
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

4-1991

An Evolutionary Approach to Load Balancing Parallel An Evolutionary Approach to Load Balancing Parallel

Computations Computations

N. Mansouri
Syracuse University, Department of Engineering and Computer Science, namansou@ecs.syr.edu

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mansouri, N. and Fox, Geoffrey C., "An Evolutionary Approach to Load Balancing Parallel Computations"
(1991). Electrical Engineering and Computer Science - Technical Reports. 116.
https://surface.syr.edu/eecs_techreports/116

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/116?utm_source=surface.syr.edu%2Feecs_techreports%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-13

An Evolutionary Approach to Load
Balancing Parallel Computations

Nashat Mansour and Geoffrey C. Fox

April1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

SU-CIS-91-13

An Evolutionary Approach to Load
Balancing Parallel Computations

Nashat Mansour and Geoffrey C. Fox

April1991

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

An Evolutionary Approach to Load Balancing Parallel Computations

Abstract

Nashat Mansour
School of Computer Science
Centec for Computational Science
Syracuse University
Syracuse New York 13244

We present a new approach to balancing the work­
load in a multicomputer when the problem is de­
composed into subproblems mapped to the
processors. It is based on a hybrid genetic algo­
rithm. A number of design choices for genetic algo­
rithms are combined in order to ameliorate the
problem of premature convergence that is often en­
countered in the implementation of classical genet­
ic algorithms. The algorithm is hybridized by
including a hill climbing procedure which signifi­
cantly improves the efficiency of the evolution.
Moreover, it makes use of problem specific infor­
mation to evade some computational costs and to
reinforce favorable aspects of the genetic search at
some appropriate points. The experimental results
show that the hybrid genetic algorithm can find so­
lutions within 3% of the optimum in a reasonable
time. They also suggest that this approach is not bi­
ased towards particular problem structures.

1. INTRODUCTION

Equal distribution of workload in multiprocessors
is central to achieving a high utilization of the com­
putational resources. This is why appropriate load
balancing methods are needed for decomposing
problems and assigning subproblems to processors.
In distributed memory multiprocessors, henceforth
called multicomputers, load balancing aims for the
minimization of the total execution time of a prob­
lem by balancing the calculations across the pro­
cessors and minimizing the interprocessor
communication. A static implementation of load
balancing methods is referred to as domain decom­
position. In this work, we concentrate on the do­
main decomposition problem which is based on

1

Geoffrey C. Fox
School of COinputer Science
Department of Physics
Center for Computational Science
Northeast Parallel Architectures Ctr.
Syracuse University

partitioning the underlying data set constituting the
problem domain.

The domain decomposition problem is an NP-com­
plete resource allocation problem. Several heuristic
methods have been proposed, such as greedy algo­
rithms, mincut-based heuristics, orthogonal recur­
sive bisection, scattered decomposition, neural
networks, and simulated annealing [1, 5, 7, 9, 11,
12, 19, 21]. The deterministic methods have pre­
dictable and low execution time. However, they,
naturally, either make restrictive assumptions or
tend to be biased towards particular structures of
the problem domain. The stochastic methods make
no assumptions about the domain considered; but
require considerably greater execution time. The
theory of complex systems has been suggested as a
framework within which concurrency issues such
as load balancing can be studied [8, 12]. Moreover,
physical computation has been advocated for de­
scribing, simulating and solving complex systems,
especially intractable optimization problems [13].
It should be emphasized here that all the approach­
es mentioned above, as well as our approach, aim at
producing good sub-optimal solutions, and not nec­
essarily the optimal, in an acceptable time.

In this work, we present a hybrid genetic algorithm
(HGADD) as an evolutionary, physical and sto­
chastic, method for domain decomposition.
HGADD enhances the classical genetic algorithm
(GA) with a number of features in order to alleviate
the problem of premature convergence and to im­
prove the evolution efficiency. Hybridization is a
result of the addition of a problem-specific hill
climbing procedure performed by the individuals in
the population. The results of testing HGADD on
realistic problems are favorable and suggest that it

can be applied to various problem domains and
does not have a particular bias.

This paper is organized as follows. Section 2 de­
scribes the domain decomposition problem and de­
fines an objective function. Section 3 presents
HGADD and explains its constituents. The experi­
mental results are given in section 4 and are dis­
cussed in sections 4 and 5. Section 6 concludes the
paper.

2. DOMAIN DECOMPOSITION PROBLEM

Domain decomposition consists of partitioning the
problem domain into subdomains and assigning
them to the processors of the multicomputer such
that an objective function is minimized. An objec­
tive function associated with the total execution
time required for solving a problem is given below.
The computational model is explained first, then
exact and approximate objective functions and their
assumptions are presented. Some aspects of the
problem which will be utilized by HGADD are also
given.

The model of computation considered here is that
ofloose synchronicity [12] with all processors run­
ning the same code (algorithm) and data being di­
vided into subdomains. In this model, processors
repeat a calculate-communicate cycle, where each
processor performs calculations on its subdomain
and then communicates with other processors to
exchange necessary boundary information. The to­
tal execution time is determined by the slowest pro­
cessor. Loose synchronicity is applicable to many
science and engineering problems [12].

To formulate an objective function representing the
cost of a decomposition, both the problem domain
and the multicomputer are considered to be graphs.
The vertices of the problem graph are the data ele­
ments and the edges refer to the calculation depen­
dency. The vertices of the multicomputer graph are
the processors and the edges are given by the inter­
connections. Domain decomposition becomes a
mapping of subsets of the vertices of the problem

2

graph to vertices in the multicomputer graph. Let
w(i) denote the calculation time for a data element
i, c(ij) denote the amount of information to be ex­
changed between elements i and j, tc(p,q) denote
the time taken for a unit of information to be com­
municated from processor q to p. The amount of
calculation W(p) and the amount of communication
C (p) for a processor p are given by

W (p) = L, w (i) ~ (i, p) , and
i

C (p) = L,tc (p, q) L,c (i,j) ~ (i,p) ~ U, q)
q i,j

respectively, where ~ (i, p) equals 1 if element i is
mapped to processor p and equals 0 otherwise. The
expression for C(p) assumes that messages are so
large that the set-up time can be ignored. The total
execution time, T, for a parallel program is deter­
mined by the processor with the greatest load of
calculation and communication, that is

T = maxp{W(p) +C(p)} (1)

Equation (1) represents the exact objective function
to be minimized subject to the constraint that the
sum of elements allocated to a1l processors is equal
to the total number of elements in the data set. This
equation is the basis for evaluating the results of
HGADD. The performance measure will be the ef­
ficiency of the decomposition; defined as the ratio
of the sequential execution time to the product ofT
and the number of processors in the multicomputer.
However, the use of this minimax criterion is com­
putationally expensive mainly because the calcula­
tion of a new T caused by any change in the
mapping of elements to processors may require the
calculation of the loads of all processors. To avoid
such excessive calculations, a quadratic objective
function has been proposed [7, 10, 21] to approxi­
mate the cost of a decomposition. The optimal de­
composition approximately corresponds to the
minimum of

r2l',N2 (p) +v(tco~m)l',d(p, q) (2)
P tea c p,q

where r is the amount of calculation per data ele­
ment (a characteristic of the algorithm), N(p) is the
number of elements allocated to processor p,

(tcomm/tcalc) is the ratio of the time needed to
communicate a unit of information one unit dis­
tance to the time required for one calculation oper­
ation (a characteristic of the machine), v is a
constant scaling factor expressing the relative im­
portance of communication with respect to calcula­
tion, and d(p,q) is the Hamming distance between
processors p and q. The objective function in ex­
pression (2) does not take into account the concur­
rency in performing communication among
processors, but it still leads to a good approxima­
tion to the cost of a decomposition. Clearly, the first
term is minimal when the calculational load is as
evenly distributed among processors as possible,
and a minimum of the second term means that the
sum of all interprocessor communication is mini­
mized. The main advantage of using this quadratic
cost function is that it enjoys the locality property.
Locality means that a change in the cost due to a
change in the assignment of elements to processors
is determined by the reassigned elements only.
Since HGADD incorporates a hill-climbing proce­
dure based on incremental reassignment of ele­
ments, the locality property becomes very
important for keeping hill-climbing as fast as pos­
sible. Another important consideration in using the
objective function in (2) is the choice of the weight
v. In this work, values for v are chosen in harmony
with the behavior of HGADD for the purpose of
generating better quality solutions. This is elaborat­
ed in the next section within the HGADD context.

Two parameters derived from the objective func­
tion are utilized by HGADD. The first is the degree
of clustering (DOC) of the data elements in a do­
main decomposition instance. DOC is the inverse
of the number of units of information that are ex­
changed by the processors. Thus, it is inversely pro­
portional to the sum of distances term in (2) with
every distance equal unity. A smaller value of the
average number of the units of communicated in­
formation implies a smaller value of the communi­
cation term in (2), a better decomposition, and a
higher DOC. The maximum DOC corresponds to
optimal decompositions of the data set; provided
that only nearest-neighbor communication occurs.

3

For irregular domains, a rough estimate for the
maximum degree of clustering can be shown to be

DOC (max) = (1/ (4aJNe/P)) ... (3)
where Ne is the problem size, Pis the multicomput­
er size, and 0 < a < 1 is a weighting factor which
increases with larger granularity (Ne/P) and de­
creases with domain irregularity. The second pa­
rameter for HGADD is a near-optimal value for the
objective function of a decomposition. Using
DOC(max) in the communication term in expres­
sion (2) and (Ne/P} in the calculation term, a rough
approximation for this parameter can be written as

r2P (Ne/P) 2 + 4v (tco~m)PaJNe/P .. (4)
tea c

DOC and expression (4) are employed by HGADD,
as explained in the next section, for evading some
computational costs and reinforcing some aspects
of the evolution.

3. GENETIC ALGORITHM

3.1 BACKGROUND

Genetic algorithms are search techniques based on
natural evolution, where species search for adapta­
tions to a changing environment. Adaptation occurs
over successive, often discontinuous, generations.
Each generation consists of a population of individ­
uals (chromosomes), which are candidate solu­
tions. The initial generation is generated randomly.
The next generation is always created by the indi­
viduals climbing adaptive peaks in parallel. Firstly,
individuals reproduce according to their fitness.
Then, mates are selected and genetic operators are
employed to create offsprings, which replace their
parents. In this process, high-performance building
blocks are expected to be propagated and combined
to find better structures, i.e. solutions. Eventually,
optimal or near-optimal solutions are expected to
evolve.

3.2HGADD

Genetic algorithms represent powerful weak meth­
ods for solving optimization problems, such as do­
main decomposition, by providing search strategies

with a reasonable balance between exploration of
the search space and exploitation of the better solu­
tions generated. For a number of reasons, however,
the implementation of GA's often encounters the
problem of premature convergence to local optima,
otherwise a long time may be required for the evo­
lution to reach an optimal or near-optimal solution.
Methods for overcoming the two problems of pre­
mature convergence and inefficiency would be con­
flicting and a compromise is usually required. To
alleviate premature convergence, a number of tech­
niques have been suggested, dealing with the selec­
tion schemes, and the genetic operators and their
rates [2, 3, 4, 14, 15]. The advantages of these tech­
niques have been demonstrated by comparing the
resulting performance with that of the classical GA
[16]. Often, the performance verification is carried
out for DeJong's testbed of functions or for other
specific applications, such as the traveling salesper­
son problem. In this work, a number of techniques
dealing with selection and genetic operators have
been combined for producing good quality solu­
tions for the domain decomposition problem. Also,
a hill-climbing procedure tailored to our applica­
tion is added for improving the efficiency of the
search, resulting in a hybrid GA. The techniques
and the procedure comprise HGADD which is out­
lined in Figure 1. In the remainder of this section,
the constituents of HGADD are explained. An il­
lustration of the stages of the HGADD search is
given in the beginning as a prelude to the descrip­
tion of the design choices that aim for enhancing
appropriate aspects of the genetic search.

(i) Three Stages of Evolution

In the beginning of the evolution, the assignment of
data elements to processors is almost random and,
thus, the communication among processors would
be heavy and very far from optimal regardless of
the distribution of the number of elements. In the
successive generations, clusters of elements are ex­
pected to be gradually grown and assigned to pro­
cessors such that the interprocessor communication
is constantly reduced, at least in the fitter individu­
als in the population. Then, at some point in the

4

Read (problem graph and multicomputer graph);
Random Generation of initial population P(O) of size POP;
Evaluate fitness of individuals in P(O);
For (gen = 1 to maxgen) OR until convetgence do

Set (v, operator rates);
Rank individuals in P(~en-1), and

allocate reproducbon trials stored in MATES[];
/* produce new generation P(gen) */
For (i = 1 to POP step 2) do

Randomly select 2 parents from MATES [];
Apply genetic operators;
Hill-climbing by new individuals;

endfor
Evaluate fitness of Wdividuals in P(gen);
Retain the better of { fittest(gen) , fittest(gen-1)};

endfor
Solution = Fittest.

Fig. 1 An Outline of HGADD.

search, the balancing of the calculational load be­
comes more significant for increasing the fitness.
Therefore, two stages of evolution can be distin­
guished. The first stage is the clustering stage
which lays down the foundations of the basic pat­
tern of the interprocessor communication. The sec­
ond stage will be referred to as the calculation­
balancing stage. Obviously, the two successive
stages overlap.

A third stage in the evolution can also be identified
when the population is near convergence. In this
advanced stage, the average DOC of the population
approachesDOC(max), defined in equation (3), and
the clusters of elements crystallize. If these clusters
are broken, the fitness of the respective individual
would drop significantly and its survival becomes
less likely. At this point, crossover becomes less
useful for introducing new building blocks, muta­
tion of elements in the middle of the clusters is use­
less and a fruitful search is that which concentrates
on the adjustment of the boundaries of the clusters
in the processors. This stage will henceforth be re­
ferred to as the tuning stage. Boundary adjustment
can be accomplished mainly by the hill-climbing of
individuals, which is explained below, aided by the
probabilistic mutation of the boundary elements.
The main responsibility of crossover becomes the
propagation and the inheritance of high-perfor­
mance building blocks and the maintenance of the

drive towards convergence for the sake of efficien­
cy. For hill-climbing and mutation to take on their
roles in this stage, it is necessary to increase the rel­
ative weight of the calculation term in the fitness
function. This is elaborated below with the descrip­
tion of hill-climbing.

(ii) Chromosomal Representation

An instance of domain decomposition is encoded
by a chromosome whose length is equal to the num­
ber of data elements (vertices) in the problem
graph. The value of an allele is an integerrepresent­
ing the processor identification number to which a
data element is allocated. The element is, therefore,
the index (locus) of the processor (gene) to which it
is assigned.

(iii) Fitness Evaluation

The fitness of an individual in any generation is
evaluated as the inverse of the objective function in
expression (2). The goal ofHGADD is to find an in­
dividual with maximal fitness. As pointed out in
section 2, the choice of v is of particular interest. Its
value should be chosen in accordance with the
properties of the evolution in different stages. That
is, v is chosen to favor the fitness of the individuals
whose structure involves nearest-neighbor inter­
processor communication in the clustering stage. In
the later stages, the value of v should allow the em­
phasis to shift to the calculation term in the fitness
taking into account the basic interprocessor com­
munication pattern that has already been laid out. A
value for v which satisfies these requirements can
be determined from the approximate form of the
optimal objective function given in expression (4)
by considering the ratio of its communication and
calculation terms. In subsection 3.2(vii), it will be
argued that v has to be decreased in the tuning
stage.

(iv) Reproduction Scheme

The reproduction scheme adopted in HGADD is
elitist ranking followed by random selection of

5

mates from the list of reproduction trials, or copies,
allocated to the ranked individuals. In ranking [2];
the individuals are sorted by their fitness values artd
are allocated a number of copies according to a pre­
determined scale of equidistant values for the pop­
ulation, and not according to their relative fitness.
In HGADD, the ranks assigned to the fittest and the
least fit individuals are 1.2 and 0.8, respectively, re­
sulting in a survival percentage of 92% to 98%.
This scheme offers a suitable way for controlling
the selective pressure and, hence, the convergence
of the population.

Elitism in the reproduction scheme refers to the
preservation of the fittest individual. In HGADD,
the preceding fittest individual is passed unscathed
to the new generation, but it is forced to compete
with the new fittest and only the better of the two is
retained. The purpose of elitism and its current im­
plementation is ensuring that good candidate solu­
tions are saved if the search is to be truncated at any
point, and preventing the complete loss of good
building blocks. To patch up a part of the loophole
created by the use of the approximate objective
function, the criterion for choosing between the
current fittest and the preceding fittest individuals is
changed in the tuning stage. The exact expression
for fitness is used and has been found beneficial.

(v) Genetic Operators

The Genetic operators employed in HGADD are
crossover, mutation and inversion. The two-point
ring-like crossover is used because it offers less po­
sitional bias than the one-point standard crossover
without introducing any distributional bias [6].
Other more complex and presumably higher-per­
formance crossover operators have not been used in
this work in order to avoid significant additions to
the computational complexity.

The standard mutation operator is employed in the
first two stages of evolution. In the tuning stage, for
the reason explained in subsection 3.2(i), mutation
is restricted to elements at the boundaries of the
clusters.

Inversion is used in the standard biological way,
where a contiguous section of the chromosome is
inverted. In HGADD, the chromosome is consid­
ered as a ring. Inversion at a low frequency helps in
introducing new building blocks into the popula­
tion for an application such as domain decomposi­
tion.

(vi) Operator Rates

Variable operator rates are useful for maintaining
diversity in the population and, hence, for alleviat­
ing the premature convergence problem [3,4].
Rates are varied in the direction that counteracts the
drop in diversity. Several Measures have been sug­
gested for the detection of diversity, but their eval­
uation invariably requires considerable
computations [2, 4, 14]. In HGADD, this cost is not
incurred. Instead, the degree of clustering (DOC) is
used to guide the variation of the rates of the genet­
ic operators since the DOC approximately follows
diversity. This design decision is based upon the
observation that diversity is reduced in the popula­
tion as the clustering of elements increases.

(vii) Hill-Climbing

Since genetic algorithms are blind, the addition of
problem-specific information helps direct the
search to more profitable adaptive peaks in the
landscape [15]. In HGADD, individuals carry out a
simple hill-climbing procedure that can increase
their fitness. The procedure is greedy and allows
the transfer of data elements from overloaded pro­
cessors to underloaded ones. Its inclusion improves
the efficiency of the search significantly.

Hill-climbing for an individual is performed by
considering only the boundary data elements allo­
cated to processors, one element at a time. A
boundary element e is an element that is allocated
to a processor p1 and has at least one neighboring
element (in the problem graph) allocated to a differ­
ent processor p2. Such an element is transferred
from p1 to p2 if and only if the transfer causes the
objective function to drop or stay the same. It can

6

be shown that the Change in Objective Function,
COF, due to the transfer of element e is given by

2r:l[l+N(p2) -N(pl)] +2vR(CCD)

where N(x) is the number of elements allocated to
processor x before the transfer, R is the (tcomm/
tcalc) ratio, and CCD is the change in communica­
tion cost (sum of distances) for element e. From this
expression, it can easily be seen that a transfer of an
element can only take place from overloaded pro­
cessors to underloaded processors. It should be em­
phasized here that the formulation of COF, which
leads to a simple implementation of hill-climbing,
is a direct result of the locality property of the ap­
proximate objective function mentioned in section
2.

Hill-climbing plays a distinctive role in the tuning
stage of the search. In this stage, hill-climbing fine­
tunes the structures by adjusting the boundaries of
the clusters assigned to the processors. Since the
basic pattern of interprocessor communication can
not be significantly changed in this advanced phase
and since the search ceases to offer significant gains
at this point, the emphasis upon balancing the cal­
culational load should be artificially increased for
the purpose of facilitating the boundary adjustment.
This is achieved by decreasing the value of the
weight v in the objective function gradually from
the fixed value used throughout the search to a
small suitable value determined by the COF ex­
pression. The smallest useful value for v is that
which makes COF negative or zero when the fol­
lowing conditions coexist. The first condition is
that an overloaded processor has two elements
more than the underloaded processor. The second
condition is that the transfer of an element e does
not increase the sum of communication distances of
e by more than one.

4. EXPERIMENTAL RESULTS

The results described here illustrate typical solu­
tions that can be obtained by HGADD. They also
compare some of the design parameters of
HGADD with those used in classical GA's.

I I I
I I

l)-\ I I r-r-.. v
-i-

f- I
f- I I
f-f- I I I ,_v [)-(~

llliTIIn mill Ill I I I
I I . .

Fig. 2 551-element Gridl.

Several test cases have been employed. For small
and regular problems, HGADD has always found
optimal decompositions efficiently. These results
are not be presented here. However, two irregular
problems with realistic sizes are considered. These
are shown in Figures 2 and 3 and are henceforth re­
ferred to as Grid1 and Grid2, respectively. In all ex­
periments, a solution refers to the decomposition
corresponding to the fittest individual. The results
given here are the averages of three runs. The per­
formance measures are the efficiency of the decom­
position of the fittest individual and the average
fitness of the population. Both measures are plotted
below with respect to the number of generations,
which, in its turn, is used to assess the efficiency of
the search. The efficiency is based on the exact ob­
jective function (equation (1)). For clarity, there­
sults are given as ratios, where efficiency is
normalized with respect to the (exact) optimum and
fitness is normalized with respect to the (approxi­
mate) optimal fitness (from expression (2)). It
should be understood that the use of exact efficien­
cy and approximate fitness for expressing the qual­
ity of the solutions will obviously exhibit a
discrepancy in the results for the two measures.

The following parameters are used for HGADD.
The maximum rank for the ranking-based selection
scheme is 1.2. The population size is 500 for Grid 1
experiments and 300 for Grid2. These values have
been empirically chosen to be approximately equal
to the length of the chromosome. Operator rates
vary in a stepwise fashion as follows. Crossover
rate increases from 0.5 to 1.0, mutation rate in-

7

•••••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••• ••••••••••••••• ••••••• •• ••••• ' •• • ••••••••••• •• •••••••••• ••••••• ••••••• ••••••• •• • ••••••••••• ~ •.....•.•...
••••••••••••••• •••••••••• ••••• ••••••••••••••• • ••••••••••••••••••• •••••••••• ••••••••••

Fig. 3 301-element Grid2.

creases form 0.002 to 0.004, and inversion rate de­
creases from 0.03 to 0.0.

4.1 Results

The first experiment only refers to Gridl. All the
following experiments refer to the decomposition
of Grid2 for an 8-node hypercube.

(i) The decomposition of Grid1 for a 16-node hy­
percube by HGADD is depicted in Figure 4. The ef­
ficiency of the decomposition is about 0.93 of the
optimum. Its fitness is about 0.998 of the optimum.
This solution is obtained after 280 generations.
Each generation takes about 30 seconds on a
SPARC 1 workstation. For Grid1 and a 4 by 4 mesh
multicomputer, HGADD finds a solution with an
efficiency ratio of 0.95 after 282 generations.

(ii) The decomposition of Grid2 for 3-cube by
HGADD is shown in Figure 5. The evolution of the
efficiency and the fitness is plotted in Figure 6. The
relative average loads of calculation and communi­
cation are also shown. After generation 118, the
search converges to a solution with an efficiency
0.97 of the optimal and a fitness ratio of0.998. Each
generation takes about 12 seconds. It can be seen
from Figure 5 that HGADD does not strictly insist
on assigning equal number of elements to proces­
sors. Instead, it emphasizes the balancing of the
combined calculation and communication load, as
required by the computational model. Another fea­
ture of the solution in Figure 5 is that processor 1 is
allocated discontiguous subdomains. This is not

14 6 2

4
10

Fig. 4 Decomposition of Gridl for 4-cube.

Proc Calc Comm
0 37 17
1 36 11
2 36 16
3 37 15
4 38 14
5 35 18
6 42 6
7 40 11

Fig. 5 Decomposition of Grid2 for 3-cube
by HGADD, and processor loads.

100
eff
ratio

100
fitness :
ratio

nonnalized
load

80 80 v ~'W•=== "···~···.v·=-,w.,~~~~~~

lr-'
............. ...,.,...-.:v. ,...

--~'-.......,~ communi . 0.1
..................... .H'o¥ ~.,..

so~~~~~~~~~r+~
generation

Fig. 6 Efficiency ratio and fitness ratio for HGADD.

necessarily bad in our model of computation. In
fact, for many highly-irregular long-perimeter
grids, an optimal decomposition can not be contig­
uous.

The three stages of the search can be identified in
the fitness and workload curves in Figure 6. Rough­
ly, their overlapping points are generations 50 and
100. It can be seen that in the first stage, the com­
munication load drops steadily regardless of the
calculation load which happens to increase. In the
second stage, both loads decrease and the fitness
rises. Decreasing v in the tuning stage enhances
HGADD's tendency to reduce the calculation load.
If v had not been decreased at this advanced stage,
the efficiency would have been trapped at 89%.

(iii) HGADD is compared with a classical GA in
Figure 7. GAl uses 1-point crossover, normal mu­
tation in all stages, no inversion, and fixed operator
frequencies. However, it still employs ranking se­
lection and is also hybridized. GAl converges more

8

rapidly to a lower quality solution with efficiency
ratio of 91%. Clearly, the combined effect of 2-
point crossover, boundary mutation irt the tuning
stage, inversion and variable rates is beneficial.

(iv) The effect of increasing the selection pressure
is explored by increasing the maximum rank value
to 2.0; as in HGADD2. This results in an early con­
vergence as shown in Figure 8. HGADD2 finds a
good solution (96% efficiency) in only 66 genera­
tions, which is 60% of the time required by
HGADD to find a solution of the same quality.
However, the large percentage of individuals (up to
20%) that die every generation, makes a maximum
rank of 2.0 too high to be generally reliable for pro­
ducing good solutions. This highlights the trade-off
that exists between the solution quality and the
search efficiency.

(v) The advantages of ranking based selection and
hill-climbing have been noted by comparing
HGADD with GA2 (roulette wheel fitness propor-

HGADD

GAl

generation

Fig. 7 Comparison of HGADD and GAl.

tionate selection with prescaling) and GA3 (with­
out hill-climbing). GA2loses population diversity
much earlier and converges to a less favorable so­
lution (94% efficiency) after 120 generations. GA3
is more than a hundred times slower than HGADD.

5. DISCUSSION

Some aspects of the experimental results are high­
lighted and discussed in this section. Also, remarks
on some features of HGADD and its search effi­
ciency are included.

The solutions obtained by HGADD are good sub­
optimal solutions. Since HGADD makes no as­
sumptions about the structure of the problem or the
interconnection network of the multicomputer, it is
not biased towards any particular structures. There­
fore, the good quality of the results described in
section 4 can also be expected for any problem and
any network. In all these results, the fitness of the
population converges to the global (approximate)
optimum. However, an important reason for not
finding the optimal decomposition is the discrepan­
cy between the approximate objective function
guiding the adaptation of the individuals in the pop­
ulation and the exact objective function determin­
ing the actual solution quality. Nevertheless, the
results obtained for Gridl and Grid2 compare fa­
vorably with results obtained by other faster do­
main decomposition techniques. For example,
recursive bisection [9] produces a decomposition
for Grid2 whose efficiency is 87% of the optimum.
Scattered decomposition [19] with a patch size of 4
yields an efficiency 61% of the optimum Naive

9

50:". . . 5'o . , , , (blJ , I I leneratiOn

Fig. 8 Comparison of HGADD and HGADD2.

rectangular decomposition gives a 74% efficiency
ratio. A qualitative comparison of HGADD solu­
tions with those of simulated annealing and neural
networks for Gridl [7, 11] has also enhanced our
confidence in the evolutionary approach.

HGADD is not restricted to the particular model of
computation described in section 2. For example,
data elements need not be of equal calculation re­
quirements and the multicomputer need not be ho­
mogeneous. Other models of computation can
easily be implemented in HGADD by modifying or
replacing the objective function module. Moreover,
the main constituents of HGADD can also be uti­
lized for solving related problems such as mapping
for production systems [22], Occam configuration
[20], unstructured finite element meshes [21], and
partitioned program modules [17].

It is worthwhile emphasizing some of the issues in­
volved in determining the solution quality, the com­
putational cost, and the trade-off between them For
example, it takes HGADD 118 generations to
evolve a decomposition of 97% efficiency for
Grid2. The evolution can be made faster by resort­
ing to measures such as allowing the selection pres­
sure to increase as in HGADD2 which yields a 96%
efficiency in only 66 generations. This speed is ac­
companied with a clear rapid loss of diversity in the
population. Therefore. the range of values of 1.2 to
2.0 for the maximum rank in the selection scheme
allows the user to choose the desired compromise
between solution quality and execution time. On
the other hand, there does not seem to be a simple
relation between the evolution time and the size of

the problem. Generally, it seems that doubling the
problem size necessitates a similar increase in the
population size. But, the amount of computation
per individual will be almost doubled. Thus, the ev­
olution time may become impractical for larger
problem sizes. However, for large problems, sec­
tors of data elements can easily and rapidly be
formed before applying HGADD. Elements can be
aggregated into sectors such that the total number
of sectors is a multiple, K, of lh.e number of proces­
sors in the multicomputer. K should be small
enough to reduce the evolution time, but not too
small otherwise it may become difficult to balance
the load across the processors.

6. CONCLUSIONS & FURTHER WORK

The evolutionary approach of HGADD has led to
good suboptimal solutions for static load balancing
in parallel computing. The advantages of the design
constituents of HGADD and the incorporation of
application specific knowledge have been demon­
strated for precluding premature convergence, im­
proving the efficiency of the evolution, and
avoiding excessive computations. Moreover, the
results suggest that HGADD has no bias and is ap­
plicable to any problem structure and any intercon­
nection network.

The performance of HGADD can be further im­
proved. The linear variation of the rates of the ge­
netic operators can be replaced by an adaptive
variation related to population diversity. A more
fruitful crossover operator, such as the reduced sur­
rogate operator [3], can be used to enable the search
to concentrate on useful work. However it should
be clear that additional computational costs will be
incurred for both suggestions. The evolution effi­
ciency can be increased and better solutions might
be generated by adding another pass to hill-climb­
ing. The second pass would scan the boundary ele­
ments in the reverse order and the better result of
the two passes would then be accepted. The reverse
pass can fulfill its objective without adding signifi­
cant computational costs if it is applied to selected
individuals only, the fittest for example, in the later

10

generations. Further work is also required for the
optimization of the population size and the maxi~
mum rank in selection as a function of problem siz­
es, levels of solution quality, and execution time.

In comparison with other load balancing tech­
niques, GA's are highly parallelizable. Significant
speed-ups and increased robustness can be obtained
by parallel algorithms based on HGADD [18].

Acknowledgement

This work was supported by the Joint Tactical Fu­
sion Program Office and the National Science
Foundation under Cooperative Agreement No.
CCR-8809165.

REFERENCES

1. F. Andre, J-L. Pazat, and T. Priol, Experiments
with Mapping Algorithms on a Hypercube,
4th Conf. Hypercube Cone. Comp. Applic., 1989,
39-46.

2. J. E. Baker, Adaptive Selection Methods forGe­
netic Algorithms, ICGA'85, 101-111.

3. L. Booker, Improving Search in Genetic Algo­
rithms, in Genetic Algorithms and Simulated
Annealing, ed. L. Davis, Morgan Kaufmann Pub­
lishers, 1987, 61-73.

4. L. Davis, Adapting Operator Probabilities on Ge­
netic Algorithms, ICGA'89, 61-69.

5. F. Ercal, Heuristic Approaches to Task Alloca­
tion For Parallel Computing, Ohio State University,
Ph.D Dissertation, 1988.

6. L. J. Eshelman, R. A. Caruana, and J.D. Schaf­
fer, Biases in the Crossover Landscape, ICGA'89,
10-19.

7. J. Flower, S. Otto, and M. Salama, Optimal Map­
ping of Irregular Finite Element Domains to Paral­
lel Processors, Caltech Concurrent Computation
Program #292b, 1987.

8. G. C. Fox, A Review of Automatic Load Balanc­
ing and Decomposition Methods for the Hyper­
cube, in M. Shultz, ed., Numerical Algorithms for
Modern Parallel Computer Architectures, Spring­
er-Verlag, 1988,63-76.

9. G. C. Fox, A Graphical Approach to Load Bal­
ancing and Sparse Matrix Vector Multiplication on
the Hypercube, Caltech Concurrent Computation
Program #327b, 1986.

10. G. C. Fox, A. Kolawa, and R. Williams, The
Implementation of a Dynamic Load Balancer, Proc.
2nd Conf. Hypercube Multiprocessors, ed. Heath,
1987, 114-121.

11. G. C. Fox and W. Furmanski, Load Balancing
Loosely Synchronous Problems with a Neural Net­
work, Proc. 3rd Conf. Hypercube Concurrent Com­
puters, and Applications, 1988, 241-278.

12. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J.
Salmon, and D. Walker, Solving Problems on Con­
current Processors, Prentice Hall, 1988.

13. G. C. Fox, Physical Computation, Int. Conf.
Parallel Computing: Achievements, Problems and
Prospects, Italy, June 1990.

14. D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison­
Wesley Publishing Co., 1989.

15. J. J. Grefenstette, Incorporating Problem Spe­
cific Knowledge into Genetic Algorithms, in Ge­
netic Algorithms and Simulated Annealing, ed. L.
Davis, Morgan Kaufmann, 1987, 42-60.

16. J. H. Holland, Adaptation in Natural and Artifi­
cial Systems, University of Michigan Press, 1975.

11

17. K. Hwang and J. Xu, Mapping Partitioned Pro­
gram Modules onto Multicomputer Nodes Using
Simulated Annealing, ICPP 1990, Vol. II, 292-293.

18. N. Mansour and G. C. Fox, Parallel GeneticAl­
gorithms with Applic~tion to Load Balancing, in
preparation.

19. R. Morison and S. Otto, The Scattered Decom­
position for Finite Elements, Caltech Concurrent
Computation Program #286, 1985.

20. H. Motteler, Occam Configuration as a Task
Assignment Problem, Transputer Res. Applic. 4, D.
L. Fielding, Editor, 244-250, lOS Press, 1990.

21. R. D. Williams, Performance of Dynamic Load
Balancing Algorithms for Unstructured Mesh Cal­
culations, Submitted to Concurrency Practice and
Experience, 1990.

22. J. Xu and K. Hwang, Simulated Annealing
Method for Mapping Production Systems onto
Multicomputers, Proc. IEEE Conf. AI Applic.,
350-356, 1990.

	An Evolutionary Approach to Load Balancing Parallel Computations
	Recommended Citation

	SU-CIS-91-13_001c
	SU-CIS-91-13_002c
	SU-CIS-91-13_003c
	SU-CIS-91-13_004c
	SU-CIS-91-13_005c
	SU-CIS-91-13_006c
	SU-CIS-91-13_007c
	SU-CIS-91-13_008c
	SU-CIS-91-13_009c
	SU-CIS-91-13_010c
	SU-CIS-91-13_011c
	SU-CIS-91-13_012c
	SU-CIS-91-13_013c

