
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science College of Engineering and Computer Science 

1993 

Architectural Support For High-Performance Distributed Architectural Support For High-Performance Distributed 

Computing Computing 

JongBaek Park 
Syracuse University 

Salim Hariri 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/eecs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Park, JongBaek and Hariri, Salim, "Architectural Support For High-Performance Distributed Computing" 
(1993). Electrical Engineering and Computer Science. 111. 
https://surface.syr.edu/eecs/111 

This Article is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized 
administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/111?utm_source=surface.syr.edu%2Feecs%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ARCHITECTURAL SUPPORT FOR HIGH-PERFORMANCEDISTRIBUTED COMPUTINGJongBaek Park and Salim HaririElectrical and Computer EngineeringSyracuse UniversitySyracuse, NY 13244AbstractThe emergence of high speed networks and the pro-liferation of high performance workstations have attracteda lot of interest in workstation-based distributed comput-ing. Current trend in local area networks is toward highercommunication bandwidth as we progress from Ethernetnetworks that operate at 10 Mbit/sec to higher speed net-works that can operate in Gbit/sec range. Also, currentworkstations are capable of delivering tens and hundredsof Megaops of computing power. By using a clusterof such high-performance workstations and the high-speednetworks, a high-performance distributed computing envi-ronment could be built in cost-e�ective manner as an al-ternative of supercomputing platform.However, in current local area networks, the bandwidthsachievable at the application level are often an order ofmagnitude lower than that provided at the network medium[3, 7]. It is therefore not su�cient to have even a Gigabitdata link if user applications could only use a small portionof that bandwidth.In this paper, we present a software and hardware sup-port to transform a local area network of workstationsinto a high-performance distributed computing environ-ment. We present a Host Interface Processor (HIP) anda communication protocol (HCP) in order to improve theapplication-level transfer rates. We also analyze the per-formance of a distributed application when it runs on thecomputers of the HIP-based local networks and compare itwith the performance of a single computer execution.1 IntroductionThe emergence of high speed networks and the prolif-eration of high performance workstations have attracteda lot of interest in workstation-based distributed comput-ing. Current trend in local area networks is toward highercommunication bandwidth as we progress from Ethernetnetworks that operate at 10 Mbit/sec to higher speed net-works such as FDDI networks. Furthermore, it is expectedthat soon these networks will operate in Gbit/sec range.Also, current workstations are capable of delivering tensand hundreds of Megaops of computing power; for exam-ple, a cluster of 1024 DEC alpha workstations would pro-vide a combined computing power of 150 Gigaops, whilethe same sized con�guration of the CM5 from ThinkingMachines Inc. has a peak rating of only 128 Gigaops [1].Hence, the aggregate computing power of a group of gen-eral purpose workstations can be comparable to that of su-

percomputers. Further, workstations are general-purpose,exible and much more cost-e�ective. Furthermore, it hasbeen shown that the average utilization of a cluster ofworkstations is only around 10% [4]; most of their comput-ing capacity is sitting idle. This un-utilized or wasted frac-tion of the computing power is sizable and, if harnessed,can provide a cost-e�ective alternative to supercomputingplatforms. Consequently, we project that current clustersof workstations have the aggregate computing power toprovide an supercomputing environment with the supportof high speed networks.However, a number of issues have to be resolved in or-der to utilize the full potential of workstation-based su-percomputing environments. The primary barrier is thelimited communication bandwidth available at the appli-cation level. In current local area networks (LAN), thebandwidths achievable at the application level are oftenan order of magnitude lower than that provided at thenetwork medium [3, 7]. For example, out of the physicalbandwidth of 10 Mbit/sec available at the medium level ofthe Ethernet, only about 1.2 Mbit/sec is available to theapplication [3]; it is therefore not su�cient to have evena Gigabit data link if user applications could only use asmall portion of that bandwidth. This degradation in per-formance occurs because of two main reasons: (1)Host-to-network interface characterized by its excessive overheadof processor cycles and system bus capacity, heavy usageof timers, interrupts, and memory read/writes; and (2)thestandard protocols implemented as a stack of software lay-ers which consume most of the medium capacity and pro-vide very little bandwidth to the application.Recently, there has been an increased interest to im-prove the transfer rate at the application-level by intro-ducing new high-speed transport protocols. The gen-eral concepts for high-speed protocols can be character-ized as follows [6]: (1)design philosophies; (2)architecturephilosophies; and (3)implementation philosophies. Al-though these projects have resulted in reducing commu-nication overhead and improving the application transferrates, they still support local network protocols that allowonly one computer to transmit at a time.In this paper, we present the architecture of a High-speed Communication Protocol (HCP) and a Host Inter-face Processor (HIP) that aimmainly at providing the e�-cient application bandwidth, and maintaining at the sametime the support for standard protocols. HCP is char-acterized as its simple communication scheme to providelow latency and high bandwidth, and concurrent commu-nication capability to allow multiple hosts to communicateover local networks at the same time. HIP is a multiproces-



sor system that o�oads the protocol processing from thehost processor and thus reduces the communication over-head. The approach adopted to achieve these two goalsis by providing two modes of operation over the network:High-speed Mode (HSM) and Normal-Speed Mode (NSM)as shown in Figure 1. At any given time the system canbe operating in either or both of these two modes. In theNSM, a normal-speed channel is used to transfer data ac-cording to standard protocols. In the HSM, high-speedchannels are used to transfer data among the cooperatingprocesses that are distributed across the network.

Figure 1: A con�guration of protocol stack with HCPFigure 2 shows the HIP-based LAN (HLAN) that con-sists of two types of networks: the High-Speed Network(HSNet) and the Normal Speed Network (NSNet). TheHSNet, used during HSM, consists of two sub-networks:the Data-network (D-net) and the Status network (S-net).The D-net is a bidirectional ring which consists of twocounter-rotating channels. While one ring is used for datatransmission, the other ring is used for acknowledgments.The S-net is a broadcast-based network. The purpose ofthe S-net is to distribute control and status informationabout the activities of computers connected to the D-net.The NSNet is a standard local area network that will beused during NSM operation.
Figure 2: Structure of HLANThe organization of this paper is as follows. Section 2describes the concepts and the architecture of HCP that

supports future Gigabit LANs. Section 3 presents thestructure and the main building blocks of the Host Inter-face Processor (HIP). Section 4 analyzes the performanceof HCP. Section 5 describes the implementation of a FastFourier Transform application on HLAN and analyzes theperformance gain comparing with its execution on a singlecomputer. Section 6 provides a summary and concludingremarks.2 High-speed Communication Protocol(HCP)As network speed increases to Gbit/sec range, commu-nication latency between computers is becoming compa-rable to that between internal components of a computer.We envision that Gigabit LANs will allow its computers tointeract and collaborate with latency comparable to thatbetween the internal components of a computer. Conse-quently, future networked computing environment will beequivalent to the current single computer system in termsof the services provided and communication latency. Theresearch presented in this paper aims at introducing newcommunication software and hardware to achieve such lowlatency between the resources of future Gigabit LANs.2.1 Key Design Concepts� Simplicity: One of the main design goals of HCP isto provide low latency data transfer capability betweencomputers in networks operating in Gigabit range. Inorder to achieve this goal, the communication protocolshould be simple and can be processed in an order of mag-nitude less than that is currently achievable with existingstandard protocols. Current protocols were designed tobe robust in the face of adverse network conditions andthis makes protocols too complex to operate at Gigabitdata rate. HCP takes advantage of the low error rates ofoptical medium by being success-oriented [6] and adoptssimplicity to reduce protocol processing time.As shown in Figure 1, we combine the protocols fromthe mediumaccess control (MAC) sublayer, data link layerand up to transport layer of OSI reference model into onesingle layer protocol (HCP) by removing redundant func-tions such as ow and error control which appear both inthe data link and transport layer. The functionality of thenetwork layer can also be minimized if we con�ne the datatra�c within the local network.� Concurrency: Another key design concept in HCPlies in providing concurrency. Existing LAN protocolsallow only one station to transmit data at a time(sequential interprocess communication); for example, ina token ring network, concurrency is not provided sinceonly one station that holds the token can transmit data.Since the D-net uses point-to-point connections that canbe controlled independently, HCP allows multiplecomputers to transmit at the same time (parallelinterprocess communication); for example, in HLAN withN computers in the network, we could have all Ncomputers transferring data simultaneously to theirimmediate neighbors, maximizing network throughput.2.2 Data Transfer over the D-net� Operation Modes: Each node participating in acomputation is in one of the following modes during its



operation: Idle (ID), Receive-only (RO), Transmit-only(TO), Receive and Transmit (RT), Receive-and-Receive(RR), Transmit-and-Transmit (TT) or Bypass (BP)mode. Initial mode is ID. In BP mode, a node is justisolated from the network and all the incoming data isforwarded to the next node with minimum delay.Figure 3(a) shows all possible mode transitions for anode. Figure 3(b) demonstrates a case in which node 0 istransmitting data to node 2 and 6, node 5 is receivingdata from node 4 and 6. Note that there are 4 circuitconnections established at the same time and theconcurrent activities (eg., node 0 performs twoconcurrent transmissions while node 5 receiving inparallel from two nodes). The Status network (S-net) isused to periodically exchange status informationincluding the operation mode of each node.

Figure 3: Operation modes� Routing Policy: If a node has data to transmit, ithas to determine �rst which path of the D-net to use; forexample, in ring-based HSNet, there are two paths toreach any destination node. The routing policy selectsthe available path that minimizes the number of hopsbetween the source and the destination nodes. The otherchannel segments from the destination to the source withopposite direction is automatically assigned for sendingacknowledgment frames.� Long Message Transfer: We distinguish betweentwo transfer schemes depending on the message size: longmessage transfer and short message transfer. A messagewith length of less than a data frame size is designated asa short message and otherwise it is regarded as long one.Each long message is transferred as a sequence of dataframes. The size of a data frame is determined as largeas possible because larger frames perform better as willbe shown later. However, the maximum frame sizeshould be within the limit where clock skewing does notlead to a synchronization problem at the receiver.For long messages, data transmission is performed in twophases: connection establishment and data transfer. Aconnection request (CR) frame is sent �rst to thedestination node. Once the connection is establishedsuccessfully, all intermediate nodes are set to BP mode.After receiving a connection con�rm signal (CC) fromthe destination node, the source node sends data, and�nally the acknowledgment of the last frame releases thecircuit connection. Figure 4 shows all the steps involvedin long message transfer; establishing a connection,receiving a con�rmation of a successful connection,transferring the data frames, and then disconnect the

connection, respectively. In this �gure, node 0 is set tomode TO and communicates with node 3 that is set tomode RO. The intermediate nodes are set to BP modeswhile all other nodes are in the idle mode.
Figure 4: Steps of long message transfer� Error and Flow Control: Sender transmits a frameand then waits for ACK signal from receiver. When thesender receives a positive ACK (PACK), it sends thenext frame; otherwise it retransmits the same frame (thisis repeated a prede�ned number of times and after thatan error signal is sent to the higher layers). Theacknowledgment frame serves as a mechanism to achieveow control between the transmitter and receiver nodes.When the receiver does not have enough bu�er space fornext frame, it responds with a not-ready indication bysetting a ag in ACK frame. If the source receives thenot-ready indication from the destination, it stopstransmitting frame until it receives ready indication.This simple scheme is attractive because it does notimpose any limit on the transmission rates that could bein Gigabit or even Terabit range.� Frame Formats: In Figure 5, we show four types offrames which are used in the D-net during HSM: CRframe with short data, CR frame with long data, Dataframe, and ACK frame. The preamble �eld (PA) is usedto achieve synchronization between the receiver and thesender. The delimiter �elds (SD and ED) denote thestart and the end of a frame, respectively. The type �eldis used to distinguish between the di�erent kinds offrames. The Source (SRC) and Destination (DST) �eldsin CR frame indicate the network address of source anddestination nodes. The length and frame size �eldsdenote the number of bytes to be transmitted, and theframe size in bytes, respectively. The status �eld in ACKframe distinguishes acknowledgments of connectioncon�rm (CC) and disconnect (DC) as well as positive(PACK) and negative (NACK) acknowledgment of dataframes. The RDY �eld in ACK frame denotes thereadiness of the receiver to receive data frames. Thechecksum �eld (CHK) uses a cyclic redundancy code todetect errors in received frames.3 Host-Interface Processor (HIP) Archi-tectureIn this section, we briey describe the Host InterfaceProcessor(HIP). HIP is a communication processor capa-



Figure 5: Frame formatble of operating in two modes of operation such that eitheror both of these modes can be active at a given time. InHSM, HIP provides applications with data rate compara-ble to those o�ered by medium. This high speed trans-fer rate is achieved by (1) using simple protocol, HCP,(2) decomposing the transmit/receive tasks into severalsubtasks that can run concurrently on a seperate engineand (3) using dedicated channels that allow all nodes totransmit and receive data concurrently. In NSM, the stan-dard transport protocols can still run e�ciently on HIPand thus o�oad the host from processing these protocols.Figure 6 shows the block diagram of the main functionalunits of the proposed HIP. The HIP design consists of �ve
Figure 6: Blockdiagram of HIPmajor subsystems: a Master Processing Unit (MPU), aTransfer Engine Unit (TEU), a crossbar switch, and twoReceive/ Transmit units (RTU-1, RTU-2). The architec-ture of HIP is highly parallel and uses hardware multiplic-

ity and pipeline techniques to achieve high-performancetransfer rates. For example, the two RTUs can be con-�gured to transmit and/or receive data over high-speedchannels while the TEU is transferring data to/from thehost.MPU controls and manages all the activities of HIPsubsystems. The Common Memory(CM) is a dual-portshared memory and can be accessed by the host throughthe host standard bus. Furthermore, this memory isused to store control programs that run on MPU. TheMPU runs the kernel software that provides an environ-ment in which two modes of operation can be supported,and several parallel activities (receive/transmit from/tothe host, receive and/or transmit over the D-net, andreceive/transmit over the normal network). The com-munication between the host and HIP is based on a re-quest/reply model. The host is separated from controllingall aspects of the communication process which is handledentirely by the TEU. The initiation of data transfer is doneby the host through the Common Memory (CM) and thecompletion of transfer is noti�ed through an interrupt tothe host. The TEU can be implemented simply as a DirectMemory Access Controller (DMAC). A similar protocol tothat used in the VMP network adapter board [2] can beadapted to transport messages between the host and HIP.A 2�2 nonblocking crossbar switch provides maximumconnections among the TEU, MPU, and RTUs. The useof local buses in MPU and RTUs allow any componentof these subsystems to be accessed directly through theswitch.The main task of the RTU is to o�oad the host fromgetting involved in the process of transmitting/receivingdata over the two channels. At any given time, the RTUcan be involved in several asynchronous parallel activities:receive and/or transmit data over the point-to-point chan-nel according to HCP protocol.4 Performance of HCP
Figure 7: Application-to-application latencyIn this section, we analyze the application-to-application latency in HLAN and estimate its e�ectivetransfer rates for di�erent message sizes. We illustrate inFigure 7 the sequence of events from the moment an ap-plication process initiates a request to send a message tothe time when the data sent is received in the host bu�erof the receiving application.The application program at the sender side calls theruntime library to send a message. Once the parameter



checking is done by a library routine (C), another routinewrites a send request in the CommonMemory of HIP (N1)and then interrupts the Master Processor. The send re-quest includes the address of the destination node and apointer to the message and its size. The Master ProcessingUnit (MPU) selects one of the Receive-Transmit Proces-sor (RTP) to handle the transfer (A). After the Trans-fer Engine Unit (TEU) is initialized (I) and has startedtransferring data from the host memory to the bu�er (T1),the RTP sends the Connection Request to the destinationnode (SCR). On receiving the Connection Con�rm, theRTP sends the message data (Sdata) stored in HNM. Thehost is noti�ed when the data transfer is complete (N2).The host then noti�es the application (N3).At the receiver side, while frames are being received andstored in the (NHM) bu�er (Rdata), the TEU transfersdata NHM bu�er to the host memory (T2). When thelast frame is received, the RTP sends the disconnect (CC)frame to the sender (SDC). The process R0 then noti�esthe host of the message arrival by writing in CommonMemory and interrupting the host processor (N2), whichin turns noti�es the application (N3).The application-to-application latency is indicated inFigure 7 as the time elapsed between the events C andN3 at the sender and the receiver, respectively. Due tothe concurrent operations of the TEU and RTP in thesender such that data transfer from host memory to HIPbu�er (T1) is overlapped with that from the HIP bu�er tothe network (Sdata), the latency is minimized. Similarly,the receiving time is also minimized due to the paralleloperations of Rdata and T2 at the receiver side.Having analyzed the latency, we consider the transferrates of long messages. The same method can be appliedto analyze short message transfer rates. We assume the D-net is lightly-loaded so that no waiting time is consumedat the intermediate nodes when the connection is beingestablished between the source and the destination nodes.The connection establishment will be successful most ofthe time and the CR frame will not be blocked at inter-mediate nodes because the CR frame will not be issuedunless the required path is available; the S-net providesthe status information required to determine whether therequired path is available or not.We de�ne the application-level data transfer rate R asthe ratio of the data length to be transmitted (lM ) to thetotal application-to-application transmission time (tApp).R = lMtApp (1)This transmission time can be approximated astApp ' tC + tN1 + tA + tsetup + tdata + tN2 + tN3 (2)where we assume that by the time the ACK frame of thelast frame is received and the connection is released, theTEU at the receiver has also completed the transfer of thedata to the host memory.The connection setup time tsetup consists of the time forCR frame preparation (tprep), transmission time of the CRframe (tCR), processing time for the CR at each interme-diate nodes (tproc;CR), transmission time of ACK (tACK ,i.e., connection con�rm in this case), and the round trippropagation delay (2 � tp) for the CR and ACK frame.tsetup = tprep + tCR + k � tproc;CR + tACK + 2 � tp (3)

where k denotes the number of intermediate nodes. Oncethe connection is established, data is transmitted as mul-tiples of data frames. Since there is only one outstandingframe to be acknowledged, we can estimate the averagetime to transmit a data frame as follows. Let tT be thetime to send a data frame and receive an acknowledgmentwhich is either a PACK, if correctly delivered, or a NACK,in erroneous transmission. Then,tT = tframe + tACK + 2 � tp + tproc;src + tproc;dest (4)which includes the data frame transmission time tframe,the time for ACK frame transmission tACK , the roundtrip propagation delay, and the processing time for thedata frame at the source and the destination nodestproc;src,tproc;dest, respectively. We further break thetframe into two parts since we are interested in application-to-application data transmission time: the time to trans-mit only the data �eld portion in each data frame tm andthe overhead �eld transmission time for the rest of thedata frame th. Therefore,tT = tm + th + tACK + 2 � tp + tproc;src + tproc;dest (5)The transmission time of a frame can be determined prob-abilistically assuming that each frame fails independently.Let P be the probability of a frame being received in error.Then, using the geometric mean, the expected transmis-sion time for a frame can be evaluated asta = tT1� P (6)Hence, the total transfer time of a message data tdata canbe expressed as tdata = nf � ta (7)where nf is the number of data frames, i.e., nf = dlM=lme,where lm is the length of data �eld, in bits, of a data frame.Note that the connection release time is included in thetdata since the acknowledgment of the last frame impliesconnection release from receiver.Consequently, from (1), (2), (3), (5), (6) and (7), weobtainR = lMtC + tN1 + tA + tprep + tCR + tACK + k � tproc;CR+2 � tp + (nf=(1� P )) � ftm + th + 2 � tp + tACK+tproc;src + tproc;destg+ tN2 + tN3 (8)In Figure 8 and 9, we plot the e�ective application trans-mission rate with respect to di�erent message and framesizes. We consider two channel speeds: 100 Mbit/sec and1 Gbit/sec. In this analysis we assume the following val-ues for frame �elds: length of the CR frame lCR = 25bytes, length of overhead �elds in a data frame lh = 15bytes, length of the ACK frame lACK = 15 bytes. Also,we assume that the number of intermediate nodes is k=5, the probability of a bit error is p = 2.5 � 10�10, thepropagation delay between source and destination is tp =0.5 �sec for average distance of 100 m, and the tCR;procis 1 �sec. Furthermore, we assume each of the followingevents: tC; tN1 ; tN2 ; tN3 ; tA; tprep needs around 10 instruc-tions to be processed; i.e. each event can be processed in1�sec if the processor speed is 10 MIPS. Also, we assumethat each of the events (tproc;src and tproc;dst) takes around20 instructions and therefore can be processed in 2 �sec.



The values for p, tp and tCR;proc are similar to the FDDInetwork discussed in [9].The maximum application-to-application transfer rateR approaches around 50 % of the medium speed. Recall-ing that HCP allows several processes to transmit and/orreceive at the same time, the e�ective transmission rateprovided to application processes can be given asRglobal = n � Rwhere n is the number of parallel activities in a given ap-plication.
43

44

45

46

47

48

49

50

0 5 10 15 20 25 30 35 40 45 50

o

o

o
o o o o o o o o

+

+

+

+ + + + + + + +

*

*

*
* * * * * * * *

Message size (Kbytes)

Ef
fe

cti
ve

 ra
te

 (M
bit

/se
c)

1 Kbyte frame

3 Kbyte frame

5 Kbyte frame

 Channel speed : 100 Mbit/secFigure 8: Application-level transfer rate with 100Mbit/secchannel
200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

o

o

o
o o o o o o o o

+

+

+

+ + +
+ + + + +

*

*

*

*
* * * * * * *

Message size (Kbytes)

Ef
fe

cti
ve

 ra
te

 (M
bit

/se
c)

1 Kbyte frame

3 Kbyte frame

5 Kbyte frame

Channel speed : 1 Gbit/secFigure 9: Application-level transfer rate with 1 Gbit/secchannel5 Application ExampleHigh performance distributed computing can beachieved using HCP and HIP-based LAN. In this sec-tion, we present a Fast Fourier Transform (FFT) appli-cation and show the potential performance gain in termsof speedup and the e�ective MFLOPS.Given the input signal s(k), k = 0; 1; :::;M�1, compu-tation of FFT gives the output X(i) =PM�1k=0 s(k) �W ik,where W = exp(j 2�M ), i = 0; 1; : : :;M�1 and j = p�1.Assuming we have N workstations on the network, theDIF (Decimation in Frequency) algorithm can be mappedonto HLAN [8]. A case of M=16 and N=8 is shown inFigure 10(a). Starting from the input sample signal s(k)partitioned into 8 parts on the left side of the �gure, com-putation proceeds to the right. Each row of four smallcircles are the computations for each node and the linesbetween the circles represent communications. In Fig-ure 10(b), a possible communication sequence on HLAN

is shown. In step T0, communication messages are ex-changed sequentially between pairs of distance 4, one at atime; in step T1, messages are exchanged in two sequen-tial steps; in step T2, all pairs communicate at the sametime. The algorithm consists of log2M computation stepsand log2N communication steps, assuming subtasks areproperly synchronized.

Figure 10: DIF FFTIn order to simplify the analysis, we only consider thecompute time of X and Y in the node program and thecommunication time. We further assume that multiple Ksets of the sampled data is provided to vary message sizeof interprocess communications.Let top be the time to compute A+B and (A�B) �W k .Since there areM=2 computations at each step and log2Msteps for the whole FFT operation, the total computationtime on a single computer can be approximated asTsingle = M2 � top � log2M (9)The algorithm over the HLAN goes through alternatingphases of computation and communication steps. We com-pute �rst the total communication time. Let tcomm be thetime to send a vector of K elements to a node during acomputation. Then, the number of sequential communi-cations at step i is (N=2) � 2�i, i = 0; 1; : : :; log2N . Conse-quently, the total number of communications for the FFTalgorithm is given byNumber of communications = N2 + N4 + : : :+ 2 + 1= N � 1



Note that in a conventional token ring network, since com-munication is sequential, the total number of communica-tions is N �log2N ; the communication overhead is reduced,for this application, in the order of log2N . Since we aretransmitting K results in each message, the communica-tion time for each message tcomm is computed astcomm = K � ldataRwhere ldata is the length of an intermediate results (e.g.,number of bits representing a complex number) and R isthe application-to-application transfer rates evaluated inthe previous section. Therefore, the total communicationtime Tcomm;HLAN isTcomm;HLAN = (N � 1) �K � ldata � 1R (10)Because the computations at each node are executed inparallel, the total computation time is given byTcomp;HLAN = top � log2M (11)Therefore, combining (9), (10) and (11, we obtainSpeedup = N � top � (log2N + 1)(N � 1) �K � ldata=R+ top � (log2N + 1)(12)Figure 11 shows the speedup gain and the e�ectiveMFLOPS with respect to di�erent number of computers.It is clear from this �gure the potential increase in thespeedup and the computing power when HLAN operatesat high-speed transmission rate. For example, for 1 Giga-bit HLAN, the total MFLOPS provided to the FFT ap-plication could reach 250 MFLOPS when 60 computerswith speed of 10 MFLOPS are used. However, for 100Mbit HLAN, this rate will be reduced to 60 MFLOPS for60 computers. It is important to notice that these ratesare the rates provided to the applications and are muchhigher than those provided by existing standard protocols[3]. This simple analysis demonstrates the potential per-formance gain that can be achieved when the distributedcomputing is supported with communication software andhardware that provides application bandwidth comparableto that o�ered by the medium.
0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

o
o

o
o

o
o

+

+

+

+

+

+

Number of computers

Speedup Effective
MFLOPS

1 Gbit channel

100 Mbit channel

50

100 

150

200

250

300

350

400

16 Kbyte message
1 Kbyte frameFigure 11: Speedup and e�ective MFLOPS with respectto single computer execution6 ConclusionIn this paper, we presented an architecture for a high-speed communication protocol (HCP) that provides ap-plication with bandwidth comparable to that o�ered by

transmission lines. This protocol can transform a lo-cal network of heterogeneous computers into a high-performance distributed computing environment suitablefor compute-intensive applications. HIP-based LAN pro-vides the architectural support needed to improve the user-level transfer rates, supports both standard and nonstan-dard fast transport protocol, and e�cient distributed pro-cessing over the network and better utilizations of idlecomputing power available across the network. HLAN op-erates in two modes of operation: Normal-Speed Mode(NSM) where a standard transport protocol is used totransmit and/or receive data over a channel allocated tothis mode; and High-Speed Mode (HSM) where processescan bypass the standard transport layers and access di-rectly the HIP software layer to achieve application trans-fer rates comparable to the medium speed.References[1] Gordon Bell,\ Ultra Computers : A Teraop BeforeIts Time," Communications of the ACM, Vol. 35, No.8, August 1992.[2] H. Kanakia and D. R. Cheriton, \ The VMP NetworkAdapter Board: High- performance Network Commu-nication for Multiprocessors," Proceedings of the SIG-COMM Symposium on Communications Architecturesand Protocols, pp. 175-187, August 1988.[3] G. Chesson, \ The Protocol Engine Project," Proceed-ings of the Summer 1987 USENIX Conference, pp.209-215, November 1987.[4] P. Kruegeer and R. Chawla, \ The Stealth DistributedScheduler," Proceedings of the 11th International Con-ference on Distributed Computing Systems, pp. 336-343, May 1991.[5] B. Beach, \ UltraNet: An Architecture for GigabitNetworking," the 15th Conference on Local ComputerNetworks, pp. 232-248, October 1990.[6] T. F. La Porta and M. Schwartz,\ Architectures, Fea-tures, and Implementation of High-Speed TransportProtocols," IEEE Network Magazine, pp. 14-22, May1991.[7] D. D. Clark, M. L. Lambert and L. Zhang,\ NETBLT:A High Throughput Protocol," Proceedings of SIG-COMM'87, Computer communications review, Vol. 17,No. 5, 1987.[8] K. Hwang and F. A. Briggs, Computer Architectureand Parallel Architecture, McGraw-Hill, 1984.[9] R. Jain,\ Performance Analysis of FDDI Token RingNetworks: E�ect of Parameters and Guidelines for Set-ting TTRT," IEEE LTS, May 1991.[10] C. Partridge,\ How Slow Is One Gigabit Per Second?" Computer Communication Review, Vol. 20, No. 1,January 1990.


	Architectural Support For High-Performance Distributed Computing
	Recommended Citation

	tmp.1286291883.pdf.z02Jt

