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Abstract 

Computing literature has being flooded recently with a plethora of dynamic load bal­

ancing strategies for multicomputer systems. The diversity of many strategies and their de­

pendence on a number of parameters has made it difficult to compare their effectiveness on a 

unified basis. Not only does each strategy consider a different environment, but the simplified 

assumptions obscure the relative merits and demerits of each strategy. This paper presents a 

solution to compare different load balancing schemes on a unified basis. Our approach, which 

is an integration of simulation, statistical and analytical experiments, takes into account the 

fundamental system parameters that can possibly affect the performance. We show that a 

class of distributed load balancing strategies can be modeled by a central server open queuing 

network. Furthermore, these load balancing strategies can be characterized by only two 

queuing parameters - the average execution queue length and the probability that a newly 

arrived task is to be executed locally or migrated to another node. To capture the relation 

between these queuing parameters and various system parameters, a statistical analysis has 

been carried out on the empirical data obtained through simulation. The analytical queuing 

model is then used to predict the response time of a system with any set of system parameters. 

Experimental results are obtained for seven different load balancing strategies. The pro­

posed model directly provides performance results in a straight forward manner and can be 

beneficial to the system designers in order to assess the system under varying conditions. 

1. Introduction 

Efficient utilization of a multicomputer system lies in its ability to efficiently partition 

and balance computational load among its computing nodes. With the increasing popularity 

of multicomputer systems, researchers and system designers have been focusing on these es­

sential issues. There is a clear distinction between dynamic load balancing, also known as 

load sharing [5] or load distribution [10], and static load balancing [3]. In the former case, 

work load allocation decisions are taken at run time rather than at compile time. As noted in 

[5], any simple dynamic load balancing algorithm improves the performance of the system, 

and is better than no load balancing. Dynamic Load balancing strategies are characterized by 

the manner in which information exchange and control of work load allocation takes place. 

The control can be centralized [16], fully distributed [2], [4], [5], [6], [11], [14], [17], [24] or 
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semi-distributed [1 ]. With fully distributed control, the load balancing strategy is incorpo­

rated at every node of the system in that each node in the system makes autonomous deci­

sions. A node is subject to arrival of tasks, locally generated or migrated from some other 

node. The node decides whether the new task should be executed locally or it should be 

transported to some other node. If the task is decided to be migrated, the local node needs to 

know the load status of other nodes. Once the state information about other nodes is re­

ceived, the target node can be selected in a number of ways. A node for task migration can be 

selected randomly [5], [8], [24] or it can be selected if it has the lowest load [5]. However, the 

accuracy of scheduling decisions in a decentralized algorithms, depends on the accuracy and 

amount of state information [10]. Intuitively, getting more information should result in a 

more accurate decision-making. Although decentralized models have potential advantages 

over centralized models, they can incur large overhead due to information exchange and task 

migration [6]. 

Wang and Morris [25] proposed a number of relatively simple load balancing algo­

rithms and classified them into two categories: source-initiated and server-initiated. In a 

source-initiated algorithm, tasks enter the distributed system via source nodes and are pro­

cessed by server nodes. A demand driven model, using a gradient plane, was suggested by Lin 

and Keller where lightly loaded processors initiate request for load [13]. Fox et al. [7] pres­

ented a load balancing scheme by making use of the analogy of load balancing to minimizing 

an appropriate energy function. In [17] and [22], various bidding algorithms have been pro­

posed which belong to the sender-initiated class. A drafting algorithm belongs to the server­

initiated class [15]. A comparison ofthese two types of algorithms [18] reveals that in spite of 

the fact that the bidding algorithm suffers from task-dumping or task-thrashing, it performs 

consistently better than the drafting algorithm. Thsk-thrashing is a phenomenon associated 

with load balancing schemes where a lightly loaded node can become a victim of task arrivals 

from other nodes [8], [14 ]. Load balancing algorithms can also suffer from state woggling­

another performance decaying phenomenon in which processors frequently change their sta­

tus between low and high [18]. 

Distributed load balancing schemes based on task migration among nearest neighbors 

have gained considerable attention. In a number of independent studies [8], [10], [12], [19], 

variants of this strategy have been proposed and their effectiveness has been proven both by 

simulation and implementation observations. Kale [19] have compared one version of this 

strategy, known as Contracting Within Neighborhood (CWN), to Gradient Model [13) and 
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have shown that CWN spreads the load more quickly and performs better. In two more stu­

dies (8], (19], the concept ofload averaging among neighbors is introduced. The advantage of 

load averaging is that each node tries to keep its own load equal to the average load among its 

nearest neighbors. Shu and Kale (21] have proposed and implemented a revised version of 

CWN known as Adaptive Contracting Within Neighborhood (ACWN) which consistently 

shows better response time compared to the Gradient model and Random strategy. Grun­

wald et al. (10] have proposed a classification scheme for the type of information required to 

make load balancing decisions. For large-scale multicomputer systems consisting of 

hundreds or thousands of nodes, a semi distributed strategy was proposed in [ 1 ]. The semi 

distributed strategy combines the advantages of centralized and fully distributed load balanc­

ing strategies by partitioning the system into independent spheres and load balancing is per­

formed by only a selected set of nodes. 

Given the diversity of a number of proposed strategies and their dependence on a 

number of parameters, it is difficult to compare their effectiveness on a unified basis. One 

particular strategy may perform well under a certain combination of parameters such as sys­

tem load or system communication rate on a certain topology. The same strategy may be 

outperformed by another strategy due to difference in information collection and scheduling 

overhead. In addition, simplified assumptions and neglecting important parameters some­

times obscures the relative merits and demerits of each strategy. This paper presents an ap­

proach to predict and compare different load balancing schemes based on a unified basis. 

Our approach, which is an integration of simulation, statistics and analytical models, takes 

into account various system parameters, such as system load, task migration time, scheduling 

overhead and system topology etc., that can possibly affect the performance. We show that a 

class of load balancing strategies can be modeled by a central server queuing network. We 

also show that these load balancing strategies can be characterized by only two parameters­

the average queue length and the probability that a newly arrived task is to be executed locally 

or migrated to another node. Through an extensive simulation, a large number of values of 

the average queue length and the probability associated with task migration have been ob­

tained. A statistical analysis has been performed on these data points to capture the relation 

between the queueing parameters and the system parameters. We then use the analytical 

queuing model to predict the response time of a system with any set of parameters. Seven 

different load balancing algorithms have been studied and characterized. 
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This performance prediction approach has many advantages. First, instead of assess­

ing a particular strategy on the basis of a selected set of experiments, any combination of pa­

rameters can be used to predict the performance. Second, all strategies can be relatively com­

pared by selecting more appropriate and realistic parameters. Finally, an existing system can 

be tuned, and a system design can be evaluated before it is actually built. The response time 

predicted by the model is compared with the response time produced by simulation for all 

eight strategies. 

2. Selected Load Balancing Strategies 

We consider a fully homogeneous multicomputer system in which processing nodes 

are connected with each other through a symmetric topology, that is, each node is linked to 

the same number of nodes. The number oflinks per node, called the degree of the network, is 

considered as one of the system parameters and is denoted as L. The work load submitted to 

the system is assumed to be in the form of tasks, which are submitted to each node with an 

average arrival rate of A. tasks per time-unit per node. The task arrival process is assumed to 

be Poisson. The load balancing control is fully distributed for which each node makes an 

autonomous decision to schedule a task by collecting the load status information from its 

neighbors. A task is either scheduled to a local execution queue or it is migrated to one of the 

neighbors connected with each communication channel. Seven different load balancing strat­

egies have been chosen which are fully distributed but differ in information collection and 

scheduling policies. The information and scheduling takes a certain amount of time, which is 

assumed to be exponentially distributed with an average of 1/ J-ls time-units. Information is 

collected by a hardware/software component at each node and is called Collector/Scheduler. 

Since information interchange and execution of scheduling algorithm takes certain 

amount of time, the tasks arriving during that time wait in a waiting queue. For each commu­

nication link, a communication queue is maintained. The underlying network supports 

point-to-point communication and the communication channel is model by a server. A com­

munication server transfers a task from one node to another with an average of 1/ J-lc time­

units. The task communication time is also assumed to be exponentially distributed and all 

network links are assumed to be identical. At each node, the incoming traffic from other 

nodes joins the locally generated traffic, and both are handled with equal priority. Each node 

maintains an execution queue in which locally scheduled tasks are served by a CPU on the 
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FCFS basis . A task may migrate from node to node in the network before finally being ex­

ecuted at some node. The execution time is also assumed to be exponentially distributed with 

an average of 1/ /-lE time-units. 

We have analyzed seven different load balancing strategies for varying information 

collection mechanisms and scheduling disciplines. The selected strategies belong to the sen­

der-initiated class. Based on the information interchange mechanism, these strategies can be 

further classifies into two categories. In the first category, the information about load and 

status of other nodes is collected at the time a task is scheduled for execution or migration. 

The load is expressed in terms of the length of the execution queue. This load metric has been 

widely accepted and experimental results have shown that it accurately reflects the CPU load 

[18]. In the second category, nodes exchange the load information among their neighbors 

periodically. Within each category, we have considered three different scheduling policies. In 

addition, one more strategy is proposed which uses a different scheduling policy but requires 

non-periodic information. The seven strategies are described below. 

Category 1: Information Exchange at the Time of Thsk Schedule 

• FRandom: 

In this strategy, the task scheduler calculates the average of the local load and the load of 

all neighbors. If the local load is greater than the average, the task is sent to a randomly 

selected neighbor. If some tasks are already waiting in the communication queue for that 

neighbor, the task joins that queue. Each communication queue is served on the FCFS 

basis. If the local execution queue is empty (or local load is less than the average), then the 

task is sent to the local execution queue. 

• FMin: 

In this strategy, the task scheduler sends a new task to the node which has the minimum 

load. However, if the local node's load is equal to the minimum load among neighbors, 

the local node is given priority. 

• FAverage: 
In this strategy, the task scheduler calculates the average of all neighbors' load and its own 

load. If the local load is greater than the average, the task is sent to the neighbor with the 

minimum load. However, if the local execution queue is empty or local load is less than 

the average, then the task is sent to the local execution queue. 
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Category II: Information Excban&e with Periodic Interval 

• PRandom: 
This strategy is similar to FRandom except that every node sends it own load information 

to all its neighbors periodically. The time period, Tu for sending messages is a system 

parameter. 

• PMin: 
This strategy is similar to FMin except that information exchange is done periodically. 

• PAverage: 
This strategy is similar to FAverage except that information exchange is done periodically. 

In addition to the above mentioned six strategies, a new strategy, Bidd-Average, is pro­

posed and analyzed. This strategy is described below. 

• Bidd-Average: 

This strategy is a combination of neighborhood averaging and bidding approach. When a 

task is to be scheduled, the scheduler broadcasts messages to its neighbors asking for bids. 

A neighbor calculates the average load of its own neighborhood and if its own load is less 

than that average, it sends ayes message along with its load information to the requesting 

node. After the requesting node has received all the bids, it calculates the average load of 

its neighborhood. If its local load is greater than average, it selects the node with mini­

mum load out of those neighbor which sent yes messages. If the local execution queue is 

empty or the local load is less than average and none of the neighbors reply with yes mes­

sages, the task is scheduled in the local queue. This strategy is proposed to add more sta­

bility to neighborhood averaging strategy. This extra level of stability is due to the fact 

that the receiving node expresses its willingness to receive a task only if its load is less than 

its own neighborhood average. 

3. The Performance Prediction Model 

In this section, we describe a performance prediction model for distributed load bal­

ancing strategies described above. The model is an integration of simulation, and statistical 

and queuing models. First, we describe the queuing model and show that the class of distrib­

uted load balancing strategies described above can be modeled by an open central server 

queuing model. 
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3.1. The Queuing Model 

As described above, the multicomputer system considered here is symmetric and ho­

mogeneous. By symmetry, we mean that the interconnection network of the system is a regu­

lar graph with fixed number of links per node. By homogeneity we imply that the processors 

of the system have identical processing speeds. Similarly all communication channels and 

task schedulers are identical. With nearest neighbor load balancing, the steady state depar­

ture and task arrival rates at a node are the same. As explained earlier, a task keeps on mi­

grating until it finds a suitable node. When a task migrates from one node to another, it sees a 

statistically identical node. Therefore, the steady-state behavior of nearest neighbor load 

balancing can be approximated by the open central server queuing model as shown in Figure 

1. The model consists of a waiting queue, L communication queue sand an execution queue. 

The model is approximate since routing of tasks is dependent on the state of execution 

queues. However, as described in next section, simulation results obtained on actual network 

Waiting Queue 

Scheduler/ 
Information 
Collector 

Execution Queue 

Locally submitted tasks 
with rate .t 

Sink 

• • • • • 
PL 

Communication Queue 

Migrated tasks 

Figure 1: Distributed load balancing represented by open central server model 
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} 

Figure 2: Markov chain with state of the chain describing number of tasks at each 
queue of a node 

topologies are very close to the analytical results determined from this model which validate 

that the proposed model of Figure 1 indeed represents the task scheduling and migration pro­

cess. 

A task's residence time in the system can be viewed as consisting of two phases. In the 

first phase, the task may keep on migrating during the course of which it waits in the waiting 

queue, gets service from the scheduler, waits in the communication queue, and then transfers 

to another node. At that point the same cycle may start all over again. Once the task is sched­

uled at the execution queue of a node, the second phase starts which includes the queuing and 

service time at the CPU. In the first phase, the task can be viewed as occupying either the task 
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scheduler or one of the communication links. The Markov chain model shown in Figure 2 

describes the behavior of the central server which in turn explains the task migration phenom­

enon before the task enters the execution queue. The state of the Markov chain is described 

by ( L + 1) tuple, ko, k1. . . kL in which k; represents the number of tasks at the i-th 

queue ( 0 ::::; i ::::; L) at a node. 

It follows [23] that the model can be solved by the Jacksonian network which has the 

product form solution; that is, the joint probability of kj tasks at queue j ( j = 0, 1, ... , L) is 

given by the product : 

L 

p(ko, kt, , kz, . . .kL) = [l pjkj). 
j=O 

where pik1) is the probability of kj tasks at j-th queue and is given by: 

It implies that the lengths of all queues are mutually independent in a steady-state. The 

above model can also be solved if considering the probabilistic behavior of a task. Suppose, 

after the task is served by the scheduler, it goes to the i-th link with probability P; or it enters 

the local execution queue with the probability Po. When a task leaves (enters) the waiting 

queue, the number of tasks in that queue is decreased (increased) by one. Similarly, when a 

task is served by the communication, a statistically identical task joins the waiting queue. For 

the j-th component, the average utilization, lJi , is equal to A.j/ /1j, and the average queue 

length and the average response time are given by 

E[N;] 

respectively. 

= _21_ 
l-Qj 

and E[Rj] = _!__2[_ 
..ll-Qj • 

The average number of tasks at a node is the sum of the average number of tasks at each 

component of a node and is given by: 

L L 

E[Nj = I E[N;] = I _2[_ . 
1-l'l· 

j=O j=O tt:J 

from which the average response time before the task is scheduled in the execution queue can 
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be computed as [23]: 

1 L e· 
E[Rs] = -I-' 

A,j=O 1-Qj 

_ 1/(Pop,o) + I pif(PoP,j) • 
- 1-A.f(Pop,o) i= 1 1-A/Ji/(pjPo) 

Once a task is scheduled at a local execution queue, the response time from the time it 

is scheduled to the time it finishes execution is given by 

where E[NE] is the average execution queue length. The complete response time, therefore, 

is given by 

E[R] = E[Rs] + E[RE] . 

The above equation implies that, for a given system load, 11-o and f.lj 's, the response 

time yielded by a load balancing strategy can be calculated if the probability, Po, and the aver­

age execution queue length, E[NE] is determined. In other words, Po, is the probability with 

which a load balancing strategy schedules the tasks locally. The probability that a task will be 

migrated to another node is simply 1 - Po and migration probabilities to individual channels 

at each node are identical. The average execution queue length, E[ N E], determines how 

smoothly load is balanced. Both parameters, Po and E[NE], depend on system parameters 

such as A. , 11-s, !J-c, !J-E, and L. In the next sections, we briefly describe the simulation method­

ology which was used to obtain a very large data set from different test cases. We describe how 

we performed statistical analysis on the simulation data and determined the sensitivity of Po 

and E[NE] against different system parameters 

3.2. The Simulation Model 

The above mentioned load balancing strategies were simulated on an Encore Multi­

max. The simulator accepts the topology ofthe network along with A. , /1-s, 11-c. /1-E, length of 

simulation run, and choice of load balancing strategies and their associated parameters. The 

results produced by the simulator include average response time, utilization of individual 
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nodes, average time spent in communication, average number of messages, throughput, aver­

age number of migrations made by a task and their distribution, average lengths of waiting, 

communication and execution queues. In addition to average values, the variance and each 

node's individual statistics are also produced. The average number of tasks transferred and 

received at each node are also recorded. The probability, Po, is then calculated by dividing 

the average number of locally scheduled tasks by the total number of tasks arrived, at each 

node. The important aspects of discrete-event simulation are that it should be run for suffi­

ciently long time and initial transients should be removed before starting the accumulation of 

statistics. Moreover, the confidence interval must be calculated after running the same ex­

periment with multiple independent streams. All of these features have been incorporated in 

the simulator and all results are obtained with a 99 % confidence interval. 

A long series of simulation runs was conducted to obtain a large number of data points 

for Po and E[N E) for each particular strategy. Three different topologies were selected which 

included the ring, the hypercube and the folded hypercube [9], each consisting of 16 nodes. 

Each point for one particular strategy was obtained on each of the topologies by fixing one 

parameter and varying the rest. In most cases, l was varied from 0.3 to 0.9 tasks per time­

unit, P,s was varied from 8 to 16 tasks per time-unit and p,cwas varied from 8 to 16 task per 

time-unit. The task execution rate, P,E, was fixed as 1 task per time-unit in all cases. For 

strategies that required a periodic information update, the update time, Tu, period was varied 

from 0.5 time-units to 1.5 time-units. A total of 3500 data values for Po and E[NE] were 

obtained. 

It is worth mentioning that the simulator takes into account the time to schedule a task 

which includes the exchange of state information and the execution of scheduling algorithm 

itself. Most previous studies have ignored this overhead. We have assumed an average sched-

uling time, 1/ P,s, which in tum can be normalized with respect to the execution time, 1-lE· In 

other words, when P,s is 10 tasks/time-unit and P-E is 1 task/time-unit, it means that the aver­

age task scheduling time is 1110 of the execution time. We consider it an input parameter 

which can be observed from a real system depending upon how the information message han­

dling and regular task migration is implemented. 
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3.3. Statistical Analysis 

In order to characterize Po and E[NE] in terms of system parameters such as A. , fls, 

f.lc, Tu and system network topology, statistical analyses have been performed. As described 

above, data on Po was collected for various values of the system parameters, for each load 

balancing strategy. A regression analysis was then performed to obtain a model that expres-

ses Po in terms of the aforementioned parameters. It is observed that the following model 

works quite well for all seven strategies. 

The estimates of ap and coefficients, f3 's, are given in Thble I along with measures that de­

scribe how good the above model predicts the observed Po. For instant, in case ofFRandom, 

R-Square value is 0.9277 which implies that the regression model is able to compute 92.77% 

of variation observed values of Po. 

A similar regression analysis approach is taken to characterize E[NE] in terms of system pa­

rameters. In this case, the observed model is: 

E[NE] = exp (aq + /31£/inks + /32qllC + /33qllS + f34f/. + /3sqTu) 

This model fits extremely well as is observed from its R-Square values ( all R-Square values 

are 99 %) given in Table II. In case of E[N £], the coefficients for fls and pcwere found insig­

nificant and hence are ignored. 

3.4. The Complete Model 

The complete model for performance prediction is shown in Figure 3. The perform­

ance measure is the average task response time. As described above, the model building con­

sisted of running a large number of simulations and then applying statistical analysis to obtain 

models for Po and E[NE]. Using these model, the values of Po and E[NE] can be directly 

computed for any of the seven load balancing with any combination of system load, communi­

cation rate, task scheduling rate, load update period (for load balancing strategies belonging 
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Table 1: Estimation for Po and its sensitivity versus system parameters 

Strategy R-Square System Coefficient 
Parameter Estimate 

a 1.72220 
FRan doom 0.9277 

Links -0.15421 

Pc 0.00116 t 
f.ls 0.00140 t 
A -1.32043 

FMin 
a 3.39618 

0.9505 
-0.02139 Links 

f.lc 0.00881 

~s 
0.00841 

-3.02439 

FAverage 0.8668 a 1.48038 

Links -0.09421 

f.lc 0.00839 

f.ls 0.01214 
A -1.04726 

PPandom 0.9356 
a 1.63440 
Tu -0.13364 

Links -0.13337 

f.lc -0.00214 t 
f.ls -0.00395 
A -1.23230 

PMin 
a 4.06852 

0.9683 Tu -0.21302 
Links -0.10590 

f.lc 0.00013 t 
f.ls 0.00300 
A -3.48994 
a 2.16996 PAverage 0.9038 Tu -0.42800 
Links -0.14715 

Pc -0.00146 t 
f.ls -0.00356 
A -1.46303 

a 1.34904 
Bidding- 0.9103 Links -0.10827 
Average f.lc 0.00559 

f.ls 0.01331 
A -0.79433 

Note: All estimates of model parameters are statistically significant except 
t slightly significant 
t not significant 

- 13-



Thble II: Estimation for E[NE] and its sensitivity versus system parameters 

Strategy R-Square Parameter Parameter 
Estimate 

FRan doom 0.9931 a -1.96055 
Links -0.06211 

a A. 3.30085 
FMin 0.9926 a -1.67735 

Links -0.03932 
1 -2.86089 

FAverage 0.9945 a -1.92121 
Links -0.05420 
A. 3.07851 

PRandom 0.9981 a -1.86021 
Tv -0.02244 

Links -0.05787 
A. 3.08250 

PM in 0.9953 a -1.59469 
Tv 0.01106 
Links -0.03587 
A. 2.70488 

PAverage 0.9984 a -1.85252 
Tv -0.00950 
Links -0.05200 
A. 2.94949 

Bidding- 0.9976 a -1.83433 
Average Links -0.05526 

A 2.91303 

to category II) and network topology. We then compute the average response time by using 

the formula given in section 3.1. 

As explained earlier, this response time consists of two parts. The first part is the aver­

age response time before a task is scheduled in an execution queue. This is simply equal to the 

time the task is scheduled (in the execution queue of some node) minus the task arrival time. 

This response time, called transient time, is completely described by Po which indicates the 

task migration tendency of a load balancing strategy. The second part of average response 

time shows how much time (queueing delay plus execution time) a task takes after eventually 

being scheduled. This time is equal to the time the task finishes execution minus the time the 

task was scheduled in the execution queue. The best transient response time results when a 

strategy's Po is neither very high nor very low. In other words, the strategy should not have 
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Figure 3: The complete Performance Prediction Model 

task thrashing tendency and yet it should make task migrations whenever appropriate. The 

second part of the response time depends on a strategy's load equalization ability, that is, a 

smaller average execution queue length will result if load is equally balanced. Both factors, 

however, are dependent on each other. For example, if a strategy suffers from task thrashing, 

execution queue length is not balanced and the average value of queue length increases. 

As an example, Figure 4 shows the plot of Po versus system load for all seven strategies, 

on a 16 node hypercube. We notice that at low load both FMin and PMin have high values of 

Po which sharply increase at high load. This implies that both Min strategies schedule more 

tasks locally (and hence make less migrations) but transfer more tasks at high load. In con-

trast, both 'random' strategies have low values of Po which implies that greater task migration 

takes place using random algorithms. Figure 5 shows the variations in E[NE] versus system 

load for all seven strategies. From this figure, we observe that, in this case, the value of E[NE] 

is the minimum with Bidd-Average, followed by FAverage and PAverage and PMin results in 

the largest average queue length. 

- 15-



1 
Po 

0.9 

0.8 

0.7 ----FMin 

0.6 

_..-- Bidd-Average ----:K 
~ PMin 

~ FAverage 

0.5 --- PAverage 

---FRandom 

0.4 
0.4 0.5 0.6 0.7 ~----------~" 0.8 0.9 PRandom 

A. 

Figure 4: Variations in Probability Po versus system load for various load balancing strategies 

~------------------------------------~------PMm FRandom 
E[NE] 2.3 

1.9 

1.5 

1.1 

0.7 

/ 
/ 

/ 

---- PRandom 
1---FMin 
1--- PAverage 

X:---_ FAverage 

/// ~ Bidd-Average 
/ 

0.3 '----------------------' 
0.4 0.5 0.6 0.7 0.8 0.9 
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4. Performance Prediction, Evaluation and Comparison 

After obtaining response time data from the performance prediction model, we com­

pare it with the observed simulation results. Seven load balancing strategies along with vary-

ing values of A. , ~ts, ~tc, T u and different network topologies provide a wide range of figures 

to make a comparison between the response time obtained with the model and the response 

time obtained with simulation. However, we compare the two figures by varying one parame­

ter while keeping the rest constant. The results are quite encouraging and the difference be-

tween the two figures is found to be less than ± 7 %. Since all results cannot be provided 

within the limited space of this paper, we present only those results with noticeable impact of 

each parameter on response time produced by the model as well as by the simulation. 

First , we examine the impact of system load on the average response time for all seven 

strategies, shown in Figure 6 and Figure 7. In both figures, we have plotted the pairs of aver­

age response time computed from the model and the average response time observed from 

simulation. The task scheduling rate, ~ts, and the task communication rate ~tc are both 16 

tasks/time-unit. System topology is a 16 node hypercube network and load update period, 

Tu, is 0.5 time-units. In Figure 6, system load Q is 0.5 (with A. = 0.5 and ~tE = 1). Figure 7 

differs from Figure 6 in that the system load is increased from 0.5 to 0.7. From these figures, 

we observe the following. 

• The difference in the response time computed from the model and the response time ob­

served from simulation is very small. For most of the cases, this difference is less than 1%. 

The worst case difference is 6.52%. 

• At low loading conditions, Bidd-Average and FAverage perform equally well whereas 

PRandom performs the worst of all. The difference in the performance of FRandom and 

PRandom is not significant which implies that for random algorithms, information ex-

change can be done either instantaneously or periodically with Tu = 0.5. 

• The Difference in the performance of FMin and PMin is not significant. Again, this im­

plies that information update can be done by selecting either of the two principles. This 

observation coupled with the above mentioned observation for random algorithms indi-

cate that with Tu = 0.5, periodic update strategies perform as good as fresh information 

update strategies. 
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Figure 6: Comparison of response times predicted by the model and simulation for various 
strategies at low ~tern load = 0.5 , P.c = 16 task/time-unit, P.s = 16 task/time-unit, 
Tu = 0.5 time-units and topology = 16 node hypercube 
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Figure 7: Comparison of response times predicted by the model and simulation for various 
strategies at high system load = 0.8, P.c = 16 task/time-unit, P.s = 16 task/time-unit, 
Tu= 0.5 time-units and topology = 16 node hypercube 
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In order to check the validity of the proposed model for various parameters, we change Ps 

and P,c but keep the rest fixed. These results are shown in Figure 9 and Figure 10. A high 

system load, equal to 0.8, is selected by first considering a fast communication network and 

slow task scheduling rate (Pc = 16 tasks/time-units and p,s = 16 tasks/time-units), and then 

considering a slow network and fast task scheduling rate with (Pc = 8 tasks/time-units and 

p,s = 16 tasks/time-units). Again the model is shown to predict the average response time 

which closely matches the response time produced by simulation. Further insights drawn 

from these figures are summarized below. 

• We note that task scheduling time has greater impact on the average task response time 

than the task communication time. This is obvious because the average response time 

with slow scheduling rate and high communication rate (Figure 8) is greater than the re­

sponse time with fast scheduling rate and slow communication rate (Figure 9). The obser-

vation is true for all strategies. This should not be confused with the fact that Po which was 

found insensitive to P,cfor non-periodic load update strategies. Po is only the probability 

with which a strategy schedules a task in local queue but P,c and P,s count towards queuing 

delays and service times at communications and input waiting queues, respectively. 

Next, we show two arbitrarily chosen sets of system parameters. In the first set, a 16 node 

folded hypercube with 5 links per node at relatively low system load (0.6) is selected. The task 

communication rate and the task scheduling rate are both 12 tasks/time-unit and Tu is equal 

to 1.5 time-unit which is relatively large. The results for this combination of parameters are 

shown in Figure 10 and are summerized below. 

• The difference in the response time for the model and simulation is again very small. 

• The periodic update strategies, PMin and PAverage, are outperformed by FMin and FAv­

erage because of the larger value of Tu. 

• On the other hand, FRandom and PRandom yield identical results by showing their insen­

sitivity to the load update method. 

In the second set, we have selected a 16 node ring network with medium system load equal 

0. 7. Again, the response times predicted by the model match those produced by the simula­

tion, as shown in Figure 11. 
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Figure 8: Comparison of response times predicted by simulation and the model for various 
strategies at high system load = 0.8 with fast communication, f.lc = 16 task/time-unit, 
high scheduling overhead (low rate), f.ls = 8 task/time-unit, Tu= 1.0 time-units and 
topology = 16 node hypercube 
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Figure 9: Comparison of response times predicted by simulation and the model for various 
strategies at high system load = 0.8 with slow communication, f.lc = 8 task/time-unit, 
low sclleduling overhead (high rate), f.ls = 16 task/time-unit, Tu= 1.0 time-units and 
topology = 16 node hypercube 

- 20-



Time-units 
2.4 

Q) 
2.1 

e 
1.8 E::: 

Q) 
~ 1.5 § 
Q. 

1.2 ~ e 
~ 0.9 
""' Q) 

< 0.6 

0.3 

0 

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average 

Figure 10: Comparison of response times predicted by the model and simulation for various 
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Figure 11: Comparison of response times predicted by the model and simulation for various 
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units 
for 16 node ring with IJ.c = 12 task/time-unit and P.s = 12 task/time-unit 
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Up to this point, the performance of the model is compared with the same simulation 

test cases through which empirical data for statistical modeling was obtained. After character-

izing Po andE[NE], the queueing model was used to compute the average response time and 

the results were compared with the same simulation results. Therefore the comparison of the 

model with simulation has only revealed the correctness of the model. The validity of the 

proposed model is more strongly established as we obtain response time from the model and 

compare it with some additional simulation runs. The empirical data from these simulation 

runs has not been used for statistical modeling. The additional simulation runs include differ­

ent network topologies with different parameters. The results of some combinations are 

shown in Figure 12, 13 and 14. By examining these figures, we conclude the following. 

• Again, the difference between any pair of data sets does not exceed ±7 %. 

• Bidd-Average performs consistently better than all other schemes and Faverage performs 

almost equally good. 

• PAverage performs as good as FAverage, given that Tu is small. 

• All nearest neighbor load balancing strategies perform better if the number of links per 

node are increased. This is because the probability that a node finds a suitable neighbor 

for task migration improves with increase in the number of links. 

• The difference in the performance of 'random' strategies and 'min' strategies is not very 

significant as compared to the difference in the performance of 'random' and 'averaging' 

strategies. 

• Random algorithms can be used with periodic information update for any network topolo­

gy because periodic information update generates less message traffic. This is especially 

true for the fully connected network where PRandom performs as good as FRandom. 

• If the actual scheduling time, lilts, for the random algorithm is less than that for 'min' 

algorithms, then PRandom can be used instead of FMin, PMin or FRandom. 

• If the actual scheduling time, 11 !J-s, for 'averaging' algorithms is less than Bidd-Averaging, 

PAveraging should be used for network topologies such as ring or chordal ring and PAver­

age should be used for more dense [9] network topologies such as the fully connected net­

work. 

- 22-



Simulation:l ) > · { I 

Time-units 2.4 J----------------------------1 

8 2.1~~~~----------------------------------------------~ 
E= 1.8 

~ - 1.5 
!! 
Q) 1.2 
~ 
~ 0.9 
< 0.6 

0.3 

0 

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average 

Figure 12: Comparison of response times predicted by the model and simulation for various 
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units 
for 9 node mesh network with,uc = 16 task/time-unit and ,us= 16 task/time-unit 
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Figure 13: Comparison of response times predicted by the model and simulation for various 
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units 
for 8 node fully connected network with ,uc = 16 task/time-unit and ,us = 16 task/time-unit 
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Figure 14: Comparison of response times predicted by the model and simulation for various 
strategies at system load, A.= 0.7 task/time-unit and load update period Tu = 1.0 time-units 
for 6 node chordal ring network with ~-tc = 16 task/time-unit and /-lS = 16 task/time-unit 

5. Summary 

In this paper, we have presented an approach for modeling the average task response 

time for distributed load balancing in multicomputer systems. With this approach, we are 

able to compare different load balancing schemes on a unified basis. The class of load balanc­

ing strategies examined belong to the sender-initiated class. We have shown that these strate­

gies can be modeled by an open central server queuing network if the system is symmetric and 

homogeneous. We believe that any sender-initiated load balancing strategy can be modeled 

by this queuing network. We have shown that for this model, we need to know only Po and 

E[NE]. The statistical characteristics of seven load balancing strategies are presented by 

showing the sensitivity of their queuing parameters with respect to various system parameters. 

By considering examples from a wide range of system parameters, it is shown that the average 

task response time predicted through the proposed model closely matches the response time 

obtained via simulation. The proposed performance prediction approach can be useful for 

analyzing and tuning an existing system, and evaluating newly proposed strategies. This ap­

proach can also be useful to select a suitable scheme for a given system. 
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