
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

4-1991

Performance Prediction for Distributed Load Balancing in Performance Prediction for Distributed Load Balancing in

Multicomputer Systems Multicomputer Systems

Ishfaq Ahmad
Syracuse University

Arif Ghafoor

Kishan Mehrotra
Syracuse University, mehrtra@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ahmad, Ishfaq; Ghafoor, Arif; and Mehrotra, Kishan, "Performance Prediction for Distributed Load
Balancing in Multicomputer Systems" (1991). Electrical Engineering and Computer Science - Technical
Reports. 117.
https://surface.syr.edu/eecs_techreports/117

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/117?utm_source=surface.syr.edu%2Feecs_techreports%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-12

Performance Prediction for Distributed
Load Balancing in Multicomputer Systems

Ishfaq Ahmad, Arif Ghafoor, and Kishan Mehrotra

Apri11991

School ofComputerandlnformation Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

SU-CIS-91-12

Performance Prediction for Distributed
Load Balancing in Multicomputer Systems

Ishfaq Ahmad, Arif Ghafoor, and Kishan Mehrotra

April1991

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

Abstract

Computing literature has being flooded recently with a plethora of dynamic load bal­

ancing strategies for multicomputer systems. The diversity of many strategies and their de­

pendence on a number of parameters has made it difficult to compare their effectiveness on a

unified basis. Not only does each strategy consider a different environment, but the simplified

assumptions obscure the relative merits and demerits of each strategy. This paper presents a

solution to compare different load balancing schemes on a unified basis. Our approach, which

is an integration of simulation, statistical and analytical experiments, takes into account the

fundamental system parameters that can possibly affect the performance. We show that a

class of distributed load balancing strategies can be modeled by a central server open queuing

network. Furthermore, these load balancing strategies can be characterized by only two

queuing parameters - the average execution queue length and the probability that a newly

arrived task is to be executed locally or migrated to another node. To capture the relation

between these queuing parameters and various system parameters, a statistical analysis has

been carried out on the empirical data obtained through simulation. The analytical queuing

model is then used to predict the response time of a system with any set of system parameters.

Experimental results are obtained for seven different load balancing strategies. The pro­

posed model directly provides performance results in a straight forward manner and can be

beneficial to the system designers in order to assess the system under varying conditions.

1. Introduction

Efficient utilization of a multicomputer system lies in its ability to efficiently partition

and balance computational load among its computing nodes. With the increasing popularity

of multicomputer systems, researchers and system designers have been focusing on these es­

sential issues. There is a clear distinction between dynamic load balancing, also known as

load sharing [5] or load distribution [10], and static load balancing [3]. In the former case,

work load allocation decisions are taken at run time rather than at compile time. As noted in

[5], any simple dynamic load balancing algorithm improves the performance of the system,

and is better than no load balancing. Dynamic Load balancing strategies are characterized by

the manner in which information exchange and control of work load allocation takes place.

The control can be centralized [16], fully distributed [2], [4], [5], [6], [11], [14], [17], [24] or

- 1 -

semi-distributed [1]. With fully distributed control, the load balancing strategy is incorpo­

rated at every node of the system in that each node in the system makes autonomous deci­

sions. A node is subject to arrival of tasks, locally generated or migrated from some other

node. The node decides whether the new task should be executed locally or it should be

transported to some other node. If the task is decided to be migrated, the local node needs to

know the load status of other nodes. Once the state information about other nodes is re­

ceived, the target node can be selected in a number of ways. A node for task migration can be

selected randomly [5], [8], [24] or it can be selected if it has the lowest load [5]. However, the

accuracy of scheduling decisions in a decentralized algorithms, depends on the accuracy and

amount of state information [10]. Intuitively, getting more information should result in a

more accurate decision-making. Although decentralized models have potential advantages

over centralized models, they can incur large overhead due to information exchange and task

migration [6].

Wang and Morris [25] proposed a number of relatively simple load balancing algo­

rithms and classified them into two categories: source-initiated and server-initiated. In a

source-initiated algorithm, tasks enter the distributed system via source nodes and are pro­

cessed by server nodes. A demand driven model, using a gradient plane, was suggested by Lin

and Keller where lightly loaded processors initiate request for load [13]. Fox et al. [7] pres­

ented a load balancing scheme by making use of the analogy of load balancing to minimizing

an appropriate energy function. In [17] and [22], various bidding algorithms have been pro­

posed which belong to the sender-initiated class. A drafting algorithm belongs to the server­

initiated class [15]. A comparison ofthese two types of algorithms [18] reveals that in spite of

the fact that the bidding algorithm suffers from task-dumping or task-thrashing, it performs

consistently better than the drafting algorithm. Thsk-thrashing is a phenomenon associated

with load balancing schemes where a lightly loaded node can become a victim of task arrivals

from other nodes [8], [14]. Load balancing algorithms can also suffer from state woggling­

another performance decaying phenomenon in which processors frequently change their sta­

tus between low and high [18].

Distributed load balancing schemes based on task migration among nearest neighbors

have gained considerable attention. In a number of independent studies [8], [10], [12], [19],

variants of this strategy have been proposed and their effectiveness has been proven both by

simulation and implementation observations. Kale [19] have compared one version of this

strategy, known as Contracting Within Neighborhood (CWN), to Gradient Model [13) and

-2-

have shown that CWN spreads the load more quickly and performs better. In two more stu­

dies (8], (19], the concept ofload averaging among neighbors is introduced. The advantage of

load averaging is that each node tries to keep its own load equal to the average load among its

nearest neighbors. Shu and Kale (21] have proposed and implemented a revised version of

CWN known as Adaptive Contracting Within Neighborhood (ACWN) which consistently

shows better response time compared to the Gradient model and Random strategy. Grun­

wald et al. (10] have proposed a classification scheme for the type of information required to

make load balancing decisions. For large-scale multicomputer systems consisting of

hundreds or thousands of nodes, a semi distributed strategy was proposed in [1]. The semi

distributed strategy combines the advantages of centralized and fully distributed load balanc­

ing strategies by partitioning the system into independent spheres and load balancing is per­

formed by only a selected set of nodes.

Given the diversity of a number of proposed strategies and their dependence on a

number of parameters, it is difficult to compare their effectiveness on a unified basis. One

particular strategy may perform well under a certain combination of parameters such as sys­

tem load or system communication rate on a certain topology. The same strategy may be

outperformed by another strategy due to difference in information collection and scheduling

overhead. In addition, simplified assumptions and neglecting important parameters some­

times obscures the relative merits and demerits of each strategy. This paper presents an ap­

proach to predict and compare different load balancing schemes based on a unified basis.

Our approach, which is an integration of simulation, statistics and analytical models, takes

into account various system parameters, such as system load, task migration time, scheduling

overhead and system topology etc., that can possibly affect the performance. We show that a

class of load balancing strategies can be modeled by a central server queuing network. We

also show that these load balancing strategies can be characterized by only two parameters­

the average queue length and the probability that a newly arrived task is to be executed locally

or migrated to another node. Through an extensive simulation, a large number of values of

the average queue length and the probability associated with task migration have been ob­

tained. A statistical analysis has been performed on these data points to capture the relation

between the queueing parameters and the system parameters. We then use the analytical

queuing model to predict the response time of a system with any set of parameters. Seven

different load balancing algorithms have been studied and characterized.

-3-

This performance prediction approach has many advantages. First, instead of assess­

ing a particular strategy on the basis of a selected set of experiments, any combination of pa­

rameters can be used to predict the performance. Second, all strategies can be relatively com­

pared by selecting more appropriate and realistic parameters. Finally, an existing system can

be tuned, and a system design can be evaluated before it is actually built. The response time

predicted by the model is compared with the response time produced by simulation for all

eight strategies.

2. Selected Load Balancing Strategies

We consider a fully homogeneous multicomputer system in which processing nodes

are connected with each other through a symmetric topology, that is, each node is linked to

the same number of nodes. The number oflinks per node, called the degree of the network, is

considered as one of the system parameters and is denoted as L. The work load submitted to

the system is assumed to be in the form of tasks, which are submitted to each node with an

average arrival rate of A. tasks per time-unit per node. The task arrival process is assumed to

be Poisson. The load balancing control is fully distributed for which each node makes an

autonomous decision to schedule a task by collecting the load status information from its

neighbors. A task is either scheduled to a local execution queue or it is migrated to one of the

neighbors connected with each communication channel. Seven different load balancing strat­

egies have been chosen which are fully distributed but differ in information collection and

scheduling policies. The information and scheduling takes a certain amount of time, which is

assumed to be exponentially distributed with an average of 1/ J-ls time-units. Information is

collected by a hardware/software component at each node and is called Collector/Scheduler.

Since information interchange and execution of scheduling algorithm takes certain

amount of time, the tasks arriving during that time wait in a waiting queue. For each commu­

nication link, a communication queue is maintained. The underlying network supports

point-to-point communication and the communication channel is model by a server. A com­

munication server transfers a task from one node to another with an average of 1/ J-lc time­

units. The task communication time is also assumed to be exponentially distributed and all

network links are assumed to be identical. At each node, the incoming traffic from other

nodes joins the locally generated traffic, and both are handled with equal priority. Each node

maintains an execution queue in which locally scheduled tasks are served by a CPU on the

-4-

FCFS basis . A task may migrate from node to node in the network before finally being ex­

ecuted at some node. The execution time is also assumed to be exponentially distributed with

an average of 1/ /-lE time-units.

We have analyzed seven different load balancing strategies for varying information

collection mechanisms and scheduling disciplines. The selected strategies belong to the sen­

der-initiated class. Based on the information interchange mechanism, these strategies can be

further classifies into two categories. In the first category, the information about load and

status of other nodes is collected at the time a task is scheduled for execution or migration.

The load is expressed in terms of the length of the execution queue. This load metric has been

widely accepted and experimental results have shown that it accurately reflects the CPU load

[18]. In the second category, nodes exchange the load information among their neighbors

periodically. Within each category, we have considered three different scheduling policies. In

addition, one more strategy is proposed which uses a different scheduling policy but requires

non-periodic information. The seven strategies are described below.

Category 1: Information Exchange at the Time of Thsk Schedule

• FRandom:

In this strategy, the task scheduler calculates the average of the local load and the load of

all neighbors. If the local load is greater than the average, the task is sent to a randomly

selected neighbor. If some tasks are already waiting in the communication queue for that

neighbor, the task joins that queue. Each communication queue is served on the FCFS

basis. If the local execution queue is empty (or local load is less than the average), then the

task is sent to the local execution queue.

• FMin:

In this strategy, the task scheduler sends a new task to the node which has the minimum

load. However, if the local node's load is equal to the minimum load among neighbors,

the local node is given priority.

• FAverage:
In this strategy, the task scheduler calculates the average of all neighbors' load and its own

load. If the local load is greater than the average, the task is sent to the neighbor with the

minimum load. However, if the local execution queue is empty or local load is less than

the average, then the task is sent to the local execution queue.

-5-

Category II: Information Excban&e with Periodic Interval

• PRandom:
This strategy is similar to FRandom except that every node sends it own load information

to all its neighbors periodically. The time period, Tu for sending messages is a system

parameter.

• PMin:
This strategy is similar to FMin except that information exchange is done periodically.

• PAverage:
This strategy is similar to FAverage except that information exchange is done periodically.

In addition to the above mentioned six strategies, a new strategy, Bidd-Average, is pro­

posed and analyzed. This strategy is described below.

• Bidd-Average:

This strategy is a combination of neighborhood averaging and bidding approach. When a

task is to be scheduled, the scheduler broadcasts messages to its neighbors asking for bids.

A neighbor calculates the average load of its own neighborhood and if its own load is less

than that average, it sends ayes message along with its load information to the requesting

node. After the requesting node has received all the bids, it calculates the average load of

its neighborhood. If its local load is greater than average, it selects the node with mini­

mum load out of those neighbor which sent yes messages. If the local execution queue is

empty or the local load is less than average and none of the neighbors reply with yes mes­

sages, the task is scheduled in the local queue. This strategy is proposed to add more sta­

bility to neighborhood averaging strategy. This extra level of stability is due to the fact

that the receiving node expresses its willingness to receive a task only if its load is less than

its own neighborhood average.

3. The Performance Prediction Model

In this section, we describe a performance prediction model for distributed load bal­

ancing strategies described above. The model is an integration of simulation, and statistical

and queuing models. First, we describe the queuing model and show that the class of distrib­

uted load balancing strategies described above can be modeled by an open central server

queuing model.

-6-

3.1. The Queuing Model

As described above, the multicomputer system considered here is symmetric and ho­

mogeneous. By symmetry, we mean that the interconnection network of the system is a regu­

lar graph with fixed number of links per node. By homogeneity we imply that the processors

of the system have identical processing speeds. Similarly all communication channels and

task schedulers are identical. With nearest neighbor load balancing, the steady state depar­

ture and task arrival rates at a node are the same. As explained earlier, a task keeps on mi­

grating until it finds a suitable node. When a task migrates from one node to another, it sees a

statistically identical node. Therefore, the steady-state behavior of nearest neighbor load

balancing can be approximated by the open central server queuing model as shown in Figure

1. The model consists of a waiting queue, L communication queue sand an execution queue.

The model is approximate since routing of tasks is dependent on the state of execution

queues. However, as described in next section, simulation results obtained on actual network

Waiting Queue

Scheduler/
Information
Collector

Execution Queue

Locally submitted tasks
with rate .t

Sink

• • • • •
PL

Communication Queue

Migrated tasks

Figure 1: Distributed load balancing represented by open central server model

-7-

}

Figure 2: Markov chain with state of the chain describing number of tasks at each
queue of a node

topologies are very close to the analytical results determined from this model which validate

that the proposed model of Figure 1 indeed represents the task scheduling and migration pro­

cess.

A task's residence time in the system can be viewed as consisting of two phases. In the

first phase, the task may keep on migrating during the course of which it waits in the waiting

queue, gets service from the scheduler, waits in the communication queue, and then transfers

to another node. At that point the same cycle may start all over again. Once the task is sched­

uled at the execution queue of a node, the second phase starts which includes the queuing and

service time at the CPU. In the first phase, the task can be viewed as occupying either the task

- 8-

scheduler or one of the communication links. The Markov chain model shown in Figure 2

describes the behavior of the central server which in turn explains the task migration phenom­

enon before the task enters the execution queue. The state of the Markov chain is described

by (L + 1) tuple, ko, k1. . . kL in which k; represents the number of tasks at the i-th

queue (0 ::::; i ::::; L) at a node.

It follows [23] that the model can be solved by the Jacksonian network which has the

product form solution; that is, the joint probability of kj tasks at queue j (j = 0, 1, ... , L) is

given by the product :

L

p(ko, kt, , kz, . . .kL) = [l pjkj).
j=O

where pik1) is the probability of kj tasks at j-th queue and is given by:

It implies that the lengths of all queues are mutually independent in a steady-state. The

above model can also be solved if considering the probabilistic behavior of a task. Suppose,

after the task is served by the scheduler, it goes to the i-th link with probability P; or it enters

the local execution queue with the probability Po. When a task leaves (enters) the waiting

queue, the number of tasks in that queue is decreased (increased) by one. Similarly, when a

task is served by the communication, a statistically identical task joins the waiting queue. For

the j-th component, the average utilization, lJi , is equal to A.j/ /1j, and the average queue

length and the average response time are given by

E[N;]

respectively.

= _21_
l-Qj

and E[Rj] = _!__2[_
..ll-Qj •

The average number of tasks at a node is the sum of the average number of tasks at each

component of a node and is given by:

L L

E[Nj = I E[N;] = I _2[_ .
1-l'l·

j=O j=O tt:J

from which the average response time before the task is scheduled in the execution queue can

-9-

be computed as [23]:

1 L e·
E[Rs] = -I-'

A,j=O 1-Qj

_ 1/(Pop,o) + I pif(PoP,j) •
- 1-A.f(Pop,o) i= 1 1-A/Ji/(pjPo)

Once a task is scheduled at a local execution queue, the response time from the time it

is scheduled to the time it finishes execution is given by

where E[NE] is the average execution queue length. The complete response time, therefore,

is given by

E[R] = E[Rs] + E[RE] .

The above equation implies that, for a given system load, 11-o and f.lj 's, the response

time yielded by a load balancing strategy can be calculated if the probability, Po, and the aver­

age execution queue length, E[NE] is determined. In other words, Po, is the probability with

which a load balancing strategy schedules the tasks locally. The probability that a task will be

migrated to another node is simply 1 - Po and migration probabilities to individual channels

at each node are identical. The average execution queue length, E[N E], determines how

smoothly load is balanced. Both parameters, Po and E[NE], depend on system parameters

such as A. , 11-s, !J-c, !J-E, and L. In the next sections, we briefly describe the simulation method­

ology which was used to obtain a very large data set from different test cases. We describe how

we performed statistical analysis on the simulation data and determined the sensitivity of Po

and E[NE] against different system parameters

3.2. The Simulation Model

The above mentioned load balancing strategies were simulated on an Encore Multi­

max. The simulator accepts the topology ofthe network along with A. , /1-s, 11-c. /1-E, length of

simulation run, and choice of load balancing strategies and their associated parameters. The

results produced by the simulator include average response time, utilization of individual

- 10 -

nodes, average time spent in communication, average number of messages, throughput, aver­

age number of migrations made by a task and their distribution, average lengths of waiting,

communication and execution queues. In addition to average values, the variance and each

node's individual statistics are also produced. The average number of tasks transferred and

received at each node are also recorded. The probability, Po, is then calculated by dividing

the average number of locally scheduled tasks by the total number of tasks arrived, at each

node. The important aspects of discrete-event simulation are that it should be run for suffi­

ciently long time and initial transients should be removed before starting the accumulation of

statistics. Moreover, the confidence interval must be calculated after running the same ex­

periment with multiple independent streams. All of these features have been incorporated in

the simulator and all results are obtained with a 99 % confidence interval.

A long series of simulation runs was conducted to obtain a large number of data points

for Po and E[N E) for each particular strategy. Three different topologies were selected which

included the ring, the hypercube and the folded hypercube [9], each consisting of 16 nodes.

Each point for one particular strategy was obtained on each of the topologies by fixing one

parameter and varying the rest. In most cases, l was varied from 0.3 to 0.9 tasks per time­

unit, P,s was varied from 8 to 16 tasks per time-unit and p,cwas varied from 8 to 16 task per

time-unit. The task execution rate, P,E, was fixed as 1 task per time-unit in all cases. For

strategies that required a periodic information update, the update time, Tu, period was varied

from 0.5 time-units to 1.5 time-units. A total of 3500 data values for Po and E[NE] were

obtained.

It is worth mentioning that the simulator takes into account the time to schedule a task

which includes the exchange of state information and the execution of scheduling algorithm

itself. Most previous studies have ignored this overhead. We have assumed an average sched-

uling time, 1/ P,s, which in tum can be normalized with respect to the execution time, 1-lE· In

other words, when P,s is 10 tasks/time-unit and P-E is 1 task/time-unit, it means that the aver­

age task scheduling time is 1110 of the execution time. We consider it an input parameter

which can be observed from a real system depending upon how the information message han­

dling and regular task migration is implemented.

-11-

3.3. Statistical Analysis

In order to characterize Po and E[NE] in terms of system parameters such as A. , fls,

f.lc, Tu and system network topology, statistical analyses have been performed. As described

above, data on Po was collected for various values of the system parameters, for each load

balancing strategy. A regression analysis was then performed to obtain a model that expres-

ses Po in terms of the aforementioned parameters. It is observed that the following model

works quite well for all seven strategies.

The estimates of ap and coefficients, f3 's, are given in Thble I along with measures that de­

scribe how good the above model predicts the observed Po. For instant, in case ofFRandom,

R-Square value is 0.9277 which implies that the regression model is able to compute 92.77%

of variation observed values of Po.

A similar regression analysis approach is taken to characterize E[NE] in terms of system pa­

rameters. In this case, the observed model is:

E[NE] = exp (aq + /31£/inks + /32qllC + /33qllS + f34f/. + /3sqTu)

This model fits extremely well as is observed from its R-Square values (all R-Square values

are 99 %) given in Table II. In case of E[N £], the coefficients for fls and pcwere found insig­

nificant and hence are ignored.

3.4. The Complete Model

The complete model for performance prediction is shown in Figure 3. The perform­

ance measure is the average task response time. As described above, the model building con­

sisted of running a large number of simulations and then applying statistical analysis to obtain

models for Po and E[NE]. Using these model, the values of Po and E[NE] can be directly

computed for any of the seven load balancing with any combination of system load, communi­

cation rate, task scheduling rate, load update period (for load balancing strategies belonging

- 12-

Table 1: Estimation for Po and its sensitivity versus system parameters

Strategy R-Square System Coefficient
Parameter Estimate

a 1.72220
FRan doom 0.9277

Links -0.15421

Pc 0.00116 t
f.ls 0.00140 t
A -1.32043

FMin
a 3.39618

0.9505
-0.02139 Links

f.lc 0.00881

~s
0.00841

-3.02439

FAverage 0.8668 a 1.48038

Links -0.09421

f.lc 0.00839

f.ls 0.01214
A -1.04726

PPandom 0.9356
a 1.63440
Tu -0.13364

Links -0.13337

f.lc -0.00214 t
f.ls -0.00395
A -1.23230

PMin
a 4.06852

0.9683 Tu -0.21302
Links -0.10590

f.lc 0.00013 t
f.ls 0.00300
A -3.48994
a 2.16996 PAverage 0.9038 Tu -0.42800
Links -0.14715

Pc -0.00146 t
f.ls -0.00356
A -1.46303

a 1.34904
Bidding- 0.9103 Links -0.10827
Average f.lc 0.00559

f.ls 0.01331
A -0.79433

Note: All estimates of model parameters are statistically significant except
t slightly significant
t not significant

- 13-

Thble II: Estimation for E[NE] and its sensitivity versus system parameters

Strategy R-Square Parameter Parameter
Estimate

FRan doom 0.9931 a -1.96055
Links -0.06211

a A. 3.30085
FMin 0.9926 a -1.67735

Links -0.03932
1 -2.86089

FAverage 0.9945 a -1.92121
Links -0.05420
A. 3.07851

PRandom 0.9981 a -1.86021
Tv -0.02244

Links -0.05787
A. 3.08250

PM in 0.9953 a -1.59469
Tv 0.01106
Links -0.03587
A. 2.70488

PAverage 0.9984 a -1.85252
Tv -0.00950
Links -0.05200
A. 2.94949

Bidding- 0.9976 a -1.83433
Average Links -0.05526

A 2.91303

to category II) and network topology. We then compute the average response time by using

the formula given in section 3.1.

As explained earlier, this response time consists of two parts. The first part is the aver­

age response time before a task is scheduled in an execution queue. This is simply equal to the

time the task is scheduled (in the execution queue of some node) minus the task arrival time.

This response time, called transient time, is completely described by Po which indicates the

task migration tendency of a load balancing strategy. The second part of average response

time shows how much time (queueing delay plus execution time) a task takes after eventually

being scheduled. This time is equal to the time the task finishes execution minus the time the

task was scheduled in the execution queue. The best transient response time results when a

strategy's Po is neither very high nor very low. In other words, the strategy should not have

- 14-

Model Building

Test Cases

+

Performance
Prediction

Parameters Selection

Network
Thpology

Load Balancing
Algorithm

Network
Communication Rate

Scheduling/Informatio
Collection Overhead

Execution Service
Rate

Figure 3: The complete Performance Prediction Model

task thrashing tendency and yet it should make task migrations whenever appropriate. The

second part of the response time depends on a strategy's load equalization ability, that is, a

smaller average execution queue length will result if load is equally balanced. Both factors,

however, are dependent on each other. For example, if a strategy suffers from task thrashing,

execution queue length is not balanced and the average value of queue length increases.

As an example, Figure 4 shows the plot of Po versus system load for all seven strategies,

on a 16 node hypercube. We notice that at low load both FMin and PMin have high values of

Po which sharply increase at high load. This implies that both Min strategies schedule more

tasks locally (and hence make less migrations) but transfer more tasks at high load. In con-

trast, both 'random' strategies have low values of Po which implies that greater task migration

takes place using random algorithms. Figure 5 shows the variations in E[NE] versus system

load for all seven strategies. From this figure, we observe that, in this case, the value of E[NE]

is the minimum with Bidd-Average, followed by FAverage and PAverage and PMin results in

the largest average queue length.

- 15-

1
Po

0.9

0.8

0.7 ----FMin

0.6

_..-- Bidd-Average ----:K
~ PMin

~ FAverage

0.5 --- PAverage

---FRandom

0.4
0.4 0.5 0.6 0.7 ~----------~" 0.8 0.9 PRandom

A.

Figure 4: Variations in Probability Po versus system load for various load balancing strategies

~------------------------------------~------PMm FRandom
E[NE] 2.3

1.9

1.5

1.1

0.7

/
/

/

---- PRandom
1---FMin
1--- PAverage

X:---_ FAverage

/// ~ Bidd-Average
/

0.3 '----------------------'
0.4 0.5 0.6 0.7 0.8 0.9

Figure 5: Variations in E[NE] length versus system load for various load balancing strategies

- 16-

4. Performance Prediction, Evaluation and Comparison

After obtaining response time data from the performance prediction model, we com­

pare it with the observed simulation results. Seven load balancing strategies along with vary-

ing values of A. , ~ts, ~tc, T u and different network topologies provide a wide range of figures

to make a comparison between the response time obtained with the model and the response

time obtained with simulation. However, we compare the two figures by varying one parame­

ter while keeping the rest constant. The results are quite encouraging and the difference be-

tween the two figures is found to be less than ± 7 %. Since all results cannot be provided

within the limited space of this paper, we present only those results with noticeable impact of

each parameter on response time produced by the model as well as by the simulation.

First , we examine the impact of system load on the average response time for all seven

strategies, shown in Figure 6 and Figure 7. In both figures, we have plotted the pairs of aver­

age response time computed from the model and the average response time observed from

simulation. The task scheduling rate, ~ts, and the task communication rate ~tc are both 16

tasks/time-unit. System topology is a 16 node hypercube network and load update period,

Tu, is 0.5 time-units. In Figure 6, system load Q is 0.5 (with A. = 0.5 and ~tE = 1). Figure 7

differs from Figure 6 in that the system load is increased from 0.5 to 0.7. From these figures,

we observe the following.

• The difference in the response time computed from the model and the response time ob­

served from simulation is very small. For most of the cases, this difference is less than 1%.

The worst case difference is 6.52%.

• At low loading conditions, Bidd-Average and FAverage perform equally well whereas

PRandom performs the worst of all. The difference in the performance of FRandom and

PRandom is not significant which implies that for random algorithms, information ex-

change can be done either instantaneously or periodically with Tu = 0.5.

• The Difference in the performance of FMin and PMin is not significant. Again, this im­

plies that information update can be done by selecting either of the two principles. This

observation coupled with the above mentioned observation for random algorithms indi-

cate that with Tu = 0.5, periodic update strategies perform as good as fresh information

update strategies.

- 17-

Model:- Simulation:!>::::::::: •• ... :::•••••!

Time-units 2.4

2.1
~

1.8 ~
Q)
rll
s:: 1.5 0
0..
rll e 1.2

~ 0.9
~
< 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 6: Comparison of response times predicted by the model and simulation for various
strategies at low ~tern load = 0.5 , P.c = 16 task/time-unit, P.s = 16 task/time-unit,
Tu = 0.5 time-units and topology = 16 node hypercube

Model: Simulation:!/>> •••••••••···•• >]

Time-units 2.4

2.1

~ 1.8
E=

Q) 1.5 sg
0
0.. 1.2 rll e
~ 0.9 CIS
~ < 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 7: Comparison of response times predicted by the model and simulation for various
strategies at high system load = 0.8, P.c = 16 task/time-unit, P.s = 16 task/time-unit,
Tu= 0.5 time-units and topology = 16 node hypercube

- 18-

In order to check the validity of the proposed model for various parameters, we change Ps

and P,c but keep the rest fixed. These results are shown in Figure 9 and Figure 10. A high

system load, equal to 0.8, is selected by first considering a fast communication network and

slow task scheduling rate (Pc = 16 tasks/time-units and p,s = 16 tasks/time-units), and then

considering a slow network and fast task scheduling rate with (Pc = 8 tasks/time-units and

p,s = 16 tasks/time-units). Again the model is shown to predict the average response time

which closely matches the response time produced by simulation. Further insights drawn

from these figures are summarized below.

• We note that task scheduling time has greater impact on the average task response time

than the task communication time. This is obvious because the average response time

with slow scheduling rate and high communication rate (Figure 8) is greater than the re­

sponse time with fast scheduling rate and slow communication rate (Figure 9). The obser-

vation is true for all strategies. This should not be confused with the fact that Po which was

found insensitive to P,cfor non-periodic load update strategies. Po is only the probability

with which a strategy schedules a task in local queue but P,c and P,s count towards queuing

delays and service times at communications and input waiting queues, respectively.

Next, we show two arbitrarily chosen sets of system parameters. In the first set, a 16 node

folded hypercube with 5 links per node at relatively low system load (0.6) is selected. The task

communication rate and the task scheduling rate are both 12 tasks/time-unit and Tu is equal

to 1.5 time-unit which is relatively large. The results for this combination of parameters are

shown in Figure 10 and are summerized below.

• The difference in the response time for the model and simulation is again very small.

• The periodic update strategies, PMin and PAverage, are outperformed by FMin and FAv­

erage because of the larger value of Tu.

• On the other hand, FRandom and PRandom yield identical results by showing their insen­

sitivity to the load update method.

In the second set, we have selected a 16 node ring network with medium system load equal

0. 7. Again, the response times predicted by the model match those produced by the simula­

tion, as shown in Figure 11.

- 19-

Time-units

Q) e 2.1
Cll
~

Q) 1.8
rJl

= & 1.5
rJl e
Q) 1.2
00
Cll
~ 0.9
< 0.6

0.3

0

Model:-- Simulation:! _•,_.·_.1

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 8: Comparison of response times predicted by simulation and the model for various
strategies at high system load = 0.8 with fast communication, f.lc = 16 task/time-unit,
high scheduling overhead (low rate), f.ls = 8 task/time-unit, Tu= 1.0 time-units and
topology = 16 node hypercube

Model:-- Simulation:! · > I

2.4~---4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0

(4.31%) (2.38%) (1.08%) (1.32%)

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 9: Comparison of response times predicted by simulation and the model for various
strategies at high system load = 0.8 with slow communication, f.lc = 8 task/time-unit,
low sclleduling overhead (high rate), f.ls = 16 task/time-unit, Tu= 1.0 time-units and
topology = 16 node hypercube

- 20-

Time-units
2.4

Q)
2.1

e
1.8 E:::

Q)
~ 1.5 §
Q.

1.2 ~ e
~ 0.9
""' Q)

< 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 10: Comparison of response times predicted by the model and simulation for various
strategies at medium system load, A. = 0.6 task/time-unit and large load update period
Tu= 1.5 time-units, for 16 node Folded Hypercube with IJ.c = 12 task/time-unit and
IJ.s = 12 task/time-unit

Model: Simulation:F::::::::: :: ::: :::::!

Time-units
2.4

Q) 2.1 e
E::: 1.8 Q)
~ c:

1.5 0
Q.,

e 1.2
~ cu 0.9 ""' ~ < 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 11: Comparison of response times predicted by the model and simulation for various
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units
for 16 node ring with IJ.c = 12 task/time-unit and P.s = 12 task/time-unit

- 21-

Up to this point, the performance of the model is compared with the same simulation

test cases through which empirical data for statistical modeling was obtained. After character-

izing Po andE[NE], the queueing model was used to compute the average response time and

the results were compared with the same simulation results. Therefore the comparison of the

model with simulation has only revealed the correctness of the model. The validity of the

proposed model is more strongly established as we obtain response time from the model and

compare it with some additional simulation runs. The empirical data from these simulation

runs has not been used for statistical modeling. The additional simulation runs include differ­

ent network topologies with different parameters. The results of some combinations are

shown in Figure 12, 13 and 14. By examining these figures, we conclude the following.

• Again, the difference between any pair of data sets does not exceed ±7 %.

• Bidd-Average performs consistently better than all other schemes and Faverage performs

almost equally good.

• PAverage performs as good as FAverage, given that Tu is small.

• All nearest neighbor load balancing strategies perform better if the number of links per

node are increased. This is because the probability that a node finds a suitable neighbor

for task migration improves with increase in the number of links.

• The difference in the performance of 'random' strategies and 'min' strategies is not very

significant as compared to the difference in the performance of 'random' and 'averaging'

strategies.

• Random algorithms can be used with periodic information update for any network topolo­

gy because periodic information update generates less message traffic. This is especially

true for the fully connected network where PRandom performs as good as FRandom.

• If the actual scheduling time, lilts, for the random algorithm is less than that for 'min'

algorithms, then PRandom can be used instead of FMin, PMin or FRandom.

• If the actual scheduling time, 11 !J-s, for 'averaging' algorithms is less than Bidd-Averaging,

PAveraging should be used for network topologies such as ring or chordal ring and PAver­

age should be used for more dense [9] network topologies such as the fully connected net­

work.

- 22-

Simulation:l) > · { I

Time-units 2.4 J----------------------------1

8 2.1~~~~--~
E= 1.8

~ - 1.5
!!
Q) 1.2
~
~ 0.9
< 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 12: Comparison of response times predicted by the model and simulation for various
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units
for 9 node mesh network with,uc = 16 task/time-unit and ,us= 16 task/time-unit

Simulation:!•• · · I

Time-units 2.4

Q) 2.1
e

E= 1.8
Q)
~ 1.5 §
0..
~ 1.2 e
~ 0.9
Q)

< 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 13: Comparison of response times predicted by the model and simulation for various
strategies at system load, A. = 0.7 task/time-unit and load update period Tu = 1.0 time-units
for 8 node fully connected network with ,uc = 16 task/time-unit and ,us = 16 task/time-unit

- 23-

Model: Simulation: I< .. < pI

Time-units
2.4

s 2.1
E= 1.8 ~

<.l.l

8. 1.5

~ 1.2
~
C':l 0.9
~

~ 0.6

0.3

0

FRandom FMin FAverage PRandom PMin PAverage Bidd-Average

Figure 14: Comparison of response times predicted by the model and simulation for various
strategies at system load, A.= 0.7 task/time-unit and load update period Tu = 1.0 time-units
for 6 node chordal ring network with ~-tc = 16 task/time-unit and /-lS = 16 task/time-unit

5. Summary

In this paper, we have presented an approach for modeling the average task response

time for distributed load balancing in multicomputer systems. With this approach, we are

able to compare different load balancing schemes on a unified basis. The class of load balanc­

ing strategies examined belong to the sender-initiated class. We have shown that these strate­

gies can be modeled by an open central server queuing network if the system is symmetric and

homogeneous. We believe that any sender-initiated load balancing strategy can be modeled

by this queuing network. We have shown that for this model, we need to know only Po and

E[NE]. The statistical characteristics of seven load balancing strategies are presented by

showing the sensitivity of their queuing parameters with respect to various system parameters.

By considering examples from a wide range of system parameters, it is shown that the average

task response time predicted through the proposed model closely matches the response time

obtained via simulation. The proposed performance prediction approach can be useful for

analyzing and tuning an existing system, and evaluating newly proposed strategies. This ap­

proach can also be useful to select a suitable scheme for a given system.

- 24-

References

[1] Ishfaq Ahmad and ArifGhafoor, "A Semi Distributed Thsk Allocation Strategy for Large

Hypercube Supercomputers," in Proc. of Supercomputing '90, Nov. 1990, pp. 898-897.

[2] Raymond M. Bryant and Raphael A Finkel, "A Stable Distributed Scheduling Algo­

rithm,"inProc. of 2nd Int'l. Conf. on Distributed Computing Systems, 1981, pp. 314-323.

[3] Thomas L. Casavant and John G. Kuhl, "A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems," IEEE Trans. on Software Eng. vol. 14, no. 2, February

1988,pp. 141-154.

[4] Shyamal Chowdhury, ''The Greedy Load Sharing Algorithm," Journal of Parallel and Dis­

tributed Computing, no. 9, May 1990, pp. 93-99.

[5] Derek L. Eager, Edward D. Lazowska and John Zahorjan,"Adaptive Load Sharing in

Homogeneous Distributed Systems," IEEE Trans. on Software Eng. , vol. SE-12, pp.

662-675, May 1986.

[6] Kemal Efe and Bojan Groselj, "Minimizing Control Overhead in Adaptive Load Shar­

ing," in Proc. of 9-th Inti. Conf. on Distributed Computing Systems, 1989, pp. 307-315

[7] G. C. Fox, A Kolawa and R. Williams, "The Implementation of a Dynamic Load Balanc­

er, "in Proc. of SIAM Hypercube Multiprocessors Conf., 1987, pp. 114-121.

[8] Arif Ghafoor and lshfaq Ahmad "An Efficient Model of Dynamic Task Scheduling for

Distributed Systems, "in Proc. of COMPSAC '90, Oct., 1990, pp.442-447.

[9] Arif Ghafoor, Theodore Bashkow and Imran Ghafoor, "Bisectional Fault-Tolerant Com­

munication Architecture for Supercomputer Systems, " IEEE Trans. on Computers, vol.

38, no. 10, pp. 1425-1446, October 1989.

[10] Dirk C. Grundwald, Bobby A A Nazief and Daniel A Reed, "Empirical Comparison of

Heuristic Load Distribution in Point-to-Point Multicomputer Networks," Proc. of The

Fifth Distributed Memory Computing Conference, April1990, pp. 984-993.

[11] Anna Ha'c and Theodore J. Johnson, "Sensitivity Study of the Load Balancing Algorithm

in a Distributed System," Journal of Parallel and Distributed Computing, October 1990,

pp. 85-89.

[12] L.V. Kale, "Comparing the performance of two dynamic load distribution methods,"

Proceedings of Int'l. Conf. on Parallel Processing, 1988, pp. 8-12.

[13] Frank C. H. Un and Robert M. Keller, "Gradient Model: A demand Driven Load Bal­

ancing Scheme," in Proc. of 6-th Int'l Conf. on Distributed Computing Systems, 1986, pp.

329-336.

- 25-

[14] M. Uvny and M. Melman, "Load Balancing in Homogeneous Broadcast Distributed Sys­

tems," in Proc. of ACM Computer Network Performance Symposium, April 1982, pp.

47-55.

[15] L. M. Ni, C. Xu andT. B. Gendreau, "ADistributedDraftingAlgorithmforLoadBalanc­

ing," IEEE Trans. on Software Eng., vol. SE-11, no. 10 Oct. 1985, pp. 1153-1161.

[16] lionel M. Ni and Kai Hwang, "Optimal Load Balancing in a Multiple Processor System

with Many Job Classes," IEEE Trans. on Software Eng., vol. SE-11, May 1985, pp.

491-496.

[17] Krithi Ramamritham, John A Stankovic and Wei Zhao, "Distributed Scheduling of

Thsks with Deadlines and Resource Requirements," IEEE Trans. on Computers, vol. 38,

no.8,i\ug. 1989,pp. 1110-1123.

[18] Andrew Ross and Bruce McMillin, "Experimental Comparison of Bidding and Drafting

Load Sharing Protocols," Proc. of The Fifth Distributed Memory Computing Conference,

April1990, pp. 968-974.

[19] Vikram A Sal tore, "A Distributed and Adaptive Dynamic Load Balancing Scheme for

Parallel Processing of Medium-Grain Thsks," Proc. of The Fifth Distributed Memory

Computing Conference, April1990, pp. 994-999.

[20] Kang G. Shin and Y. -C. Chang, "Load Sharing in Distributed Real-Time Systems with

State-Change Broadcasts," IEEE Trans. on Computers, vol. 38, no. 8, Aug. 1989, pp.

1124-1142.

[21] Wei Shu and L. V. Kale, "A Dynamic Scheduling Strategy for the Chare-Kernel System,"

in Proc. of Supercomputing '89, November 1989, pp. 389-398.

[22] John A Stankovic and I. S. Sidhu, "An Adaptive Bidding Algorithm for Processes, Clus­

ters and Distributed Groups, "in Proc. of 4-th Int'l. Conf on Distributed Computing Sys­

tems, 1984, pp. 49-59.

[23] Kishor S. 'frivedi, Probability & Statistics with Reliability, Queuing and Computer Science

Applications, Prentice-Hall, inc. Englewood Cliffs, NJ, 1982.

[24] Jian Xu and Kai Hwang, "Heuristic Methods for Dynamic Load Balancing in a Message­

Passing Supercomputer,"in Proc. of Supercomputing '90, November 1990, pp. 888-897.

[25] Y. Wang and R. J. T. Morris, "Load Sharing in Distributed Systems," in IEEE Trans. on

Computers, C-34 no. 3, March 1985, pp. 204-217.

-26-

	Performance Prediction for Distributed Load Balancing in Multicomputer Systems
	Recommended Citation

	SU-CIS-91-12_001c
	SU-CIS-91-12_002c
	SU-CIS-91-12_003c
	SU-CIS-91-12_004c
	SU-CIS-91-12_005c
	SU-CIS-91-12_006c
	SU-CIS-91-12_007c
	SU-CIS-91-12_008c
	SU-CIS-91-12_009c
	SU-CIS-91-12_010c
	SU-CIS-91-12_011c
	SU-CIS-91-12_012c
	SU-CIS-91-12_013c
	SU-CIS-91-12_014c
	SU-CIS-91-12_015c
	SU-CIS-91-12_016c
	SU-CIS-91-12_017c
	SU-CIS-91-12_018c
	SU-CIS-91-12_019c
	SU-CIS-91-12_020c
	SU-CIS-91-12_021c
	SU-CIS-91-12_022c
	SU-CIS-91-12_023c
	SU-CIS-91-12_024c
	SU-CIS-91-12_025c
	SU-CIS-91-12_026c
	SU-CIS-91-12_027c
	SU-CIS-91-12_028c

