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Abstract

This dissertation reviews the formulation of twisted supersymmetric Yang–Mills

(SYM) theories in the continuum and also on the lattice. We focus on the max-

imally supersymmetric twisted SYM theories in four and two dimensions. The

one-loop renormalization of the lattice four-dimensional SYM theory is investi-

gated. We also study the thermal phase structure of the maximally supersym-

metric SYM in two dimensions and possible black hole transitions in its dual

gravitational theory, using numerical simulations of the lattice theory.
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Preface

Implementation of supersymmetric Yang–Mills (SYM) theories on the

lattice is an old problem in lattice field theory. It has resisted solution

until recently, when new ideas drawn from topological field theories have

been brought to bear on the question. The result has been the creation

of a new class of lattice gauge theories, called “twisted SYM theories,” in

which the lattice action is invariant under one or more supersymmetries.

The twisted SYM theories on the lattice are local, free of doublers, and

also possess exact gauge-invariance. In principle, they form the basis for a

truly non-perturbative definition of the continuum SYM theories. In this

dissertation, we attempt to present a variety of lattice studies of sixteen

supercharge SYM theories in four and two dimensions.

To make this dissertation as self contained as possible, we have included

a set of introductory topics, such as constructing SYM theories in various

dimensions, general properties of topological field theories, and their con-

nections to SYM theories and lattice formulations, geometric structure of

the resultant lattices, and simulation algorithms employed in the numerical

studies to obtain some interesting results.

In Chapter 1, we introduce the four-dimensional N = 4 SYM theory.

We begin with various conditions that can be imposed on Dirac fermions

xi



xii Preface

in various dimensions to maintain the symmetry between the number of

fermion and boson degrees of freedom in a given Yang-Mills theory coupled

to spin-1/2 fermions. The conditions lead to Weyl, Majorana, and Weyl–

Majorana fermions. The method of dimensional reduction is introduced

next, and then this method is applied to the ten-dimensional N = 1 SYM

theory to obtain the N = 4 SYM theory in four dimensions.

In Chapter 2, we introduce topological field theories, BRST invariance

in gauge theories, and then focus on topological field theories of Witten

type, which are the focus of our interest.

In Chapter 3, we show how to twist the supersymmetries of SYM the-

ories with extended supersymmetries. The method of maximal twisting is

discussed next, and then its relevance to the lattice constructions is ex-

plained. We give the twisted versions of the two-dimensional N = 2 and

four-dimensional N = 4 SYM theories, exposing the nilpotent scalar super-

symmetries appearing as a consequence of the twist. We also write down

the action and scalar supersymmetries of these theories.

In Chapter 4, we introduce supersymmetric lattices, their geometric

structure, orientation of field operators, the lattice covariant derivatives,

connection to Dirac-Kähler fermions, and discretized actions of the twisted

SYM theories.

After these introductory Chapters, in Chapter 5, we present a part of

the original work, where the N = 4 SYM is studied at one-loop on a

four-dimensional lattice. The lattice formulation under consideration re-

tains one exact supersymmetry at non-zero lattice spacing. This feature,

combined with gauge-invariance and the large point group symmetry of

the lattice theory, can be used to show that that the only counterterms

that appear at any order in perturbation theory correspond to renormal-

izations of existing terms in the bare lattice action. The analysis shows
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that no mass terms are generated at any finite order of perturbation the-

ory. The one-loop renormalization coefficients are extracted by examining

the fermion and auxiliary boson self-energies at one-loop. They all exhibit

a common logarithmic divergence that can be absorbed by a single wave-

function renormalization. This finding implies that, at one-loop, only a

fine tuning of the finite parts is required to regain full supersymmetry in

the continuum limit.

In Chapter 6, we write down the algorithms to simulate the twisted

SYM theories, as a prelude to the numerical study presented in the fol-

lowing Chapter. The Rational Hybrid Monte Carlo (RHMC) algorithm is

presented, and the overall structure of the C++ code to simulate these

theories is detailed.

In Chapter 7, we discuss the results of numerical simulations of (1+1)-

dimensional sixteen supercharge SU(N) Yang–Mills theory at finite tem-

perature and compactified on a circle. For large N , this system is thought

to provide a dual description of the decoupling limit of N coincident D1-

branes on a circle. It has been proposed that, at large N , there is a phase

transition at strong coupling related to the Gregory-Laflamme (GL) phase

transition in the holographic gravity dual. In a high temperature limit,

there was argued to be a deconfinement transition associated with the spa-

tial Polyakov loop, and it has been proposed that this is the continuation

of the strong coupling GL transition.

On the lattice, this theory is investigated for SU(3) and SU(4). The

study of the time and space Polyakov loops in the lattice SYM theory show

evidence supporting this transition. In particular, at strong coupling, the

transition has the parametric dependence on coupling predicted by gravity.

The GL phase transition temperature is estimated from the lattice data

which, interestingly, is not yet known directly in the gravity dual.



We end with a set of conclusions and recommendations for the directions

of future research.



Chapter 1

N = 4 Super Yang–Mills

Theory

Supersymmtric Yang–Mills (SYM) theories belong to an interesting

class of quantum field theories. Among them, the four-dimensional SYM

theory with sixteen supersymmetries is a very special quantum field theory

in its own right. This theory exhibits many interesting properties. For zero

theta angle, the four-dimensional SYM theory with a simple gauge group

has just a single dimensionless coupling parameter, the gauge coupling

parameter g. The classical version of this theory exhibits superconformal

invariance, owing to the dimensionless nature of its coupling parameter. Its

beta function vanishes identically to all orders in perturbation theory and

the same is believed to be true at the nonperturbative level. This theory,

therefore, is finite, with no renormalization at all. Its coupling parameter

does not run, unlike most gauge theories, different values of g really give dif-

ferent theories, rather than being transmuted to a change of scale. Another

interesting property exhibited by this theory is exact electric-magnetic du-

1



2 Chapter 1. N = 4 Super Yang–Mills Theory

ality that is, the invariance under the interchange of electric and magnetic

quantum numbers, and also the replacement of g with 4π/g. That is, the

theory with a weak gauge coupling g is fully equivalent to the one with a

strong gauge coupling 4π/g.

In 1997, Maldacena proposed [1] a new duality relating Type II super-

gravity (a certain low energy limit of string theory) in (d+ 1)-dimensional

anti-de Sitter (AdS) space and d-dimensional super conformal theories.

This is known as the holographic principle. The N = 4 SYM theory takes

part in the most successful realization of holographic principle. This the-

ory can be realized as the gauge theory living on a D3-brane of Type IIB

superstring theory in AdS5 × S5 space.

The action of N = 4 SYM theory was given for the first time in 1977

in [2, 3] within the framework of string theory toroidal compactifications.

This theory has the maximal amount of supersymmetry - sixteen real su-

percharges - for a four-dimensional field theory with global supersymmetry.

There exist different types of construction schemes for four-dimensional

N = 4 SYM theory. We follow the original work of Brink, Schwarz and

Scherk [2], where it is constructed by dimensional reduction from ten di-

mensions.

1.1 Yang–Mills theory with fermions

We are interested in constructing a Yang–Mills theory coupled to spin-

1
2
fermions in d spacetime dimensions with an additional symmetry: the

number of bosonic and fermionic degrees of freedom are equal. We will call

this symmetry supersymmetry.

A massless gauge potential in d dimensions has d−2 on-shell real degrees

of freedom. A Dirac spinor in d dimensions has 2[d/2] on-shell real degrees

of freedom, where [d/2] represents the integral part. These two numbers do
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not match in any dimension. In order to demand the additional symmetry,

we will have to reduce the number of fermionic degrees of freedom by

requiring the spinor to satisfy some supplementary conditions.

Let us consider a Yang–Mills theory coupled to massless spin-1
2
particles

on a d-dimensional flat Minkowski space R1,(d−1) with signature gmn =

diag(−,+,+, · · · ,+), where m,n = 0, 1, 2, · · · , (d− 1). The metric is

ds2 =
∑

m,n

gmndx
mdxn = −(dx0)2 + (dx1)2 + · · ·+ (dx(d−1))2 . (1.1)

The theory has a gauge field Am taking values in the real Lie algebra of

a compact gauge group G. The gauge field takes values in anti-hermitian

matrices, in the adjoint representation of G. The covariant derivative Dm

is

Dm = ∂m + Am , (1.2)

The corresponding curvature Fmn is

Fmn = [Dm, Dn] = ∂mAn − ∂nAm + [Am, An] . (1.3)

We add a fermionic term to the d-dimensional Yang–Mills action. The

fermions are contained in a Dirac spinor λ taking values in the Lie algebra

of G.

The action is

S = Tr

∫
ddx

(
− 1

4
FmnF

mn + iλΓmDmλ
)
, (1.4)

where Γm are the d-dimensional gamma matrices. Since anti-hermitian ma-

trices generate the Lie algebra in our case, the trace Tr is negative definite.

We examine the dimensions in which the action (1.4) permits the extra

symmetry - supersymmetry - between the gauge bosons and the fermions
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without the addition of other fields. The requirement of same number of

bosonic and fermionic degrees of freedom is essential for field theories that

transform as linear representations of supersymmetry. Since the spinor de-

grees of freedom grow faster than that of gauge bosons, we will reduce the

number of spinor degrees of freedom by imposing some additional condi-

tions on the fermions. Before we choose those conditions, a familiarization

with spinor representations in arbitrary dimensions would be useful.

1.2 Spinors in higher dimensions

The Lorentz group, the symmetry group of Minkowski space, admits finite-

dimensional representations. Spinors appear as fields that transform under

finite-dimensional representations of the Lorentz group.

We use the language of Clifford algebras to discuss the spinor repre-

sentations in d dimensions. A Clifford algebra is a set of matrices (we call

them gamma matrices) satisfying the anticommutation relations:

{Γm,Γn} = 2gmn , (1.5)

where m,n = 0, 1, · · · (d− 1).

Given such a set of matrices, we see that the following antisymmetric

matrices,

Σmn = − i

4
[Γm,Γn] = −Σnm , (1.6)

satisfy the commutation relations of the Lorentz group generators:

i[Σmn,Σsr] = ηnsΣmr + ηmrΣns − ηnrΣms − ηmsΣnr . (1.7)

The matrices Σmn give a d-dimensional representation of the Lorentz al-

gebra. They are a set of antisymmetric tensors transforming according to



1.2 Spinors in higher dimensions 5

the d-dimensional Lorentz vector representation of SO(1, d− 1). They act

on the space of fields called Dirac spinors. The algebra generated by Σmn

yield the spinor representation of SO(1, d− 1).

The d-dimensional representation of the Lorentz algebra generated by

Σmn is not always an irreducible representation. To see if a given represen-

tation is reducible or not, we need to consider separately the case where d

is an odd or even dimension.

We begin with the construction of gamma matrices in even dimensions,

d = 2k + 2, where k = 1, 2, · · · . We group the gamma matrices into a set

of raising and lowering operators [4, 5]

u±0 =
1

2
(±Γ0 + Γ1) , (1.8)

u±a =
1

2
(Γ2a ± iΓ2a+1) , (1.9)

where a = 1, · · · , k. These operators satisfy the following anticommutation

relations:

{u+i , u−j } = δij , i, j = 0, 1, · · · , k (1.10)

{u+i , u+j } = {u−i , u−j } = 0 , (1.11)

along with the conditions:

(u+i )
2 = (u−i )

2 = 0 . (1.12)

We can let u−i operators act repeatedly on any spinor state to reach a spinor

|ξ〉 annihilated by all u−i ’s

u−i |ξ〉 = 0, for all i . (1.13)
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states |ξ〉 u+i |ξ〉 u+i u
+
j |ξ〉 · · · (u+k u

+
(k−1) · · · u+0 )|ξ〉

number 1 k + 1 k+1C2 · · · 1

Table 1.1: Spinor states and their corresponding numbers.

Now we can let the creation operator u+i act on |ξ〉, at most once each,

in all possible ways to obtain a spinor representation. The spinor states

obtained in that way are given in table 1.1.

The total number of states is

1 + (k + 1) + k+1C2 + · · ·+ 1 =
k+1∑

n=0

k+1Cn = 2k+1 = 2d/2 . (1.14)

This representation has dimension 2k+1. The spinor representation is given

by

|s0s1 · · · sk〉 = (u+k )
sk+

1
2 · · · (u+0 )s0+

1
2 |ξ〉 , (1.15)

where each of si is ±1
2
. The |ξ〉 we started with contains all si = −1

2
.

The matrix elements of Γm can be derived from the definitions and the

anticommutation relations by taking the |s0s1 · · · sk〉 as a basis.

The generators Σ2i,2i−1 form a commuting set. We consider the operator

Si ≡ Σ2i,2i−1 = u+i u
−
i − 1

2
. (1.16)

The basis vectors |s0s1 · · · sk〉 defined above form simultaneous eigenstates

of all the Si’s with eigenvalues si,

Si|s0s1 · · · sk〉 = si|s0s1 · · · sk〉 . (1.17)

The half-integer eigenvalues show that this is a spinor representation. The

spinors form the 2k+1-dimensional Dirac representation of the Lorentz al-

gebra SO(1, 2k + 1). For example, in d = 4, the states | ± 1
2
,±1

2
〉 form a



1.2 Spinors in higher dimensions 7

four component Dirac spinor.

Noting that increasing d by two doubles the size of Dirac matrices, we

can give an iterative expression for gamma matrices in even dimensions

starting in d = 2.

The gamma matrices in d = 2 are:

Γ0 =




0 1

−1 0


 , Γ1 =




0 1

1 0


 . (1.18)

Then in d = 2k + 2 with k = 1, 2, · · · we have,

Γm = γm ⊗




−1 0

0 1


 , m = 0, · · · , d− 3 , (1.19)

Γ(d−2) = I⊗




0 1

1 0


 , (1.20)

Γ(d−1) = I⊗




0 −i

i 0


 , (1.21)

with γm the 2k × 2k Dirac matrices in d− 2 dimensions and I the 2k × 2k

identity. The 2 × 2 matrices act on the index sk, which is added in going

from 2k to 2k + 2 dimensions.

For representations in odd dimensions, we need to add a new gamma

matrix Γd+1 to the Γm matrices. Let us define Γd+1 in the following section.

1.2.1 Weyl spinors

Since the generators Σmn are quadratic in the gamma matrices, the spinor

states |s0s1 · · · sk〉 with even and odd numbers of +1
2
s do not mix. This

indicates that the Dirac representations in even dimensions are reducible

representations of the Lorentz algebra.
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We define a new gamma matrix:

Γd+1 = i−kΓ0Γ1 · · ·Γd−1 , (1.22)

which has the properties:

(Γd+1)
2 = 1, {Γd+1,Γ

m} = 0, [Γd+1,Σ
mn] = 0 . (1.23)

All the Dirac spinor states are eigenstates to Γd+1

Γd+1|s0s1 · · · sk〉 = ±|s0s1 · · · sk〉 , (1.24)

with eigenvalue +1 for even numbers of si = +1
2
and −1 for odd ones.

Since Γd+1 commutes with the generators of the Lorentz algebra Σmn

cannot furnish an irreducible representation of SO(1, d − 1). The Dirac

representation, let us denote it by S, breaks down into two 2k dimensional

irreducible representations S+ and S−. These representations are called

Weyl (or chiral) representations, and they can be obtained by projecting

out the two subspaces using Γd+1. We define a projection operator:

P
± =

1

2
(I± Γd+1) . (1.25)

The Lorentz generators and representation now split into two parts:

Σ±
mn = P

±Σmn, S
± = P

±
S . (1.26)

The spinors obtained in this way are called Weyl spinors.

In d = 4, the Dirac representation is the familiar four-dimensional

one, which separates into two two-dimensional Weyl representations dis-
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tinguished by their eigenvalue under the chirality operator Γ5.

4Dirac = 2+ 2′ . (1.27)

Here we have labeled a representation S by its dimension (in boldface). In

d = 10, the representations are:

32Dirac = 16+ 16′ . (1.28)

To get representations in odd dimensions, d = 2k + 3, we simply add

Γd+1 to the gamma matrices for d = 2k + 2. The set of creation and

annihilation operators is the same as that of d = 2k+2. This is now an ir-

reducible representation of the Lorentz algebra because Σmd anticommutes

with Γd+1. Thus, there is a single spinor representation of SO(1, 2k + 2),

which has dimension 2k+1. There is no chirality in odd dimensions.

For k even, the Weyl irreducible representations are equivalent to com-

plex conjugates of each other. While for k odd each Weyl representation

is equivalent to its own complex conjugate. The Weyl representations can

only be real for k = 1 (mod) 4 and must be pseudo-real for k = 3 (mod) 4.

The Lorentz generators Σmn in odd dimensional case furnish an irre-

ducible representation of the Lorentz group by themselves. In each odd

dimension, the fundamental spinor representation is either real or pseudo-

real.

1.2.2 Majorana spinors

The above construction of the irreducible representations of gamma matri-

ces shows that, in even dimensions, d = 2k + 2, the irreducible represen-

tations are unique up to a change of basis. That is, for any set of gamma

matrices {Γm} and {Γm′} both satisfying the Clifford algebra, there exists
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a nonsingular matrix M , such that

Γm =MΓ′
mM

−1, for all m = 0, 1, · · · d− 1 . (1.29)

Thus, the matrices (Γm)∗ and −(Γm)∗ satisfy the same Clifford algebra as

Γm. This implies that the Dirac representation is its own conjugate in even

dimensions.

We can impose a condition that relates the spinor state |ξ〉∗ to |ξ〉.

This condition must be consistent with Lorentz transformations and so

must have the form:

|ξ〉∗ = B|ξ〉 , (1.30)

with B, a nonsigular matrix satisfying

BΣmnB−1 = −(Σmn)∗ . (1.31)

Such a condition, called the Majorana (or reality) condition, is consistent

only if BB∗ = 1.

Using the reality and anticommutation properties of the gamma matri-

ces, one finds

B∗B = (−1)k(k+1)/2 or (−1)k(k−1)/2 . (1.32)

Thus, a Majorana condition is possible only if k = 0 or 3 (mod) 4 for the

first case, and for k = 0 or 1 (mod) 4 for the second case. If k = 0, both

conditions are possible, but they are physically equivalent, being related

by a similarity transformation.

The Majorana condition on a Dirac spinor λ is:

λ = Cλ
T
, (1.33)
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d Majorana Weyl Weyl–Majorana min. rep.

2 yes self yes 1
3 yes - - 2
4 yes complex - 4
5 - - - 8
6 - self - 8
7 - - - 16
8 yes complex - 16
9 yes - - 16
10 yes self yes 16

Table 1.2: We can impose various conditions on SO(1, d−1) Dirac spinors in
various dimensions. A dash indicates that the condition cannot be imposed.
For the Weyl representation, it is indicated whether these are conjugate to
themselves (self) or to each other (complex). The smallest representation
in each dimension, counting the number of real components, is given in the
final column.

where C is the charge conjugation matrix. It transforms the Lorentz rep-

resentation matrices in the following way:

CΣmnC−1 = −ΣmnT . (1.34)

1.2.3 Weyl–Majorana spinors

Imposing a Majorana condition on a Weyl spinor requires the Weyl spinor

representation to be conjugate to itself. For k odd, which is d = 0 or 4

(mod) 8, it is therefore not possible to impose both the Majorana and Weyl

conditions on a spinor: one can impose one or the other. Precisely for k = 0

(mod) 4, which is d = 2 (mod) 8, a spinor can simultaneously satisfy the

Majorana and Weyl conditions.

We can have Majorana spinors in d = 2, 3, 4, 8, 9, 10, and Weyl spinors

in d = 2, 4, 6, 8, 10. For the cases d = 4, 8, while one can, in principle,

impose a Majorana condition, this condition is incompatible with the Weyl

condition and, thus, there are no Weyl–Majorana spinors for d = 4, 8. For
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d Am λD λM λW λMW

3 1 2 1 - -
4 2 4 2 2 -
6 4 8 - 4 -
10 8 32 16 16 8

Table 1.3: Conditions on spinor degrees of freedom in various dimensions.

d = 2, 10, we can impose both Majorana and Weyl conditions, that is,

we have Weyl–Majorana spinors. The Weyl–Majorana spinors in d = 2

and d = 10 have particular importance because of their relevance to string

theory.

Imposing a Majorana or Weyl condition on the spinor, though, reduces

its degrees of freedom, each by a factor of one half. Starting with d = 3, the

various possibilities for matching the degrees of freedom of a gauge field Am

to those of Dirac λD, Majorana λM , Weyl λW and Weyl–Majorana λMW

spinors are shown in table 1.3.

Note that in d > 10 there are no solutions to our matching problem

on fermion-gauge boson degrees of freedom. That is, d = 10 is the highest

dimension in which we can have a SYM action (on a flat spacetime without

adding extra fields).

1.3 Super Yang–Mills theory in ten dimen-

sions

The SYM action in ten dimensions has the form

S = Tr

∫
d10x

(
− 1

4
FmnF

mn + iλΓmDmλ
)
, (1.35)

where Fmn is the ten-dimensional curvature, m,n = 0, 1, · · · , 9; λ is a

Weyl–Majorana spinor (it is known as a gaugino) with its 8 degrees of
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freedom matching with those of the ten-dimensional gauge field Am. The

Dirac spinor in ten dimensions has 32 degrees of freedom. This can be

reduced to 16 by imposing the Weyl condition (decomposing λ in to chiral

and antichiral parts λ± by applying the projection operator P±). Imposing

the Majorana condition λ = Cλ
T
on this Weyl spinor further reduces the

number of degrees of freedom down to 8. Thus we obtain a Weyl–Majorana

spinor with 8 degrees of freedom matching with those of the gauge field.

The action (1.35) is invariant under a set of transformations of the fields,

called the supersymmetry transformations

δSAm = iαΓmλ , (1.36)

δSλ = ΣmnF
mnα , (1.37)

where the constant spinor field parameter α is a single Weyl–Majorana

spinor parameterizing the supersymmetry transformations. This is referred

to as N = 1 supersymmetry. In d = 10, there are 16 real supercharges

corresponding to these transformations.

The symbol δS stands for the supersymmetric variation. For a generic

field Φ, it means:

δSΦ =
16∑

a=1

[ǫaQa,Φ} , (1.38)

where Qa are the sixteen supersymmetries. The symbol [A,B} denotes the

graded commutator AB − (−1)|A||B|BA. For a field X, we have |X| = 1

when it is fermionic and |X| = 0 when it is bosonic.



14 Chapter 1. N = 4 Super Yang–Mills Theory

1.4 Dimensional reduction to four dimen-

sions

We are interested in constructing N = 4 SYM theory in four dimensions.

To obtain this theory, we dimensionally reduce the ten-dimensional N = 1

SYM theory down to four dimensions.

1.4.1 The method of dimensional reduction

Let us consider compactifying one spatial dimension of R1,(d−1) on a circle

of radius R, that is,

R
1,(d−1) −→ R

1,(d−2) × S1. (1.39)

The coordinates xm, m = 0, 1, · · · , (d− 1) of R1,(d−1) decompose into xµ of

R1,(d−2) and the compactified spatial dimension y of S1. The limit R → 0, in

which the compactified dimension shrinks to zero size, is called ‘dimensional

reduction’. To understand what happens to spacetime fields under this

action, we begin with the simplest case of a complex scalar field ϕ with

periodic boundary conditions on S1. This field has the Fourier expansion:

ϕ(xµ, y) =
∑

n∈Z

ϕn(x
µ)
einy/R√
2πR

. (1.40)

The kinetic part of the action for this field becomes:

S
(d)
KE =

∫
ddxmϕ†

(
2(d) −m2

)
ϕ

=

∫
d(d−1)xµ

∫
dyϕ†

(
2(d−1) +

∂2

∂y2
−m2

)
ϕ

=

∫
d(d−1)xµ

∑

n∈Z

ϕ†
n(x

µ)
(
2(d−1) −m2 − n2

R2

)
ϕn(x

µ) . (1.41)
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The Fourier modes ϕn(x
µ) acquire curvature dependent massesm2+n2/R2.

In the limit R → 0, the modes ϕn for n 6= 0 become infinitely massive. It

would cost an infinite amount of energy to excite such modes, and they

therefore decouple from the theory. The only mode that survives in this

limit is the zero mode ϕ0, with the kinetic action:

S
(d−1)
KE =

∫
d(d−1)xµϕ†

0

(
2(d−1) −m2

)
ϕ0 . (1.42)

We can extend the method of dimensional reduction to more than one space

dimensions. Consider compactification on a torus Tk = S1 × S1 · · ·S1, k

times, with each circle of radius R. The spacetime becomes:

R
1,(d−1) −→ R

1,d−1−k × T
k . (1.43)

The Lorentz group splits in the following way:

SO(1, d− 1) → SO(1, d− 1− k)× isometries on T
k . (1.44)

The representations of the fields also take new forms. The covariant deriva-

tive, Dm = ∂m + Am, acting on the zero mode of a field simply reduces

to Dµ for m = µ. The components of the covariant derivative in the re-

duced directions, Di for i = 1, · · · , k, acting on a zero mode is just Ai

on the mode. The gauge field components in the reduced dimensions, Ai

i = 1, · · · k, become a collection of scalar fields.

In the limit R → 0, the isometries on Tk become the rotations on Rk,

and we have the splitting:

SO(1, d− 1) → SO(1, d− 1− k)× SO(k) . (1.45)

A spinor field decomposes into direct sums of representations of SO(1, d−
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1− k) because of the tensor product structure of the Clifford algebra. The

Lorentz group splitting is the same as in (1.45).

1.4.2 From N = 1, d = 10 SYM to N = 4, d = 4 SYM

Dimensional reduction of ten-dimensional N = 1 SYM theory down to four

dimensions leads to an N = 4 SYM with the same number of supersym-

metries.

The Lorentz group SO(1, 9) splits according to

SO(1, 9) → SO(1, 3)× SO(6) . (1.46)

We will also be using the notation of Spin group, the double cover of the

Lorentz group, in the later sections. The double cover splits according to

Spin(1, 9) → Spin(1, 3)× Spin(6) ≈ Spin(1, 3)× SU(4) . (1.47)

Dimensional reduction of the theory on a six dimensional torus T6

gives rise to a multiplet of four-dimensional fields possessing an additional

SO(6) ∼ SU(4) global symmetry. This internal rotational symmetry is

known as the R-symmetry, SOR(6), of the dimensionally reduced theory.

After dimensional reduction, the ten-dimensional gauge field reduces

to a four dimensional real vector Aµ, µ = 0, 1, 2, 3, transforming under

the SO(1, 3) symmetry. The reduced components of the gauge field Ai,

i = 1, 2, · · · , 6 become six real scalars. The SOR(6) becomes an internal

symmetry mixing between these scalars. They transform as the second

rank complex self-dual 6 of SU(4).
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The Clifford algebra splits up as follows:

Γµ = γµ ⊗ I8, Γi ≈ γpq = γ5 ⊗




0 ρpq

ρpq 0


 , (1.48)

where γµ, µ = 0, 1, 2, 3, are the ordinary 4 × 4 gamma matrices, and the

4× 4 ρ matrices, with p, q = 1, 2, 3, 4, are given by

(ρpq)rs = ǫpqrs, (ρpq)rs =
1

2
ǫpqklǫklrs , (1.49)

and the chirality matrix Γ11, in terms of our usual γ5 is:

Γ11 = Γ0 · · ·Γ9 = γ5 ⊗ I8 . (1.50)

Finally, the ten-dimensional charge conjugation matrix is related to the

four dimensional matrix C by

C10 = C ⊗




0 I4

I4 0


 . (1.51)

Imposing both Majorana and Weyl conditions on the Dirac spinor re-

sults in the structure

λ =




Lχs

Rχ̃s




, (1.52)

where L = 1
2
(I+ γ5) and R = 1

2
(I− γ5); s = 1, 2, 3, 4; and χ̃s = CχsT . We

have four left-handed and four right-handed (Weyl) spinors.

The spinor index 16 separates into (2,4) + (2,4) under SO(1, 3) ×

SO(6). The ten-dimensional spinor becomes four Weyl spinors.
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Thus the dimensionally reduced action is

S =

∫
d4xTr

(
− 1

4
FµνF

µν − 1

2
DµAiD

µAi +
1

4
[Ai, Aj ]

2
)

− i

2
Tr (λΓµDµλ+ iλΓi[Ai, λ]) . (1.53)

The supersymmetry transformation laws take the following form after

dimensional reduction

δAµ = −iαΓµλ , (1.54)

δAi = −iαΓiλ , (1.55)

δλ =
(1
2
FµνΓ

µν +DµAjΓ
µj +

i

2
[Ai, Aj ]Γ

ij
)
α . (1.56)



Chapter 2

Topological Field Theory

Supersymmetric fields theories naively break supersymmetry when they

are discretized on a lattice. Topological field theories provide a crucial

insight into establishing the compatibility between SYM theories and lat-

tice discretization. Certain supersymmetric field theories with extended

supersymmetries can be discretized on a lattice while preserving at least

one supersymmetry. The continuum limit of these discretized theories turn

out to have a structure similar to that of topological field theories. In this

Chapter we briefly introduce a class of topological field theories and show

how their structure is compatible with discretization on the lattice.

As the name suggests, topological field theories are characterized by

observables (correlations functions) which depend only on the topology

(global features) of the space on which these theories are constructed. The

non-dependence on local features implies that the observables of topological

field theories are independent of the metric of the space on which they are

defined.

The origin of topological field theories goes back to the work of Schwarz

19
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and Witten. In 1978, Schwarz showed [6] that Ray-Singer torsion1 could

be represented as the partition function of a certain quantum field theory.

In 1982, the work of Witten [7] provided a framework for understanding

Morse theory2 in terms of supersymmetric quantum mechanics. These two

field theory constructions represent the prototype of all known topological

field theories.

There are two general classes of topological field theories: they are

known as Witten and Schwarz type. In Witten type topological field the-

ories, the classical action is trivial (zero or a topological invariant). In

Schwarz type theories, classical actions are non-trivial. The prototype ex-

ample of a Witten type theory is the Donaldson theory3; the best known

example of Schwarz type theory is the Chern-Simons theory.

2.1 Yang–Mills theory and BRST invariance

Let us begin our brief description of topological field theory focusing only

on Witten type theory, as only this type eventually leads to a discretization

on the lattice.

We look at a conventional nonabelian field theory with gauge symmetry.

The best example is Yang–Mills theory in four dimensions. The classical

action is a combination of gauge field Lagrangian and Dirac Lagrangian.

It is:

Sc =

∫
d4xTr

(
− 1

4
FµνF

µν + ψ(ΓµDµ −m)ψ
)
, (2.1)

where the trace is over the generators of the gauge group G and the fermion

multiplet ψ belongs to an irreducible representation ofG. The field strength

1Ray-Singer torsion is a particular topological invariant of Riemannian manifolds.
2Morse theory is a method to determine the topology of a manifold from the critical

points of only one suitable function on the manifold.
3Donaldson theory is the study of smooth 4-manifolds using gauge theory techniques.
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is:

FA
µν = ∂µA

A
ν − ∂µA

A
ν + fABCABµA

C
ν , (2.2)

where fABC are the structure constants of G. The covariant derivative is

defined in terms of the representation matrices TA by

Dµ = ∂µ + AAµT
A (2.3)

The gauge-fixed (quantum) action after Faddeev-Popov gauge-fixing is:

Sq = Sc +

∫
d4xTr

( 1

2ξ
(∂µAAµ )

2 + cA(−∂µDAC
µ )cC

)
, (2.4)

where ξ is a gauge parameter, and c and c are the Faddeev-Popov ghost

and anti-ghost fields.

The Faddeev-Popov ghost fields serve as negative degrees of freedom

to cancel the effects of unphysical time-like and longitudinal polarization

states of gauge bosons Aµ, and thus make the gauge theory a complete

interacting theory.

There is a beautiful formal tool to implement this cancellation, known

as the BRST formulation [8, 9].

Let us rewrite the gauge-fixed action by introducing a new commuting

scalar field BA to expose the the symmetry associated with the BRST

technique:

Sq = Sc +

∫
d4xTr

(
− ξ

2
(BA)2 + BA∂µAAµ + cA(−∂µDAC

µ )cC
)
. (2.5)

The new field BA is not a normal propagating field, as it has a quadratic

term without derivatives. These type of fields, which appear in the func-

tional integral part but have no independent dynamics, are called auxiliary

fields. We can eliminate them by using the equations of motion. We could
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also get rid of the dependence on B by integrating it in a functional inte-

gral with a standard Euclidean measure [dB]. This would bring us back to

(2.4), the Faddeev-Popov gauge-fixed action.

The BRST symmetry has a continuous parameter that is an anticom-

muting number. Let us denote it by ǫ (we call this the BRST parameter),

and consider the following infinitesimal transformation of the fields in the

action:

δAAµ = ǫDAC
µ cC (2.6)

δψ = iǫcATAψ (2.7)

δcA = −1

2
ǫfABCcBcC (2.8)

δcA = ǫBA (2.9)

δBA = 0 (2.10)

The BRST transformation above is a global symmetry of the gauge-fixed

action for any value of the gauge parameter ξ.

The BRST transformation has one more remarkable feature, which is

a natural consequence of its anticommuting nature. Let QΦ be the BRST

transformation of the generic field Φ of the theory:

δΦ = ǫQΦ . (2.11)

Then the BRST variation of QΦ vanishes:

Q2Φ = 0 . (2.12)

That is, the BRST operator Q is nilpotent.

The BRST operator gives a precise relation between the unphysical

gauge boson polarization states and anti-ghosts as positive and negative
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degrees of freedom. We can use the principle of BRST symmetry to remove

the unphysical gauge boson polarizations in nonabelian gauge theories. The

complete quantum action, Sq, which comprises the classical action Sc to-

gether with the necessary gauge-fixing and ghost terms, is, by construction,

Q-invariant.

The change in gauge field AAµ involves the ghost field cA. In the infinites-

imal gauge symmetry (Yang–Mills symmetry), transformation for AAµ given

by AAµ → AAµ − (Dµθ)
A we can replace the gauge parameter −θA by the

ghost field cA. That is, gauge-invariant quantities are also BRST-invariant.

We also see that all observables are given by BRST-invariant expressions,

since all observables in a gauge theory must be gauge-invariant.

With the BRST transformations, we can write:

Sq = Sc +Q
∫
d4x

[
cA
(
∂µAAµ − ξ

2
BA

)]
. (2.13)

We can show that the vacuum expectation value of QO for any (not

necessarily Q invariant) functional O is zero. We write:

〈O〉 =

∫
[dA][dc][dc] O(A, c, c)e−Sq(A,c,c) . (2.14)

Let us rename the variables of integration in the following way:

AA
′

µ = AAµ + δAAµ , (2.15)

cA
′

= cA + δcA , (2.16)

cA
′

= cA + δcA . (2.17)

where δ = ǫQ is the BRST variation with ǫ an arbitrary Grassmann num-
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ber. The vacuum expectation value of O becomes:

〈O〉 =

∫
[dA′][dc′][dc′] O(A′, c′, c′)e−Sq(A′,c′,c′) . (2.18)

Assuming that the measure of integration is invariant, which it should be

for consistency of the theory, we get the vacuum expectation value of O:

〈O〉 =

∫
[dA][dc][dc] (O + δO)e−Sq−δSq ,

= 〈O〉+ 〈δO〉 , (2.19)

since δSq = 0. The change δO is the BRST variation of the operator O.

We can thus write the above equation as

〈QO〉 = 0 . (2.20)

2.2 Introducing topological field theory

Now that we are familiar with the basics of BRST quantization of gauge

theories, we can move on to introducing topological field theories. We

define a topological field theory as follows [10]:

A topological field theory consists of:

(a.) A collection of fields Φ (which are Grassmann graded) defined on a

Riemannian manifold (M, g),

(b.) A nilpotent operator Q, which is odd with respect to the Grassmann

grading,

(c.) Physical states defined to be Q-cohomology classes,

(d.) An energy-momentum tensor which is Q-exact, i.e.,

Tαβ = QVαβ(Φ, g) , (2.21)
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for some functional Vαβ of the fields and the metric.

The collective field content of the theory Φ includes the gauge field,

ghosts, and multipliers. The theory has local gauge symmetry, and, as

we briefly discussed before in the case of Yang–Mills, we can construct a

BRST type operator Q that is nilpotent. We denote the variation of any

functional O(Φ) as:

δO = QO . (2.22)

The physical Hilbert space is defined by the condition:

Q |phys〉 = 0 . (2.23)

Furthermore, a physical state of the form:

|phys〉 = |phys〉+Q|χ〉 (2.24)

is equivalent to |phys〉, for any state |χ〉. A state is called Q-closed if it is

annihilated by Q, while a state is called Q-exact if it is of form Q|χ〉. Thus

the physical Hilbert space splits into different equivalence classes called

Q-cohomology classes.

We take Q to be metric independent, which is the simplest situation

to deal with, also the best choice of connecting SYM theories with global

supersymmetries. For a theory defined on some manifold M , with a metric

gαβ, the energy-momentum tensor Tαβ is defined by the change in the action

under an infinitesimal deformation of the metric:

δgSq =
1

2

∫

M

dnx
√
gδgαβTαβ . (2.25)

We assume that the functional measure in the path integral is both Q-

invariant and metric independent.
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We now consider the change in the partition function:

Z =

∫
[dΦ]e−Sq , (2.26)

under the infinitesimal change in the metric:

δgZ =

∫
[dΦ]e−Sq(δgSq) ,

=

∫
[dΦ]e−Sq

(
− 1

2

∫

M

dnx
√
gδgαβTαβ

)
,

=

∫
[dΦ]e−Sq

(
− 1

2

∫

M

dnx
√
gδgαβQVαβ

)
.

Let us denote:

χ = −1

2

∫

M

dnx
√
gδgαβVαβ . (2.27)

Thus, we have

δgZ =

∫
[dΦ]e−SqQχ = 〈Qχ〉 = 0 . (2.28)

Thus, the partition function Z is independent of metric deformations. It

depends not on the local structure of the manifold, but only on global

properties. That is, Z is a topological invariant.

We can now move on to finding other metric independent correlation

functions in the theory. Let us consider the vacuum expectation value of

an observable O(Φ):

〈O〉 =
∫

[dΦ]e−SqO , (2.29)

and look for the conditions that are sufficient for this expectation value to

be a topological invariant, that is, for δg〈O〉 to be zero.

Proceeding as before, we find:

δg〈O〉 =
∫
[dΦ]e−Sq(δgO − δgSq · O) . (2.30)
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Assuming that O enjoys the properties:

δgO = QR and QO = 0 , (2.31)

for some R, we have that

δg〈O〉 = 〈QR〉+ 〈Q(χO)〉 = 0 . (2.32)

Now, it is clear that if O = QO′, for some O′, we automatically have 〈O〉 =

0. Thus BRST invariant operators that are not Q-exact are topological

invariants if they satisfy the condition δgO = QR.

In the case of Witten type theories, the complete quantum action Sq,

which comprises the classical action plus all the necessary gauge-fixing and

ghost terms, can be written as a BRST commutator, i.e.,

Sq = QV , (2.33)

for some functional V (Φ, g) of the fields, and Q is the nilpotent BRST

charge.

By using the Q-exact nature of the action, we can prove that the par-

tition function Z and the above class of topological invariant correlators

are also exact at the semi-classical level. Let us introduce a dimensionless

parameter β to rescale the action Sq → βSq and then consider the variation

of the partition function under a change in β:

δβZ = −
∫

[dΦ]e−βSqSqδβ

= −
∫

[dΦ]e−βSq(QV ) δβ = 0 . (2.34)

This shows that Z is independent of β, as long as β is non-zero4. We can

4Setting β to zero is not allowed, as the path integral requires a damping factor.



28 Chapter 2. Topological Field Theory

evaluate the partition function in the large-β limit. Such a limit corre-

sponds to the semi-classical approximation, in which the path integral is

dominated by fluctuations around the classical minima. In Witten type

theories, such an approximation is exact. We can also establish the semi-

classical exactness of the topologically invariant correlation functions in a

similar way.

It should be noted that topological field theories do not admit dynam-

ical excitations. That is, these theories have no propagating degrees of

freedom. In Witten type theories, the BRST operator Q plays the role

of a supersymmetry charge as well. The classical action for Witten type

theories is:

Sc = 0 , (2.35)

or a topological invariant. This action admits a large amount of topological

shift symmetry:

AA
′

µ = AAµ + ǫAµ . (2.36)

From the structure of the topological shift symmetry, we can see that each

bosonic field has a Q-superpartner. We have defined our theory by the

requirement that physical states are annihilated by Q. Hence, the super-

partners are interpreted as ghosts, leading to a total of zero degrees of

freedom. The energy of any physical state in these theories is zero, and,

hence, there are no physical excitations.

Thus, the number of degrees of freedom in a Witten type topological

field theory and a conventional supersymmetric field theory are quite dif-

ferent. There are no physical degrees of freedom at all in Witten type

theories. This may seem a little strange since from what we have described

above topological field theories are also supersymmetric theories in their

own right with supersymmetry charge Q. If we think of them as topo-



2.3 Constructing a topological field theory 29

logical field theories, they have to satisfy the requirement that they have

no degrees of freedom, while, on the other hand, if we think of them as

supersymmetric field theories, we require them to have both bosonic and

fermionic states. These two requirements do not contradict with each other

if we look at these theories from the point of view of the so-called twisting

of the supersymmetry. (We will describe the details of twisting in Chap-

ter 3.) In the context of the lattice supersymmetry constructions, we are

strongly dependent on this view point.

We can construct topological field theories from SYM theories through

the twisting process. The zero degrees of freedom restriction would then

be equivalent to a projection to the vacuum states of the supersymmetric

gauge theory. Once Q is chosen, we can change the physical interpretation

of the supersymmetric gauge theory in the following way to make it a topo-

logical field theory: We restrict our interest to Q-invariant path integrals,

observables, and states, and we consider anything of the form QO, for any

operator O, to be trivial. Thus, the interesting observables or states lie in

the cohomology groups of Q. Theories obtained after these restrictions are

topological field theories.

Since we will be interested in dynamical excitations of the (twisted) su-

persymmetric gauge theories, we will not impose these restrictions on path

integrals, observables, and states, but treat the theory as merely a twisted

version of the original supersymmetric theory that exposes a nilpotent su-

persymmetry explicitly.

2.3 Constructing a topological field theory

The original construction of topological quantum field theory by Witten

[11] showed that Donaldson theory can be realized as a four-dimensional

“twisted” N = 2 SYM theory. There are different approaches to deriving
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the action of Witten’s theory and a topological field theory in general. We

briefly describe them below. We will be interested in the third method, the

method of twisting.

2.3.1 Gauge-fixing topological shift symmetry

Beaulieu and Singer [12], and Brooks, Montano and Sonnenschein [13]

noted that Witten’s theory can be derived by gauge-fixing the local trans-

formation

δAAµ = θAµ , (2.37)

where AAµ is a gauge field in the adjoint representation. The gauge-fixing

has two steps: BRST gauge-fixing to expose fermionic symmetries and

Yang–Mills gauge-fixing of the gauge field. They started with a classical

action that is BRST and Yang–Mills gauge-invariant. The set of classical

actions that satisfy these conditions are the trivial classical action Sc = 0

and actions that are topological invariants (such as the theta term).

The gauge-fixing condition that leads to Witten’s theory corresponds

to gauge field configurations with vanishing instanton curvature,

F+
µν = Fµν + F̃µν = 0 . (2.38)

A series of topological gauge-fixing steps generate a set of ghosts and ghost

for ghost fields, leading to Witten’s N = 2 SYM action in four dimensions

[11].

2.3.2 Quantization through Batalin-Vilkovisky pro-

cedure

The basic idea here [14] is to regard the instanton equation F+
µν = 0 as

arising from a suitable classical action involving a linear combination of
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the F+
µν and an auxiliary self-dual field Gµν . The equation of motion for

Gµν becomes the Langevin equation for the system. This theory has an

on-shell reducibility. Quantizing the theory with this on-shell reducibility

requires us to make use of the Batalin-Vilkovisky quantization procedure

[15]. The result is the quantum action of N = 2, d = 4 SYM theory given

by Witten [11].

2.3.3 Twisting the supercharges of Yang–Mills the-

ory

There is yet another way to understand the origin of the action given in

[11]. This is the most useful way for us in the context of lattice supersym-

metry. The motivation here is to obtain the (scalar) BRST supercharge by

“twisting” a set of conventional (spinorial) supercharges. After twisting,

we obtain an action that bears a formal similarity to that of Witten’s four-

dimensional N = 2 SYM theory. The twisting procedure can obviously be

applied to various classes of SYM theories with extended supersymmetries.

It should be noted that, it is most natural to use Euclidean signature

in constructing topological quantum field theories. Twisting of the super-

symmetries does not work well in Lorentz signature in any event.



32 Chapter 2. Topological Field Theory



Chapter 3

Twisted Super Yang–Mills

Theories

In Chapter 2 we briefly mentioned that we can twist the supersymme-

tries of SYM theories to derive topological field theories. Since topological

field theories are most naturally related to Euclidean signature, we will be

focusing on SYM theories on Euclidean spacetime. Our interest in con-

structing SYM theories on the lattice also require these theories to have a

flat Euclidean signature. Although twisting does not work well in Lorentz

signature, we can usually return to Lorentz signature, if the theory is con-

structed on a manifold of type M = R × W , by simply taking Lorentz

signature on R.

We are specifically interested in the method of twisting, as it provides

a way of studying a class of SYM theories on a flat Euclidean spacetime

lattice. All SYM theories do not admit twisting; only SYM theories with

extended supersymmetries (N > 1) undergo twisting. Among the set of

extended SYM theories, we focus on a special class of SYM theories that

33
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N = 1, d = 10 N = 1, d = 6 N = 1, d = 4
↓ ↓ ↓

N = 2, d = 6 N = 2, d = 4 N = 2, d = 3
↓ ↓ ↓

N = 4, d = 4 N = 4, d = 3 N = (2, 2), d = 2
↓ ↓

N = 8, d = 3 N = (4, 4), d = 2
↓

N = (8, 8), d = 2

Table 3.1: Dimensional reduction of a set of N = 1 SYM theories and
their daughter theories in lower dimensions. Here (a, a) represents left-
and right-handed supersymmetries.

can be maximally twisted.

In Chapter 1, we showed that SYM theories can be constructed only

in certain spacetime dimensions. The theories we construct in that way

are N = 1 SYM theories. We can construct SYM theories with extended

supersymmetries through the method of dimensional reduction. In table

3.1, we show how a set of SYM theories with extended supersymmetries

can be obtained through the dimensional reduction of a set of N = 1

theories in higher dimensions. Here (a, a) represents left and right-handed

supersymmetries.

Theories with extended supersymmetries in d dimensions contain a

(Euclidean) spacetime rotation group SO(d) and an R-symmetry group,

which we denote by GR. Supersymmetric theories typically have global

chiral symmetries that do not commute with the supercharges. They are

called “R-symmetries.” These symmetries turn out to play a crucial role

in twisting. We are interested in the full twist of the Lorentz group -

called maximal twisting. Construction of a manifestly supersymmetric d-

dimensional Yang–Mills theory through twisting requires the R-symmetry

group to contain SO(d) as a subgroup. That is, there should exist a non-
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Theory Lorentz symmetry R-symmetry Maximal twist

d = 2, N = 2 SO(2) SO(2)× U(1) Yes
d = 2, N = 4 SO(2) SO(4)× SU(2) Yes
d = 2, N = 8 SO(2) SO(8) Yes
d = 3, N = 1 SO(3) U(1) No
d = 3, N = 2 SO(3) SO(3)× SU(2) Yes
d = 3, N = 4 SO(3) SO(7) Yes
d = 4, N = 1 SO(4) U(1) No
d = 4, N = 2 SO(4) SO(2)× SU(2) No
d = 4, N = 4 SO(4) SO(6) Yes

Table 3.2: Euclidean SYM theories with symmetry groups and possibilities
of maximal twist.

trivial homomorphism from the Euclidean Lorentz group SO(d)E to the

R-symmetry group GR. In table 3.2 we list a set of Euclidean SYM the-

ories with their Lorentz and R-symmetries, and the existence of maximal

twist in each case.

The constraint on the size of R-symmetry group excludes the (twisted)

lattice formulation of some interesting class of theories, such as N = 2

SYM (the Seiberg-Witten theory) in four dimensions or generic N = 1

supersymmetric QCD theories.

The well known N = 4 SYM in four dimensions can be twisted in three

different ways [16, 17, 18] but only one of them, introduced by Marcus [18],

undergo maximal twisting and, thus, leads to a lattice construction of this

theory. The other two twists cannot be implemented on a lattice in a gauge

covariant way.

The twists of three-dimensional N = 4 and N = 8 and two-dimensional

N = (8, 8), N = (4, 4) theories are presented by Blau and Thompson [19].

3.1 Twisting in d dimensions

In this section, we briefly review the maximal twists of extended SYM

theories in the continuum formulation on Rd. From the list we created
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above we see that the R-symmetry group possess an SO(d)R subgroup for

six of the theories. The theories that allow maximal twisting have the

property:

SO(d)E × SO(d)R ⊂ SO(d)E ×GR . (3.1)

To construct the twisted theory, we embed a new rotation group SO(d)′

into the diagonal sum of SO(d)E ×SO(d)R, and declare this SO(d)′ as the

new Lorentz symmetry of the theory. This is called the twisted rotation

group.

The details of twist construction are slightly different in each case. We

focus on the general idea of twisting first and then go on to the special cases

of interest in later sections. Let us assume that a fermionic field, which

is a spacetime spinor, is in the spinor representation of the R-symmetry

group SO(d)R as well1. After twisting, the fermions become integer spin

representations of the twisted rotation group SO(d)′, since the product of

two half-integer spins is always an integer spin. The fermions still preserve

their Grassmann odd nature, but they are now irreducible antisymmetric

tensor fields of the twisted rotation group. They can be expressed as a

direct sum of scalars, vectors, anti-symmetric tensors, and other higher

p-forms.

The bosons of the theory, Grassmann even fields, transform as vectors d

under the SO(d)′ - the gauge bosons Vµ transform as (d,1), and the scalars

Bµ transform as (1,d) under the SO(d)E×SO(d)R. If there are more than

d scalars in the untwisted theory (for example, N = 4, d = 4 theory has

six scalars), they become either 0-forms or d-forms under SO(d)′.

It is clear now why we have used the the name maximal twist for this

type of twisting. The twisting procedure involves the twisting of the full

1It is the spin group Spin(d) to be more precise, but using SO(d) will also lead to
same results.
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Lorentz symmetry group instead of twisting a subgroup of it. The four di-

mensional N = 2 theory can only admit a half twisting as its R-symmetry

group is not as large as the Lorentz rotation group SO(4)E. The other two

theories, N = 1 in d = 4 and N = 1 in d = 3 do not admit a nontriv-

ial twisting as there is no nontrivial homomorphism from their Euclidean

rotation group to their R-symmetry group.

The supersymmetries also take new forms under the twisted rotation

group. They also transform like twisted fermions, in integer spin repre-

sentations of the twisted rotation group. The scalar component Q of the

twisted supersymmetries is nilpotent

Q2 = 0 . (3.2)

The twisted superalgebra implies that the momentum Pa is now the Q-

variation of something. That is, it is Q-exact. This fact renders it plau-

sible that the entire energy momentum tensor may be Q-exact in twisted

theories. This, in turn, implies that the entire action of the theory could

be written in a Q-exact form S = QΛ. (In some cases, for example, N = 4

in d = 4 case, the twisted action is a sum of Q-exact and Q-closed terms.)

The subalgebra Q2 = 0 of the twisted supersymmetry algebra does not pro-

duce any spacetime translations. We can use this fact to carry the twisted

theory easily onto the lattice.

On a flat Euclidean spacetime, the twisted theory is merely a rewrit-

ing of the physical theory, and, indeed, possesses all supersymmetries of

the physical theory. The twisted SYM theory can be made topological by

interpreting the scalar supercharge Q as a BRST operator. Then the ob-

servables of the physical theory are restricted only to a set of topological

observables, appropriately defined correlators of the twisted operators.

Although the twisted formulation of supersymmetry goes back to Wit-
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ten [11] in the topological field theory construction of four-dimensional

N = 2 SYM theory in the context of Donaldson invariants, this for-

mulation had been anticipated in earlier lattice work using Dirac-Kähler

fields [20, 21, 22, 23, 24]. The precise connection between Dirac-Kähler

fermions and topological twisting was found by Kawamoto and collabora-

tors [25, 26, 27]. They observed that the 0-form supercharge that arises

after twisting is a scalar that squares to zero and constitutes a closed subal-

gebra of the full twisted superalgebra. It is this scalar supersymmetry that

can be made manifest in the lattice action, even at finite lattice spacing

[28, 29, 30, 31, 32].

3.2 Twisted N = 2, d = 2 SYM theory

We begin with a simple example of the twist construction: the two-dimensional

N = 2 SYM theory. This theory can be obtained by the dimensional re-

duction of four-dimensional N = 1 SYM theory. The global symmetry of

the four-dimensional theory:

SO(4)E × U(1) , (3.3)

where SO(4)E is the Euclidean Lorentz symmetry and U(1) is the chi-

ral symmetry, splits in the following way, after dimensional reduction, to

become the global symmetry of the two-dimensional theory

G = SO(2)E × SO(2)R1 × U(1)R2 . (3.4)

Here, SO(2)E is the Euclidean Lorentz symmetry; SO(2)R1 is rotational

symmetry along reduced dimensions and U(1)R2 is the chiral U(1) symme-
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try of the theory. We rewrite the symmetry group of the theory as:

SO(2)E × SO(2)R1 × U(1)R2 ∼ SO(2)E × SO(2)R1 × SO(2)R2 . (3.5)

Since the internal symmetry group contains two SO(2)’s, we can maxi-

mally twist this theory in two ways. They are called the A-model and the

B-model twist [33]. In the A-model twist, the twisted rotation is defined

as the diagonal SO(2) subgroup of the product of the Lorentz rotation

SO(2)E and the (chiral) SO(2)R2 symmetry. In the B-model twist, the

twisted rotation group is the diagonal SO(2) subgroup of the product of

the Lorentz rotation SO(2)E and the (internal) SO(2)R1 symmetry.

We will be focusing on the B-model twist picture (it is also known

as self-dual twist), since the form of the twisted action resembles that of

the orbifold constructions [34, 35, 36, 37], a complementary and equivalent

approach to lattice supersymmetry.

The fermions and supersymmetries are now decomposed into integer

spin representations of the twisted rotation group - there is a 0-form η, a

1-form ψa and a 2-form χab:

supercharges: Q Qa Qab

fermions: η ψa χab

number of fields: 1 2 1

Under the twisted symmetry SO(2)′ × U(1)R2 , the fermions transform as

η ⊕ ψa ⊕ χab −→ 1 1
2
⊕ 2− 1

2
⊕ 1 1

2
(3.6)

The gauge field Aa transform as (2,1)0, and the scalars Ba transform as

(1,2)0 under the rotation group SO(2)E × SO(2)R1 × U(1)R2 . In the new

rotation group SO(2)′ × U(1)R2 , they transform as (2)0. Naturally we can

combine the gauge field and scalars to obtain a complexified gauge field in
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this type of twist, that is,

Aa = Aa + iBa and Aa = Aa − iBa. (3.7)

Thus, the complexified gauge bosons transform as

Aa ⊕Aa −→ 20 ⊕ 20 . (3.8)

3.2.1 Supersymmetry transformations and twisted ac-

tion

The twisting process produces a nilpotent supercharge Q; it acts on the

twisted fields in the following way:

QAa = ψa (3.9)

Qψa = 0 (3.10)

QAa = 0 (3.11)

Qχab = −Fab (3.12)

Qη = d (3.13)

Qd = 0 (3.14)

where d is an auxiliary field introduced for the off-shell completion of the

supersymmetry algebra. It has equations of motion:

d = [Da,Da] . (3.15)
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The twisted theory has complexified covariant derivatives and field strengths.

For a generic field Φ, we have:

DaΦ ≡ ∂aΦ + [Aa,Φ], DaΦ ≡ ∂aΦ + [Aa,Φ] . (3.16)

The field strength takes the form:

Fab = [Da,Db], Fab = [Da,Db] . (3.17)

The action of the twisted theory can be expressed in a Q-exact form:

S = Q
∫
d2xTr Λ (3.18)

= Q
∫
d2xTr

(
χabFab + η[Da,Da]−

1

2
ηd

)
. (3.19)

After Q-variation and integrating out the field d yields

S =

∫
d2xTr

(
−FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)
. (3.20)

The action is Q-invariant by construction

QS = Q2Λ = 0 . (3.21)

This theory can be made topological by regarding Q as a BRST charge.

3.2.2 The twisted supersymmetry algebra

The two-dimensional supersymmetry algebra of the untwisted N = 2 the-

ory has the form

{Qαi, Qβj} = 2δijγ
a
αβPa , (3.22)
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whereQαi is supercharge, the left-indices α(= 1, 2) and the right-indices i(=

1, 2) are Lorentz spinor and internal spinor suffixes labeling two different

N = 2 supercharges, respectively. We can take these operators to be

Majorana in two dimensions. Pa is the generator of translation.

The process of twisting leads to the decomposition of the above super-

charges with double spinor indices into scalar, vector and pseudo-scalar

components:

Qαi = (IQ+ γaQa + γ5Q̃)αi, Q̃ = ǫabQab . (3.23)

These are the twisted supercharges of the two-dimensional N = 2 SYM

theory. The supersymmetry relations can be rewritten by the twisted gen-

erators in the following form:

{Q,Qa} = Pa, {Q̃,Qa} = −ǫabP b , (3.24)

Q2 = Q̃2 = {Q, Q̃} = {Qa,Qb} = 0 . (3.25)

This is the twisted N = d = 2 supersymmetry algebra.

3.2.3 Connection with Dirac-Kähler fermions

The supercharges and fermions become tensorial in their representations

as a result of twisting. The twisted fermions appearing in the matrix form

(3.23) can be considered as components of a geometrical object called a

Dirac-Kähler field [27]

Ψ = (η, ψa, χab) . (3.26)

If we take a standard free fermion action for a theory with two degenerate

Majorana species and replace the fermions by matrices, we find that the
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action can be easily written as [27]

SF = Tr Ψ†γa∂aΨ . (3.27)

Expanding the matrices into (real) components (η, ψa, χab) and doing the

trace yields

SF =
1

2
η∂aψa + χab∂[aψb] . (3.28)

This geometrical rewriting of the fermionic action yields the so-called Dirac-

Kähler action, which is most naturally rewritten using the language of

differential forms as [38]

SF = 〈Ψ · (d− d†)Ψ〉 . (3.29)

Here d and d† are the usual exterior derivative and its adjoint. Their action

of d on general rank p-antisymmetric tensors (forms) ω[µ1···µp] yields a rank

p+ 1 tensor with components ω[µ1···µpµp+1] and the square bracket notation

indicates complete antisymmetrization between all indices. The dot no-

tation just indicates that corresponding tensor components are multiplied

and integrated over space. The operator d† maps rank p tensors to rank

p − 1. This recasting of the action in geometrical terms not only yields

a nilpotent supersymmetry but allows us to discretize the action without

inducing fermion doubles [39].

The choice of maximal twisting gives rise to twisted fermions that are

just sufficient to saturate a single Dirac-Kähler field [40] and, thus, leads

to a lattice construction that does not suffer from the fermion doubling

problem.



44 Chapter 3. Twisted Super Yang–Mills Theories

3.3 Twisted N = 4, d = 4 SYM theory

We begin with looking at the symmetries of the ten-dimensional N = 1

SYM theory as the theory we are interested in is obtained by the dimen-

sional reduction of it down to four dimensions. Taking spinors into con-

sideration, the rotational symmetry group of the ten-dimensional theory is

Spin(10). The ten-dimensional Dirac spinors are in the spin representa-

tions S+ and S− of rank 16. These representations are complex conjugates

of each other in Euclidean spacetime. We can define a Euclidean chirality

operator ΓE11 in ten dimensions. It acts on the spin representations by a

multiplication by ∓i. (In (1.24), the chirality operator acts on Lorentz

representations of Dirac spinor.), that is,

ΓE11S
± = ∓i S± . (3.30)

If ǫ is the infinitesimal Grassmann valued parameter generating supersym-

metry transformations then

ΓE11ǫ = −iǫ . (3.31)

After dimensional reduction, the ten-dimensional Euclidean rotation

symmetry group reduces to

Spin(10)E → Spin(4)E × Spin(6)R ,

where Spin(4)E ∼ SU(2)× SU(2) is the four-dimensional rotational sym-

metry group on R4 and Spin(6)R ∼ SU(4)R is the global R-symmetry

group of the dimensionally reduced theory.

The ten-dimensional chirality operator also splits into two ΓE11 → Γ̂EΓ̃E,

where Γ̂E measures the Spin(4) chirality and Γ̃E measures the Spin(6)
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chirality. Thus, in four dimensions, the chirality condition becomes

ΓE11ǫ = Γ̂EΓ̃Eǫ . (3.32)

The complexification of Spin(4) is SL(2,C) × SL(2,C) and the two

spin representations corresponding to the two eigenvalues of Γ̂E are (2,1)

and (1,2) of SL(2,C) × SL(2,C)2. They are pseudo-real in Euclidean

dimensions. The spin representations of Spin(6) are the defining four-

dimensional representation 4 of SU(4)R and its dual 4. Thus, the four-

dimensional fermion fields transform under

Spin(4)× Spin(6) ∼ SL(2,C)× SL(2,C)× Spin(6) (3.33)

as

(2,1,4)⊕ (2,1,4) . (3.34)

The supersymmetries also transform the same way under Spin(4)×Spin(6).

Now we introduce the maximal twisting of this theory. This twist was

originally introduced by Marcus [18]. This twist plays a crucial role in the

Geometric Langlands program [41] as well.

There is a nontrivial homomorphism from the four-dimensional rota-

tion group Spin(4) to the R-symmetry group Spin(6) of the theory. That

means there exists maximal twisting of the theory. We replace the Spin(4)

rotation group with a different subgroup Spin′(4) of Spin(4) × Spin(6).

Though the new Spin′(4) group is isomorphic to the original rotational

symmetry Spin(4), and acts on R4 the same way that Spin(4) does, it acts

differently on the N = 4 gauge theory.

We choose the homomorphism from Spin(4) to Spin(6), such that the

2The two-dimensional representation of the first SL(2,C) tensored with the trivial
one-dimensional representation of the second SL(2,C) gives (2,1), and vice versa gives
(2,1).
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action of Spin′(4) on S+ has a non-zero invariant vector. Since the super-

symmetry generator ǫ takes values in S+ (See (3.30) and (3.31) above), a

choice of an invariant vector in S+ will give us a Spin′(4)-invariant super-

symmetry. We will call it Q. This is a scalar symmetry under the Spin′(4)

group, and it will automatically obey Q2 = 0.

We describe below how the fields transform under the twisted rotation

group. From the twist construction, we want the 4 of Spin(6) (= SU(4)R)

to transform as (2,1) ⊕ (1,2) of Spin(4)(= SU(2) × SU(2)). The 4 of

Spin(6), which is the complex conjugate of the 4, transforms the same way

under Spin(4), since the (2,1) and (1,2) of Spin(4) are pseudo-real.

We can embed the Spin(4)(=SU(2)× SU(2)) in Spin(6) (= SU(4)R).

This embedding commutes with the additional U(1) group. So our embed-

ding is such that the 4 of Spin(6) transforms under SU(2)×SU(2)×U(1)

as (2,1)1⊕ (1,2)−1. The 4 transforms as the complex conjugate of this, or

(2,1)−1 ⊕ (1,2)1.

We could also use the language of SO groups to describe the twist

instead of Spin groups. To do so, we use the fact that the fundamental

six-dimensional vector representation 6 of SO(6) is, in terms of Spin(6) =

SU(4)R, the same as antisymmetric part of 4⊗4. So 6 is the antisymmetric

part of (2,1)1 ⊕ (1,2)−1, which is (2,2)0 ⊕ (1,1)2 ⊕ (1,1)−2. Here (2,2)

is the same as the vector representation 4 of SO(4). So the 6 of SO(6)

decomposes into the sum of a vector 4 and two scalars of SO(4).

We can likewise analyze how the supersymmetries transform under

Spin′(4). The 4 of Spin(6) transforms as (2,1)−1 ⊕ (1,2)1 of Spin′(4) ×

U(1), and the 4 as (2,1)1 ⊕ (1,2)−1. So using (3.34)

(2,1,4)⊕ (2,1,4) ,

the supersymmetries that transform as (2,1) of Spin(4) transform under
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Spin′(4)× U(1) as

(2,1)0 ⊗ ((2,1)−1 ⊕ (1,2)1) = (1,1)−1 ⊕ (3,1)−1 ⊕ (2,2)1 , (3.35)

and the supersymmetries that transform as (1,2) of Spin(4) transform

under Spin′(4)× U(1) as

(1,2)0 ⊗ ((2,1)−1 ⊕ (1,2)1) = (1,1)−1 ⊕ (1,3)−1 ⊕ (2,2)1 . (3.36)

Thus, the supercharges and fermions transform under the new rotation

group

SU(2)′ × SU(2)′ × U(1)

as

(1,1)−1 ⊕ (2,2)1 ⊕ [(3,1)⊕ (1,3)]−1 ⊕ (2,2)1 ⊕ (1,1)−1 , (3.37)

or equivalently under the rotation group

SO(4)′ × U(1)

as

1−1 ⊕ 41 ⊕ 6−1 ⊕ 41 ⊕ 1−1 . (3.38)

As a result of this choice of embedding, the twisted theory contains super-

symmetries and fermions in integer spin representations. They transform

as scalars, vectors and higher rank p-form tensors:

supercharges: Q Qµ Qµν Q̄µ Q̄

fermions: η ψµ χµν ψ̄µ η̄

number of fields: 1 4 6 4 1

The four gauge bosons transform as (2,2)0 under the twisted rotation
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group. We label them as a vector field Aµ. Similarly, four of the six scalars

of the theory are now elevated to the same footing as the gauge bosons;

they also transform as (2,2)0 under the twisted rotation group. We label

them as a vector field Bµ. The two other scalars remain as singlets under

the twisted rotation group. We label them by φ and φ̄. Thus the bosons

of the twisted theory transform as:

SU(2)′ × SU(2)′ × U(1) → (1,1)1 ⊕ (2,2)0 ⊕ (2,2)0 ⊕ (1,1)−1 , (3.39)

or equivalently

SO(4)′ × U(1) → 11 ⊕ 40 ⊕ 40 ⊕ 1−1 . (3.40)

We parametrize the bosonic field content of the theory by

bosons: φ Aµ Bµ φ̄

number of fields: 1 4 4 1

3.3.1 Supersymmetry transformations and twisted ac-

tion

The two vector fields Aµ and Bµ of the twisted N = 4, d = 4 theory

transform the same way under the twisted rotation group. We can describe

the twisted theory in a compact way if we combine the vector fields into a

complex vector field Aµ [18]:

Aµ ≡ Aµ + iBµ , (3.41)

Aµ ≡ Aµ − iBµ . (3.42)
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We can now define three covariant derivatives and field strengths3 using

these connections:

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ, Dν ] , (3.43)

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ,Dν ] , (3.44)

Dµ · ≡ ∂µ + [Aµ, · ], Fµν ≡ [Dµ,Dν ] . (3.45)

We will go one more step further to make contact with the lattice construc-

tion. We assemble the complexified gauge fields and the two scalar fields

into a single five-component complexified connection:

Aa =
(
Aµ ≡ Aµ + iBµ, A5 ≡ A5 + iB5

)
, a = 1, · · · , 5 ;µ = 1, · · · , 4

(3.46)

where the fifth component A5 = φ and A5 = φ. Correspondingly, we pack-

age the fermions in the SU(5)× U(1) representation (which is a subgroup

of SO(10), the Lorentz symmetry group of the ten-dimensional theory)

- they become five-dimensional scalar, vector and antisymmetric tensors

(η, ψa, χab). The original twisted theory will then be obtained by simple

dimensional reduction of a theory in five dimensions. A similar language

arises in the orbifold construction of this theory [37] where the fermions

and bosons transform in the representations of SU(5)× U(1):

bosons: 10 → 5⊕ 5

fermions: 16 → 1⊕ 5⊕ 10

In addition to these fields, we introduce one auxiliary bosonic scalar

field d for off-shell completion of the scalar supersymmetry.

3We employ an anti-hermitian basis for the generators U(N).
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The nilpotent scalar supersymmetry Q now acts on these fields in a

simple manner

QAa = ψa (3.47)

Qψa = 0 (3.48)

QAa = 0 (3.49)

Qχab = −Fab (3.50)

Qη = d (3.51)

Qd = 0 (3.52)

The action of the twisted theory can now be expressed in a compact five-

dimensional form, as a linear combination of Q-exact and Q-closed terms:

S = QΛ + SQ−closed , (3.53)

where

Λ =

∫
Tr

(
χabFab + η[Da,Da]−

1

2
ηd

)
, (3.54)

and

SQ−closed = −1

2

∫
Tr ǫabcdeχdeDcχab . (3.55)

The invariance of the Q-closed term is a result of the Bianchi identity (or

Jacobi identity for covariant derivatives)

ǫabcdeDcFde = ǫabcde[Dc, [Dd,De]] = 0 . (3.56)

Carrying out the Q-variation and subsequently eliminating the auxiliary

field d using the equation of motion, we can write down the action in terms
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of the propagating fields:

S =

∫
Tr

(
−FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

− 1

2
ǫabcdeχdeDcχab

)
. (3.57)

We can obtain the twisted theory in four dimensions by dimensional

reduction of this theory along the 5th direction. We write down the de-

composition of five-dimensional fields into four-dimensional fields as follows

Aa → Aµ ⊕ φ (3.58)

Fab → Fµν ⊕Dµφ (3.59)

[Da,Da] → [Dµ,Dµ]⊕ [φ, φ] (3.60)

ψa → ψµ ⊕ η (3.61)

χab → χµν ⊕ ψµ (3.62)

The action (5.6), after dimensional reduction, yields:

S =

∫
Tr

(
−FµνFµν +

1

2
[Dµ,Dµ]

2 +
1

2
[φ, φ]2 + (Dµφ)(Dµφ)− χµνD[µψν]

−ψµDµη − ψ[φ, ψµ]− ηDµψµ − η[φ, η]− χ∗
µνDµψν −

1

2
χ∗
µν [φ, χµν ]

)
,(3.63)

where the last two terms arise from the dimensional reduction of the Q-

closed term with χ∗, the Hodge dual of χ, defined as χ∗
µν =

1
2
ǫµνρλχρλ and

ψµ = 1
2
χ5µ.
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The twisted supersymmetry transformations take the following form

after dimensional reduction to four dimensions:

QAµ = ψµ, Qψµ = 0

QAµ = 0, Qχµν = −Fµν

Qη = d, Qd = 0, Qφ = η (3.64)

Qη = 0, Qψµ = Dµφ

Qφ = 0



Chapter 4

Supersymmetric Lattices

Supersymmetric field theories resisted discretization on the lattice for

a long time since they were discovered. The central part of the difficulty

is that naive discretizations of continuum supersymmetric field theories

break supersymmetry completely, and radiative effects lead to a profusion

of relevant supersymmetry breaking counterterms in the renormalized lat-

tice action. In order to arrive at a supersymmetric theory in the continuum

limit, the coefficients to these counterterms must be carefully fine tuned

as the lattice spacing is sent to zero. This fine tuning process turned out

to be both unnatural and practically impossible in most of the cases. We

can easily identify the problem with discretization just by looking at the

supersymmetry algebra. It naively breaks on the lattice. There are no

infinitesimal translation generators on a discrete spacetime so that the al-

gebra {Q,Q} = γaPa is already broken at the classical level. An equivalent

way to realize this difficulty is looking at the supersymmetry variation on

the lattice. A naive supersymmetry variation of a naively discretized su-

persymmetric theory fails to yield zero as a consequence of the failure of

53
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the Leibniz rule when applied to lattice difference operators.

At present we have a new set of theoretical tools and ideas to construct

a family of lattice models that retain exactly some of the continuum su-

persymmetry at non-zero lattice spacing. The basic idea is to maintain

a particular subalgebra of the full supersymmetry algebra in the lattice

theory. The hope is that this exact symmetry will constrain the effective

lattice action and protect the theory from dangerous supersymmetry vi-

olating counterterms. The resultant supersymmetric lattice theories are

local and free of doublers, and, in the case of Yang-Mills theories, also pos-

sess exact gauge-invariance. In principle, they form the basis for a truly

non-perturbative definition of the continuum supersymmetric field theory.

Having a lattice formulation of supersymmetric gauge theories is very

advantageous, as it opens up a large arena of theoretical and numerical

investigations. For example, the availability of a supersymmetric lattice

construction for the four dimensional N = 4 SYM theory is clearly very

exciting from the point of view of exploring the connection between gauge

theories and string/gravitational theories. The lattice formulation of this

theory is important in its own right, even without the connection to string

theory – it provides a non-perturbative formulation of a supersymmetric

theory.

The geometric structure of twisted SYM theories allows them to be

easily transported onto the lattice. The fermions manifest themselves in

integer spin representations of the twisted rotation group. They carry the

structure of anti-symmetric tensor fields. They also fill out the right num-

ber of ingredients to build a single Dirac-Kähler field. Such a construction

suitably evades the fermion doubling problem on the lattice. The nilpotent

supercharge exposed by the process of twisting does not generate transla-

tions. This property makes the twisted theory to be discretized keeping the
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nilpotent scalar supersymmetry unbroken. All these unique features make

the twisted continuum theory well qualified to undergo discretization. We

follow a geometric discretization scheme to construct lattice versions of the

twisted SYM theories [42, 43, 39, 44, 29, 45] and it is detailed below.

4.1 Geometric structure of continuum and

lattice action

We begin the description of the lattice formulation by looking at the gen-

eral structure of the continuum gauge theory. The bosonic and fermionic

fields are in integer spin representations of the twisted rotation group. The

fermions are p-forms, that is, they are tensor fields in general. We take

the gauge group to be U(N) and represent all the fields in the adjoint

representation of this gauge group. The continuum action, defined on a

d-dimensional flat Euclidean spacetime has the following properties.

The action is Lorentz invariant, and it consists of complex covariant

derivatives Da and Da associated with a complex (not hermitian) connec-

tion Aa and its complex conjugate Aa, respectively, and a set of (bosonic

and/or fermionic) tensor fields, {f (±)
a1···ap}, that is,

Scont = Scont

(
Da,Da, {f (±)

a1···ap
}
)
. (4.1)

The covariant derivatives can act on the tensor fields in a curl-like or a

divergence-like operation. The curl-like operation gives

Da{f (±)
a1···ap

(x)} = ∂a{f (±)
a1···ap

(x)}+ [Aa(x), {f (±)
a1···ap

(x)}] , (4.2)

Da{f (±)
a1···ap

(x)} = ∂a{f (±)
a1···ap

(x)}+ [Aa(x), {f (±)
a1···ap

(x)}] , (4.3)
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while the divergence-like operation gives

Dai{f (−)
a1···ap

(x)} = ∂ai{f (−)
a1···ap

(x)}+ [Aai(x), {f (−)
a1···ap

(x)}] , (4.4)

Dai{f (+)
a1···ap

(x)} = ∂ai{f (+)
a1···ap

(x)}+ [Aai(x), {f (+)
a1···ap

(x)}] , (4.5)

where (1 ≤ i ≤ p).

We choose a hypercubic abstract lattice to write down the lattice ver-

sions of the SYM theories1. The p-form fields are mapped to lattice fields

living on p-cells of the lattice. The p-cell lattice field can have two possible

orientations. This orientation is physical and determines how the lattice

fields are gauge rotated on the lattice. So we need to choose an orientation

that respects gauge symmetry on the lattice. We choose the fields to be

positively oriented, that is, the orientation of the field corresponds to the

one in which the link vector has positive components with respect to the

coordinate basis.

We replace the complexified connections Aa and Aa with the following

link fields on the lattice:

Aa(x) → eAa(n) ≡ Ua(n) , (4.6)

Aa(x) → eAa(n) ≡ Ua(n) , (4.7)

where n denotes the integer valued lattice site.

The lattice action contains a set of site, link and p-form fields:

Slatt = Slatt

(
Ua(n),Ua(n), {f (±)

a1···ap
(n)}

)
. (4.8)

The fields on the lattice can be regarded as variables living on orientable

1Later we will see that there are more exotic lattice choices that expose the maximum
amount of symmetry and thus impose stronger constraints on the counterterms on the
lattice. We can write down a set of transformation rules that connects the basis vectors
of such lattices with those of the hypercubic lattice.
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links. As a result of this prescription the lattice variables Ua(n), Ua(n),

{f (+)
a1···ap(n)}, {f (−)

a1···ap(n)} live on links (n,n + µ̂a), (n + µ̂a,n), (n,n +

µ̂a1 + · · ·+ µ̂ap) and (n+ µ̂a1 + · · ·+ µ̂ap ,n) respectively. A site variable

η(n) lives on a link (n,n).

For G(n) ∈ U(N), the lattice variables translate under the gauge trans-

formations in the following way:

Ua(n) → G(n)Ua(n)G†(n+ µ̂a) (4.9)

Ua(n) → G(n+ µ̂a)Ua(n)G
†(n) (4.10)

{f (+)
a1···ap

(n)} → G(n){f (+)
a1···ap

(n)}G†(n+ µ̂a1 + · · ·+ µ̂ap) (4.11)

{f (−)
a1···ap

(n)} → G(n+ µ̂a1 + · · ·+ µ̂ap){f (−)
a1···ap

(n)}G†(n) (4.12)

Notice that these transformations respect the p-cell and orientation assign-

ments of lattice fields.

The covariant derivativesDa (Da) in the continuum become forward and

backward covariant differences D(+)
a (D(+)

a ) and D(−)
a (D(−)

a ), respectively.

They act on the lattice fields f
(±)
a1···ap(n) in the following way:

D(+)
b f (+)

a1···ap
(n) ≡ Ub(n)f (+)

a1···ap
(n+ µ̂b)− f (+)

a1···ap
(n)Ub(n+ µ̂) (4.13)

D(+)
b f (−)

a1···ap
(n) ≡ Ub(n+ µ̂)f (−)

a1···ap
(n+ µ̂b)− f (−)

a1···ap
(n)Ub(n) (4.14)

D(+)

b f (+)
a1···ap

(n) ≡ f (+)
a1···ap

(n+ µ̂b)U b(n+ µ̂)− U b(n)f
(+)
a1···ap

(n) (4.15)

D(+)

b f (−)
a1···ap

(n) ≡ f (−)
a1···ap

(n+ µ̂b)U b(n)− U b(n+ µ̂)f (−)
a1···ap

(n) (4.16)

where we have defined µ̂ =
∑p

i=1 µ̂ai
.

4.1.1 Prescription for discretization

Thus, from a given continuum twisted action in d dimensions, we can con-

struct the lattice action using the following prescription for discretization.
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(i.) For complexified gauge bosons in the continuum Aa(x) and Aa(x),

we introduce lattice link fields Ua(n) = eAa(n) and Ua(n) = eAa(n).

(ii.) A continuum p-form field will be mapped to a corresponding lattice

p-form field associated with a p-dimensional hypercubic lattice. The

lattice site (n) is spanned by the (positively oriented) unit vectors

{µ̂a1 · · · µ̂ap}. The continuum fields become link variables and live

on oriented links. The continuum complex covariant derivatives Da

and Da become link variables Ua(n) and Ua(n), and they live on the

links (n,n + µ̂a) and (n + µ̂a,n), respectively. The tensor fields

f
(+)
a1···ap(x) and f

(−)
a1···ap(x) become lattice variables f

(±)
a1···ap(n) living on

links (n,n+µ̂a1+ · · ·+µ̂ap) and (n+µ̂a1+ · · ·+µ̂ap ,n), respectively.

(iii.) The gauge transformations of lattice variables are given in (4.9)-

(4.12).

(iv.) The curl-like complex covariant derivatives become forward covariant

differences given in (4.2)-(4.3).

(v.) The divergence-like complex covariant derivatives become backward

covariant differences given in (4.4)-(4.5).

4.2 Two-dimensional lattice N = 2 SYM the-

ory

As a result of the geometrical discretization prescription the two-dimensional

N = 2 lattice SYM theory lives on a two-dimensional square lattice spanned

by two orthogonal basis vectors. The fermionic and bosonic fields live on

sites, links and body diagonal of the lattice unit cell.

The lattice covariant forward difference operator D(+)
a acts on the lattice
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scalar and vector fields in the following way:

D(+)
a f(n) = Ua(n)f(n+ µ̂a)− f(n)Ua(n) , (4.17)

D(+)
a fb(n) = Ua(n)fb(n+ µ̂a)− fb(n)Ua(n+ µ̂b) , (4.18)

where µ̂a is the unit vector along the a direction; there are two unit vectors:

(µ̂1, µ̂2). We have replaced the continuum complex gauge fields Aa by non-

unitary link fields Ua = eAa .

The lattice covariant backward difference operator D(−)

a replaces the

continuum covariant derivative in divergence-like operations and its action

on (positively oriented) lattice vector fields can be obtained by requiring

that it to be the adjoint to D(+)
a . Thus, its action on lattice vectors is

D(−)

a fa(n) = fa(n)Ua(n)− Ua(n− µ̂a)fa(n− µ̂a) . (4.19)

The nilpotent scalar supersymmetry acts on the lattice fields in the follow-

ing way:

QUa(n) = ψa(n) (4.20)

Qψa(n) = 0 (4.21)

QUa(n) = 0 (4.22)

Qχab(n) = F †
ab(n) (4.23)

Qη(n) = d(n) (4.24)

Qd(n) = 0 (4.25)

The lattice field strength can be written as:

Fab(n) = D(+)
a Ub(n) = Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b) . (4.26)
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Figure 4.1: Orientations of twisted fields on a two-dimensional lattice.

It reduces to the continuum (complex) field strength in the naive continuum

limit and is automatically antisymmetric in the indices.

The supersymmetry transformations on the lattice, associated with the

nilpotent supersymmetry, imply that the fermion fields ψa(n) have the

same orientation as their superpartners, the gauge links Ua(n), and run

from n to (n + µ̂a). However, the field χab(n) must have the same ori-

entation as F †
ab(n) and hence is to be assigned to the negatively oriented

link running from (n + µ̂a + µ̂b) to n. The negative orientation is crucial

for allowing us to write down gauge-invariant expressions for the fermion

kinetic term. The scalar fields η(n) and d(n) can be taken to transform

simply as site fields.
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4.2.1 Gauge transformations on the lattice

The gauge transformation properties of the lattice fields conveniently sum-

marize these link mappings and orientations:

η(n) → G(n)η(n)G†(n) (4.27)

ψa(n) → G(n)ψa(n)G
†(n+ µ̂a) (4.28)

χab(n) → G(n+ µ̂a + µ̂b)χab(n)G
†(n) (4.29)

Ua(n) → G(n)Ua(n)G†(n+ µ̂a) (4.30)

Ua(n) → G(n+ µ̂a)Ua(n)G
†(n) (4.31)

The action is again Q-exact on the lattice: S = QΛ, where

Λ =
∑

n

Tr
(
χab(n)D(+)

a Ub(n) + η(n)D(−)

a Ua(n)−
1

2
η(n)d(n)

)
. (4.32)

Acting with the Q transformation shown above and again integrating out

the auxiliary field d, we derive the gauge and Q-invariant lattice action:

S =
∑

n

Tr
(
F †
ab(n)Fab(n) +

1

2

(
D(−)

a Ua(n)
)2

−χab(n)D(+)
[a ψb](n)− η(n)D(−)

a ψa(n)
)
. (4.33)

It is interesting to see that each term in the action forms a closed loop

on the two-dimensional lattice. This is a requirement for preserving the

gauge symmetry on the lattice.
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4.3 Four-dimensional lattice N = 4 SYM the-

ory

The way we discretized the two-dimensional N = 2 theory on a two-

dimensional square lattice immediately motivates us to choose the dis-

cretization of the four-dimensional N = 4 theory on a four-dimensional

hypercubic lattice. The fermions of the four-dimensional theory live on

p-cells of the hypercubic lattice unit cell, associating themselves with the

p-form representation of the continuum SO(4) symmetry. The fermionic

content of the hypercubic lattice construction manifest themselves as an ex-

plicit realization of Dirac-Kähler fermions. The bosons are also distributed

on this lattice in orientations consistent with those of the fermions. The

symmetry of the hypercubic lattice action is S4, much smaller than the

symmetry of the hypercube itself, due to the orientation assignment of the

fields.

The gauge link fields Ua(n), a = 1, 2, 3, 4, live on elementary coordinate

directions in the unit cell of the hypercube pointing in the direction (n,n+

µ̂a). The superpartners of the gauge link fields, ψa(n), also live on the same

links and oriented identically. The field Ua(n) is oriented in the opposite

direction (n + µ̂a,n). The complexified field strength Fab(n) runs along

the direction (n,n+ µ̂a + µ̂b). By exact supersymmetry, this implies that

the field χab(n) (and thus Fab(n)) runs in the opposite direction.

The assignment of U5(n) (and, thus, that of ψ5(n)) is not immediately

obvious. The Dirac-Kähler decomposition demands a 4-form. This moti-

vates assigning the lattice field to the body diagonal of the unit hypercube,

which is a 4-cell. It is oriented along the vector µ̂5 = (−1,−1,−1,−1).

We see that this assignment ensures that µ̂1 + µ̂2 + · · ·+ µ̂5 = 0, and it is

crucial for constructing gauge-invariant quantities on the lattice.
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The basis vectors µ̂a of the hypercubic lattice are thus defined as2

µ̂1 = (1, 0, 0, 0)

µ̂2 = (0, 1, 0, 0)

µ̂3 = (0, 0, 1, 0) (4.34)

µ̂4 = (0, 0, 0, 1)

µ̂5 = (−1,−1,−1,−1)

Though the four-dimensional fields come with five indices they are all

taken care of with suitable orientation assignments consistent with the

lattice gauge symmetry.

On the hypercubic lattice the action of the four-dimensional theory

takes the following form

S =
∑

n,a,b,c,d,e

{
Q Tr

[
χabD(+)

a Ub(n)− η(n)
(
D(−)

a Ua(n)−
1

2
d(n)

)]

−1

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}
. (4.35)

where the lattice field strength is given by

Fab(n) ≡ D(+)
a Ub(n) =

(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)
. (4.36)

and the covariant difference operators appearing in this expression are given

2These vectors are related to the r-charges defined in the orbifold formulation of the
four-dimensional N = 4 lattice SYM theory [37].
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by

D(+)
c f(n) = Uc(n)f(n+ µ̂c)− f(n)Uc(n) (4.37)

D(+)
c fd(n) = Uc(n)fd(n+ µ̂c)− fd(n)Uc(n+ µ̂d) (4.38)

D(−)

c fc(n) = fc(n)U c(n)− U c(n− µ̂c)fc(n− µ̂c) (4.39)

D(−)

c fab(n) = fab(n)U c(n− µ̂c)− U(n+ µ̂a + µ̂b − µ̂c)fab(n− µ̂c) (4.40)

The supersymmetry transformations on the lattice fields are almost

identical to their continuum counterparts:

QUa(n) = ψa(n) (4.41)

Qψa(n) = 0 (4.42)

QUa(n) = 0 (4.43)

Qχab(n) = −FL

ab(n) (4.44)

Qη(n) = d (4.45)

Qd(n) = 0 (4.46)

After the Q-variation, as performed in the continuum, and integrating out

the auxiliary field d, the final lattice action is:

S =
∑

n

Tr
[
FL†
ab FL

ab +
1

2

(
D(−)

a Ua(n)
)2

− χab(n)D(+)
[a ψb](n)− η(n)D†(−)

a ψa(n)

−1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D

(−)

c χab(n+ µ̂c)
]
. (4.47)

To see that this action targets the continuum twisted theory one needs to
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expand Ua about the unit matrix [37]3

Ua(n) = IN +Aa(n) , (4.48)

Ua(n) = IN −Aa(n) . (4.49)

While the supersymmetric invariance of the Q-exact term is manifest in the

lattice theory it is not immediately clear that the Q-closed term remains

supersymmetric after discretization. Interestingly, this can be shown using

a remarkable property of the discrete field strength, which can be shown

to satisfy an exact Bianchi identity just as for the continuum [44].

ǫabcdeD(−)

c Fab(n+ µ̂c) = 0 . (4.50)

4.3.1 The A∗
4 lattice construction

There exists a more symmetric lattice than the hypercubic lattice for the

four-dimensional N = 4 theory. This lattice is called the A∗
4 lattice. On

this lattice, we treat all five basis vectors equally and they are oriented

in such a way that the basis vectors connect the center of a 4-simplex to

its corners. Having a most symmetric lattice is advantageous because the

greater the symmetry is, the fewer relevant or marginal operators will exist

on the lattice.

The lattice possesses an S5 point group symmetry, which is the Weyl

group of SU(5). We briefly described the SU(5) × U(1) decomposition of

the fields of the four-dimensional N = 4 SYM theory in Sec. 3.3.1. The

discretization prescription for such a decomposition of the fields would be

the A∗
4 lattice. A specific basis for the A∗

4 lattice is given in the form of five

3To leading order this is equivalent to the more conventional expression Ua(n) =
eAa(n). We will see that the linear representation offers important advantages over the
exponential in our later calculations.
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lattice vectors:

ê1 =
( 1√

2
,
1√
6
,

1√
12
,

1√
20

)
(4.51)

ê2 =
(
− 1√

2
,
1√
6
,

1√
12
,

1√
20

)
(4.52)

ê3 =
(
0,− 2√

6
,

1√
12
,

1√
20

)
(4.53)

ê4 =
(
0, 0,− 3√

12
,

1√
20

)
(4.54)

ê5 =
(
0, 0, 0,− 4√

20

)
(4.55)

These lattice vectors connect the center of a 4-simplex to its five corners.

They are related to the SU(5) weights of the 5 representation. The unit

cell of the A∗
4 lattice is a compound of two 4-simplices corresponding to

the 5 (formed by the basis vectors êm) and 5 (formed by the basis vectors

−êm) representations of SU(5). The basis vectors satisfy the relations

5∑

m=1

êm = 0; êm · ên =
(
δmn −

1

5

)

5∑

m=1

(êm)µ(êm)ν = δµν ; µ, ν = 1, · · · , 4.

Notice also that S5 is a subgroup of the twisted rotation symmetry group

SO(4)′ and that the lattice fields transform in reducible representations of

this discrete group - for example, the vector Aa decomposes into a four

component vector Aµ and a scalar field φ under SO(4)′. Invariance of

the lattice theory with respect to these discrete rotations then guarantees

that the theory will inherit full invariance under twisted rotations in the

continuum limit.

Proceeding in this manner, it is possible to assign all the remaining fields

to links on the A∗
4 lattice. Since ψa(n) is a superpartner of Ua(n) it must

also reside on the link connecting n → n+ êa. Conversely the field U †
a(n)
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resides on the oppositely oriented link from n → n− êa. The ten fermions

χab(n) are then chosen to reside on new fermionic links n+ êm + ên → n,

while the singlet fermionic field η(n) is assigned to the degenerate link

consisting of a single site n.

The integer-valued lattice site n can be related to the physical location

in spacetime using the A∗
4 basis vectors êa.

R = a

4∑

ν=1

(µν · n)êν = a

4∑

ν=1

nν êν , (4.56)

where a is the lattice spacing. On using the fact that
∑

m êm = 0, we can

show that a small lattice displacement of the form dn = µ̂m corresponds

to a spacetime translation by (aêm):

dR = a

4∑

ν=1

(µν · dn)êν = a

4∑

ν=1

(µ̂ν · µ̂m)êν = aêm . (4.57)

In the next Chapter, we will use the A∗
4 lattice construction to study

the one-loop renormalization of the N = 4, d = 4 SYM theory.
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Chapter 5

Lattice N = 4 SYM Theory at

One-loop

In Chapter 1, we briefly discussed how special the four-dimensional

N = 4 SYM theory is and also mentioned that it plays a crucial role in the

holographic principle. The dual of N = 4 SYM theory is a string theory

in AdS5 × S5 space. We can study the dynamics of the gauge theory in

various limits of its coupling parameter. We could also learn a lot about the

dual string theory by studying the gauge theory. The lattice formulation

of four-dimensional N = 4 SYM theory would be very advantageous as

it would give a non-perturbative definition of the gauge theory and open

up a new window to explore its strong coupling dynamics. Indeed, such a

lattice construction would allow for a systematic study of its dual string

theory. In Chapter 4, we have written down the lattice version of this

theory. We wrote down the the theory on a four-dimensional hypercubic

lattice and then, to utilize the maximum symmetry of the lattice theory,

we described the discretization of this theory on a very special lattice called

69



70 Chapter 5. Lattice N = 4 SYM Theory at one-loop

the A∗
4 lattice.

The lattice formulation of the N = 4 SYM theory retains an exact

supersymmetry, even at non zero lattice spacing. But this is only one out of

the sixteen continuum supersymmetric invariances. There is still a question

of how much fine tuning would be required to take a continuum limit of

this lattice theory targeting the usual N = 4 theory. In this Chapter1,

we address this issue using both general arguments valid to all orders in

perturbation theory and an explicit calculation of the renormalization of

the lattice theory to one-loop order.

We can make a quite general argument that the symmetries of the lattice

theory strongly constrain the possible counterterms that can arise as a

result of quantum corrections. We will see that the only relevant operators

that can be induced via radiative effects correspond to renormalizations

of four marginal operators already present in the tree level theory. These

operators correspond to kinetic terms in the bare action. We also show

that no mass terms are induced, to all orders in perturbation theory, using

a topological argument based on the exact lattice supersymmetry.

We then go on to ask what divergences can arise in the renormalization

of these four bare couplings to address the remaining fine tuning question.

On using lattice perturbation theory, we proceed to calculate these diver-

gences at one-loop. The lattice structure of the theory, coming from the

twisted supersymmetry, allows us to extract these leading divergences. We

derive the Feynman rules governing the perturbative structure of the lat-

tice theory and write down the diagrams needed to renormalize the theory

at one-loop. We need only to examine the renormalization of the three

types of twisted fermion propagators and a single propagator for an auxil-

iary bosonic field. We show that all these propagators exhibit a common

1This Chapter is based on the work [46].
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logarithmic divergence at one-loop. The appearance of a single logarithmic

divergence ensures that, at one-loop, only finite parts need to be fine tuned

in order to regain full supersymmetry in the continuum limit. This is a huge

advantage of this approach, as compared to earlier efforts at constructing

supersymmetric lattice theories in four dimensions.

We also compute the partition function of the theory at one-loop and

show that it is independent of any background fields, and, furthermore,

that this is true to all orders in perturbation theory.

5.1 General analysis of renormalization

From power counting, we see that the four-dimensional N = 4 theory in

the continuum has an infinite number of superficially divergent Feynman

diagrams occurring at all orders of perturbation theory. All of these po-

tential divergences cancel between diagrams to render the quantum theory

finite in the continuum. This perfect cancellation may not happen on the

lattice, since the lattice theory does not possess all the supersymmetries of

the continuum theory.

Before we proceed to the perturbative analysis of the lattice theory, let

us check what kinds of counterterms are permitted by the lattice symme-

tries. The four-dimensional theory on an A∗
4 lattice has the following set of

symmetries:

i. The exact supersymmetry corresponding to the scalar supercharge

Q.

ii. Lattice gauge symmetry.

iii. The S5 point group symmetry and discrete translations on the lattice.

If we take the gauge group to be U(N), lattice gauge theory possesses an
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additional fermionic symmetry, given by

η(n) → η(n) + ǫIN , δǫ(all other fields) = 0 , (5.1)

where ǫ is an infinitesimal Grassmann parameter. Thus, our list contains

one more symmetry:

iv. Fermionic shift symmetry.

In this Chapter, we will change our conventions to hermitian basis for

the generators of the gauge group satisfying Tr (TATB) = 1
2
δAB. We also

explicitly indicate the dependence on the coupling parameter g. In terms of

the complexified connections, the three types of covariant derivatives and

field strengths take the form:

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da, Db] , (5.2)

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da,Db] , (5.3)

Da · ≡ ∂a + ig[Aa, · ], Fab ≡ − i

g
[Da,Db] . (5.4)

The continuum action of the theory is:

S =

∫
Tr

(
FabFab +

1

2g2
[Da,Da]

2 − χabD[aψb] − ηDaψa

−1

2
ǫabcdeχdeDcχab

)
. (5.5)

We extract the coupling parameter dependence from the terms in the action

by rescaling the fields gη → η, gψa → ψa, gχab → χab and gAa → Aa:

S =
1

g2

∫
Tr

(
− [Da,Db][Da,Db] +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

− 1

2
ǫabcdeχdeDcχab

)
. (5.6)
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The lattice action is

S =
1

g2

∑

n

{
Q Tr

[
− iχabD(+)

a Ub(n)− η(n)
(
iD†(−)

a Ua(n)−
1

2
d(n)

)]

−1

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}
, (5.7)

where the lattice field strength is given by:

Fab(n) ≡ − i

g
D(+)
a Ub(n)

= − i

g

(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)
. (5.8)

We are primarily interested in relevant or marginal operators - operators

whose mass dimension is less than or equal to four - on the lattice. We

will see that the set of relevant counterterms in the lattice theory is rather

short. The lattice symmetries, gauge-invariance in particular, being ex-

tremely restrictive in comparison to the equivalent situation in the contin-

uum. Invariance under Q restricts the possible counterterms to be either of

a Q-exact form, or of a Q-closed form. There is only one Q-closed operator

permitted by the lattice symmetries, and it is already present in our bare

lattice action. A possible renormalization of this fermion kinetic term is

hence allowed. Beyond that, the exact lattice supersymmetry forces us to

look at the set of Q-exact counterterms.

The bosonic and fermionic fields have the following canonical dimen-

sions:

[Ua] = 1, [Ψ] = 3
2
and [Q] = 1

2

where Ψ stands for any of the twisted fermion fields (λ, ψa, χab). Any

counterterm we add to the action, which respects the lattice symmetries,

must be of the form

O = QTr (Ψf(U ,U †)).
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There are, thus, no terms permitted by symmetries with a dimension less

than two. In addition, gauge-invariance tells us that each term must corre-

spond to the trace of a closed loop on the lattice. The smallest dimension

gauge-invariant operator is then just Q(Tr ψaU †
a). But this vanishes identi-

cally, since both U †
a and ψa are singlets under Q. No dimension 7

2
operators

can be constructed with this structure, and we are left with just dimension

four counterterms. Notice, in particular, that lattice symmetries permit

no simple fermion bi-linear mass terms. However, gauge-invariant fermion

bi-linears with link field insertions are possible, and their effect should be

accounted for carefully.

Thus, the set of possible dimension four operators is, schematically,

L1 = g−2QTr (χabUaUb)

L2 = g−2QTr (ηD†
aUa)

L3 = g−2QTr (ηUaU †
a)

L4 = g−2QTr (η)Tr (UaU †
a) (5.9)

The first operator can be simplified on account of the antisymmetry of χab

to simply Q(χabFab), which, again, is nothing but one of the continuum

Q-exact terms present in the bare action. The second term in (5.9) also

corresponds to one of the Q-exact terms in the bare action. However, the

third term L3 is a new operator not present in the bare Lagrangian and the

same is true for the final double-trace operator L4. Both of these operators

transform non-trivially under the fermionic shift symmetry, but a linear

combination of the two:

D = L3 −
1

N
L4 (5.10)

is invariant under the shift symmetry with N the rank of the gauge group

U(N).
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It is quite remarkable to see that these arguments lead to relevant coun-

terterms corresponding to renormalizations of operators that are already

present in the bare action together with D. Thus, the most general form

for the renormalized lattice Lagrangian is:

L =
∑

n,a,b,c,d,e

{
Q Tr

[
− iα1χabD(+)

a Ub(n)− iα2η(n)D†(−)
a Ua(n)

+
α3

2
η(n)d(n)

]
− α4

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}

+QβD , (5.11)

where (αi, i = 1 . . . 4) and β are dimensionless numbers taking values

(1, 1, 1, 1) and 0 respectively in the classical lattice theory. Thus, it appears

that, at most, four dimensionless ratios of these couplings might need to be

tuned to approach N = 4 Yang–Mills in the continuum limit. Furthermore,

since these operators are dimension four, we expect this tuning to be, at

worst, logarithmic in the cut-off.

In order to see the explicit form of theD operator close to the continuum

limit, we expand the action around Um(n) = 1
a
I. The result is

L4 ∼
1

a

[
Tr η(n)(

5∑

m=1

ψm(n))− 1

N
Tr η(n)Tr (

5∑

m=1

ψm(n))+

]
. . . (5.12)

where ellipsis are dictated by supersymmetry. It is interesting to see that

(
∑5

a=1 ψa) is nothing but the S5 (and twisted SO(4)′) singlet contained

in the reducible representation ψa. It is the only field that could form a

fermion mass term by pairing with η.

We conclude our exploration using general lattice symmetry arguments

here. We now turn to a full perturbative analysis to determine how the

couplings (αi, β) evolve with the cut-off.
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5.2 Deriving the lattice propagators and ver-

tices

We begin our perturbative analysis of the lattice N = 4 SYM theory by

deriving the boson and fermion propagators and the vertices connecting

them.

The classical lattice action (5.7) is a combination of three parts - bosonic

(SB), fermionic (SF ) and Q-closed terms (Sc). They are given below:

SB =
1

g2

∑

n,a,b

Tr
[(

D(+)
a Ub(n)

)†(
D(+)
a Ub(n)

)
+

1

2

(
D†(−)
a Ua(n)

)2]

=
1

g2

∑

n,a,b

Tr
[(

U †
b (n+ µ̂a)U †

a(n)− U †
a(n+ µ̂b)U †

b (n)
)

×
(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)

+
1

2

(
Ua(n)U †

a(n)− U †
a(n− µ̂a)Ua(n− µ̂a)

)2]
, (5.13)

SF = − 1

g2

∑

n,a,b,c,d

Tr
1

2
(δacδbd − δadδbc)

[
χab(n)

(
Uc(n)ψd(n+ µ̂c)

−ψd(n)Uc(n+ µ̂d)
)]

+ η(n)
(
ψa(n)U †

a(n)

−U †
a(n− µ̂a)ψa(n− µ̂a)

)
, (5.14)

and

Sc = − 1

2g2

∑

n,a,b,c,d,e

Tr ǫabcde

(
χde(n+ µ̂a + µ̂b + µ̂c)

×
[
χab(n+ µ̂c)U †

c (n)− U †
c (n+ µ̂a + µ̂b)χab(n)

])
, (5.15)

where we have expressed the field strength and covariant derivatives in

terms of the bosonic link fields Ua(n).
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To proceed further, we expand the Ua(n) fields around unity

Ua(n) =
1

a
IN + iAa(n) , (5.16)

U †
a(n) =

1

a
IN − iAa(n) . (5.17)

Notice that this expansion point is but one of an infinite number of classical

vacuum solutions - the full moduli space of the lattice theory corresponds

to the set of all bosonic field variables Ua(n) such that

0 =
∑

n,a,b

Tr
[(

U †
b (n+ µ̂a)U †

a(n)− U †
a(n+ µ̂b)U †

b (n)
)

×
(
Ua(n)Ub(n+ µ̂a)− Ub(n)Ua(n+ µ̂b)

)

+
1

2

(
Ua(n)U †

a(n)− U †
a(n− µ̂a)Ua(n− µ̂a)

)2]
. (5.18)

These equations possess a large class of solutions corresponding to con-

stant diagonal matrices modulo gauge transformations. We will use this

additional freedom later when we compute the one-loop contribution to the

effective action of the theory.

5.2.1 The bosonic propagators on the lattice

As usual it is easiest to compute the Feynman diagrams in momentum

space. On the A∗
4 lattice a generic field Φ(x) has Fourier expansion

Φ(x) =
1

(La)4

∑

p

eip·xΦp , (5.19)

where x = a
∑4

a=1 naêa denotes the position on A∗
4 and the momenta lie

on the dual lattice given by p = 2π
La

∑4
a=1maĝa (for a lattice with spacing
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a and length L). The dual basis vectors ĝa, a = 1 . . . 4 satisfy

êa.ĝb = δab . (5.20)

On an L4 lattice both sets of lattice coordinates na, ma take integer val-

ues in the range −L/2 + 1, . . . , L/2. We will assume periodic boundary

conditions in all directions in this Chapter. Eqn. 5.19 implies that fields

are automatically invariant under translations by a lattice length in any

direction and a field shifted by one of the basis vectors can be expressed

as2

Φ(x+ êa) =
∑

p

eipaeip·xΦp , (5.21)

where pa = 2π
L
ma. The only remaining is the question of how to deal

with shifts in the lattice action associated with the additional ê5 vector.

However, the solution is simple: since
∑5

a=1 êa = 0 we simply replace

any ê5 shift encountered in the action by the equivalent shift −∑4
a=1 êa.

One might have worried about an apparent lack of rotational invariance

associated with the naive continuum limit of terms in the action which

resemble
∑5

a=1 sin
2 pa However, putting pa = p.êa and taking the naive

continuum limit this becomes

5∑

a=1

p2a =
4∑

µ,ν

5∑

a=1

pµpν ê
µ
a ê

ν
a =

4∑

µ

p2µ , (5.22)

which has the correct rotationally invariant form since the Greek indices

refer to a Cartesian basis.

Using these ideas the bosonic action when expanded around (5.16) and

2For simplicity we will adopt the convention that momentum sums
∑

k automatically
include the 1/(La)4 normalization factor.
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(5.17) gives the following second-order term in Fourier space

S
(2)
B ≈ 2

∑

k,a,b

Tr
(
Aa(k)

[
δabfc(k)f

∗
c (k)− f ∗

a (k)fb(k)
]
Ab(−k)

+Ba(k)
[
f ∗
a (k)fb(k)

]
Bb(−k)

)
, (5.23)

where

fa(k) = (eika − 1) . (5.24)

We need to gauge-fix the bosonic action before we derive the propagators.

A natural gauge-fixing choice would be an obvious generalization of Lorentz

gauge-fixing [18]

G(n) =
∑

a

(
∂(−)
a Aa(n) + ∂(−)

a Aa(n)
)
. (5.25)

This gauge-fixing choice adds the following term to the bosonic action at

quadratic order

SGF =
1

4α

∑

n

G2(n) =
1

α

∑

n,a

Tr (∂(−)
a Aa(n))

2 , (5.26)

where ∂
(−)
a f(n) = f(n)− f(n− µ̂a). On using the relation

∑

n

(∂(+)
a f(n))g(n) = −

∑

n

f(n)∂(−)
a g(n) ,

the gauge-fixing term becomes

SGF = − 1

α

∑

n,a,b

Tr Aa(n)∂
(+)
a ∂

(−)
b Ab(n) . (5.27)

In momentum space it becomes

SGF =
1

α

∑

k,a,b

Tr Aa(k)f
∗
a (k)fb(k)Ab(−k) . (5.28)
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AA
a (−k) k −→ A

B

b (k)

−→ δabδAB

1

k̂2

Figure 5.1: Bosonic propagators on the lattice.

Thus the gauge-fixed bosonic action to quadratic order is

S
(2)
B + SGF ≈ 2

∑

k,a,b,c

Tr
(
Aa(k)

[
δabfc(k)f

∗
c (k)−

(
1− 1

2α

)
f ∗
a (k)fb(k)

]
Ab(−k)

+Ba(k)
[
δabfc(k)f

∗
c (k)

]
Bb(−k)

)
. (5.29)

The choice α = 1/2 makes the above expression diagonal

S
(2)
B ≈ 2

∑

k,a,b,c

Tr Aa(k) [δabfc(k)f
∗
c (k)] Ab(−k)

= 2
∑

k,a,b

Tr
[
Aa(k)δab

(
4
∑

c

sin2
(kc
2

))
Ab(−k)

]
. (5.30)

Putting in the trace (using the convention Tr (TATB) = 1
2
δAB) the quadratic

bosonic action can be written as

S
(2)
B ≈

∑

k,a,b

AA

a (k)M
AB
ab (k)AB

b (−k) , (5.31)

where MAB
ab (k) = k̂2δabδAB, with k̂2 = 4

∑
c sin

2
(
kc
2

)
. Thus only the AA

propagator is non-zero and it is given by (See figure 5.1.)

〈AA
a (−k)AB

b (k)〉 = δabδAB
1

k̂2
. (5.32)
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5.2.2 The fermionic propagators on the lattice

The fermionic part of the action has the following form on the lattice

SF = − 1

g2

∑

n,a,b,c,d,e

Tr
(
χab(n)D(+)

[a ψb](n) + η(n)D†(−)
a ψa(n)

+
1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
)
. (5.33)

When expanded up to second order in the fields using (5.16) and (5.17), it

becomes

S
(2)
F ≈ 1

g2

∑

k,a,b,c,d,e

Tr χab(k)
[
− f ∗

a (k)δbc + f ∗
b (k)δac

]
ψc(−k) + η(k)fc(k)ψc(−k)

+
1

2
ǫabcdeχde(k)e

i(ka+kb)fc(k)χab(−k) . (5.34)

Upon restricting the sum and rescaling the field 2χab → χab the fermionic

action becomes

S
(2)
F ≈ 1

g2

∑

k,a<b;c,d<e

Tr
(
χab(k)

[
− f ∗

a (k)δbc + f ∗
b (k)δac

]
ψc(−k) + η(k)fc(k)ψc(−k)

+
1

2
ǫabcdeχde(k)e

i(ka+kb)fc(k)χab(−k)
)
. (5.35)

We can then write this action in the form of a matrix product

S
(2)
F ≈ 1

g2

∑

k

(Ψ(k)Ψ(−k))

(
1

4

)



0 M(k)

−MT (k) 0







Ψ(k)

Ψ(−k)




=
1

4g2

∑

k

Φ(k)MΦ(k) . (5.36)
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where Φ ≡ (Ψ(k),Ψ(−k)) and Ψi = (η, ψ1, . . . , ψ5, χ12, . . . , χ15, . . . , χ45)

and M(k) is given in block matrix form

(η ψa χde) (k)




0 fb(k) 0

−f∗a (k) 0 fg(k)δha − fh(k)δga

0 −f∗d (k)δeb + f∗e (k)δdb ǫghcdeqghfc(k)







η

ψb

χgh




(−k).

where qgh = ei(kg+kh). Notice thatM has the propertiesMT (k) = −M∗(k) =

−M(−k) .

Using the property that
∑

a µ̂a = 0, we can square the matrix to obtain

M2(k) = −
5∑

a=1

|eika − 1|2I16 = −4
5∑

a=1

sin2
(ka
2

)
I16 = −k̂2

I16 . (5.37)

Thus,

M−1 = − 1

k̂2
M , (5.38)

and the inverse of the full fermion matrix is:

M−1 = − 1

k̂2




0 −MT (k)

M(k) 0


 . (5.39)

Then we can write the quadratic part of the fermionic action as:

S
(2)
F =

1

4g2

∑

k

Tr

[
∑

ij

Φi(k)Mij(k)Φj(k)

]

=
1

4g2

∑

k

∑

ij,A,B

ΦA
i (k)Mij(k)Φ

B
j (k)Tr (T

ATB)

=
1

8g2

∑

k

∑

ij,A,B

ΦA
i (k)Mij(k)Φ

B
j (k)δAB , (5.40)

where we have expanded the fermions as Φ = ΦATA and used Tr (TATB) =
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k

ηA(−k) ψB
a (k) −→ δAB

2

k̂2
(eika − 1)

k

ψA
a (−k) χB

bc(k) −→ δAB

1

k̂2

[
(eikb − 1)δac − (eikc − 1)δab

]

k

χA
ab(−k) χB

de(k) −→ δAB

1

2k̂2
ǫabcdee

i(kd+ke)(eikc − 1)

Figure 5.2: Fermionic propagators on the lattice.

1
2
δAB. Thus, we write the propagators as:

〈ΦA
i (k)Φ

B
j (k)〉 = 2M−1

ij (k)δAB , (5.41)

or, alternatively,

〈ΨA
i (k)Ψ

B
j (−k)〉 = 2

k̂2
MT

ij (k)δAB . (5.42)

Notice that by switching the fields (with some relabeling), we have

〈ΨA
i (−k)ΨB

j (k)〉 = −〈ΨB
j (k)Ψ

A
i (−k)〉

= − 2

k̂2
MT

ji(k)δBA = − 2

k̂2
Mij(k)δAB . (5.43)

For a consistency check, we replace k with −k and get

〈ΨA
i (−k)ΨB

j (k)〉 =
2

k̂2
MT

ij (−k)δAB = − 2

k̂2
Mij(k)δAB . (5.44)

We must also undo the earlier rescaling of the χ field, giving a factor of 1
2

in the ψχ propagators and a factor of 1
4
in the χχ propagators. It is also

important to note that if we switch the direction of fermion flow in the

propagators, then we pick up an additional minus sign.
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5.2.3 The vertices on the lattice

The expressions for vertices require additional trace contractions of the

gauge group generators. So let us further fix our conventions on the trace

algebra.

For the generators TA of U(N), one has

TATB =
1

2
(dABC + ifABC)T

C , (5.45)

where dABC and fABC are the symmetric and antisymmetric structure con-

stants, respectively. This product formula is consistent with our previous

trace convention Tr (TATB) = 1
2
δAB and, in addition, yields the results:

Tr (TATBTC) = Tr

(
1

2
(dABD + ifABD)T

DTC
)

(5.46)

=
1

2
(dABD + ifABD)Tr [T

DTC ]

=
1

2
(dABD + ifABD)

1

2
δDC

=
1

4
(dABC + ifABC) =

1

4
λABC .

Since fABC is antisymmetric and dABC is symmetric, it follows that

λACB = λABC . (5.47)

To extract expressions for the vertices, we now return to the original gauge-

fixed action for the theory given by

S =
1

g2

∑

n

Tr
[(

D(+)
a Ub(n)

)†(
D(+)
a Ub(n)

)
+

1

2

(
D†(−)
a Ua(n)

)2

+ 2Aa(n)∂
(+)
a ∂

(−)
b Ab(n)−

(
χab(n)D(+)

[a ψb](n) + η(n)D†(−)
a ψa(n)

+
1

2
ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
)]

. (5.48)
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The last three terms of the action give rise to vertices between varying

number of A’s and the fermions η, ψa, and χab. There are three vertices

that arise at linear order in A:

The ψAη vertex

VψAη = −
∑

n,a

Tr
(
η(n)D†(−)

a ψa(n)
)

= −
∑

n,a

Tr
(
η(n)ψa(n)U †

a(n)− η(n)U †
a(n− µ̂a)ψa(n− µ̂a)

)

= −
∑

n,k,q,p,a

Tr ei(k+q+p)·n
(
η(k)ψa(q)(−i)Aa(p)

−η(k)(−i)Aa(p)e
ipaψa(q)e

iqa
)

=
∑

k,q,p

δ−k,q+pη
C(k)AB

b (p)ψ
A
a (q)

(
i

4

)
δab[λABC − λABCe

−i(pa+qa)] .(5.49)

Thus, the Feynman diagram contribution for this vertex is (add a minus

since it comes from the first order term of e−S):

VηAψ = − i

4
δab[λABC − λABCe

−i(pa+qa)] . (5.50)

The ψAχ vertex

VψAχ = −
∑

n,a,b

Tr χab(n)D(+)
[a ψb](n)

=
∑

n,a,b

Tr
(
− χab(n)D(+)

a ψb(n) + χab(n)D(+)
b ψa(n)

)

=
∑

n,a,b,c,d

(−δacδbd + δadδbc)Tr
[
χab(n)

(
Uc(n)ψd(n+ µ̂c)− ψd(n)Uc(n+ µ̂d)

)]

=
∑

k,q,p,a,b,c,d

δ−k,q+p(−δacδbd + δadδbc)χ
C
ab(k)AB

c (q)ψ
A
d (p)

× i

4
[λABCe

ipc − λABCe
iqd ] . (5.51)
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p −kψA
a (p) ηC(k)

A
B

b (q)

−→ −
i

4
δab[λABC − λABCe−i(pa+qa)]

p −kψA
d (p) χC

ab(k)

AB
c (q)

−→ −
i

4
(−δacδbd + δadδbc)[λABCeipc − λABCeiqd ]

p −kχA
ab(p) χC

de(k)

A
B

c (q)

−→ −
i

8
ǫabcde

(
ei(ka+kb+kc)[λABCeipc − λABCei(qa+qb)]

−ei(pd+pe+pc)[λABCeikc − λABCei(qd+qe)]

)

Figure 5.3: Boson-fermion vertices on the lattice.

The vertex is given by

VχAψ = − i

4
(−δacδbd + δadδbc)[λABCe

ipc − λABCe
iqd ] . (5.52)

The χAχ vertex

VχAχ = −1

2

∑

n,a,b,c,d,e

Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)
c χab(n+ µ̂c)

= −1

2

∑

n,a,b,c,d,e

Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)
(
χab(n+ µ̂c)U †

c (n)

−U †
c (n+ µ̂a + µ̂b)χab(n)

)

=
1

2

∑

k,p,q,a,b,c,d,e

δ−k,q+pǫabcdeχ
C
de(k)A

B

c (q)χ
A
ab(p)

(
ei(ka+kb+kc)

i

4
[λABCe

ipc − λABCe
i(qa+qb)]

−ei(pd+pe+pc) i
4
[λABCe

ikc − λABCe
i(qd+qe)]

)
.

The vertex is given by (taking into account both possible contractions
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with external propagators):

VχAχ = − i

8
ǫabcde

(
ei(ka+kb+kc)[λABCe

ipc − λABCe
i(qa+qb)]

−ei(pd+pe+pc)[λABCeikc − λABCe
i(qd+qe)]

)
. (5.53)

5.3 One-loop diagrams for the renormalized

fermion propagators

It is straightforward to see that we can construct four different amputated

diagrams using these propagators and vertices. The renormalized fermion

propagators receive contributions from these amputated diagrams. We

write down these diagrams below. In Appendix A, we show the simplifica-

tion of these diagrams.

• The amputated ηψ diagram.

We have an AA propagator, a ψχ propagator, an ηAψ vertex, and a

χAψ vertex. Using the expressions above, we have:

Iηψ(p) =
∑

k,q

∑

BC

∑

abc

δ−p,k+q

[ 1

k̂2
[(eikb − 1)δac − (eikc − 1)δab]

]
·
[ 1

q̂2

]

·
[ i
4
[λABC − λABCe

i(ka+qa)]
]

·
[ i
4
(−δbaδcd + δbdδca)[λBCDe

−ipa − λBCDe
iqd ]

]
. (5.54)

• The first amputated ψχ diagram.

We have an AA propagator, a χχ propagator, a ψAχ vertex, and a
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χAχ vertex.

I1ψχ(p) =
∑

k,q

∑

bcdefm

∑

BC

[ 1

2k̂2
ǫbcmefe

i(ke+kf )(eikm − 1)
]

·
[ 1

q̂2

]
·
[
− i

4
(−δbdδca + δbaδcd)[λACBe

ipd − λACBe
−iqa ]

]

·
[
i

8
ǫefdgh

(
eik(d+g+h) [λBCDe

−ipd − λBCDe
i(qg+qh)]

]

−e−ip(d+e+f) [λBCDe
ikd − λBCDe

i(qe+qf )]
)]

. (5.55)

• The second amputated ψχ diagram.

It has an AA propagator, an ηψ propagator, a ψAη vertex, and a

ψAχ vertex. This yields:

I2ψχ(p) =
∑

k,q

∑

bc

∑

BC

[ 2

k̂2
(eikc − 1)

]
·
[ 1

q̂2

]
· δab

[
− i

4
[λACB − λACBe

−i(pa−qa)]
]

·
[
− i

4
(−δdbδec + δdcδeb)[λDCBe

ikb − λDCBe
iqc ]

]
. (5.56)

• The amputated χχ diagram.

It has a AA propagator, a χψ propagator, a χAχ vertex, and a ψAχ.

Iχχ(p) =
∑

k,q

∑

cdef

∑

BC

δk+q−p,0

[ 1

k̂2
[(e−ike − 1)δfd − (e−ikd − 1)δfe]

]
·
[ 1

q̂2

]

·
[
− i

8
ǫabcde

(
e−ik(a+b+c)[λACBe

ipc − λACBe
−i(qa+qb)]

−eip(c+d+e)[λACBe
−ikc − λACBe

−i(qd+qe)]
)]

·
[
− i

4
(−δgcδhf + δgfδhc)[λBCDe

ikc − λBCDe
iqf ]

]
. (5.57)

The contributions of these diagrams all vanish in the limit p → 0,

indicating that mass counterterms are absent in the lattice theory at one-

loop. We show the details of this calculation in Appendix B. In our general
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(i) ψ − η diagram (ii) First ψ − χ diagram

ηA(p) ψB
a (−k)

A
C

a (−q) AC
a (q)

ψD
d (−p)χB

bc(k) ψA
a (p) χB

bc(−k)

AC
d (−q) A

C

d (q)

χD
gh(−p)χB

ef (k)

(iii) Second ψ − χ diagram (iv) χ − χ diagram

ψA
a (p) ηB(−k)

A
C

b (−q) AC
b (q)

χD
de(−p)ψB

c (k) χA
ab(p) χB

de(−k)

A
C

c (−q) AC
c (q)

χD
gh(−p)ψB

f (k)

Figure 5.4: One-loop diagrams of fermions and complexified gauge fields.

argument of section 5.1, we argued that the only dangerous mass term

involved a coupling of η and ψa. We now see that this term does not arise

at one-loop. In the next section, we will show that this feature persists to all

orders and, thus, our general conclusion will be that no mass counterterms

are needed at any finite order of perturbation theory.

5.4 The effective action

In this section, we will compute the partition function of the lattice theory

in one-loop order around an arbitrary classical vacuum state in which the

fermions vanish and the bosonic fields correspond to constant commuting

matrices. To start, we expand the fields around such a constant commuting

background,

Ua(n) = Ua + iAa(n), U †
a(n) = U †

a − iAa(n) . (5.58)
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Choosing the gauge α = 1/2, the quadratic part of the bosonic action then

takes the form

SB = −2
∑

n,a,b

Tr Ab(n)D†(−)
a D(+)

a Ab(n) . (5.59)

Here the covariant derivatives depend on the constant commuting classi-

cal background [Ua,U †
a] = 0. After integration over the fluctuations in

the bosonic fields, we find that the bosonic contribution to the one-loop

partition function is given by

det−5(D†(−)
a D(+)

a ) . (5.60)

The gauge-fixing functional (5.25) leads to the quadratic ghost action:

SG =
∑

n,a

Tr cD†(−)
a D(+)

a c . (5.61)

The quadratic fermionic part of the action is given by the corresponding

terms in (5.7), except that now the covariant derivatives depend only on

the background fields.

Since the background is constant, we can pass to momentum space in

which the action separates into terms for each mode k. The 16×16 fermion

matrixM(k) for the mode k then can be shown (using MAPLE to compute

the determinant) to satisfy

detM(k) = det(D†(−)
a (k)D(+)

a (k))8 . (5.62)

Going back to position space, and taking into account the fact that there

is a double counting of modes in the matrix form (5.36), we obtain

Pf(M) = det4(D†(−)
a D(+)

a ) . (5.63)
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The ghosts add another factor of det(D†(−)

a D(+)
a ), which is just what is

needed to cancel the bosonic contribution given earlier.

In conclusion, we have shown that the one-loop effective action of the

lattice theory obtained by expanding about an arbitrary point in the clas-

sical moduli space is identically zero. Thus, as for the continuum, the

moduli space is not lifted in this analysis and, hence, there can be no bo-

son or fermion masses at one-loop. Furthermore, we expect that we can

extend this analysis to all loops since the partition function of the lattice

theory is a topological invariant and, hence, can be computed exactly in

the semi-classical approximation (see Appendix C). Indeed, Matsuura uses

similar arguments to show that the vacuum energy of supersymmetric lat-

tice theories with four and eight supercharges remains zero to all orders in

the coupling [47]. The calculation presented here extends this to the case

of sixteen supercharges3. Thus, we conclude that boson and scalar masses

remain zero to all orders in the coupling constant. This implies that the

fermions also remain massless, which is consistent with our explicit one-loop

calculation.

At this point, we have derived expressions for the amputated one-

loop diagrams that contribute to the renormalization of the three twisted

fermion propagators. This is sufficient to calculate α1, α2 and α4 that ap-

pear in the general action:

L =
1

g2

∑

n,a,b,c,d,e

{
Q Tr

[
− iα1χabD(+)

a Ub(n)− iα2η(n)D†(−)
a Ua(n) +

α3

2
η(n)d(n)

]

−α4

2
Tr ǫabcdeχde(n+ µ̂a + µ̂b + µ̂c)D†(−)

c χab(n+ µ̂c)
}
. (5.64)

3Notice that in this calculation we have not included any mass terms that would
guarantee the stability of the initial classical vacuum state we have chosen to expand
around. We have also ignored a potential sign problem associated with the replacement
of a Pfaffian with a square root of a determinant. Nevertheless, we expect the result
to be robust; the existence of an exact supersymmetry should ensure that the object
we are computing is a lattice regularized Witten index and hence independent of both
coupling constant and background field.
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However the coefficient α3 requires further work. One simple way to extract

it is via a computation of the renormalized auxiliary boson propagator that

we turn to in the next section.

5.5 One-loop diagrams for the auxiliary field

propagator

We have shown that the off-shell form of the bosonic action is given by

SB =
∑

n,a,b

Tr
(
F †
ab(n)Fab(n)−

i

g
d(n)D†(−)

a Ua(n) +
1

2
d2(n)

)
, (5.65)

where Fab(n) = − i
g
D(+)
a Ub(n).

In our previous computation of the fermion diagrams, we integrated out

the field d to give an on-shell action defined just in terms of the complex

gauge link fields Ua and U †
a. In this section we will not do this but, instead,

focus on a computation of the renormalized propagator for the d field. The

Feynman rules for the fermions will be identical to our previous scheme,

but the boson propagators will change and so we need to recompute those

propagators in this off-shell scheme. We proceed in the standard fashion

by expanding the link field Ua(n):

Ua(n) = 1+ igAa(n), U †
a(n) = 1− igAa(n). (5.66)

and using the same lattice gauge-fixing term as before

SGF [A] = − 1

α

∑

n,a

Tr (∂(−)
a Aa(n))

2, (5.67)
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we find the momentum space form:

SGF [A] =
1

α

∑

k,a,b

Tr Aa(k)f
∗
a (k)fb(k)Ab(−k) . (5.68)

It is convenient in this calculation to work with the real and imaginary

parts of the complex gauge field explicitly, thus,

Aa = Aa + iBa . (5.69)

The gauge-fixed bosonic action on the lattice to quadratic order in fields,

with the choice α = 1
2
, is then

S
(2)
B =

∑

k,a,b

Tr 2Aa(k)
[
δabfc(k)f

∗
c (k)

]
Ab(−k)

+2Ba(k)
[
δabfc(k)f

∗
c (k)− f ∗

a (k)fb(k)
]
Bb(−k)

−2id(k)fa(k)Ba(−k) +
1

2
d(k)d(−k) . (5.70)

We see that the d−Ba system decouples from Aa to this order. Its action

is given by

S
(2)
B [d,Ba] ∼

∑

k,a,b

Tr 2Ba(k)
[
δabf

∗
c (k)fc(k)− f ∗

a (k)fb(k)
]
Bb(−k)

−2id(k)fa(k)Ba(−k) +
1

2
d(k)d(−k) . (5.71)

or in matrix form

(
d Ba

)
(k)




1
2

−ifb(k)

−if ∗
a (k) Mab(k)







d

Bb


 (−k) , (5.72)

where Mab(k) = 2[δab
∑

c fc(k)f
∗
c (k)− f ∗

a (k)fb(k)]. Using standard identi-
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ties for the inverse of a partitioned matrix, we find

M−1 =




1
2

−ifb(k)

−if ∗
a (k) Mab(k)




−1

=
1∑

c fc(k)f
∗
c (k)




0 ifb(k)

if ∗
a (k)

1
2
15


 .

(5.73)

We have
∑

c fc(k)f
∗
c (k) = 4

∑
c sin

2
(

kc

2

)
and, as before, we define k̂2 ≡

4
∑

c sin
2
(

kc

2

)
. Thus the lattice propagators are

〈dA(k)dB(−k)〉 = 0 , (5.74)

〈dA(k)BB
a (−k)〉 = iδAB

(e−ika − 1)

k̂2
, (5.75)

〈BA
a (k)B

B
b (−k)〉 = δabδAB

1

2k̂2
. (5.76)

From (5.70) the propagator for the A field is also

〈AAa (k)ABb (−k)〉 = δabδAB
1

2k̂2
. (5.77)

Notice that the field d is non-propagating at tree level. Using these prop-

agators and those derived earlier for the bosons and fermions, we can now

write down the generic Feynman diagram contributing to a renormalization

of the auxiliary boson propagator. It is shown in figure 5.5 and represents

the set of amputated diagrams possessing two external B field legs. These

combine with the external 〈dB〉 propagators derived above to yield the

renormalized propagator for the auxiliary field d. Notice that the vanish-

ing of the tree level 〈dd〉 propagators ensures that no amputated diagrams

with 2 d field external legs contribute. The set of all such lattice Feynman

diagrams is shown below and corresponds to a subset of the B field vacuum

polarization diagrams. It is important to notice that almost all these dia-

grams appear in the continuum off-shell twisted theory. The exceptions are

just the diagrams containing a BBd vertex that corresponds to the lattice
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d(−p) BA
a (p) BD

d (−p) d(p)

Figure 5.5: The generic diagram contributing to renormalized d propagator

BA
a (p) BD

d (−p)

AC
c (−q) AC

c (q)

AB
b (k) AB

b (−k)

BA
a (p) BD

d (−p)

BC
c (−q) BC

c (q)

BB
b (k) BB

b (−k)

BA
a (p) BD

d (−p)

BC
c (−q) BC

c (q)

AB
b (k) AB

b (−k)

BA
a (p) BD

d (−p)

cC(−q) cC(q)

cB(k) cB(−k)

BA
a (p) BD

d (−p)

ΨC(−q) ΨC(q)

ΨB(k) ΨB(−k)

BA
a (p) BD

d (−p)

BB
b (−q) BB

b (q)

BA
a (p) BD

d (−p)

AB
b (−q) AB

b (q)

BA
a (p) BD

d (−p)

dC(−q) BC
c (q)

AB
b (k) AB

b (−k)

BA
a (p) BD

d (−p)

dC(−q) BC
c (q)

BB
b (k) BB

b (−k)

BA
a (p) BD

d (−p)

dC(−q) BC
c (q)

BB
b (k) dB(−k)

Figure 5.6: Set of all lattice amputated Feynman diagrams contributing
the renormalized d propagator.
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vertex

VdBB = 〈dA(−k− q)BB
a (k)B

C
b (q)〉 =

i

2
δab(λABC + λABC)(1− e−i(ka+qa)) .

(5.78)

Clearly, this vertex vanishes as the lattice spacing is sent to zero and,

hence, this diagram does not contribute to the divergent piece in the 〈dd〉

propagator at this order of perturbation theory.

Hence, we are left with a set of diagrams that correspond to those of the

equivalent continuum theory at one-loop order. This fact can be exploited

later to allow us to argue that the leading logarithmic divergences of the

lattice theory are shared with the continuum theory. Anticipating this,

we will not write down explicit expressions for these amputated lattice

diagrams in this section.

5.6 Divergence structure of the one-loop di-

agrams

At this point, we have derived expressions for the amputated one-loop

diagrams that determine the renormalization of three fermion propagators

and also the set of Feynman graphs needed to renormalize the auxiliary

bosonic field propagator. In principle, this input will allow us to determine

all four coefficients αi appearing in the renormalized action (5.11). Of

course, the question of how much fine tuning is required to regain full

supersymmetry is determined by the parts of these expressions that diverge

as the lattice spacing is sent to zero. We must, therefore, evaluate the

expressions for the one-loop integrals as the lattice spacing tends to zero.

First, let us discuss the diagrams contributing to the fermion propaga-

tors. We have shown in Appendix B that the one-loop fermion propagators
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all vanish for vanishing external momentum, which is consistent with our

effective action computation showing that no fermionic mass terms can be

generated perturbatively. Reisz’s power counting theorem [48]-[51] shows

us that we cannot simply take the naive continuum limit of the expressions

for the amputated one-loop diagrams as they have a naive degree of diver-

gence of 1. However, we can use a trick due to [52] and detailed in [53] to

extract the leading divergences.

We split the integral I(p) into two pieces as follows:

lim
a→0

I(p) = lim
a→0

[
I(p)− I(0)−

∑

b

pb
∂I

∂pb

∣∣∣∣
p=0

]

+ lim
a→0

[
I(0) +

∑

b

pb
∂I

∂pb

∣∣∣∣
p=0

]
. (5.79)

The first term in square brackets can now be evaluated in the naive con-

tinuum limit and contains no divergence. The second term contains the

divergence but contains no external momenta in the integrand, which sim-

plifies its evaluation on the lattice. In addition we know that I(0) vanishes

for each of our diagrams so the calculation becomes simpler still.

We will find that the resulting expressions have logarithmic divergences

of the form log µa, where µ is a small mass parameter used to regulate the

behavior of the integrand close to the origin of momentum space and a the

lattice spacing4.

One obvious way to proceed is simply to numerically evaluate the inte-

gral for a variety of regulator masses µ and extract the logarithmic diver-

gence and any constant contributions using a fitting procedure. However,

if we are only interested in the leading log divergences, there is a simpler

approach detailed in the next section in which a naive continuum limit can

be taken and the expressions evaluated using, for example, dimensional

4We will only consider the case of infinite lattice size which reduces all lattice sums
in momentum space to integrals.
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regularization.

In the next section, we give an example of this procedure for the ampu-

tated ηψ diagram and show how to extract similar results for the remaining

fermion self-energy diagrams. We will also see that the same procedure al-

lows us to argue that the leading log divergent contribution to α3 is also

equal to its value in the continuum theory.

5.6.1 The amputated fermion diagrams

We start with our simplified expression for Iηψd
(p) given in Appendix A

Iηψd
(p) =

∫
d4q

(2π)4

∑

BC


(1− ei(p−q)d)

8 ̂(p− q)
2

q̂2



[
−

∑

a 6=d

[
dABCdBCD

× (e−ipa − eiqd − 1 + eipa+iqd)

+ fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]
. (5.80)

As a first step we need to calculate the derivative of the diagram (re-

inserting the lattice spacing a and the infra-red cutoff µ)

∂Iηψd
(p)

∂pb

∣∣∣∣
p=0

=

∫ π
a

−π
a

d4q

(2π)4
−2a4 sin aqb
(q̂2 + µ2a2)3

(1− e−iaqd)fABCfBCD(1 + eiaqd)

+

∫ π
a

−π
a

d4q

(2π)4
−a3

(q̂2 + µ2a2)2
(−iaδdbe−iaqd)fABCfBCD(1 + eiaqd)

+

∫ π
a

−π
a

d4q

(2π)4
−a3

8(q̂2 + µ2a2)2
(1− e−iaqd)

×
∑

a 6=d

(dABCdBCD + fABCfBCD)δab(−ia)(1− eiaqd) . (5.81)

A further simplification now occurs. If we are only interested in the leading

log µa coefficient, we can evaluate this integral in a small q region around

zero. This is because the contribution of the integrand to the log µa co-

efficient comes only from small q. Furthermore, in the region q → 0, the
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propagators and vertices inside the integral will approach their continuum

counterparts and, hence, the logarithmic divergence can be extracted by

replacing the lattice integrals by their naive continuum limit. Note that

this only works for the coefficient of the log - we must evaluate the integral

numerically (and then fit) in order to extract the constant terms.

Thus, we find:

lim
a→0

∂Iηψd
(p)

∂pb

∣∣∣∣
p=0

∼
∫ ∞

−∞

d4q

(2π)4
−4iqbqd
(q2 + µ2)3

fABCfBCD

+

∫ ∞

−∞

d4q

(2π)4
2iδdb

(q2 + µ2)2
fABCfBCD . (5.82)

Note that we cannot just set the first term in this expression to zero as êd

and êb are not orthogonal to each other; instead, we have:

∫
ddq

qbqd
(q2 + µ2)3

= eµb e
ν
d

∫
ddq

qµqν

(q2 + µ2)3

= êb · êd
∫
ddq

q2

d(q2 + µ2)3
. (5.83)

Then êb · êd = δbd− 1
5
. We use dimensional regularization and the fact that

∑
b pb = 0 to evaluate the resulting integrals getting

Iηψd
(p) ∼

∑

b

pb
∂Iηψd

(p)

∂pb

∣∣∣∣
p=0

∼ − i

8π2
pdfABCfBCD log µa . (5.84)

Note that we have inserted the cutoff 1
a
inside the logarithm to ensure that

it is dimensionless.

Since all the Feynman graphs we need to evaluate are logarithmically

divergent and in one-to-one correspondence with continuum diagrams, the

resulting logarithmic divergences can all be extracted by following a similar
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procedure i.e. taking the naive continuum limit of the relevant I(p).

lim
a→0

I
(1)
ψaχgh

(p) ∼
∫

d4q

(2π)4

∑

m

−i(p− q)m
2(q2 + µ2)((p− q)2 + µ2)

× (3δagδmh − 3δahδmg) fABCfBCD

∼ 3i

32π2
fABCfBCD (δagph − δahpg) log µa . (5.85)

lim
a→0

I
(2)
ψaχde

(p) ∼
∫

d4q

(2π)4

∑

c

−i(p− q)c
2(q2 + µ2)((p− q)2 + µ2)

×(δdaδec − δdcδea)fABCfBCD

∼ i

32π2
fABCfBCD(δdape − δeapd) log µa . (5.86)

This obviously leads us to define Iψaχde
(p) = I

(1)
ψaχde

(p) + I
(2)
ψaχde

(p) and

therefore

Iψaχde
(p) ∼ i

8π2
fABCfBCD(δdape − δeapd) (5.87)

lim
a→0

Iχabχgh
(p) ∼

∫
d4q

(2π)4

∑

d

i(p− q)d
2(q2 + µ2)((p− q)2 + µ2)

ǫabdghfABCfBCD

− (h↔ g)

∼ − i

16π2
fABCfBCD

∑

d

ǫabdghpd log µa . (5.88)

Note that these calculations of the log terms for the other diagrams have

also been verified by numerical evaluation and fitting of the resulting lattice

integrals.

5.6.2 The auxiliary field diagram

Since the amputated divergent diagrams for the lattice d propagator are log

divergent, we can extract the sum of these logarithmic divergences using
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the same tricks we used for the fermions, evaluating the diagram in the

naive continuum limit. The sum of all these diagrams, contracted with

external dB propagators, will then yield a log divergent term of the form

Cdd = cfACBfDCB log (µa) , (5.89)

where c is a constant to be determined by explicitly evaluating the dia-

grams. However, we will argue in the next section that it is not necessary

to evaluate these diagrams, even in the continuum, to determine α3 – the

requirement that the continuum theory preserve full supersymmetry will

automatically determine α3 in terms of the other αi corresponding to the

fermion propagator renormalization.

5.6.3 From amputated diagrams to renormalized prop-

agators

The leading logarithmic divergences appearing in the renormalized prop-

agators are obtained by combining the (divergent parts of) the individual

amputated diagrams we have just computed. In principle, several of the

amputated fermion diagrams can appear as internal bubbles when correct-

ing a given fermion propagator. As an example, consider the ψη diagram

shown in Figure 5.7. Naively, we see that three of our amputated diagrams

contribute to the renormalization of this propagator. However, we find

that (at least in the case of the log divergences) the Lorentz structure of

the propagators and integrals means that only the ηψ amputated diagram

contributes to the renormalization of the ηψ propagator.

We demonstrate this through explicit calculation. Denoting the full dia-

grams by C and noting that, as we are dealing with only the divergent part,

we can approximate the lattice propagators by their continuum analogues
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ψd η ψc η ψd χgh ψc η

Figure 5.7: Full ηψ propagators.

we find

Cψdη =
2ipd
p2

∑

c

Iηψc
(p)

2ipc
p2

+
∑

c,g,h

ipgδdh − iphδdg
p2

Iχghψc
(p)

2ipc
p2

∼ −2ipd
p2

i

8π2
fABCfBCD

∑

c

pc
2ipc
p2

log µa

∼ 1

4π2
fABCfBCD

2ipd
p2

log µa . (5.90)

The second term disappears as

∑

c,g,h

(pgδdh − phδdg)(δcgph − δchpg)pc =
∑

c

(pcpd − p2δcd − p2δdc + pcpd)pc

= 0 . (5.91)

We can similarly show that only Iψχ contributes to Cψχ and Iχχ to Cχχ.

Note, however, that this analysis strictly only applies to the logarithmically

divergent piece in C.

Cψaχde
=

i

8π2
fABCfBCD

∑

g,h,c

ipgδah − iphδag
p2

(δgcph − δhcpg)

× ipdδce − ipeδcd
p2

log µa

=
1

4π2
fABCfBCD

ipdδae − ipeδad
p2

log µa . (5.92)

In calculating Cχχ we must take into account that the internal propagator



5.6 Divergence structure of the one-loop diagrams 103

in Iχχ can be a ψχ or χψ. This contributes another factor of 2 to Cχχ.

Cχabχde
= − i

8π2
fABCfBCD log µa

∑

c,f,g,i,h,j,k

ǫabcfg
ipc
2p2

ǫfgihjpiǫhjkde
ipk
2p2

= − i

2π2
fABCfBCD log µa

∑

c,i,k

ipc
2p2

pi
ipk
2p2

× (δaiǫbckde + δbiǫcakde + δciǫabkde)

=
1

4π2
fABCfBCD log µa

∑

k

ipk
2p2

ǫabkde . (5.93)

The coefficients αi are now determined by the coefficient of the propagator

in the renormalized propagator amplitudes C. Explicitly, we find

αi = 1 + bi log µa i = 1, 2, 4 , (5.94)

where

bi = b =
g2N

4π2
. (5.95)

Note that we have used fABCfBCD = NδAD. This is required, as the color

structure of any counterterms must match the tree propagators. However,

this is strictly only true for SU(N) as fABCfBCD = N(δAD − δA0δD0) for

U(N). This does not matter in the continuum, as the U(1) trace piece

simply decouples from the rest of the system and can be ignored. When

doing lattice simulations, we might imagine achieving a similar result by

giving the U(1) mode a large mass of the order of the cut-off that will

serve to decouple it from the SU(N) modes at finite lattice spacing. The

breaking of supersymmetry in this sector may then be removed by sending

this U(1) mass to zero after taking the continuum limit.

While naively one might have expected the coefficients bi to be all dif-

ferent, our results indicate that, in fact, the log divergent parts of bi and,

hence, αi are actually all equal. This fact can be understood quite simply;

to untwist the continuum theory into a theory with four Majorana spinors
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requires that the continuum twisted fermions exhibit a common wavefunc-

tion renormalization. This just follows from the fact that the individual

components of the spinors mix the different twisted fermions together. To

achieve this requires that the corresponding renormalization constants of

the kinetic terms αi should all be equal – just as we find. Furthermore,

since the leading log behavior of the lattice theory is the same as the contin-

uum, we should expect that the log divergent part of the lattice couplings

behave in the same way. Thus, a single wavefunction renormalization of

the twisted lattice fermions is all that is needed to render the renormalized

theory finite. The common anomalous dimension of the fermions in this

twisted scheme is then given by

γ =
g2N

8π2
. (5.96)

In the case of the 〈dd〉 propagator, the leading log divergent contribution

can be computed from the naive continuum limit of the corresponding

continuum expression for the sum of the BB bubble diagrams given in

diagram 5.6. Combined with the fact that the tree level 〈dB〉 propagators

required on the outside of these BB amputated diagrams are the same

as the continuum to O(a), we find that the log divergence in the mass

renormalization of the d field must be the same on the lattice as in the

continuum. Using this fact we can argue that the log divergent part of

α3 must actually be equal to that of the fermions, α1, for example. This

follows from the fact that the bosonic action for general αi can be rewritten

as

α1

(
FabFab

)
+
α2
2

α3

(1
2
[Da,Da]

2
)
. (5.97)

Only for α3 = α2 = α1 can this renormalized bosonic action be untwisted to

yield the conventional gauge field plus scalar action in the continuum limit.
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But, since the continuum twisted theory possesses full supersymmetry, this

must be true. And our general arguments then tell us the log divergence

of α3 on the lattice must satisfy the same property.

To summarize: we find that the log divergent parts of the coefficients

αi, i = 1 . . . 4 must all be equal to one-loop order in the lattice theory.

This implies that a common wavefunction renormalization of both twisted

fermions and bosons is sufficient to render the renormalized theory finite at

one-loop with all fields acquiring an anomalous dimension (in this scheme)

given by γ = g2N
8π2 . Physically, the equality of the couplings αi, i = 1 . . . 4

means that no logarithmic fine tuning is required at weak coupling for the

lattice theory to exhibit full supersymmetry as the lattice spacing is sent

to zero.
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Chapter 6

Simulating Lattice SYM

Theories

The unique geometric structure of the twisted SYM theories calls for

a special class of algorithms to simulate them on the lattice. Fortunately,

we are equipped with the right tools to perform the simulations and, thus,

extract some interesting results. We will present some interesting results

in the case of two-dimensional sixteen supercharge Yang-Mills theory in

the next Chapter. In this Chapter, we briefly describe the simulation algo-

rithms and architectures needed to simulate the above mentioned twisted

SYM theories.

6.1 Hybrid Monte Carlo algorithm

We begin with the case of conventional lattice QCD. To compute an ob-

servable Ω in a theory with a set of bosonic fields Φ and fermionic fields ψ,

107
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ψ, we use the path integral

〈Ω〉 = 1

Z

∫
[dΦ]e−SB [Φ] [detM(Φ)]αΩ(Φ) , (6.1)

where we have integrated out the fermionic fields to get the determinant,

Z is the partition function

Z =

∫
[dΦ]e−SB [Φ] [detM(Φ)]α , (6.2)

with the parameter α depending on the number of the fermion species, and

the operator M ≡M †M with M the discretized Dirac operator.

The parameter α takes integer values in conventional theories and, when

α = 1, we use the well known Hybrid Monte Carlo (HMC) algorithm [54].

Later we see that we can, in fact, define a theory (the twisted SYM theories

belong to such class) with an arbitrary number of fermions if we are willing

to allow a non-integer α. The HMC algorithm fails in such cases because

there is no prescription to evaluate directly either the action or its variation

with respect to the bosonic fields to evaluate the forces, so we are in need

of an enhanced HMC algorithm.

Let us try to understand the HMC algorithm first before we move on

to an alternative algorithm to simulate the twisted SYM theories. HMC

algorithm is the de facto algorithm for fermion theories where α = 1. Here

we rewrite the fermion determinant in terms of pseudo-fermions F [55]

detM =

∫
[dF †][dF ] e−F

†M−1F =

∫
[dF †][dF ] e−Spf . (6.3)

We then introduce fictitious momentum fields pΦ and pF , conjugate to the

fields Φ and F , respectively1, whose values are drawn from a Gaussian

1Introducing conjugate momenta in the Hamiltonian will not affect the measured
expectation values of observables.
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distribution, and define a Hamiltonian

H =
1

2
p2Φ +

1

2
p2F + SB + Spf . (6.4)

The basic idea of HMC algorithm is to use the fact that the Hamiltonian

is a constant of classical dynamics to update the fields. The field variables

are now promoted to be variables of a new Monte Carlo “time” τ 2.

Now that the Hamiltonian is defined, we can evolve the fields through

integrating Hamilton’s equations of motion. The resulting fields will have

the desired probability distribution,

P(Φ, F ) =
1

Z
e−SB−Spf . (6.5)

We refresh the momenta periodically, once per trajectory, to ensure ergod-

icity of the algorithm.

We discretize the fictitious time dimension τ and employ a numeri-

cal integration scheme with step-size δτ to evolve the fields by integrating

Hamilton’s equations. This process introduces an O(δτ k) error to the field

distribution, where k is equal to the order of the integration scheme used.

We can use the Metropolis acceptance test at the end of each trajectory

to stochastically correct this error. The Metropolis test requires detailed

balance. This requirement places two constraints on the integration scheme

chosen: the integration process should be reversible and area preserving.

Symmetric symplectic integrators respect these constraints and the most

simple of these is the second order leapfrog integrator. Thus, the HMC al-

gorithm is an exact algorithm and the results obtained are independent of

the step-size if the step-size is chosen to give a reasonable acceptance rate3.

2This should not be confused with the Euclidean time direction in the theory.
3There exist integration schemes in HMC with multiple time scales to evolve bosonic

and fermionic field variables independently to optimize the algorithm.
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We summarize the steps involved in the HMC algorithm below:

1. Choose a starting bosonic field configuration Φ.

2. Choose the momentum pΦ from a Gaussian ensemble with Boltzmann

factor exp(−1
2
p2Φ).

3. Choose ξ to be a field of Gaussian noise and calculate

F =M †(Φ)ξ. (6.6)

4. Evolve fields and momenta to get the corresponding updated config-

urations.

5. At the end of the trajectory4, accept the new configuration with prob-

ability

Pacc = min(1, e−δH). (6.7)

6. Save the new configuration generated, or the old configuration, de-

pending on the outcome of the Metropolis test.

7. Return to 3.

6.2 Rational Hybrid Monte Carlo algorithm

The simulations of twisted SYM theories calls for an algorithm that takes

care of non-integer α values. The best alternative is the Rational Hybrid

Monte Carlo (RHMC) algorithm [56]. We briefly describe the algorithm

below.

4The trajectory has τ/δτ steps.
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We rewrite the determinant in terms of pseudo-fermions, but now re-

place the fermion operator in the bilinear by a rational approximation,

detMα =

∫
[dF †][dF ]e−F

†M−αF ≈
∫
[dF †][dF ]e−F

†r2(M)F , (6.8)

with r(M) = M−α/2.

The rational approximation has far superior convergence properties.

We can use Remez algorithm to generate optimal rational approximations.

The roots and poles of such approximations are, in general, real. The poles

are also always positive for |α| < 1, which are the functions of our interest.

We write r(M) in partial fraction form:

r(M) =
m∑

k=1

αk
M+ βk

, (6.9)

and then evaluate using a multi-shift solver [57]. The cost of evaluating a

rational function is essentially the same as a single matrix inversion and

the precision is independent of the cost to first order. For |α| < 1, the αk

coefficients are in general all the same sign and so the evaluation of rational

functions using partial fractions is numerically stable.

We summarize the steps involved in the RHMC algorithm below:

1. Choose a starting bosonic field configuration Φ.

2. Choose the momentum pΦ from a Gaussian ensemble with Boltzmann

factor exp(−1
2
p2Φ).

3. Choose ξ to be a field of Gaussian noise and calculate

F = r(M)−1ξ. (6.10)
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4. Evolve fields and momenta to get the corresponding updated config-

urations.

5. At the end of the trajectory, accept the new configuration with prob-

ability

Pacc = min(1, e−δH).

6. Save the new configuration generated, or the old configuration, de-

pending on the outcome of the Metropolis test.

7. Return to 3.

In the case of twisted SYM theories we integrate out the fermions to

produce a Pfaffian, which is in turn represented by the square root of a

determinant5 and can be simulated using the RHMC algorithm.

If we denote the set of twisted fermions by the field Ψ = (η, ψµ, χµν),

we first introduce a parallel pseudo-fermion field Φ with action:

SPF = Φ†(M †M)−
1
4Φ , (6.11)

where M = M(U ,U †) is the antisymmetric twisted lattice fermion opera-

tor6.

Integrating over the fields Φ will then yield (up to a possible phase)

the Pfaffian of the operator M(U ,U †) as required. The fractional power is

approximated by the partial fraction expansion:

1

(M †M)
1
4

= α0 +
P∑

i=1

αi
M †M + βi

, (6.12)

where the coefficients {αi, βi} are evaluated offline using the Remez algo-

rithm to minimize the error in some interval (ǫ, A). Typically, we have

5This ignores a possible sign ambiguity in the fermionic determinant.
6The antisymmetry is guaranteed if the fermion action is rewritten as the sum of the

original terms plus their lattice transposes.
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used P = 15 which yields a fractional error of 0.00001 for the interval

0.0000001 → 1000.0, which conservatively covers the range we are inter-

ested in.

Following the standard procedure, we introduce momenta (pU , pF ) con-

jugate to the coordinates (U ,Φ), and evolve the coupled system using a

discrete time leapfrog algorithm according to the classical Hamiltonian

H = SB + SPF + pU p̄U + pΦp̄Φ. (6.13)

The bosonic action is real, positive semi-definite in all these theories even

on the lattice.

One step of the discrete time update is given by:

δpU =
δt

2
f̄U (6.14)

δpΦ =
δt

2
f̄Φ (6.15)

δU =
(
eδtpU − I

)
U (6.16)

δΦ = δtpΦ (6.17)

δpU =
δt

2
f̄U (6.18)

δpΦ =
δt

2
f̄Φ (6.19)

where the forces fU and fΦ are given by:

fU = − δS
δU (6.20)

fΦ = −δS
δΦ

(6.21)

and the bar denotes complex conjugation. Using the partial fraction ex-
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pansion given in (6.12) these forces take the form:

fU =
P∑

i=1

αi

[
t̄i
δM

δU si +

(
t̄i
δM

δU si

)]
(6.22)

fΦ = −α0Φ̄−
P∑

i=1

αis̄i (6.23)

where

(M †M + βi)si = Φ (6.24)

ti = Msi (6.25)

The latter set of sparse linear equations is solved using a multimass CG-

solver [58], which allows for the simultaneous solution of all P systems in

a single CG solve.

At the end of one such classical trajectory the final configuration is

subjected to a standard Metropolis test based on the Hamiltonian H. The

symplectic and reversible nature of the discrete time update is then suf-

ficient to allow for detailed balance to be satisfied and hence expectation

values are independent of δt. After each such trajectory, the momenta are

refreshed from the appropriate Gaussian distribution as determined by H,

which renders the simulation ergodic.
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The forces are derived below:

fUm
=

∂Spf
∂Um

=
P∑

i=1

αiF
† −1

(M †M + βi)2
∂

∂Um
(M †M)F

= −
P∑

i=1

αi

( F

(M †M + βi)

)† ∂

∂Um
(M †M)

( F

(M †M + βi)

)

= −
P∑

i=1

αi

( F

(M †M + βi)

)†(
M † ∂M

∂Um
+
∂M †

∂Um
M

)( F

(M †M + βi)

)

= −
P∑

i=1

αi

[(
M

F

(M †M + βi)

)† ∂M

∂Um

( F

(M †M + βi)

)

+
( F

(M †M + βi)

)†∂M †

∂Um

(
M

F

(M †M + βi)

)]

= −
P∑

i=1

αi

[
t†i
∂M

∂Um
si + s†i

∂M †

∂Um
ti

]
. (6.26)

fF =
∂Spf
∂F

= α0
∂

∂F
(F †F ) +

P∑

i=1

αi
∂

∂F

(
F †

[
(M †M + βi)

−1F
])

= α0F
† +

P∑

i=1

αis
†
i . (6.27)

6.3 Overall structure of the C++ code

We focus on implementing the SYM theories on hypercubic lattices. For

a p-dimensional hypercubic lattice there are p orthogonal basis vectors

µ̂1, · · · , µ̂p. In the case of N = 4 in four dimensions, we have to augment

this set with one additional body diagonal lattice link. We introduce the

Lattice Vector class to store the coordinates of the lattice sites and also

the vector between sites. Such lattice vectors can be added or subtracted

by overloading the ‘+’ or ‘−’ operators. These operations also respect the

lattice boundary conditions.
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Figure 6.1: The organizational structure of the C++ code that generates
and measures field configurations.

The bosonic and pseudo-fermionic fields are stored in various objects

belonging to the classes corresponding to them. We define various classes

such as Umatrix, Gauge Field, Twist Fermion, Site Field, Link Field,

Plaq Field, Body Field, etc., in utilities.h.

Let us briefly describe how the code works. The general organizational

structure of the code is given in figure 3. We begin with sym.cpp. It reads

the input parameters, such as number of sweeps (SWEEPS), number of ther-

malization steps (THERM), gap in measurements (GAP), the ‘t Hooft coupling

(LAMBDA), etc., using functions contained in the file read param.cpp. It can

also read in previously generated field configurations using read in.cpp.

The code sym.cpp performs three major tasks:

1. Update the field configurations as the simulation time progresses.

This is accomplished by calling the function update(U,F) contained

in update.cpp

2. Save the field configurations after some number of Monte Carlo sweeps
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and then a Metropolis test. (using the functions in write out.cpp)

3. Measure the observables in the theory. This is done by function calls

within (measure.cpp)

Let us focus on the task of updating field configurations first. After

reading the initial parameters and field configurations, update() is called.

Here, we refresh the momenta p U and p F (at the beginning from a Gaus-

sian distribution) and then go to kinetic energy.cpp to compute the

kinetic energy

Adj(p U)*p U + Cjg(p F)*p F.

Compare this with the first two terms in the classical Hamiltonian (6.13):

pUpU + pFpF

After computing kinetic energy, the boson and pseudo-fermion actions

(6.13) are computed with a call to action().

The computation of the bosonic action SB is straightforward. In the

code, it is accomplished with the line:

KAPPA*[0.5*Tr(DmuUmu*DmuUmu) + 2.0*Tr(Fmunu*Adj(Fmunu))] .

Here KAPPA is the dimensionless lattice coupling. It is defined in read param.cpp

and depends on the number of dimensions (D), size of the lattice (LX, LY,

LZ, T) and number of colors (NCOLOR). The terms in the bosonic action can

easily be identified with those of the lattice action. We have

DmuUmu(x) → Umu(x)*Udagmu(x)-Udagmu(x-e mu)*Umu(x-e mu)

Fmunu(x) → Umu(x)*Unu(x+e mu)-Unu(x)*Umu(x+e nu)

The fermionic part of the action is computed by taking the real part of

S F = ampdeg*(Cjg(F)*F) +
∑

DEGREE

n=0
amp[n]*(Cjg(F)*sol[n]) ,
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where n runs from 0 to DEGREE (which is equal to number of terms in

the Remez approximation P ), ampdeg corresponds to α0, F the twisted

pseudo-fermion F , Cjg(F) is F †, amp[n] is αi and sol[n] corresponds to

si ≡ (M †M + βi)
−1F .

Compare this pseudo-fermion action with

Spf = α0F
†F +

∑P
i=1 αiF

†
[
(M †M + βi)

−1F
]
.

We invoke a multimass conjugate gradient (MCG) solver MCG solver,

provided in MCG solver.cpp, to help compute the terms needed in the

fermionic action. The MCG solver can return solution to (M †M+βi)si = F

for all shifts βi.

Once the Hamiltonian is computed, we evolve the fields along a classical

trajectory. This is handled by the function evolve fields. The evolution

of the fields and momenta are achieved through a leapfrog algorithm. In

the first half step we have:

p Umu → p Umu + 0.5*DT*f Umu

p F → p F + 0.5*DT*f F

Umu → Umu + exp(DT*p Umu)

F → F + DT*p F

Immediately after computing the change in fields (Umu and F) and mo-

menta (p Umu and p F), we update the forces by calling force(). The

bosonic force contribution to f Umu is given by:

f Umu(x) → f Umu(x)+Umu(x)*Udagmu(x)*DmuUmu(x)

-Umu(x)*DmuUmu(x+e mu)*Udagmu(x)

+2.0*Umu(x)*Unu(x+e mu)*Adj(Fmunu(x))

-2.0*Umu(x)*Adj(Fmunu(x-e nu))*Unu(x-e nu)

The computation of the fermionic force f F requires first a call to the

MCG solver MCG solver(). We find
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f F = -ampdeg*Cjg(F) -
∑

DEGREE

n=0
amp[n]*Cjg(sol[n])

Once we have this solution an additional contribution to the gauge force

coming from the pseudo-fermions is gotten by a call to the function fermion forces().

Each fermionic term in the action yields a contribution. We provide a part

of this code in figure 4. In the second half step of the leapfrog algorithm,

the momenta p U and p F are again updated with the new forces. These

final forces are then saved for the next iteration.

In practice it is important to use a multi-time step integrator for this

evolution [59]. In this case, while the fermions are with a time step of DT,

the bosons are integrated with the time step DT/MSTEP. Provided the boson

force is substantially larger than the fermionic contribution, this can result

in fewer costly fermion inversions for a fixed acceptance rate. In practice,

the parameter MSTEPS can be tuned to optimize the update.

Finally, control returns to update() and the updated Hamiltonian

H new is computed. A simple Metropolis test is used to accept or reject the

field configuration at the end of the trajectory.
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1 #include ”fermion forces.h”
2

3 void fermion forces(const Gauge Field &U, Gauge Field &f U,
4 const Twist Fermion &s, const Twist Fermion &p)
5 {
6 Lattice Vector x, e mu;
7 int sites, mu, a, b;
8 Umatrix tmp;
9 Gauge Field Udag;
10

11 Udag=Adj(U);
12 f U=Gauge Field();
13 //contribution to f_U from psi_muDb_mu(U)eta term

14 sites=0;
15 while(loop over lattice(x,sites))
16 {
17 for(mu=0;mu<NUMLINK;mu++)
18 {e mu=Lattice Vector(mu);
19 tmp=Umatrix();
20 for(a=0;a<NUMGEN;a++)
21 {
22 for(b=0;b<NUMGEN;b++)
23 {tmp=tmp+conjug(p.getS().get(x).get(a))∗s.getL().get(x,mu).get(b)
24 ∗Lambda[a]∗Lambda[b]∗Udag.get(x,mu)−conjug(p.getS().get(x+e mu).get(a))
25 ∗BC(x,e mu)∗s.getL().get(x,mu).get(b)∗Lambda[b]∗Lambda[a]∗Udag.get(x,mu);}
26 }
27 f U.set(x,mu,f U.get(x,mu)−0.5∗Adj(tmp));}
28 }
29 sites=0;
30 while(loop over lattice(x,sites))
31 {
32 for(mu=0;mu<NUMLINK;mu++)
33 {e mu=Lattice Vector(mu);
34 tmp=Umatrix();
35 for(a=0;a<NUMGEN;a++)
36 {
37 for(b=0;b<NUMGEN;b++)
38 {tmp=tmp+conjug(p.getL().get(x,mu).get(a))∗s.getS().get(x+e mu).get(b)
39 ∗BC(x,e mu)∗Lambda[a]∗Lambda[b]∗Udag.get(x,mu)−
40 conjug(p.getL().get(x,mu).get(a))∗s.getS().get(x).get(b)
41 ∗Lambda[b]∗Lambda[a]∗Udag.get(x,mu);}
42 }
43 f U.set(x,mu,f U.get(x,mu)−0.5∗Adj(tmp));}
44 }
45 sites=0;
46 while(loop over lattice(x,sites))
47 {for(mu=0;mu<NUMLINK;mu++){f U.set(x,mu,−1.0∗Adj(f U.get(x,mu)));}}
48 return;
49 }

Figure 6.2: A part of the C++ code to compute the fermion force contri-
bution.



Chapter 7

D1-brane Thermodynamics

from Lattice SYM

In this Chapter1, we investigate the phase structure of the two-dimensional

lattice SYM theory with sixteen supercharges using Monte Carlo simula-

tions described in Chapter 6. The two-dimensional theory is obtained by

the dimensional reduction of theN = 4, d = 4 SYM theory. We write down

the lattice version of the theory using the twisted formulation and study

the possible large N transitions between spatially confined and deconfined

phases of the theory as revealed by behavior of the spatial Polyakov line.

This theory has a supergravity dual; we also investigate the possible tran-

sitions between certain black holes in the dual supergravity theory.

The holographic duality conjecture connects supersymmetric gauge the-

ories with string theories in certain background. According to this conjec-

ture, type II superstring theory in AdSd+1×M space, whereM is a compact

manifold with positive curvature, should be equivalent to a superconformal

1This Chapter is based on the work [60, 61].
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field theory living on the d-dimensional boundary of AdSd+1. In recent

years the holographic principle between supersymmetric gauge theories and

supergravity theories [62] has been explored using a series of numerical stud-

ies. So far, these studies have been confined to the case when the super

Yang–Mills theory is one-dimensional and the dual gravitational theory de-

scribes the low energy dynamics of D0-branes [63, 64, 65, 66, 67, 68, 69, 70]

or the N = 4 theory compactified on S3 × R [71, 72, 73].

In this Chapter, we extend these calculations to the case of N coincident

D1-branes wrapped on a spatial circle, which, in the decoupling limit, is

described by a two-dimensional maximally SYM theory on a circle [62, 74].

This two-dimensional Yang–Mills system possesses a richer structure at

large N than its one-dimensional counterpart. The reason is that there is

a new dimensionless coupling in the theory that can be varied in addition

to the temperature when the spatial direction is compactified on a circle.

Arguments from a high temperature limit and also from strong coupling,

using a dual supergravity description, indicate that the system should pos-

sess an interesting phase structure in the two-dimensional parameter space

spanned by the temperature and this new coupling in the large N limit

[74, 75]. A large N transition between confined and deconfined phases

with respect to the spatial Polyakov line is expected, which interpolates

between the high temperature region and the strongly coupled region. In

particular, for the strongly coupled region, the dual D1-brane system can

be described by certain black holes in supergravity, with a compact spa-

tial circle. Then arguments from the dual gravity model indicate a first

order Gregory-Laflamme (GL) [76, 77] phase transition between the black

hole solutions localized on the circle and uniform black hole solutions which

wrap the circle [74, 75, 78, 79, 80, 81, 82, 83]. Translating back to the SYM,

the dual gravity model predicts the parametric dependence of the transi-
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tion temperature against dimensionless circle coupling – a dependence that

seemingly cannot be deduced by simple SYM considerations. Interestingly,

since the relevant gravity solutions have not been constructed yet (analog

solutions are known, but not in the correct dimension [84, 85, 86]), the

precise coefficient in this relation is not known, and determining it in SYM

yields a prediction for the phase transition temperature that could be tested

in the future when the gravity solutions are constructed – a classical, but,

nonetheless, rather non-trivial gravitational problem.

The numerical results appear to confirm the expected deconfinement

phase transition in the two-dimensional sixteen supercharge SYM theory.

At strong coupling, the position of the observed critical line agrees with the

parametric dependence on couplings predicted by the dual gravity analysis.

In particular, we can give an estimate of the coefficient in this relation and,

hence, derive a prediction for the GL phase transition temperature for the

dual black holes theory.

In the next section we review the theoretical background to the con-

jectured two-dimensional Yang–Mills/D1-brane duality when the theories

are compactified on a circle and describe the expected phase structure in

certain limits.

7.1 Theoretical background

We are interested in studying large N thermal two-dimensional maximally

supersymmetric (16 supercharge) SU(N) Yang–Mills theory, in the ’t Hooft

limit, with coupling λ = Ng2YM , with the spatial direction compactified.

Continuing the theory to Euclidean time, this implies the Yang–Mills the-

ory is defined on a rectangular 2-torus, with time cycle size β, and space

cycle size R. The fermion boundary conditions distinguish the two cycles,

being anti-periodic on the time cycle so that β has the interpretation of
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inverse temperature, and periodic boundary conditions on the space cycle.

The action may then be written as:

S =
N

λ

∫

T 2

dτdxTr
[

1
4
F 2
µν +

1
2

∑

I

[Dµφ
I , DµφI ]2 − 1

4

∑

I,J

[φI , φJ ]2

+fermions
]
, (7.1)

where I, J = 1, . . . , 8 and φI are the 8 adjoint scalars, and τ is the coordi-

nate on the time circle, and x the coordinate on the space circle. Since λ, β

and R are dimensionful, it is convenient to work with the two dimensionless

couplings:

rτ =
√
λβ and rx =

√
λR, (7.2)

which give the dimensionless radii of the time and space circles, respectively,

measured in units of the ’t Hooft coupling. We will be interested in the

expectation values of the trace of the Polyakov loops on the time and space

circles,

Pτ =
1

N

〈∣∣∣Tr (P exp(i

∮
Aτ ))

∣∣∣
〉
, Px =

1

N

〈∣∣∣Tr (P exp(i

∮
Ax))

∣∣∣
〉
, (7.3)

as at large N , these give order parameters for confinement/deconfinement

(or center symmetry breaking) phase transitions which we will discuss be-

low.

As discussed in [74, 75] there are several interesting limits for the theory.

In the large torus limit, 1 ≪ rx, rτ the string theory dual may be described

by supergravity. For the weak coupling limit, rx, rτ ≪ 1, or asymmetric

torus limits rτ ≪ r3x and rx ≪ r3τ , we will find the dynamics are captured

by a lower dimensional YM theory. Let us now review these cases and their

predictions.
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G-L transition
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Figure 7.1: Figure indicating the regions of coupling space where, at large
N , the dual string theory may be approximated by (red) IIB supergravity
and (blue) IIA supergravity. In these regions, the SYM thermodynamics
is dual to the thermodynamics of certain black holes in the corresponding
supergravity. The IIA region predicts a large N first order phase transition
(the Gregory-Laflamme phase transition) between black holes localized on
the spatial circle, and wrapping over the circle. The phase transition is
known to occur along the curve r2x = ccritrτ where ccrit is a constant, not
yet determined, but known to be order one and ccrit > 2.29. The SYM tran-
sition is thought to be a deconfinement transition of the spatial Polyakov
loop.

7.1.1 Large torus limits and IIB and IIA supergravity

duals

When the torus becomes large in units of the ’t Hooft coupling, one finds

that in certain regimes, the dual D1-branes in string theory can be well de-

scribed by supergravities [62] as we shall now briefly review. Having a su-

pergravity description of the full string theory dual allows certain behaviors

of the theory to be studied using simple semi-classical gravity reasoning,

which allows powerful predictions to be inferred for the dual SYM.

The dual IIB string theory is given by the ‘decoupling limit’ of N coin-
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cident D1-branes [62]. This decoupling limit is where one considers finite

energy excitations of the D1-branes while taking the limit,

g2YM =
1

2π

gs
α′

= fixed, α′ → 0, (7.4)

where gs is the string coupling and α′ determines the string tension. Since

the Euclidean SYM is defined on a torus, the string dual is too, being

at finite temperature and having one spatial direction compactified into a

circle of radius R with periodic fermion boundary conditions.

One finds that for 1 ≪ rτ ≪ r2x, this string theory can be described

effectively by its supergravity sector. String oscillator and winding mode

corrections to this supergravity description are small in this limit. The

IIB supergravity solution describing the thermal vacuum is a black hole,

carrying electric D1-brane charge. The D1-brane charge is string like, (i.e.,

its field strength tensor is a 3-form), and the appropriate configuration is

to take the charge to wrap over the compact space circle. The solution

preserves translational invariance around the space circle direction and is

thought to be stable to small perturbations.

However, there is a second supergravity description of the theory which

is valid in a partly overlapping and partly complementary range 1 ≪ rτ

and r
4/3
x ≪ rτ , obtained by performing a T-duality transformation on the

compact spatial circle of the IIB string theory [74, 75]. Roughly speaking,

such a T-duality exchanges winding and momentum modes of the string

on this spatial circle, and exchanges the IIB string theory for a IIA string

theory. In our case, the N D1-branes now get exchanged with N D0-

branes in the IIA theory. Since the D0-branes are point like, rather than

string like, they have freedom to distribute their electric charge over the

circle in various ways - it may be uniformly distributed, non-uniformly

distributed, or fully localized on the circle, the latter two choices breaking
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the translational symmetry along the space circle direction. It is then a

dynamical question which case is preferred.

It is thought [74] that there are 3 types of black hole solution that indeed

realize these 3 choices. The uniform black hole solution exists for all tem-

peratures, but it is known to have a dynamical perturbative instability of

the Gregory-Laflamme type [76, 77] for low temperatures r2x ≤ 2.29 rτ [74].

For higher temperatures it is thought to be dynamically stable. However,

at a higher temperature than the instability point, so that r2x = ccrit rτ for

some constant ccrit with ccrit > 2.29, the uniform black hole is thought to

become globally thermodynamically less favored than the localized black

hole solution. The actual transition temperature that governs the con-

stant ccrit is not yet known, as the localized black hole solutions have not

yet been constructed in the correct context to be embedded in the super-

gravity dual. The line r2x = ccrit rτ represents a first order thermal phase

transition between the uniform and localized solutions, with uniform fa-

vored for higher temperature r2x > ccrit rτ and localized favored for lower

temperature r2x < ccrit rτ
2. We term this the GL phase transition and em-

phasize that this is distinct from the GL dynamical instability. Whilst

there is a non-uniform black hole solution it is never thermally dominant.

For reviews on the GL dynamical instability, phase transition and uniform,

non-uniform and localized black hole solutions, see [87, 88, 89].

According to the duality hypothesis, a Polyakov loop about the time/s-

pace circle in the Euclidean SYM is computed in the leading large N limit

by considering whether a two-dimensional minimal area surface (the clas-

sical string worldsheet) that asymptotically wraps the time/space circle

exists. If the time/space circle is contractible in the interior of the gravity

2The region r2x < αrτ for 2.29 < α < ccrit is the region where the localized so-
lution dominates the canonical ensemble, but the uniform phase could in principle be
constructed as a metastable supercooled state (although here we will only be concerned
with equilibrium thermodynamics).
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solution, a minimal area solution for the string worldsheet will exist and

then the correspondence states that Pτ/x ∼ O(1). However, if the circle

is not contractible, there cannot exist a minimal surface that gives a fi-

nite action for the string worldsheet, and the correspondence states that

Pτ/x ∼ O(1/N) and hence Pτ/x = 0 in the large N limit. It is a standard

result of Euclidean gravity that black hole solutions have contractible time

circles in the interior of the solution, and in fact the time circle contracts

precisely at the horizon. The contractability of the spatial circle however

depends on the type of black hole. In the IIB supergravity solution the

space circle is non-contractible. The IIA uniform (and non-uniform) solu-

tions have non-contractible space circles, whereas the localized solution has

a contractible circle. In fact, the eigenvalues of the SYM spatial Polyakov

loop (which are phases, and hence live on a circle) are thought to corre-

spond to the positions of these D0-branes on the space circle in the IIA

dual. Hence, the GL phase transition can physically be thought of as a

thermal instability associated with the clumping of D0-branes, breaking

the U(1) circle translation symmetry. In the large N SYM, this symmetry

breaking is the spontaneous breaking of center symmetry ZN , where for

large N , U(1) ≃ ZN .

Let us summarize our predictions for the large torus. We learn that in

the IIB regime, 1 ≪ rτ ≪ r2x, we expect Pτ 6= 0 but Px = 0. In the IIA

regime, where 1 ≪ rτ and r
4/3
x ≪ rτ , we have Pτ 6= 0, and Px 6= 0 for

r2x ≤ ccrit rτ and Px = 0 for r2x > ccrit rτ , with ccrit an order one constant

with ccrit > 2.29. We note that, in the regime where both IIA and IIB

apply, they give consistent results. Thus, in the large torus, supergravity

regimes, the SYM is always deconfined in the time direction, and there is a

first order deconfinement/confinement transition in the space direction at

r2x = ccrit rτ .



7.1 Theoretical background 129

7.1.2 Dimensional reduction

Consider the toy model scalar theory defined on the 2-torus:

S =
1

λ

∫

T 2

dτdx
(
(∂µφ)

2 + φ4
)
. (7.5)

First we change to angular coordinates θτ = τ/β and θx = x/R with unit

radius, so θτ,x ∼ θτ,x + 1, and then define the dimensionless scalar variable

φ̃ = (βR/λ)1/4 φ. The action can now be written as:

S =

∫ 2π

0

dθτdθx

(
φ̃4 +

√
rx
r3τ
(∂θτ φ̃)

2 +

√
rτ
r3x
(∂θxφ̃)

2

)
, (7.6)

and we see that the dimensionless couplings rx/r
3
τ and rτ/r

3
x determine the

masses of the non-constant modes of the field φ on the torus. There are

three interesting limits. When rx ∼ rτ ≪ 1, then the non-constant modes

of the scalar become very massive and, hence, weakly coupled and one may

integrate these out to arrive simply at the quartic integral governing the

constant modes. If only 1 ≪ rx/r
3
τ , then the non-constant modes on the

time circle are weakly coupled and one may integrate these out to obtain the

dimensional reduction, which now lives only on the space circle. Likewise,

if 1 ≪ rτ/r
3
x, one may dimensionally reduce to obtain a theory only on the

time circle.

The structure of this toy example is such that precisely the same phe-

nomenon occurs with the full SYM on a 2-torus, as discussed in [75]. One

difference is that, due to the anti-periodic boundary conditions on the time

circle, the Fourier decomposition of the fermions contain only non-constant

modes in the time direction. Another difference is that, under a reduction,

the constant component of the gauge field in the direction of reduction

yields a scalar field, similar to the scalars φI , in the reduced theory. This

scalar in the reduced theory corresponds to the Polyakov loop about the
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Figure 7.2: Figure showing the regions of coupling space where the SYM
may be dimensionally reduced on the time and/or space circles. The blue
region indicates where reduction on the space circle gives a good approx-
imation, yielding a supersymmetric quantum mechanics theory, the BFSS
model. The red region indicates where reduction on the space circle to a
bosonic quantum mechanics (BQM) is a good approximation. This latter
reduction predicts a large N deconfinement phase transition in the spatial
Polyakov loop for r3x = 1.35rτ and this curve is shown.
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cycle that has been reduced on. Since the expectation value of the eigen-

value distribution of the scalar in the reduced theory will have a non trivial

profile, this implies that center symmetry is broken in the Polyakov loop

about the reduced cycle3.

There are, again, 3 regimes. For rx ∼ rτ ≪ 1, one may reduce on both

time and space to just give the zero modes of the theory, and arrive at a

bosonic Yang–Mills matrix integral, since, in reducing on the time circle

one loses the fermions that have no zero modes. Such a reduction indicates

that, in this limit, the two-dimensional SYM should have Pτ , Px 6= 0.

For r3x ≪ rτ , the theory may be dimensionally reduced on the space

circle to give the thermal supersymmetric matrix quantum mechanics living

on the time circle with radius β. The spatial Polyakov loop is then given

in terms of one of the 9 scalars of the BFSS model, and, since these scalars

have localized eigenvalues, the two-dimensional SYM should be deconfined

in the space direction with Px 6= 0. This theory is precisely the BFSS

theory [91], and recently this has been numerically simulated in the ’t Hooft

limit [64, 65, 66], and indeed, the results obtained are consistent with the

theory always being deconfined, so Pτ 6= 0. The coupling of this quantum

mechanics is given by rτ/(rx)
1/3 and, when this is large, we know from our

arguments above that we are in a regime where a dual IIA supergravity

description exists, and the dynamics are given by the localized black hole

solution, which is indeed consistent with Pτ , Px 6= 0.

For r3τ ≪ rx one may again perform a dimensional reduction, now on

the time circle. Thus, in the two-dimensional theory, we expect Pτ 6= 0.

Since there are no fermion zero modes on the time circle, the resulting

one-dimensional theory is a bosonic quantum mechanics (BQM) defined

on a circle radius R and with dimensionless coupling r3x/rτ . Numerical

3This is to be contrasted with the Eguchi-Kawai reduction [90] where quite the op-
posite occurs; one can only reduce on a direction if center symmetry is unbroken.
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[74, 75, 92] and analytic study [93] indicate that this theory has a large

N confinement/deconfinement transition at r3x/rτ ≃ 1.35 of second order.

There is also thought to be a third order Gross-Witten [94, 95] transition

very nearby at r3x/rτ ≃ 1.49 [92, 93].

7.1.3 Expectations for large N phase diagram

We conclude by putting together the above discussions. The simplest

picture is then that the Gregory-Laflamme first order phase transition,

r2x = ccrit rτ for 1 ≪ rτ (recall ccrit > 2.29), and the second order transition

r3τ ≪ rx and r
3
x = 1.35 rτ in the time reduced BQM are two ends of the same

spatial Polyakov loop confinement/deconfinement phase transition line. At

some point in-between, the order presumably changes, and here the new

third order Gross-Witten phase transition emerges, although this is not

measured by center symmetry breaking, but by more detailed information

about the spatial Polyakov loop eigenvalue distribution. It is interesting

[81, 74, 82] that the new phase at small rx also exists for 1 ≪ rx in the

form of non-uniform IIA black strings, but, unlike at weak coupling, these

are never thermally dominant in the IIA supergravity region. In figure 7.3,

we summarize the expected phase diagram for the spatial confinement/de-

confinement transition.

7.2 Sixteen supercharge theory on the lat-

tice

In Chapter 4, we have written down the lattice version of the sixteen super-

charge theory in four dimensions (the N = d = 4 SYM theory). We need

to dimensionally reduce this theory down to two dimensions to obtain the
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P_x ¹ 0 P_x = 0

P_Τ ¹ 0 everywhere

rx
2
>ccritrΤ , ccrit>2.29
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>1.35rΤ

1
rx

1
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Figure 7.3: Cartoon of the expected large N , spatial Polyakov loop de-
confinement transition line in coupling space. Pictured is the simplest
possibility, namely that the spatial deconfinement transition interpolates
between the strong coupling Gregory-Laflamme transition parametric be-
havior r2x ∼ rτ , and the high temperature reduction deconfinement transi-
tion behavior r3x = 1.35rτ .

sixteen supercharge theory of our interest4. We saw that a better choice in

four dimensions is the A∗
4 lattice, which retains a higher point group sym-

metry than the hypercubic lattice. It is not necessary for two dimensions,

and, indeed would complicate the calculation of Polyakov lines.

We dimensionally reduce the four-dimensional supersymmetric lattice

action

S =
1

g2YM

∑

n

Tr

(
F †
abFab +

1

2

(
D(−)

a Ua
)2

− χabD(+)
[a ψ b] − ηD(−)

a ψa

)

+Sclosed , (7.7)

4We assume an anti-hermitian basis for all fields, which take their values in the
adjoint representation of the SU(N) gauge group.
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where

Sclosed = − 1

8g2YM

∑

n

Tr ǫmnpqrχqr(n+ µ̂m + µ̂n + µ̂p)D
(−)

p χmn(n+ µ̂p) ,

(7.8)

along two lattice directions using periodic boundary conditions to obtain

the two-dimensional theory. The resultant lattice action corresponds in the

naive continuum limit to the target Q = 16 YM theory in two dimensions.

In this limit, its exact supersymmetry is enhanced to correspond to 4 con-

tinuum supercharges corresponding to the four scalar fermions that now

appear in the dimensionally reduced theory [32].

We will be interested in this theory large N limit with ’t Hooft coupling

λ = Ng2YM . (7.9)

The lattice theory is then governed by the coupling

κ =
NLT

2r2τ
, (7.10)

where L and T denote the number of lattice sites in the spatial and temporal

directions.

We have used periodic boundary conditions for the fields on the remain-

ing spatial circle and anti-periodic boundary conditions for fermions in the

temporal direction in order to access the thermal theory. Simulations were

carried out using the RHMC algorithm, which is described in detail in [96].

It has been shown that the existence of a noncompact moduli space in

the theory renders the thermal partition function divergent [69]. In order

to regulate this divergence we have additionally introduced a mass term for

the scalar fields appearing in the lattice action with a dimensionless mass
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parameter m = mphysβ.

Sm =
m2

g2YM

∑

x

[
U †
µUµ +

(
U †
µUµ

)−1 − 2
]
. (7.11)

The form of this term is effective at suppressing arbitrarily large fluctua-

tions of the exponentiated scalar fields and reduces to a simple mass term

for small fluctuations characterizing the continuum limit. Notice that this

infrared regulator term breaks supersymmetry softly and lifts the quantum

moduli space of the theory. The simulations are then performed for a range

of the parameter m in order to allow for an extrapolation m→ 0.

7.3 Simulation results

The numerical simulations of this theory focus on the Polyakov lines for

both the thermal and spatial circle. These are defined on the lattice in the

usual way

Px =
1

N

〈∣∣∣Tr ΠL−1
ax=0Uax

∣∣∣
〉
, Pτ =

1

N

〈∣∣∣Tr ΠT−1
aτ=0Uaτ

∣∣∣
〉
, (7.12)

where the unitary piece of the complexified link Uµ is extracted to compute

these expressions. The values of spatial and temporal Polyakov lines are

evaluated as a function of rτ for two different lattices with the same aspect

ratio, a 2 × 8 lattice and a 3 × 12 lattice, for N = 3 and with values of

the infrared regulator m = 0.05, 0.10 and 0.20. The use of two different

lattices with the same aspect ratio would allow to test for and quantify

finite lattice spacing effects. The simulations are performed for values of

the dimensionless time circle radius in the range 0.02 ≤ rτ ≤ 1.0. Figure 7.4

shows the numerical results.

Notice that the temporal Polyakov remains close to unity over a wide
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Figure 7.4: Spatial and temporal Polyakov lines (Px and Pτ ) against dimen-
sionless time circle radius rτ for maximally supersymmetric SU(3) Yang–
Mills on 2 × 8 and 3 × 12 lattices using different values of the infrared
regulator m.
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Figure 7.5: Plot of the absolute values of the spatial and temporal Polyakov
lines (Px and Pτ ) against the dimensionless time circle radius rτ for maximally
supersymmetric SU(N) Yang–Mills on a 2× 8 lattice for N = 2, 3, 4, using the
value of the infrared regulator m = 0.10.

range of rτ . This indicates the theory is (temporally) deconfined and is

consistent with expectations for the limits discussed in section 7.1 – the

asymmetric torus limits, and the strong coupling regions, where there is a

dual supergravity description in terms of black holes. However, the spatial

Polyakov line has a different behavior taking values close to unity for small

rτ while falling rapidly to plateau at much smaller values for large rτ . It is

tempting to see the rather rapid crossover around rτ ∼ 0.2 as a signal for

a would be thermal phase transition as the number of colors is increased.

This conjecture is seen to be consistent with the data: in figure 7.5 we

show the Polyakov lines for N = 2, 3, 4 on 2× 8 lattices as a function of rτ .

The plateau evident at large rτ falls with increasing N and the crossover

sharpens. This is consistent with the system developing a sharp phase

transition in the large N limit.

Notice that in the data shown here, the results do not depend on the

scalar mass. Indeed, for the length of Monte Carlo associated with the

simulation time, it appears that m can be set to zero for rτ < 2 with-
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out fear of encountering the thermal divergence discussed in [69]. This

stability in the scalar sector can be seen in figure 7.6, which shows the

Monte Carlo time series for the eigenvalues of U †
µUµ ∼ e2φ at two different

rτ ’s with dimensionless mass parameter m = 0.05 and gauge group SU(3).

There is no evidence of a divergence over thousands of Monte Carlo sweeps.

Furthermore, one sees that the eigenvalues of the scalar fields (rendered di-

mensionless using the lattice spacing) cluster with small separation for this

range of rτ .

The observations indicate that the m = 0 model does exhibit the same

thermal instability observed in the case of supersymmetric quantum me-

chanics for sufficiently low temperature rτ >> 1 in agreement with the

general arguments given in [69].

Putting together several lattice aspect ratios for N = 3, 4, we can plot

the spatial Polyakov loop as a function of rs and rτ , where data are avail-

able. This is done in figure 7.7. The three contours Px = 0.4, 0.5, 0.6 are

shown. We see that the contours for SU(4) are closer together than those

for SU(3), as we expect for a large N transition. From these data we can

try to assess where the large N transition in Px may occur. In the detailed

studies of the dimensionally reduced bosonic quantum mechanics [74], it

was found that the large N transition occurred very close to Px ≃ 0.5.

Thus from the contours of the SU(3) and SU(4) data, we could take the

Px = 0.5 curves to give an estimate for the large N phase transition line.

Another estimate is to plot the function

fN ≡ Px(SU(N))− Px(SU(N − 1)) , (7.13)

that measures the difference between the Polyakov lines for SU(N) and

SU(N − 1). At strong coupling, where we expect the large N transition is

first order, the simplest situation is to have fN < 0 in the confined region
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Figure 7.6: Plots of the average scalar eigenvalues against Monte Carlo
configuration time step, for N = 3 on a 2× 8 lattice with rτ = 0.5 and 1.0.
Note that the spread between eigenvalues reduces as rτ is decreased. We
have used the dimensionless mass parameter m = 0.05.
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Figure 7.7: Plot of contours of the expectation of the spatial Polyakov line
Px over the rx, rτ plane. The left frame shows SU(3), and the right SU(4).
The three contours plotted are 0.4, 0.5, 0.6, and the simulation data collates and
interpolates runs made on lattices 2× 16, 2× 8, 3× 8, 4× 4 and 4× 8 therefore
giving a variety of aspect ratios rτ/rx.

(where Px = 0 for N → ∞), and, correspondingly, fN > 0 in the deconfined

region as N → ∞. Then plotting the boundary of the positive (or negative)

region of f4 calculated from the simulation data also gives an estimate of

the critical line. Neither method can give a precise determination, and they

should not be considered as a replacement for calculations at larger N than

we have been able to reach here. However, in the absence of such large N

data, we plot the Px = 0.5 contours for SU(4) and SU(3) in figure 7.7, and,

in addition, the region where f4 is positive. We note that the SU(3) and

SU(4) Px = 0.5 contours are remarkably consistent with each other, which

provides evidence that they are indeed a reasonable approximation to the

large N transition curve. Whilst the f4 data are rather noisy, and, hence,

the positive f4 region has ‘holes’ in it, the function is positive only to left

of the Px = 0.5 curves, and, furthermore, extends right up to these curves.

The curve r2x = 3.5rτ is plotted on this graph and matches the contours

Px = 0.5, and the boundary of the positive f4 region very well in the strong

coupling region. This can be taken to indicate that the gravity prediction
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for the parametric behavior r2x = ccritrτ is consistent with the simulation

data. The estimated value turns out to be ccrit ≃ 3.5, which indeed obeys

the gravity prediction that ccrit is order one and ccrit > 2.29. Furthermore,

we see that the contours Px = 0.5 also appear to be consistent with the

high temperature prediction r3x = 1.35rτ as well.

The value of the ratio

α ≡ ccrit/2.29 (7.14)

gives the ratio of the GL thermal phase transition temperature to the GL

dynamical instability temperature (the minimum temperature to which

uniform strings can be supercooled), so

α = TGL phase/TGL instab. (7.15)

Whilst the GL instability temperature is known [74] (corresponding to the

behavior r2x = 2.29rτ at strong coupling), the GL phase transition temper-

ature is not known in the gravity theory, as the localized solutions have not

been constructed. In fact, the near extremal D0-charged black holes are

simply related to vacuum solutions of pure gravity with R1,8 × S1 asymp-

totics [74, 82]. Such localized black hole solutions have been constructed for

asymptotics R1,3×S1 and R1,4×S1, using numerical techniques [97, 84, 86].

Extending these methods to the case of interest here, R1,8×S1, is obviously

an interesting future direction. It is worth emphasizing that whilst finding

localized solutions in the gravity theory only involves solving the classical

Einstein equations, in practice, even phrasing the Einstein equations in a

manner amenable to numerical solution, has presented a challenge [86] and

then solving the resulting coupled partial differential equations is a serious

numerical undertaking.5 The lattice estimation, α ≃ 1.5, obtained through

5Such solutions can be constructed perturbatively [98, 99, 100, 101] in a small radius
limit (compared to the circle size) but the GL phase transition occurs for black holes
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Figure 7.8: Plot showing a superposition of the Px = 0.5 contours for SU(3) and
SU(4) as dashed black lines. Also shown is the region (blue) where the SU(4)
loop Px is greater than the SU(3) loop, which is expected to estimate the large
N deconfined region for a first order transition (which gravity suggests at strong
coupling). ‘Holes’ in this blue region are due to statistical errors. We see the
boundary of this region (ignoring ‘holes’) matches well the Px = 0.5 contours,
and represents our guess for where the large N transition resides. This figure
should be compared to the previous figure 7.3 giving a sketch of the expected
phase structure. Plotted on the figure is the high temperature prediction for
the transition (r3x = 1.35rτ , red curve). We note that the estimated large N
transition curve fits well both this high temperature prediction and also the
strong coupling dual gravity predicted parametric behavior r2x = ccritrτ . The
data obtained through simulations suggests ccrit ≃ 3.5 (plotted as blue curve),
which obeys the constraint from gravity ccrit > 2.29.
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the analysis performed above provides a prediction for the thermal behav-

ior of the gravity solutions. This is the first time a prediction about the

properties of non-trivial classical gravity solutions has been made from the

Yang–Mills side of a holographic correspondence.

with radius of order the circle size, and, hence, it is unclear how accurate perturbative
methods are for a prediction of TGL phase/TGL instab.
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Conclusions

In this dissertation, we have investigated the sixteen supercharge Yang–

Mills theories in two and four dimensions on the lattice. We have given

lattice constructions of these theories that preserve one exact supersymme-

try. The lattice theories are also local, free of doublers and possess exact

lattice gauge-invariance.

The lattice version of the four-dimensional N = 4 SYM theory is in-

vestigated at one-loop using perturbation theory. We found that the exact

symmetries of the classical lattice theory, namely, gauge-invariance, a sin-

gle exact supersymmetry Q and the (large) point group symmetry of the

lattice strongly constrain the possible counterterms induced by quantum

corrections. Indeed, with one exception, the only relevant counterterms

correspond to renormalizations of existing terms in the action. We fur-

thermore show, by a computation of the effective action, that the one new

operator that cannot be excluded in the general renormalization analysis

actually makes no appearance in all orders in perturbation theory.

We have written down the renormalized action in terms of 4 coupling

constants αi that take the value unity in the classical lattice action. We

evaluate the renormalization of these couplings at one-loop using lattice

perturbation theory. Three of the couplings can be computed by exam-

145
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ining the renormalization of the three twisted fermion propagators. The

final coupling is most easily read off from a one-loop contribution to the

propagator for a bosonic auxiliary field. The relevant propagators and ver-

tices are derived and the amputated one-loop diagrams are constructed.

All these diagrams possess identical logarithmic divergences of the form

log µa, where a is the lattice spacing and µ is a mass scale introduced to

regulate the small momentum behavior of the integrands. This divergence

can be absorbed by a common wavefunction renormalization of the twisted

fermions and bosons.

The simplest way to understand this rather surprising result is to realize

that the coefficient of the logarithmic divergence of some one-loop diagram

in the lattice theory can be extracted by taking a naive continuum limit of

the diagram, since the log divergence comes from the small loop momentum

region of the integral. Provided that the lattice diagrams correspond one-

to-one with equivalent continuum diagrams, and that all lattice propagators

and vertices reduce to their continuum counterparts for small momenta,

this means that the log divergences of the lattice theory are equal to the

same divergences in the continuum theory. Furthermore, since the twisted

continuum theory is equivalent to the usual N = 4 theory in flat space,

it must possess the full Q = 16 supersymmetry. This fact ensures that

all divergences present in the twisted continuum fermion self-energies must

be equal – which is indeed what we find. And this structure is necessarily

inherited by the log divergent parts of the lattice theory at one-loop. This

is what leads to the main result: that only a one-time tuning of the finite

parts of the wavefunction renormalization needs to be performed at one-

loop in order to restore the full supersymmetry.

This similarity between the divergence structure of the lattice theory

and the continuum theory is strongly suggestive that the beta function of
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the lattice theory will also vanish at weak coupling. First, note that the

calculation of the beta function requires the evaluation of one-loop ver-

tex diagrams in the lattice theory. Preliminary calculations suggest that

the set of relevant lattice vertex diagrams correspond one-to-one to con-

tinuum vertex diagrams and remain only logarithmically divergent. They

may, thus, be evaluated in the continuum theory. The coefficient of this

log divergence is then combined with the wavefunction renormalizations

determined above to yield the one-loop beta function in the usual manner.

However, we already know the result of this computation for the continuum

theory: the beta function vanishes. We, hence, expect a similar result to

hold at one-loop in the lattice theory. Thus, for weak coupling, we expect

the lattice theory to possess a line of fixed points parametrized by the bare

coupling constant, just as for the continuum theory. However, our cal-

culations do not reveal whether this feature survives in the lattice theory

to strong coupling. At two or more loops, the divergences of the lattice

Feynman diagrams will not be equal to the those of the continuum theory

and, hence, we cannot use the latter to infer the divergence structure of

the lattice theory. To understand how to take the continuum limit in this

regime will then require a mixture of two-loop and numerical calculations.

We also investigate the strongly coupled dynamics of the two-dimensional

maximally supersymmetric SU(N) Yang–Mills theory using the method

of twisted lattice supersymmetry. Numerical simulations have been per-

formed on the lattice to study the phase structure of the theory at finite

temperature and compactified on a circle. The spatial Polyakov line serves

as an order parameter for a large N deconfining phase transition in the

theory. The simulations are consistent with the existence of a single tran-

sition curve in the two-dimensional parameter space spanned by the two

dimensionless couplings (rx and rτ ), which give the size of the thermal and
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spatial circle in units of the YM coupling.

At high temperature, r3τ ≪ rx, the simulations are consistent with the

previously predicted behavior that the transition curve goes as r3x = 1.35rτ .

At strong coupling, 1 ≪ rτ , the transition is conjectured to be the holo-

graphic dual of a first order Gregory-Laflamme phase transition, with the

transition curve going a r2x = ccritrτ , with ccrit, an order one constant obey-

ing the constraint ccrit > 2.29. The simulations are consistent with this

parametric behavior. The N = 3, 4 data can be used to estimate the posi-

tion of the large N transition, determining ccrit ≃ 3.5. This gives the ratio

of the Gregory-Laflamme phase transition and dynamical instability tem-

peratures to be TGLphase/TGLinstability ≃ 1.5. Since the dual localized black

hole solutions have not been constructed, this constitutes a prediction for

these non-trivial gravity solutions.



Appendix A

Simplification of the one-loop

diagrams

We show the details of arriving at the simplified expressions given in (5.54)-

(5.57). We use the following identities for the easy evaluation of the dia-

gram:

∑

B,C

λABCλBCD =
∑

B,C

dABCdBCD − fABCfBCD , (A.1)

λABC = λACB . (A.2)

These relations among structure constants imply

(AλABC −BλABC)(CλBCD −DλBCD)

= dABCdBCD(AC−AD−BC+BD)

− fABCfBCD(AC+AD+BC+BD) .(A.3)
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We look at the diagram Iηψ(p):

Iηψd
(p) =

∫
d4q

(2π)4

∑

a,b,c

∑

BC

( 1

16 ̂(p− q)
2

q̂2

)
(λABC − λABCe

ipa)

×(λBCDe
−ipa − λBCDe

iqd)
[
(1− ei(p−q)b)δca(δbaδcd − δbdδca)

−(1− ei(p−q)c)(δbaδcd − δbdδca)δba

]

=

∫
d4q

(2π)4

∑

a,b

∑

BC

( 1

8 ̂(p− q)
2

q̂2

)

(
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

)

×(1− ei(p−q)b)(δbaδad − δbdδaa)

That is

Iηψd
(p) =

∫
d4q

(2π)4

∑

a

∑

BC


 1

8 ̂(p− q)
2

q̂2



[[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]
(1− ei(p−q)a)δad

−
[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]
(1− ei(p−q)d)

]

=

∫
d4q

(2π)4

∑

BC


 1

8 ̂(p− q)
2

q̂2

(1− ei(p−q)d)




×
[[
dABCdBCD(e

−ipd − eiqd − 1 + ei(p+q)d)

+fABCfBCD(e
−ipd + eiqd + 1 + ei(p+q)d)

]

−
∑

a

[
dABCdBCD(e

−ipa − eiqd − 1 + eipa+iqd)

+fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]



Simplification of the one loop diagrams 151

On further simplification

Iηψd
(p) =

∫
d4q

(2π)4

∑

BC


(1− ei(p−q)d)

8 ̂(p− q)
2

q̂2



[
−
∑

a 6=d

[
dABCdBCD(e

−ipa − eiqd

−1 + eipa+iqd) + fABCfBCD(e
−ipa + eiqd + 1 + eipa+iqd)

]]
(A.4)

Now I
(1)
ψaχgh

:

I
(1)
ψaχgh

(p) =

∫
d4q

(2π)4

∑

b,c,d,e,m,f

∑

B,C

(−1)

64q̂2 ̂(p− q)
2 ǫbcmefǫghdefe

i(p−q)(e+f)

(ei(p−q)m − 1)(δbdδca − δbaδcd)

×
(
λABCe

ipd − λABCe
−iqa

)(
e−ip(d+e+f)

(
λBCDe

iq(e+f) − λBCDe
i(p−q)d

)

−ei(p−q)(d+g+h)
(
λBCDe

iq(g+h) − λBCDe
−ipd

))

=

∫
d4q

(2π)4

∑

d,e,m,f

∑

B,C

1

16q̂2 ̂(p− q)
2 ǫadmefǫghdef (e

i(p−q)m − 1)

×
(
− dABCdBCD(e

i(pd+q(g+h)) − 1− eiq(g+h−a) + e−i(pd+qa))

+fABCfBCD(e
i(pd+q(g+h)) + 1 + eiq(g+h−a) + e−i(pd+qa))

)

That is

I
(1)
ψaχgh

(p) =

∫
d4q

(2π)4

∑

d,m

∑

B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)m − 1)

× (δagδmh + δahδmdδdg + δadδmgδdh − δahδmg − δagδmdδdh − δadδmhδdg)

×
(
dABCdBCD(e

i(pd+q(g+h)) − 1− eiq(g+h−a) + e−i(pd+qa))

−fABCfBCD(ei(pd+q(g+h)) + 1 + eiq(g+h−a) + e−i(pd+qa))
)

(A.5)
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Looking at the second ψχ diagram we have:

I
(2)
ψaχde

(p) =

∫
d4q

(2π)4

∑

b,c,B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)c − 1)δab(δdbδec − δdcδeb)

×(λABCe
−i(p−q)a − λABC)(λBCDe

iqc − λBCDe
i(p−q)b)

=

∫
d4q

(2π)4

∑

c,B,C

1

8q̂2 ̂(p− q)
2 (e

i(p−q)c − 1)(δdaδec − δdcδea)

×
(
dABCdBCD(e

i(qc−(p−q)a) − eiqc − 1 + ei(p−q)a)

−fABCfBCD(ei(qc−(p−q)a) + eiqc + 1 + ei(p−q)a)

)
(A.6)

Now looking at Iχabχgh
:

Iχabχgh
(p) =

∫
d4q

(2π)4

∑

c,d,e,f,B,C

1

32q̂2 ̂(p− q)
2 ǫabcde(δgcδhf − δgfδhc)

×
(
(e−i(p−q)d − 1)δef − (e−i(p−q)e − 1)δdf

) (
λBCDe

iqf − λBCDe
i(p−q)c

)

×
(
e−ik(a+b+c)

(
λABCe

ipc − λABCe
−iq(a+b)

)

−eip(c+d+e)
(
λABCe

−i(p−q)c − λABCe
−iq(d+e)

) )

=

∫
d4q

(2π)4

∑

d,e,B,C

−1

16q̂2 ̂(p− q)
2 e

ip(g+d+e)ǫabgde

×
(
(e−i(p−q)d − 1)δeh − (e−i(p−q)e − 1)δdh

)

×
(
λABCe

−i(p−q)g − λABCe
−iq(d+e)

) (
λBCDe

iqh − λBCDe
i(p−q)g

)

− (h↔ g)

That is

Iχabχgh
(p) =

∫
d4q

(2π)4

∑

d,B,C

1

8q̂2 ̂(p− q)
2 e

ip(g+d+h)ǫabdgh(e
−i(p−q)d − 1)

×
(
dABCdBCD(e

−i(pg−q(g+h)) − 1− e−iqd + ei(pg−q(g+d+h)))

−fABCfBCD(e−i(pg−q(g+h)) + 1 + e−iqd + ei(pg−q(g+d+h)))
)

− (h↔ g) (A.7)
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(Note that we also need to take into account the diagram where the internal

ψχ is flipped. It is the same as what we have but with a ↔ g, b ↔ h and

p ↔ −p. We may for convenience take q ↔ −q. We pick up an additional

minus sign in the fABCfBCD term due to the differing order of the group

factors.)
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Appendix B

The vanishing of one-loop

fermion propagators at zero

momentum

We show that the one loop fermion propagators given in given in (5.54)-

(5.57) vanish in the limit of vanishing external momentum. Starting with

the first diagram and using the simplified forms of the integrals derived in

Appendix A (assuming an IR regulator), we have:

Iηψd
(0) =

∫
d4q

(2π)4

∑

BC

[ 1

8q̂2q̂2
(1− e−iqd)

]

×
[
− 2

∑

a 6=d

fABCfBCD(1 + eiqd)
]
= 0 , (B.1)

as (1−e−iqd)(1+eiqd) = 2i sin qd and then the integrand is the combination

of an odd and an even function.
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Next we calculate:

I
(1)
ψaχgh

(0) =

∫
d4q

(2π)4

∑

d,m

∑

B,C

1

8q̂2q̂2
(e−iqm − 1)

[
δagδmh + δahδmdδdg + δadδmgδdh

−δahδmg − δagδmdδdh − δadδmhδdg

]
×
(
dABCdBCD(e

iq(g+h)

−1− eiq(g+h−a) + e−iqa)− fABCfBCD(e
iq(g+h) + 1 + eiq(g+h−a) + e−iqa)

)

=

∫
d4q

(2π)4

∑

m

∑

B,C

1

8q̂2q̂2
(e−iqm − 1)

(
δahδmg − δagδmh

)

×
(
dABCdBCD(e

iq(g+h) − 1− eiq(g+h−a) + e−iqa)

−fABCfBCD(eiq(g+h) + 1 + eiq(g+h−a) + e−iqa)
)
. (B.2)

Then, we can use the fact that if a 6= g and a 6= h then the expression

disappears. If a = g = h, again the expression disappears. So, assuming

a = h and a 6= g we get:

I
(1)
ψaχgh

(0) =

∫
d4q

(2π)4

∑

B,C

1

8q̂2q̂2
(e−iqg − 1)

(
dABCdBCD(e

iq(g+a) − 1− eiqg + e−iqa)

−fABCfBCD(eiq(g+a) + 1 + eiqg + e−iqa)
)

=

∫
d4q

(2π)4

∑

B,C

2i

8q̂2q̂2

(
dABCdBCD(sin qa + sin qg − sin q(a+g))

−fABCfBCD(sin qa − sin qg − sin q(a+g))
)

= 0 , (B.3)

which vanishes term by term.

We then move onto the second ψχ diagram.

I
(2)
ψaχde

(0) =

∫
d4q

(2π)4

∑

c,B,C

1

8q̂2q̂2
(e−iqc − 1)(δdaδec − δdcδea)

×
(
dABCdBCD(e

iq(c+a) − eiqc − 1 + e−iqa)

−fABCfBCD(eiq(c+a) + eiqc + 1 + e−iqa)
)

(B.4)
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In a similar way to the previous diagram, if a 6= d and a 6= e, then the

diagram vanishes. If a = d = e, it also vanishes, so we only need to deal

with the case a = d, a 6= e:

I
(2)
ψaχde

(0) =

∫
d4q

(2π)4

∑

B,C

1

8q̂2q̂2
(e−iqe − 1)

(
dABCdBCD(e

iq(e+a) − eiqe − 1 + e−iqa)

−fABCfBCD(eiq(e+a) + eiqe + 1 + e−iqa)
)

=

∫
d4q

(2π)4

∑

B,C

2i

8q̂2q̂2
(e−iqe − 1)

(
dABCdBCD(sin qa + sin q(a+e) + sin qe)

−fABCfBCD(sin qa + sin q(a+e) − sin qe)
)

= 0 , (B.5)

which again vanishes term by term.

Finally we show that Iχχ(0) = 0.

Iχabχgh
(0) =

∫
d4q

(2π)4

∑

d,B,C

1

8q̂2q̂2
ǫabdgh(e

iqd − 1)

×
(
dABCdBCD(e

iq(g+h) − 1− e−iqd + e−iq(g+d+h))

−fABCfBCD(eiq(g+h) + 1 + e−iqd + e−iq(g+d+h))
)

−
(
h↔ g

)

=

∫
d4q

(2π)4

∑

d,B,C

2i

8q̂2q̂2
ǫabdgh

×
(
dABCdBCD(sin q(d+g+h) − sin qd − sin q(g+h))

−fABCfBCD(sin q(d+g+h) + sin qd − sin q(g+h))
)

= 0 . (B.6)
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Appendix C

Coupling constant

independence in N = 4 SYM

The twisted N = 4 SYM in the continuum possesses a privileged set

of operators whose expectation values can be shown to be independent

of the background metric and, hence, topological. (See (2.31) and (2.32)

in Chapter 2.) The condition for this to be true is that the operator be

annihilated by the charge Q. In addition, the expectation values of these

operators can be shown to be independent of the coupling constant. As

we will see, this property remains true in the lattice theory and provides

powerful constraints on the renormalization of such operators. To see this

result, consider the twisted lattice action, which is the sum of Q-exact

and Q-closed terms. The coupling constant dependence of the Q-closed

term can be removed, without disturbing the Q BRST transformation, by

rescaling the fields in appropriate ways. We show this below.
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The twisted action is:

S =
1

g2
Sexact +

1

g2
Sclosed

=

∫
Tr

{ 1

g2

(
FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)

− 1

g2

(1
2
ǫabcdeχabDcχde

)}
. (C.1)

A simple rescaling of the fields:

χab → χab/g, ψa → gψa, η → η/g , (C.2)

gives the action

S =
1

g2

∫
Tr

(
FabFab +

1

2
[Da,Da]

2 − χabD[aψb] − ηDaψa

)

−1

2

∫
Tr ǫabcdeχabDcχde

=
1

g2
Sexact + Sclosed (C.3)

Calling β = 1
g2

and writing the action as S = QΛ+Sclosed the expression

for the expectation value of a Q-invariant operator O becomes

〈O〉β =
1

Z

∫
Oe−(βQΛ+Sclosed), Z =

∫
e−(βQΛ+Sclosed) . (C.4)

Differentiating this expression with respect to β leads to

∂

∂β
〈O〉β = 〈QΛ〉β〈O〉β − 〈OQΛ〉β

= 〈QΛ〉β〈O〉β − 〈Q(OΛ)〉β

= 0 , (C.5)

where we have used the fact that as long as the BRST symmetry is not

broken spontaneously, the expectation value of the Q variation of some
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operator vanishes. Thus, expectation values of Q-invariant observables are

independent of β and, hence, can be computed exactly in the semi-classical

limit β → ∞. In this limit, we need only do one loop calculations around

the classical vacua.
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