Syracuse University

SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1993

Architectural Support For High-Performance Distributed
Computing

JongBaek Park
Syracuse University

Salim Hariri
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs

6‘ Part of the Computer Sciences Commons

Recommended Citation

Park, JongBaek and Hariri, Salim, "Architectural Support For High-Performance Distributed Computing'
(1993). Electrical Engineering and Computer Science. 111.

https://surface.syr.edu/eecs/111

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.


https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/111?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ARCHITECTURAL SUPPORT FOR HIGH-PERFORMANCE
DISTRIBUTED COMPUTING

JongBaek Park and Salim Hariri

Electrical and Computer Engineering
Syracuse University

Syracuse, NY 13244

Abstract

The emergence of high speed networks and the pro-
liferation of high performance workstations have attracted
a lot of interest in workstation-based distributed comput-
wng. Current trend in local area networks s toward higher
communication bandwidth as we progress from Ethernet
networks that operate at 10 Mbil/sec lo higher speed nei-
works that can operate in Gbil/sec range. Also, current
workstations are capable of delivering tens and hundreds
of Megaflops of computing power. By using a cluster
of such high-performance workstations and the high-speed
networks, a high-performance distributed computing envi-
ronment could be built in cost-effective manner as an al-
ternative of supercomputing plaiform.

However, in current local area networks, the bandwidths
achievable af the application level are oﬂen an order of
magnitude lower than that provided at the network medium
[3, 7]. It is therefore notl sufficient to have even a Gigabil
data link of user applications could only use a small portion
of that bandwidth.

In this paper, we present a software and hardware sup-
port to transform a local area network of workstations
mto a high-performance distributed computing environ-
ment. We present a Host Interface Processor (HIP) and
a communication protocol (HCP) in order to improve the
application-level transfer rates. We also analyze the per-
formance of a distributed application when it runs on the
computers of the HIP-based local networks and compare it
with the performance of a single computer execution.

1 Introduction

The emergence of high speed networks and the prolif-
eration of high performance workstations have attracted
a lot of interest in workstation-based distributed comput-
ing. Current trend in local area networks is toward higher
communication bandwidth as we progress from Ethernet
networks that operate at 10 Mbit/sec to higher speed net-
works such as FDDI networks. Furthermore, 1t is expected
that soon these networks will operate in Gbit/sec range.
Also, current workstations are capable of delivering tens
and hundreds of Megaflops of computing power; for exam-
ple, a cluster of 1024 DEC alpha workstations would pro-
vide a combined computing power of 150 Gigaflops, while
the same sized configuration of the CMb from Thinking
Machines Inc. has a peak rating of only 128 Gigaflops [1].
Hence, the aggregate computing power of a group of gen-
eral purpose workstations can be comparable to that of su-

percomputers. Further, workstations are general-purpose,
flexible and much more cost-effective. Furthermore, it has
been shown that the average utilization of a cluster of
workstations is only around 10% [4]; most of their comput-
ing capacity is sitting idle. This un-utilized or wasted frac-
tion of the computing power is sizable and, if harnessed,
can provide a cost-effective alternative to supercomputing
platforms. Consequently, we project that current clusters
of workstations have the aggregate computing power to
provide an supercomputing environment with the support
of high speed networks.

However, a number of issues have to be resolved in or-
der to utilize the full potential of workstation-based su-
percomputing environments. The primary barrier is the
limited communication bandwidth available at the appli-
cation level. In current local area networks (LAN), the
bandwidths achievable at the application level are often
an order of magnitude lower than that provided at the
network medium [3, 7]. For example, out of the physical
bandwidth of 10 Mbit/sec available at the medium level of
the Ethernet, only about 1.2 Mbit/sec is available to the
application [3]; it is therefore not sufficient to have even
a Gigabit data link if user applications could only use a
small portion of that bandwidth. This degradation in per-
formance occurs because of two main reasons: (1)Host-to-
network interface characterized by its excessive overhead
of processor cycles and system bus capacity, heavy usage
of timers, interrupts, and memory read/writes; and (2)the
standard protocols implemented as a stack of software lay-
ers which consume most of the medium capacity and pro-
vide very little bandwidth to the application.

Recently, there has been an increased interest to im-
prove the transfer rate at the application-level by intro-
ducing new high-speed transport protocols. The gen-
eral concepts for high-speed protocols can be character-
ized as follows [6]: E %design philosophies; (2)architecture
philosophies; and (3)implementation philosophies. —Al-
though these projects have resulted in reducing commu-
nication overhead and improving the application transfer
rates, they still support local network protocols that allow
only one computer to transmit at a time.

In this paper, we present the architecture of a High-
speed Communication Protocol (HCP) and a Host Inter-
face Processor (HIP) that aim mainly at providing the effi-
cient application bandwidth, and maintaining at the same
time the support for standard protocols. HCP is char-
acterized as its simple communication scheme to provide
low latency and high bandwidth, and concurrent commu-
nication capability to allow multiple hosts to communicate
over local networks at the same time. HIP is a multiproces-












checking is done by a library routine (C'), another routine
writes a send request in the Common Memory of HIP (/N7)
and then interrupts the Master Processor. The send re-
quest includes the address of the destination node and a
pointer to the message and its size. The Master Processing
Unit (MPU) selects one of the Receive-Transmit Proces-
sor (RTP) to handle the transfer (A). After the Trans-
fer Engine Unit (TEU) is initialized (I) and has started
transferring data from the host memory to the buffer (77),
the RTP sends the Connection Request to the destination
node (S¢r). On receiving the Connection Confirm, the
RTP sends the message data (Sgqtq) stored in HNM. The
host is notified when the data transfer is complete (N2).
The host then notifies the application (N3).

At the receiver side, while frames are being received and
stored in the (NHM) buffer (Rgq1q), the TEU transfers
data NHM buffer to the host memory (72). When the
last frame is received, the RTP sends the disconnect (CC)
frame to the sender (Sp¢). The process Ry then notifies
the host of the message arrival by writing in Common
Memory and interrupting the host processor (Nz), which
in turns notifies the application (N3).

The application-to-application latency is indicated in
Figure 7 as the time elapsed between the events C' and
N3 at the sender and the receiver, respectively. Due to
the concurrent operations of the TEU and RTP in the
sender such that data transfer from host memory to HIP
buffer (77) is overlapped with that from the HIP buffer to
the network (Sgq1q), the latency is minimized. Similarly,
the receiving time is also minimized due to the parallel
operations of Rgqtq and 75 at the receiver side.

Having analyzed the latency, we consider the transfer
rates of long messages. The same method can be applied
to analyze short message transfer rates. We assume the D-
net is lightly-loaded so that no waiting time is consumed
at the intermediate nodes when the connection is being
established between the source and the destination nodes.
The connection establishment will be successful most of
the time and the CR frame will not be blocked at inter-
mediate nodes because the CR frame will not be issued
unless the required path is available; the S-net provides
the status information required to determine whether the
required path is available or not.

We define the application-level data transfer rate R as
the ratio of the data length to be transmitted ({3s) to the
total application-to-application transmission time (f4,p).

l
R = (1)
tapp

This transmission time can be approximated as
tApp ~1lc + tNl +ta+ tsetup + tdata + th + tNa (2)

where we assume that by the time the ACK frame of the
last frame is received and the connection is released, the
TEU at the receiver has also completed the transfer of the
data to the host memory.

The connection setup time ¢,.4y,p consists of the time for
CR frame preparation (f,,.p ), transmission time of the CR,
frame (tcg), processing time for the CR at each interme-
diate nodes (tproc,cr), transmission time of ACK (tack,

i.e., connection confirm in this case), and the round trip
propagation delay (2 -t,) for the CR and ACK frame.

tsetup = tprep +icr+k- tproc,CR +itack +2- tp (3)

where k denotes the number of intermediate nodes. Once
the connection is established, data is transmitted as mul-
tiples of data frames. Since there is only one outstanding
frame to be acknowledged, we can estimate the average
time to transmit a data frame as follows. Let ¢7 be the
time to send a data frame and receive an acknowledgment
which is either a PACK, if correctly delivered, or a NACK,
in erroneous transmission. Then,

tp = tframe +tack + 2. tp + tproc,src + tproc,dest (4)

which includes the data frame transmission time ..,
the time for ACK frame transmission lack, the round
trip propagation delay, and the processing time for the
data frame at the source and the destination nodes
tproc,srestproc,dest; Tespectively.  We further break the
t trame iNtO two parts since we are interested in application-
to-application data transmission time: the time to trans-
mit only the data field portion in each data frame ¢,, and
the overhead field transmission time for the rest of the
data frame t5,. Therefore,

tp =ty +1ip +tack +2- tp + tproc,src + tproc,dest (5)

The transmission time of a frame can be determined prob-
abilistically assuming that each frame fails independently.
Let P be the probability of a frame being received in error.
Then, using the geometric mean, the expected transmis-
sion time for a frame can be evaluated as

tp
t, =
TP (6)

Hence, the total transfer time of a message data t44¢4 can
be expressed as

taata = nyg- ta (7)

where ny is the number of data frames, i.e., ny = [lar /],
where [, 1s the length of data field, in bits, of a data frame.
Note that the connection release time is included in the
taatq since the acknowledgment of the last frame implies
connection release from receiver.

Consequently, from (1), (2), (3), (5), (6) and (7), we

obtain
Y]
toc+tn, +ta+lprep Ttocr +Tack +k tproecr
+2 -t +(ng/(1=P)) - {tm+tn +2-tp + tack
Ftproc sre + tproc,dest } + tn, + N, (8)

R =

In Figure 8 and 9, we plot the effective application trans-
mission rate with respect to different message and frame
sizes. We consider two channel speeds: 100 Mbit/sec and
1 Gbit/sec. In this analysis we assume the following val-
ues for frame fields: length of the CR frame logp = 25
bytes, length of overhead fields in a data frame [, = 15
bytes, length of the ACK frame [4cx = 15 bytes. Also,
we assume that the number of intermediate nodes is k=
5, the probability of a bit error is p = 2.5 x 10719, the
propagation delay between source and destination is ¢, =
0.5 psec for average distance of 100 m, and the tcgr proc
is 1 psec. Furthermore, we assume each of the following
events: T, Ty, TN, , TN, , T4, tprep Needs around 10 instruc-
tions to be processed; i.e. each event can be processed in
1usec if the processor speed is 10 MIPS. Also, we assume
that each of the events (tproe sre and tproc ds¢ ) takes around
20 instructions and therefore can be processed in 2 pusec.






Note that in a conventional token ring network, since com-
munication is sequential, the total number of communica-
tions is N -log, N; the communication overhead is reduced,
for this application, in the order of log, N. Since we are
transmitting K results in each message, the communica-
tion time for each message t.omm 18 computed as

_ K- ldata
tcomm — T

where 414 is the length of an intermediate results (e.g.,
number of bits representing a complex number) and R is
the application-to-application transfer rates evaluated in
the previous section. Therefore, the total communication
time Tcomm,HLAN is

] 1
Teomm,gpran = (N —1)- K - lgata - R (10)

Because the computations at each node are executed in
parallel, the total computation time is given by

Tcomp,HLAN = top : logZM (11)
Therefore, combining (9), (10) and (11, we obtain
N 1oy - (logyN + 1)

(N —=1)- K -lgata/R 4+ top - (logs N + 1)

12
Figure 11 shows the speedup gain and the eﬂec(tivg
MFLOPS with respect to different number of computers.
It is clear from this figure the potential increase in the
speedup and the computing power when HLAN operates
at high-speed transmission rate. For example, for 1 Giga-
bit HLAN, the total MFLOPS provided to the FFT ap-
plication could reach 250 MFLOPS when 60 computers
with speed of 10 MFLOPS are used. However, for 100
Mbit HLAN, this rate will be reduced to 60 MFLOPS for
60 computers. It is important to notice that these rates
are the rates provided to the applications and are much
higher than those provided by existing standard protocols
[3]. This simple analysis demonstrates the potential per-
formance gain that can be achieved when the distributed
computing is supported with communication software and
hardware that provides application bandwidth comparable
to that offered by the medium.

Speedup =

40 400
Speedup] Effective
MFLOPS
350
- 1.Gbitchannel .. 300
5 e 250
16 Kbyte message
20 g 1 Kbyte frame 200
15 e 150
10 2
100 Mbit channel 100
2 L e —
5 — 50
o
o 20 40 60 80 100 120 140

Number of computers

Figure 11: Speedup and effective MFLOPS with respect
to single computer execution

6 Conclusion

In this paper, we presented an architecture for a high-
speed communication protocol (HCP) that provides ap-
plication with bandwidth comparable to that offered by

transmission lines. This protocol can transform a lo-
cal network of heterogeneous computers into a high-
performance distributed computing environment suitable
for compute-intensive applications. HIP-based LAN pro-
vides the architectural support needed to improve the user-
level transfer rates, supports both standard and nonstan-
dard fast transport protocol, and efficient distributed pro-
cessing over the network and better utilizations of idle
computing power available across the network. HLAN op-
erates in two modes of operation: Normal-Speed Mode
(NSM) where a standard transport protocol is used to
transmit and/or receive data over a channel allocated to
this mode; and High-Speed Mode (HSM) where processes
can bypass the standard transport layers and access di-
rectly the HIP software layer to achieve application trans-
fer rates comparable to the medium speed.

References

[1] Gordon Bell,“ Ultra Computers : A Teraflop Before
Its Time,” Communications of the ACM, Vol. 35, No.
8, August 1992.

[2] H. Kanakia and D. R. Cheriton, “ The VMP Network
Adapter Board: High- performance Network Commu-
nication for Multiprocessors,” Proceedings of the SIG-
COMM Symposium on Communications Architectures
and Protocols, pp. 175-187, August 1988.

[3] G. Chesson, “ The Protocol Engine Project,” Proceed-
wngs of the Summer 1987 USENIX Conference, pp.
209-215, November 1987.

[4] P. Kruegeer and R. Chawla, “ The Stealth Distributed
Scheduler,” Proceedings of the 11th International Con-
ference on Distributed Computing Systems, pp. 336-
343, May 1991.

[5] B. Beach, “ UltraNet: An Architecture for Gigabit
Networking,” the 15th Conference on Local Computer
Networks, pp. 232-248, October 1990.

[6] T. F. La Porta and M. Schwartz,“ Architectures, Fea-
tures, and Implementation of High-Speed Transport
Protocols,” IEEE Network Magazine, pp. 14-22, May
1991.

[7] D. D. Clark, M. L. Lambert and L. Zhang,“ NETBLT:
A High Throughput Protocol,” Proceedings of SIG-
COMM’87, Computer communications review, Vol. 17,
No. b, 1987.

[8] K. Hwang and F. A. Briggs, Computer Archilecture
and Parallel Architecture, McGraw-Hill, 1984.

[9] R. Jain,“ Performance Analysis of FDDI Token Ring
Networks: Effect of Parameters and Guidelines for Set-

ting TTRT,” IEEE LTS, May 1991.

[10] C. Partridge,“ How Slow Is One Gigabit Per Second?
7 Computer Communication Review, Vol. 20, No. 1,
January 1990.



	Architectural Support For High-Performance Distributed Computing
	Recommended Citation

	tmp.1286291883.pdf.z02Jt

