATH # 4: 1 2 4 5 13 16 18 20 
PATH # 5: 1 2 4 5 13 16 19 20 
PATH # 6: 1 2 4 5 13 17 20 
PATH# 7: 1 2 4 6 11 13 16 18 19 20 
PATH# 8: 1 2 4 6 11 13 16 18 20 
PATH# 9: 1 2 4 6 11 13 16 19 20 
PATH # 10: 1 2 4 6 11 13 17 20 
PATH# 11: 1 2 4 6 11 15 16 18 19 20 
PATH # 12: 1 2 4 6 11 15 16 18 20 
PATH # 13: 1 2 4 6 11 15 16 19 20 
PATH # 14: 1 2 4 7 8 10 12 17 20 
PATH# 15: 1 2 4 7 8 15 16 18 19 20 
PATH # 16: 1 2 4 7 8 15 16 18 20 
PATH# 17: 1 2 4 7 8 15 16 19 20 
PATH# 18: 1 2 4 7 8 18 19 20 
PATH# 19: 1 2 4 7 8 18 20 
PATH # 20: 1 2 4 7 12 17 20 
PATH# 21: 1 2 4 7 13 16 18 19 20 
PATH # 22: 1 2 4 7 13 16 18 20 
PATH # 23: 1 2 4 7 13 16 19 20 
PATH # 24: 1 2 4 7 13 17 20 
PATH # 25: 1 2 4 17 20 
PATH # 26: 1 2 6 11 13 16 18 19 20 
PATH # 27: 1 2 6 11 13 16 18 20 
PATH# 28: 1 2 6 11 13 16 19 20 
PATH # 29: 1 2 6 11 13 17 20 
PATH# 30: 1 2 6 11 15 16 18 19 20 
PATH# 31: 1 2 6 11 15 16 18 20 
PATH # 32: 1 2 6 11 15 16 19 20 
PATH # 33: 1 2 8 10 12 17 20 
PATH # 34: 1 2 8 15 16 18 19 20 
PATH # 35: 1 2 8 15 16 18 20 
PATH # 36: 1 2 8 15 16 19 20 
PATH # 37: 1 2 8 18 19 20 
PATH # 38: 1 2 8 18 20 
PATH # 39: 1 3 5 10 12 17 20 
PATH # 40: 1 3 5 12 17 20 
PATH # 41: 1 3 5 13 16 18 19 20 
PATH # 42: 1 3 5 13 16 18 20 
PATH # 43: 1 3 5 13 16 19 20 
PATH# 44: 1 3 5 13 17 20 
PATH # 45: 1 3 9 10 12 17 20 
PATH # 46: 1 3 9 14 19 20 
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Path7 Pathll 

CD---0-----<D I 

Pathl~\ 
7 ___,. 

Figure 5: Three Critical Paths of the Kleindorfer's Network 

It has three critical paths, P1 , P11 , and P15 • There are five activities that are common to 

all three critical paths. The remaining four activities are not common to all three critical 

paths. Figure 5 shows the subgraph of the three critical paths. Now, from the above, we 

know that T::::::: V + max(Ui) = V + U. 

Case I: Let us consider the case where each activity has the normal distribution with 

mean 4 and variance 1. Here V is the sum of five normal random variables and 

therefore is itself a normal random variable with mean 20 and variance 5. In a similar 

manner U1 , U11 , and U15 are also normal random variables each with mean 16 and 

variance 4. Finally, 

P(U < x) = JVS(x; 16,4). 

The mean and variance of T can be easily evaluated from the above representation of 

the distribution of T. One can obtain the mean and variance of N3 for the standard­

ized normal random variable from the statistical tables by Owen (1962). Using these 

properties, E(T)::::::: 37.692 and Var(T)::::::: 7.238. (For details, see Appendix A.l.) 

Case II: In this case, where each activity follows an exponential distribution with mean 4, 
the procedure for deriving the distribution is the same as in Case I. The only exception 

is that V is the sum of five exponential distributions, each with mean 4, and therefore 

the distribution of this convolution is given by a gamma distribution (r) with mean 

20 and shape parameter 5. Similarly, the distribution of each Ui is given by a gamma 

with mean 16 and shape parameter 4 and, finally, P(U:::; u) = r 3 (u;20,4). To find 

the expected value and variance of U we need to know the expected value and variance 

of the largest observation in a sample of size 3 from a gamma distribution with shape 

parameter 5. Expected values of the order statistics for the gamma distribution are 

tabulated [see Sarhan and Greenberg (1962)]. Using these results it is observed that 

E(T)::::::: 42.924 and Var(T)::::::: 140.064. (For more detail, see the Appendix A.2.). 
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Table 1: Structural Descriptions Of Different Networks Being Evaluated 

Number of 

Name of Network Nodes 'Critical' Critical Total Common 

Activities Paths Paths Activities 

Kleindorfer 20 9 3 46 5 

Large Network 43 12 19 617 8 

Shogan (1977) 6 3 4 4 1 

Kamburowski (1985) 8 3 5 5 0-1 

Fulkerson ( 1962) 10 5 16 16 2 

Ringer (1971) 7 4 2 5 1 

Martin ( 1965) 9 6 2 3 4 

Dodin (1985) 7 4 4 4 2 

Pritsker & Kiviat (1969) 9 5 3 6 3 

Provan & Ball (1984) 9 3 9 9 0-1 

In our evaluation above it could be argued that V should be approximated as a sum of 6 

independent random variables because paths P1 and P11 have 7 activities common while P7 

and P15 have 5 common activities and P11 and P15 have 6 activities in common, giving an 

average of 6. If this is taken into account then the first two moments of T will change to 

37.466 and 7.678 for the normal case and 41.984 and 145.152 for the exponential case. These 

difference in the moments are small when compared with either the normal or extreme value 

approximations. 

3 Empirical Study 

To the best of our knowledge, the exact distribution ofT has not been derived for any 

reasonable size network. We therefore use Monte Carlo simulation to obtain the "true" 

moments of the distribution of the TCJ for a variety of networks cited in PERT-related 

literature. Table 1 elaborates on the structural characteristics of these networks based 

on the assumption of iid activities. The dimensionality and complexity of these networks 

varies considerably. For example, the total number of paths in the network ranges from 

three (Martin, 1965) to 617 for the "large network" that appeared in Dodin and Sirvanci 

(1986). 
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The simulation program was coded in Pascal and run on an IBM 3090 ma­

chine. The simulation of each network comprised a sample size of 20,000 runs. We use 

a simulation run length of 20,000 to obtain values as close to the "exact" mean and the 

"exact" variance as possible. With this run-length the standard error in the mean of a 

simulation study is of the order of )1/20000 = ±0.007. For the normal.N'(4,1) distribu­

tion of each arc and for the Kleindorfer's network the standard error of mean from the 

simulation study is 0.0196, and this implies that the true value of E(T) E (37.377, 37.495) 

with confidence coefficient 99%. 

The first two moments of the TCJ for different activity time distributions 

were obtained from these simulation runs. Table 2 presents, inter alia, the simulation re­

sults for a normally distributed activity time and Table 3 presents the corresponding results 

when the activity times are exponentially distributed. Tables 2 and 3 also present the 

first two moments obtained using (i) our approximation discussed above, (ii) the Malcolm 

et al.'s normal approximation and, (iii) the extreme value approximation. Appendix B 

discusses the procedure for obtaining the moments assuming that the TCJ follows extreme 

value distribution. From Table 2 it is clear that the normal approximation underestimates 

the mean and overestimates the variance. On the other hand the extreme value approxima­

tion, in general, overestimates the mean and underestimates the variance. In comparison to 

these two approaches, the suggested approximation gives more accurate moments. These 

results agree with the theoretical arguments put forth in section 2, that the distribution 

of the TCJ is neither a normal nor an extreme value but a mixture of some distributions. 

The chi-square values show that for an underlying exponential activity distribution, we can 

reject the hypothesis that the distribution of the TCJ is either normal or extreme value at 

at 0.001 significance level for all ten networks. The chi-square values using our approxi­

mation tend to be close to those using the simulation mean and variance. This similarity 

further reinforces our hypothesis about the distribution of the TCJ. With a normal activity 

distribution we can conclude at a 0.001 significance level that the distribution of the TCJ 

is not an extreme value. 

4 Conclusions 

We conclude from the above that explicit recognition of dependence between paths en­

hances the accuracy of estimates of the first two moments of the distribution of the TCJ. 

Furthermore, incorporation of this approximation in standard PERT software is facilitated, 

given the simplicity of the approach and the availability of published tables. Though we 
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Table 2: Comparative Evaluation of Different Approximations 

Name of the Simula-

Network tion 

Mean/ 
Variance 

Kleindorfer 37.430 

7.710 

Large Network 52.407 

7.673 

Shogan (1977) 13.544 
1.862 

Kamburowski 13.812 
(1985) 1.697 

Fulkerson 23.012 

(1962) 2.915 

Ringer(1971) 17.0338 

3.192 

Martin (1965) 24.788 

5.615 

Dodin (1985) 17.561 

2.901 

Pritsker & Kiviat 21.272 

(1969) 4.062 

Provan & Ball 14.337 

(1984) 1.375 

Normally Distributed Activity Durations 

Mean Activity Time = 4 

Variance of Activity Time= 1 
Our Normal Extreme x2 test for 

approach distn. Value dist. normality using 

Mean/ Mean/ Mean/ Simulation Our 
Variance Variance Variance results results 

37.692 36 40.127 24.83 250.05 

7.238 9 6.738 

51.689 48 55.4770 35.14 5119.02 

9.119 12 3.3520 

13.456 12 14.598 48.61 154.66 

1.983 3 1.778 

14.159 12 14.771 94.99 1603.72 

2.118 3 1.533 

23.058 20 24.676 50.55 73.59 
2.885 5 1.483 

16.987 16 18.477 47.24 82.92 

3.040 4 4.746 

24.798 24 27.034 11.81 31.18 

5.363 6 7.119 

17.456 16 19.001 60.90 142.50 

2.983 4 2.373 

21.197 20 23.076 17.99 40.03 

4.119 5 3.743 

14.336 12 15.214 92.10 100.69 
1.394 3 1.123 

11 

x2 test for 

extreme value using 

Simulation Our 
results results 

5197.49 7902.03 

5034.12 2943.99 

4989.09 3689.84 

4894.88 10455.72 

5117.68 5730.39 

5024.31 4560.09 

5125.80 5577.55 

5349.06 4105.01 

5279.15 4516.37 

4970.84 4877.02 



Table 3: Comparative Evaluation of Different Approximations 

Name of the 

Network 

Kleindorfer 

Large Network 

Shogan (1977) 

Kamburowski 

(1985) 

Fulkerson 
(1962) 

Ringer(1971) 

Martin (1965) 

Dodin (1985) 

Pritsker k Kiviat 
(1969) 

Provan k Ball 

(1984) 

Exponentially Distributed Activity Durations 

Mean Activity Time = 4 
Simula- Our Normal Extreme x2 test for 

tion approach distn. Value dist. normality using 

Mean/ Mean/ Mean/ Mean/ Simulation Our 
Variance Variance Variance Variance results results 

41.703 42.924 36 43.427 824.17 1155.23 

146.633 140.064 144 165.593 

65.791 65.482 48 77.631 526.80 516.90 
173.6138 173.20 192 132.372 

18.139 18.188 12 19.510 1541.13 1518.47 
53.963 51.997 48 71.347 

19.726 19.233 12 20.643 1508.14 1434.35 
51.791 52.041 48 64.112 

32.646 34.997 20 39.031 998.93 3098.38 
92.227 75.343 80 144.945 

19.830 19.750 16 20.190 1373.25 1675.00 
67.890 64.937 64 149.469 

27.031 27.000 24 29.536 1108.86 1098.94 
100.031 99.000 96 232.081 

22.054 22.189 16 24.734 1102.32 1126.92 
67.381 67.998 64 91.212 

24.895 24.852 20 27.797 1142.79 1162.67 
81.056 83.768 80 131.710 

22.356 22.980 12 24.045 1329.13 1576.05 
52.422 48.659 48 56.188 

12 

x2 test for 
extreme value using 

Simulation Our 
results results 

4844.91 8050.98 

4921.59 4358.09 

4891.41 5257.08 

4904.61 3514.92 

4851.16 18534.34 

4953.89 4914.57 

4979.93 4952.35 

5060.31 5369.72 

5004.79 4720.11 

4931.86 8003.37 



have presented the approach for only normal and exponentially distributed activity dura­

tions, the approach can be extended to any underlying activity distribution. Obviously, 

the facility with which the approximation can be applied would vary with the distribution. 

In a stochastic network it is possible (i.e. may occur with positive probability) 

that a path with M iid activities takes less time to complete than another path with ( M -1) 
activities. In a network that has a critical path of M activities we define a path with ( M -1) 
activities as a "sub-critical" path. Then, our above argument suggests that the role of a sub­

critical path may be important in further improving the approximations for the moments 

of T. Hence, another extension that is immediately perceivable is the development of a 

procedure that accounts for the contribution of the sub-critical paths in a given network. 
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A Appendix: Derivation of Moments of TCJ 

Let there be K critical paths in the network. Let M -m be the number of common activities 

out of a total of M activities on the critical path. We present below the derivation of the 

first two moments of the TCJ and associated approximations. 

A.l 

We know that T = max1~;~K(Ui) + V = U + V. Let each X;; be a iid normal random 

variable, i.e. X;; "'.N(p., u2 ). Then it follows that 

U; "' .N(mp., mu2 ) 

V ,.._, .N((M- m)p., (M- m)u2 ) 

Thus U = max19~K(U;) represents the maximum of K normal random variables and its 

distribution is given by .NK (mp., mu2 ). Suppose that ZK denotes the largest observation 

in a sample of size K from standard normal distribution i.e . .N(O,l). Then, it is easy to 

verify that 

E(U) - ,fmu E(ZK) 

Var(U) - mu2 Var(ZK) 

For small values of K the mean and variance of Z K are tabulated e.g. see Sarhan and 

Greenberg (1962). For large values of K one can use the approximations discussed in Case 

A.3 below. In summary, 

E(T) - M p. + ,fmu E( ZK) 

Var(T) - (M- m)u2 + mu2 Var(ZK)· 

A.2 

Assuming now that the activity distributions follow an exponential distribution with mean 

..\. As discussed earlier in section 2 of this paper, the distribution of each Ui is given by a 

r(..\, m), where..\ is the mean parameter and m is the shape parameter. The distribution of 

Vis also a gamma disribution, r(..\,M- m). As in the case A.l above, suppose that now 
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ZK denotes the largest among K observations drawn from the gamma distribution f(.\, m) 

then 

E(U) 
var(U) 

m,\ E(ZK) 

m2.\ Var(ZK) 

As above we can refer to published tables to obtain moments of ZK for for small values of 

K and A.3 for large values. 

A.3 

If the number of critical paths K is very large or the distribution of Ui is not of the form 

for which the moments of the largest observation are tabulated, then recourse can be taken 

to the approximation suggested below. This approximation is based on the probability 

integral transformation and where the Taylor series expansion is carried only upto one 

term. 

Suppose that the distribution of each Ui is given by F(.) and Q satisfies the 

relation: whenever F(x) = y then Q(y) = x, i.e. Q is the inverse function ofF, then 

E(U) 

Var(U) 

where Q' denotes the first derivative of Q. 

Better approximations, using more terms of the Taylor expansion, are pro­

vided in David (1970). 

17 



B Appendix: Method for Calculating the Extreme­

Value Approximation 

Consider iid random variables xi's, with distribution function :F( X) and the density func­

tion f(x). Set Yn = max Xi. Then for large values of n the distribution of Yn can be 
l<t<n 

approximated by the ext~eme-value distribution. A precise statement is: 

Theorem .1 Suppose :F(x) < 1 for all values of x < oo; :F(x) is twice differentiable with 

respect to x for x > x' where x' is some fixed real number; and 

lim _!!:._ [1-:F(x)l =0. 
x-+oo dx f(x) 

Then 

lim P{bn(Yn- an)< x} = exp(-exp(-x)), n-+oo 

holds uniformly for x E ( -oo, oo ). The constants an and bn satisfy 

n-1 
:F(an) = --, bn = n f(an)· (a.l) 

n 

The first two moments of Yn can be approximated by 

.577722 1r2 

E(Yn) ~ an + bn , Var(Yn) ~ 6b! · 

Application of the above theorem to specific distributions: 

To apply the theorem to special cases requires solution of the two equations 

in (a.1). Typically, bn is easy to obtain but the constant an, given by 

an = :F-l (n : 1) , 
is difficult whenever the inverse of :F is not available in a closed form. 

Case 1: If Xi's are normally distributed, N(p,, u2), then it can be seen that 

[J21 1 (loglogn + log47r)l 
an = JL + u og n - 2 y'2log n 

and 
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Case 2: If each Xi is distributed as :F = r{.A, m), then we solve the equation 

:F(an) = n-1(n- 1) by making use of the relation between :F and the Poisson distribution 

function. We then obtain an such that it satisfies 

m-1 (an)i 1 
~ exp( -an/ .A) \ -:-; 
i=O 1\ J. 

and use this value of an to get 
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