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An Evolutionary Approach to Load Balancing Parallel Computations 

Abstract 

Nashat Mansour 
School of Computer Science 
Centec for Computational Science 
Syracuse University 
Syracuse New York 13244 

We present a new approach to balancing the work­
load in a multicomputer when the problem is de­
composed into subproblems mapped to the 
processors. It is based on a hybrid genetic algo­
rithm. A number of design choices for genetic algo­
rithms are combined in order to ameliorate the 
problem of premature convergence that is often en­
countered in the implementation of classical genet­
ic algorithms. The algorithm is hybridized by 
including a hill climbing procedure which signifi­
cantly improves the efficiency of the evolution. 
Moreover, it makes use of problem specific infor­
mation to evade some computational costs and to 
reinforce favorable aspects of the genetic search at 
some appropriate points. The experimental results 
show that the hybrid genetic algorithm can find so­
lutions within 3% of the optimum in a reasonable 
time. They also suggest that this approach is not bi­
ased towards particular problem structures. 

1. INTRODUCTION 

Equal distribution of workload in multiprocessors 
is central to achieving a high utilization of the com­
putational resources. This is why appropriate load 
balancing methods are needed for decomposing 
problems and assigning subproblems to processors. 
In distributed memory multiprocessors, henceforth 
called multicomputers, load balancing aims for the 
minimization of the total execution time of a prob­
lem by balancing the calculations across the pro­
cessors and minimizing the interprocessor 
communication. A static implementation of load 
balancing methods is referred to as domain decom­
position. In this work, we concentrate on the do­
main decomposition problem which is based on 
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partitioning the underlying data set constituting the 
problem domain. 

The domain decomposition problem is an NP-com­
plete resource allocation problem. Several heuristic 
methods have been proposed, such as greedy algo­
rithms, mincut-based heuristics, orthogonal recur­
sive bisection, scattered decomposition, neural 
networks, and simulated annealing [1, 5, 7, 9, 11, 
12, 19, 21]. The deterministic methods have pre­
dictable and low execution time. However, they, 
naturally, either make restrictive assumptions or 
tend to be biased towards particular structures of 
the problem domain. The stochastic methods make 
no assumptions about the domain considered; but 
require considerably greater execution time. The 
theory of complex systems has been suggested as a 
framework within which concurrency issues such 
as load balancing can be studied [8, 12]. Moreover, 
physical computation has been advocated for de­
scribing, simulating and solving complex systems, 
especially intractable optimization problems [13]. 
It should be emphasized here that all the approach­
es mentioned above, as well as our approach, aim at 
producing good sub-optimal solutions, and not nec­
essarily the optimal, in an acceptable time. 

In this work, we present a hybrid genetic algorithm 
(HGADD) as an evolutionary, physical and sto­
chastic, method for domain decomposition. 
HGADD enhances the classical genetic algorithm 
(GA) with a number of features in order to alleviate 
the problem of premature convergence and to im­
prove the evolution efficiency. Hybridization is a 
result of the addition of a problem-specific hill 
climbing procedure performed by the individuals in 
the population. The results of testing HGADD on 
realistic problems are favorable and suggest that it 



can be applied to various problem domains and 
does not have a particular bias. 

This paper is organized as follows. Section 2 de­
scribes the domain decomposition problem and de­
fines an objective function. Section 3 presents 
HGADD and explains its constituents. The experi­
mental results are given in section 4 and are dis­
cussed in sections 4 and 5. Section 6 concludes the 
paper. 

2. DOMAIN DECOMPOSITION PROBLEM 

Domain decomposition consists of partitioning the 
problem domain into subdomains and assigning 
them to the processors of the multicomputer such 
that an objective function is minimized. An objec­
tive function associated with the total execution 
time required for solving a problem is given below. 
The computational model is explained first, then 
exact and approximate objective functions and their 
assumptions are presented. Some aspects of the 
problem which will be utilized by HGADD are also 
given. 

The model of computation considered here is that 
ofloose synchronicity [12] with all processors run­
ning the same code (algorithm) and data being di­
vided into subdomains. In this model, processors 
repeat a calculate-communicate cycle, where each 
processor performs calculations on its subdomain 
and then communicates with other processors to 
exchange necessary boundary information. The to­
tal execution time is determined by the slowest pro­
cessor. Loose synchronicity is applicable to many 
science and engineering problems [12]. 

To formulate an objective function representing the 
cost of a decomposition, both the problem domain 
and the multicomputer are considered to be graphs. 
The vertices of the problem graph are the data ele­
ments and the edges refer to the calculation depen­
dency. The vertices of the multicomputer graph are 
the processors and the edges are given by the inter­
connections. Domain decomposition becomes a 
mapping of subsets of the vertices of the problem 
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graph to vertices in the multicomputer graph. Let 
w(i) denote the calculation time for a data element 
i, c(ij) denote the amount of information to be ex­
changed between elements i and j, tc(p,q) denote 
the time taken for a unit of information to be com­
municated from processor q to p. The amount of 
calculation W(p) and the amount of communication 
C (p) for a processor p are given by 

W (p) = L, w ( i) ~ ( i, p) , and 
i 

C (p) = L,tc (p, q) L,c (i,j) ~ (i,p) ~ U, q) 
q i,j 

respectively, where ~ ( i, p) equals 1 if element i is 
mapped to processor p and equals 0 otherwise. The 
expression for C(p) assumes that messages are so 
large that the set-up time can be ignored. The total 
execution time, T, for a parallel program is deter­
mined by the processor with the greatest load of 
calculation and communication, that is 

T = maxp{W(p) +C(p)} ........... (1) 

Equation (1) represents the exact objective function 
to be minimized subject to the constraint that the 
sum of elements allocated to a1l processors is equal 
to the total number of elements in the data set. This 
equation is the basis for evaluating the results of 
HGADD. The performance measure will be the ef­
ficiency of the decomposition; defined as the ratio 
of the sequential execution time to the product ofT 
and the number of processors in the multicomputer. 
However, the use of this minimax criterion is com­
putationally expensive mainly because the calcula­
tion of a new T caused by any change in the 
mapping of elements to processors may require the 
calculation of the loads of all processors. To avoid 
such excessive calculations, a quadratic objective 
function has been proposed [7, 10, 21] to approxi­
mate the cost of a decomposition. The optimal de­
composition approximately corresponds to the 
minimum of 

r2l',N2 (p) +v(tco~m)l',d(p, q) .... (2) 
P tea c p,q 

where r is the amount of calculation per data ele­
ment (a characteristic of the algorithm), N(p) is the 
number of elements allocated to processor p, 



( tcomm/tcalc) is the ratio of the time needed to 
communicate a unit of information one unit dis­
tance to the time required for one calculation oper­
ation (a characteristic of the machine), v is a 
constant scaling factor expressing the relative im­
portance of communication with respect to calcula­
tion, and d(p,q) is the Hamming distance between 
processors p and q. The objective function in ex­
pression (2) does not take into account the concur­
rency in performing communication among 
processors, but it still leads to a good approxima­
tion to the cost of a decomposition. Clearly, the first 
term is minimal when the calculational load is as 
evenly distributed among processors as possible, 
and a minimum of the second term means that the 
sum of all interprocessor communication is mini­
mized. The main advantage of using this quadratic 
cost function is that it enjoys the locality property. 
Locality means that a change in the cost due to a 
change in the assignment of elements to processors 
is determined by the reassigned elements only. 
Since HGADD incorporates a hill-climbing proce­
dure based on incremental reassignment of ele­
ments, the locality property becomes very 
important for keeping hill-climbing as fast as pos­
sible. Another important consideration in using the 
objective function in (2) is the choice of the weight 
v. In this work, values for v are chosen in harmony 
with the behavior of HGADD for the purpose of 
generating better quality solutions. This is elaborat­
ed in the next section within the HGADD context. 

Two parameters derived from the objective func­
tion are utilized by HGADD. The first is the degree 
of clustering (DOC) of the data elements in a do­
main decomposition instance. DOC is the inverse 
of the number of units of information that are ex­
changed by the processors. Thus, it is inversely pro­
portional to the sum of distances term in (2) with 
every distance equal unity. A smaller value of the 
average number of the units of communicated in­
formation implies a smaller value of the communi­
cation term in (2), a better decomposition, and a 
higher DOC. The maximum DOC corresponds to 
optimal decompositions of the data set; provided 
that only nearest-neighbor communication occurs. 
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For irregular domains, a rough estimate for the 
maximum degree of clustering can be shown to be 

DOC (max) = (1/ (4aJNe/P)) ... (3) 
where Ne is the problem size, Pis the multicomput­
er size, and 0 < a < 1 is a weighting factor which 
increases with larger granularity (Ne/P) and de­
creases with domain irregularity. The second pa­
rameter for HGADD is a near-optimal value for the 
objective function of a decomposition. Using 
DOC(max) in the communication term in expres­
sion (2) and (Ne/P} in the calculation term, a rough 
approximation for this parameter can be written as 

r2P (Ne/P) 2 + 4v (tco~m )PaJNe/P .. ( 4) 
tea c 

DOC and expression ( 4) are employed by HGADD, 
as explained in the next section, for evading some 
computational costs and reinforcing some aspects 
of the evolution. 

3. GENETIC ALGORITHM 

3.1 BACKGROUND 

Genetic algorithms are search techniques based on 
natural evolution, where species search for adapta­
tions to a changing environment. Adaptation occurs 
over successive, often discontinuous, generations. 
Each generation consists of a population of individ­
uals (chromosomes), which are candidate solu­
tions. The initial generation is generated randomly. 
The next generation is always created by the indi­
viduals climbing adaptive peaks in parallel. Firstly, 
individuals reproduce according to their fitness. 
Then, mates are selected and genetic operators are 
employed to create offsprings, which replace their 
parents. In this process, high-performance building 
blocks are expected to be propagated and combined 
to find better structures, i.e. solutions. Eventually, 
optimal or near-optimal solutions are expected to 
evolve. 

3.2HGADD 

Genetic algorithms represent powerful weak meth­
ods for solving optimization problems, such as do­
main decomposition, by providing search strategies 



with a reasonable balance between exploration of 
the search space and exploitation of the better solu­
tions generated. For a number of reasons, however, 
the implementation of GA's often encounters the 
problem of premature convergence to local optima, 
otherwise a long time may be required for the evo­
lution to reach an optimal or near-optimal solution. 
Methods for overcoming the two problems of pre­
mature convergence and inefficiency would be con­
flicting and a compromise is usually required. To 
alleviate premature convergence, a number of tech­
niques have been suggested, dealing with the selec­
tion schemes, and the genetic operators and their 
rates [2, 3, 4, 14, 15]. The advantages of these tech­
niques have been demonstrated by comparing the 
resulting performance with that of the classical GA 
[16]. Often, the performance verification is carried 
out for DeJong's testbed of functions or for other 
specific applications, such as the traveling salesper­
son problem. In this work, a number of techniques 
dealing with selection and genetic operators have 
been combined for producing good quality solu­
tions for the domain decomposition problem. Also, 
a hill-climbing procedure tailored to our applica­
tion is added for improving the efficiency of the 
search, resulting in a hybrid GA. The techniques 
and the procedure comprise HGADD which is out­
lined in Figure 1. In the remainder of this section, 
the constituents of HGADD are explained. An il­
lustration of the stages of the HGADD search is 
given in the beginning as a prelude to the descrip­
tion of the design choices that aim for enhancing 
appropriate aspects of the genetic search. 

(i) Three Stages of Evolution 

In the beginning of the evolution, the assignment of 
data elements to processors is almost random and, 
thus, the communication among processors would 
be heavy and very far from optimal regardless of 
the distribution of the number of elements. In the 
successive generations, clusters of elements are ex­
pected to be gradually grown and assigned to pro­
cessors such that the interprocessor communication 
is constantly reduced, at least in the fitter individu­
als in the population. Then, at some point in the 
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Read (problem graph and multicomputer graph); 
Random Generation of initial population P(O) of size POP; 
Evaluate fitness of individuals in P(O); 
For (gen = 1 to maxgen) OR until convetgence do 

Set (v, operator rates); 
Rank individuals in P(~en-1), and 

allocate reproducbon trials stored in MATES[]; 
/* produce new generation P(gen) */ 
For (i = 1 to POP step 2) do 

Randomly select 2 parents from MATES []; 
Apply genetic operators; 
Hill-climbing by new individuals; 

endfor 
Evaluate fitness of Wdividuals in P(gen); 
Retain the better of { fittest(gen) , fittest(gen-1)}; 

endfor 
Solution = Fittest. 

Fig. 1 An Outline of HGADD. 

search, the balancing of the calculational load be­
comes more significant for increasing the fitness. 
Therefore, two stages of evolution can be distin­
guished. The first stage is the clustering stage 
which lays down the foundations of the basic pat­
tern of the interprocessor communication. The sec­
ond stage will be referred to as the calculation­
balancing stage. Obviously, the two successive 
stages overlap. 

A third stage in the evolution can also be identified 
when the population is near convergence. In this 
advanced stage, the average DOC of the population 
approachesDOC(max), defined in equation (3), and 
the clusters of elements crystallize. If these clusters 
are broken, the fitness of the respective individual 
would drop significantly and its survival becomes 
less likely. At this point, crossover becomes less 
useful for introducing new building blocks, muta­
tion of elements in the middle of the clusters is use­
less and a fruitful search is that which concentrates 
on the adjustment of the boundaries of the clusters 
in the processors. This stage will henceforth be re­
ferred to as the tuning stage. Boundary adjustment 
can be accomplished mainly by the hill-climbing of 
individuals, which is explained below, aided by the 
probabilistic mutation of the boundary elements. 
The main responsibility of crossover becomes the 
propagation and the inheritance of high-perfor­
mance building blocks and the maintenance of the 



drive towards convergence for the sake of efficien­
cy. For hill-climbing and mutation to take on their 
roles in this stage, it is necessary to increase the rel­
ative weight of the calculation term in the fitness 
function. This is elaborated below with the descrip­
tion of hill-climbing. 

(ii) Chromosomal Representation 

An instance of domain decomposition is encoded 
by a chromosome whose length is equal to the num­
ber of data elements (vertices) in the problem 
graph. The value of an allele is an integerrepresent­
ing the processor identification number to which a 
data element is allocated. The element is, therefore, 
the index (locus) of the processor (gene) to which it 
is assigned. 

(iii) Fitness Evaluation 

The fitness of an individual in any generation is 
evaluated as the inverse of the objective function in 
expression (2). The goal ofHGADD is to find an in­
dividual with maximal fitness. As pointed out in 
section 2, the choice of v is of particular interest. Its 
value should be chosen in accordance with the 
properties of the evolution in different stages. That 
is, v is chosen to favor the fitness of the individuals 
whose structure involves nearest-neighbor inter­
processor communication in the clustering stage. In 
the later stages, the value of v should allow the em­
phasis to shift to the calculation term in the fitness 
taking into account the basic interprocessor com­
munication pattern that has already been laid out. A 
value for v which satisfies these requirements can 
be determined from the approximate form of the 
optimal objective function given in expression (4) 
by considering the ratio of its communication and 
calculation terms. In subsection 3.2(vii), it will be 
argued that v has to be decreased in the tuning 
stage. 

(iv) Reproduction Scheme 

The reproduction scheme adopted in HGADD is 
elitist ranking followed by random selection of 
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mates from the list of reproduction trials, or copies, 
allocated to the ranked individuals. In ranking [2]; 
the individuals are sorted by their fitness values artd 
are allocated a number of copies according to a pre­
determined scale of equidistant values for the pop­
ulation, and not according to their relative fitness. 
In HGADD, the ranks assigned to the fittest and the 
least fit individuals are 1.2 and 0.8, respectively, re­
sulting in a survival percentage of 92% to 98%. 
This scheme offers a suitable way for controlling 
the selective pressure and, hence, the convergence 
of the population. 

Elitism in the reproduction scheme refers to the 
preservation of the fittest individual. In HGADD, 
the preceding fittest individual is passed unscathed 
to the new generation, but it is forced to compete 
with the new fittest and only the better of the two is 
retained. The purpose of elitism and its current im­
plementation is ensuring that good candidate solu­
tions are saved if the search is to be truncated at any 
point, and preventing the complete loss of good 
building blocks. To patch up a part of the loophole 
created by the use of the approximate objective 
function, the criterion for choosing between the 
current fittest and the preceding fittest individuals is 
changed in the tuning stage. The exact expression 
for fitness is used and has been found beneficial. 

(v) Genetic Operators 

The Genetic operators employed in HGADD are 
crossover, mutation and inversion. The two-point 
ring-like crossover is used because it offers less po­
sitional bias than the one-point standard crossover 
without introducing any distributional bias [6]. 
Other more complex and presumably higher-per­
formance crossover operators have not been used in 
this work in order to avoid significant additions to 
the computational complexity. 

The standard mutation operator is employed in the 
first two stages of evolution. In the tuning stage, for 
the reason explained in subsection 3.2(i), mutation 
is restricted to elements at the boundaries of the 
clusters. 



Inversion is used in the standard biological way, 
where a contiguous section of the chromosome is 
inverted. In HGADD, the chromosome is consid­
ered as a ring. Inversion at a low frequency helps in 
introducing new building blocks into the popula­
tion for an application such as domain decomposi­
tion. 

(vi) Operator Rates 

Variable operator rates are useful for maintaining 
diversity in the population and, hence, for alleviat­
ing the premature convergence problem [3,4]. 
Rates are varied in the direction that counteracts the 
drop in diversity. Several Measures have been sug­
gested for the detection of diversity, but their eval­
uation invariably requires considerable 
computations [2, 4, 14]. In HGADD, this cost is not 
incurred. Instead, the degree of clustering (DOC) is 
used to guide the variation of the rates of the genet­
ic operators since the DOC approximately follows 
diversity. This design decision is based upon the 
observation that diversity is reduced in the popula­
tion as the clustering of elements increases. 

(vii) Hill-Climbing 

Since genetic algorithms are blind, the addition of 
problem-specific information helps direct the 
search to more profitable adaptive peaks in the 
landscape [15]. In HGADD, individuals carry out a 
simple hill-climbing procedure that can increase 
their fitness. The procedure is greedy and allows 
the transfer of data elements from overloaded pro­
cessors to underloaded ones. Its inclusion improves 
the efficiency of the search significantly. 

Hill-climbing for an individual is performed by 
considering only the boundary data elements allo­
cated to processors, one element at a time. A 
boundary element e is an element that is allocated 
to a processor p1 and has at least one neighboring 
element (in the problem graph) allocated to a differ­
ent processor p2. Such an element is transferred 
from p1 to p2 if and only if the transfer causes the 
objective function to drop or stay the same. It can 

6 

be shown that the Change in Objective Function, 
COF, due to the transfer of element e is given by 

2r:l[l+N(p2) -N(pl)] +2vR(CCD) 

where N(x) is the number of elements allocated to 
processor x before the transfer, R is the (tcomm/ 
tcalc) ratio, and CCD is the change in communica­
tion cost (sum of distances) for element e. From this 
expression, it can easily be seen that a transfer of an 
element can only take place from overloaded pro­
cessors to underloaded processors. It should be em­
phasized here that the formulation of COF, which 
leads to a simple implementation of hill-climbing, 
is a direct result of the locality property of the ap­
proximate objective function mentioned in section 
2. 

Hill-climbing plays a distinctive role in the tuning 
stage of the search. In this stage, hill-climbing fine­
tunes the structures by adjusting the boundaries of 
the clusters assigned to the processors. Since the 
basic pattern of interprocessor communication can 
not be significantly changed in this advanced phase 
and since the search ceases to offer significant gains 
at this point, the emphasis upon balancing the cal­
culational load should be artificially increased for 
the purpose of facilitating the boundary adjustment. 
This is achieved by decreasing the value of the 
weight v in the objective function gradually from 
the fixed value used throughout the search to a 
small suitable value determined by the COF ex­
pression. The smallest useful value for v is that 
which makes COF negative or zero when the fol­
lowing conditions coexist. The first condition is 
that an overloaded processor has two elements 
more than the underloaded processor. The second 
condition is that the transfer of an element e does 
not increase the sum of communication distances of 
e by more than one. 

4. EXPERIMENTAL RESULTS 

The results described here illustrate typical solu­
tions that can be obtained by HGADD. They also 
compare some of the design parameters of 
HGADD with those used in classical GA's. 
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Fig. 2 551-element Gridl. 

Several test cases have been employed. For small 
and regular problems, HGADD has always found 
optimal decompositions efficiently. These results 
are not be presented here. However, two irregular 
problems with realistic sizes are considered. These 
are shown in Figures 2 and 3 and are henceforth re­
ferred to as Grid1 and Grid2, respectively. In all ex­
periments, a solution refers to the decomposition 
corresponding to the fittest individual. The results 
given here are the averages of three runs. The per­
formance measures are the efficiency of the decom­
position of the fittest individual and the average 
fitness of the population. Both measures are plotted 
below with respect to the number of generations, 
which, in its turn, is used to assess the efficiency of 
the search. The efficiency is based on the exact ob­
jective function (equation (1)). For clarity, there­
sults are given as ratios, where efficiency is 
normalized with respect to the (exact) optimum and 
fitness is normalized with respect to the (approxi­
mate) optimal fitness (from expression (2)). It 
should be understood that the use of exact efficien­
cy and approximate fitness for expressing the qual­
ity of the solutions will obviously exhibit a 
discrepancy in the results for the two measures. 

The following parameters are used for HGADD. 
The maximum rank for the ranking-based selection 
scheme is 1.2. The population size is 500 for Grid 1 
experiments and 300 for Grid2. These values have 
been empirically chosen to be approximately equal 
to the length of the chromosome. Operator rates 
vary in a stepwise fashion as follows. Crossover 
rate increases from 0.5 to 1.0, mutation rate in-

7 

•••••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••• •••••••••••••••••••• ••••••••••••••• ••••••• •• ••••• .... ' ...... . •• • ••••••••••• •• •••••••••• ••••••• ••••••• ••••••• •• • ••••••••••• .... . .......... . ...... ~ •.....•.•... 
••••••••••••••• •••••••••• ••••• ••••••••••••••• • ••••••••••••••••••• •••••••••• •••••••••• 

Fig. 3 301-element Grid2. 

creases form 0.002 to 0.004, and inversion rate de­
creases from 0.03 to 0.0. 

4.1 Results 

The first experiment only refers to Gridl. All the 
following experiments refer to the decomposition 
of Grid2 for an 8-node hypercube. 

(i) The decomposition of Grid1 for a 16-node hy­
percube by HGADD is depicted in Figure 4. The ef­
ficiency of the decomposition is about 0.93 of the 
optimum. Its fitness is about 0.998 of the optimum. 
This solution is obtained after 280 generations. 
Each generation takes about 30 seconds on a 
SPARC 1 workstation. For Grid1 and a 4 by 4 mesh 
multicomputer, HGADD finds a solution with an 
efficiency ratio of 0.95 after 282 generations. 

(ii) The decomposition of Grid2 for 3-cube by 
HGADD is shown in Figure 5. The evolution of the 
efficiency and the fitness is plotted in Figure 6. The 
relative average loads of calculation and communi­
cation are also shown. After generation 118, the 
search converges to a solution with an efficiency 
0.97 of the optimal and a fitness ratio of0.998. Each 
generation takes about 12 seconds. It can be seen 
from Figure 5 that HGADD does not strictly insist 
on assigning equal number of elements to proces­
sors. Instead, it emphasizes the balancing of the 
combined calculation and communication load, as 
required by the computational model. Another fea­
ture of the solution in Figure 5 is that processor 1 is 
allocated discontiguous subdomains. This is not 
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Fig. 4 Decomposition of Gridl for 4-cube. 

Proc Calc Comm 
0 37 17 
1 36 11 
2 36 16 
3 37 15 
4 38 14 
5 35 18 
6 42 6 
7 40 11 

Fig. 5 Decomposition of Grid2 for 3-cube 
by HGADD, and processor loads. 
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Fig. 6 Efficiency ratio and fitness ratio for HGADD. 

necessarily bad in our model of computation. In 
fact, for many highly-irregular long-perimeter 
grids, an optimal decomposition can not be contig­
uous. 

The three stages of the search can be identified in 
the fitness and workload curves in Figure 6. Rough­
ly, their overlapping points are generations 50 and 
100. It can be seen that in the first stage, the com­
munication load drops steadily regardless of the 
calculation load which happens to increase. In the 
second stage, both loads decrease and the fitness 
rises. Decreasing v in the tuning stage enhances 
HGADD's tendency to reduce the calculation load. 
If v had not been decreased at this advanced stage, 
the efficiency would have been trapped at 89%. 

(iii) HGADD is compared with a classical GA in 
Figure 7. GAl uses 1-point crossover, normal mu­
tation in all stages, no inversion, and fixed operator 
frequencies. However, it still employs ranking se­
lection and is also hybridized. GAl converges more 
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rapidly to a lower quality solution with efficiency 
ratio of 91%. Clearly, the combined effect of 2-
point crossover, boundary mutation irt the tuning 
stage, inversion and variable rates is beneficial. 

(iv) The effect of increasing the selection pressure 
is explored by increasing the maximum rank value 
to 2.0; as in HGADD2. This results in an early con­
vergence as shown in Figure 8. HGADD2 finds a 
good solution (96% efficiency) in only 66 genera­
tions, which is 60% of the time required by 
HGADD to find a solution of the same quality. 
However, the large percentage of individuals (up to 
20%) that die every generation, makes a maximum 
rank of 2.0 too high to be generally reliable for pro­
ducing good solutions. This highlights the trade-off 
that exists between the solution quality and the 
search efficiency. 

( v) The advantages of ranking based selection and 
hill-climbing have been noted by comparing 
HGADD with GA2 (roulette wheel fitness propor-



HGADD 

GAl 

generation 

Fig. 7 Comparison of HGADD and GAl. 

tionate selection with prescaling) and GA3 (with­
out hill-climbing). GA2loses population diversity 
much earlier and converges to a less favorable so­
lution (94% efficiency) after 120 generations. GA3 
is more than a hundred times slower than HGADD. 

5. DISCUSSION 

Some aspects of the experimental results are high­
lighted and discussed in this section. Also, remarks 
on some features of HGADD and its search effi­
ciency are included. 

The solutions obtained by HGADD are good sub­
optimal solutions. Since HGADD makes no as­
sumptions about the structure of the problem or the 
interconnection network of the multicomputer, it is 
not biased towards any particular structures. There­
fore, the good quality of the results described in 
section 4 can also be expected for any problem and 
any network. In all these results, the fitness of the 
population converges to the global (approximate) 
optimum. However, an important reason for not 
finding the optimal decomposition is the discrepan­
cy between the approximate objective function 
guiding the adaptation of the individuals in the pop­
ulation and the exact objective function determin­
ing the actual solution quality. Nevertheless, the 
results obtained for Gridl and Grid2 compare fa­
vorably with results obtained by other faster do­
main decomposition techniques. For example, 
recursive bisection [9] produces a decomposition 
for Grid2 whose efficiency is 87% of the optimum. 
Scattered decomposition [19] with a patch size of 4 
yields an efficiency 61% of the optimum Naive 
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Fig. 8 Comparison of HGADD and HGADD2. 

rectangular decomposition gives a 74% efficiency 
ratio. A qualitative comparison of HGADD solu­
tions with those of simulated annealing and neural 
networks for Gridl [7, 11] has also enhanced our 
confidence in the evolutionary approach. 

HGADD is not restricted to the particular model of 
computation described in section 2. For example, 
data elements need not be of equal calculation re­
quirements and the multicomputer need not be ho­
mogeneous. Other models of computation can 
easily be implemented in HGADD by modifying or 
replacing the objective function module. Moreover, 
the main constituents of HGADD can also be uti­
lized for solving related problems such as mapping 
for production systems [22], Occam configuration 
[20], unstructured finite element meshes [21], and 
partitioned program modules [17]. 

It is worthwhile emphasizing some of the issues in­
volved in determining the solution quality, the com­
putational cost, and the trade-off between them For 
example, it takes HGADD 118 generations to 
evolve a decomposition of 97% efficiency for 
Grid2. The evolution can be made faster by resort­
ing to measures such as allowing the selection pres­
sure to increase as in HGADD2 which yields a 96% 
efficiency in only 66 generations. This speed is ac­
companied with a clear rapid loss of diversity in the 
population. Therefore. the range of values of 1.2 to 
2.0 for the maximum rank in the selection scheme 
allows the user to choose the desired compromise 
between solution quality and execution time. On 
the other hand, there does not seem to be a simple 
relation between the evolution time and the size of 



the problem. Generally, it seems that doubling the 
problem size necessitates a similar increase in the 
population size. But, the amount of computation 
per individual will be almost doubled. Thus, the ev­
olution time may become impractical for larger 
problem sizes. However, for large problems, sec­
tors of data elements can easily and rapidly be 
formed before applying HGADD. Elements can be 
aggregated into sectors such that the total number 
of sectors is a multiple, K, of lh.e number of proces­
sors in the multicomputer. K should be small 
enough to reduce the evolution time, but not too 
small otherwise it may become difficult to balance 
the load across the processors. 

6. CONCLUSIONS & FURTHER WORK 

The evolutionary approach of HGADD has led to 
good suboptimal solutions for static load balancing 
in parallel computing. The advantages of the design 
constituents of HGADD and the incorporation of 
application specific knowledge have been demon­
strated for precluding premature convergence, im­
proving the efficiency of the evolution, and 
avoiding excessive computations. Moreover, the 
results suggest that HGADD has no bias and is ap­
plicable to any problem structure and any intercon­
nection network. 

The performance of HGADD can be further im­
proved. The linear variation of the rates of the ge­
netic operators can be replaced by an adaptive 
variation related to population diversity. A more 
fruitful crossover operator, such as the reduced sur­
rogate operator [3], can be used to enable the search 
to concentrate on useful work. However it should 
be clear that additional computational costs will be 
incurred for both suggestions. The evolution effi­
ciency can be increased and better solutions might 
be generated by adding another pass to hill-climb­
ing. The second pass would scan the boundary ele­
ments in the reverse order and the better result of 
the two passes would then be accepted. The reverse 
pass can fulfill its objective without adding signifi­
cant computational costs if it is applied to selected 
individuals only, the fittest for example, in the later 
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generations. Further work is also required for the 
optimization of the population size and the maxi~ 
mum rank in selection as a function of problem siz­
es, levels of solution quality, and execution time. 

In comparison with other load balancing tech­
niques, GA's are highly parallelizable. Significant 
speed-ups and increased robustness can be obtained 
by parallel algorithms based on HGADD [18]. 
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