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An Efficient Parallel Algorithm for High Dimensional Si 

Khaled Alsabti Sanjay Ranka Vineet Singh 
Syracuse University University of Florida Hitachi America, Ltd. 

Abstract 

Multidimensional similarity join finds pairs of multi- 
dimensional points that are within some small distance of 
each other: The 6-k-d-B tree has been proposed as a data 
structure that scales better as the number of dimensions in- 
creases compared to previous data structures. We present a 
cost model of the E-k-d-B tree and use it to optimize the leaf 
size. 

We present novel parallel algorithms for the similar- 
ity join using the E-k-d-B tree. A load-balancing strategy 
based on equi-depth histograms is shown to work well for 
uniform or low-skew situations, whereas another based on 
weighted equi-depth histograms works far better for high- 
skew datasets. The latter strategy is only slightly slower 
than the former strategy for low skew datasets. Furthel; its 
cost is proportional to the overall cost of the similarity join. 

1. Introduction 

Multidimensional similarity join finds pairs of multi- 
dimensional points that are within some small distance of 
each other. Many important emerging applications require 
the number of dimensions to be quite large - possibly in 
the tens or hundreds, even thousands. Application domains 
include multimedia databases [7], medical databases [5],  
scientific databases [9], and time-series databases [ 11. 

A pair of points is considered similar if the distance be- 
tween them is less than E for some distance metric, where E 

is a user-defined parameter. In this paper, we use &-norm 
as the distance metric. 

Several data structures have been proposed for multidi- 
mensional similarity join. Most of the well-known struc- 
tures are not efficient for performing similarity joins on 
high-dimensional points because their time and/or space 
complexity increase rapidly with dimensionality [2].  

*This work was supported by the Information Technology Lab ( I n )  
of Hitachi America, Ltd. while K. Alsabti and S .  Ranka were vis- 
iting ITL. The authors can be reached at kaalsabt@top cis.syr.edu, 
ranka@cise.ufl.edu, and vsingh@ hitachi.com respectively. 

Join* 

The E-k-d-B tree is a new multidimensional index struc- 
ture that has been proposed for performing similarity join 
on high-dimensional points [2]. It has been shown to be 
considerably superior to other structures for performing the 
similarity join on high-dimensional points. 

In this paper, we present a cost model for performing 
similarity join using the 6-k-d-B tree. We use our cost 
model to dynamically determine the leaf size threshold. 
This threshold has a significant effect on the cost of the sim- 
ilarity join operation. Our experimental results show that 
our model is reasonably effective. This cost model is also 
useful for its parallelization. 

The parallelization of similarity join is difficult because 
of skewed amounts of work required in different parts of 
the tree. The amount of work required for different parts of 
the tree can be a superlinear function of the number of as- 
sociated points. In this paper, we present a novel sampling- 
based scheme for the parallelization of this problem. Our 
scheme uses a subset of data to estimate the amounts of 
work required based on the cost model discussed earlier. 
A comparison with a simplistic scheme based on assigning 
approximately equal numbers of points to different numbers 
of processors shows that our scheme performs significantly 
better in the presence of data skews, even for 16 processors. 

The rest of this paper is organized as follows. In Section 
2, we describe how to determine the optimal or near opti- 
mal leaf size of the c-k-d-B tree. In Section 3, we describe 
several parallel algorithms for computing the similarity join 
and a novel load-balancing strategy suitable for paralleliz- 
ing problems which are sensitive to the presence of data 
skew and are not iterative in nature. Section 4 presents ex- 
perimental results. Section 5 presents our conclusions. 

2. The Sequential 6-k-d-B tree 

In this section, we present our cost model for perform- 
ing similarity join using the €-k-d-B tree. We use our cost 
model to estimate the leaf size threshold.' The performance 
of the similarity join algorithm using the 6-k-d-B tree is 
strongly dependent on the size of the leaf node. The size 

'Many of the details have been omitted because of the space limitations. 
For more details, the reader is referred to [4]. 
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of the leaf node affects the depth of the tree as well as the 
number of join tests performed. A small leaf size will in- 
crease the depth of the tree which will result in a decrease 
in the number of join tests performed in most cases. On the 
other hand, it might increase the cost of traversing the tree. 

The optimal value of the leaf size depends on the total 
number of points, the dimensionality of the points, the value 
of E, and the distribution of the dataset. There are two ap- 
proaches to determine the leaf size: Static and Dynamic. 
In the static approach, the leaf size is determined statically 
regardless of any available information about the problem 
instance. Whereas in the dynamic approach, the leaf size 
is determined dynamically using the available information 
about the problem instance. 

We have developed a cost model for optimizing the leaf 
size under the assumption of uniform distribution for the 
dataset. Even when the dataset distribution is not uniform, 
the cost model can be significantly better than the static 
approach to determine leaf size. The cost C of performing 
the join algorithm can be modeled based on the parameters 
of the problem instance as follows: 

C =  number Of 2 leaf nodes [number of visited leaf nodes 
per a leaf+k x number of visited leaf nodes per a leaf x 2e x 
(size of leaf node)2 x number of dimensions] 
The first term above refers to the traversal cost, and the sec- 
ond term refers to the join cost. 

We use the following notation: b is the branch factor 
(= $), d is the depth of the tree, n is the number of points, 
D is the dimensionality of the points, and k is a positive 
constant. Since we are assuming that the data points fol- 
low the uniform distribution, each leaf node is expected 

points. The leaf size LS to have number of leaf nodes 
E [g, & + 11. In the following, we derive an optimal or 
near-optimal value of the depth of tree, d, with n D-points. 
From the characteristics of the e-k-d-B tree, the upper bound 
of the number of visited leaf nodes during the course ofjoin- 
ing one leaf node is 3d [2 ] .  Thus, the cost formula can be 
simplified as follows: 

n 

bd I n  
C 2~ -[3d + k3d2-(-)2D] 2 b bd 

To find the optimal value of d, we need to differentiate C 
with respect to d and then equate the result to zero and solve 
it for d.  After simplifications, we obtain the following: 

1 In 1 
2 In 3b 2 

d 2: - logb(--) + log, n + - log, D - 0.5 (2) 

We have conducted several experiments on datasets with 
different parameters. These experiments (not reported here 
due to space limitations) show that our cost model is rea- 
sonably effective and it is significantly better than using an 
arbitrarily fixed leaf size. 

3. The Parallel Similarity Join 

In this section, we describe the parallelization of our al- 
gorithms on coarse-grained shared nothing (message pass- 
ing) parallel machines. 

We present two algorithms for parallelization of the sim- 
ilarity join algorithm. Both of these algorithms consist of 
four main phases. In the partitioning phase (Phase l), the 
space is partitioned into disjoint regions. These regions 
represent the global part of the parallel E-k-d-B tree. Ide- 
ally, the regions should be assigned to processors such that 
the load across them is balanced. The local E-k-d-B tree is 
built in the second phase. Each processor requires non-local 
data to perform the computation of similarity join. In phase 
3, each processor determines the processors with which it 
needs to exchange some data points. It also computes the 
subregions it needs to communicate. Additional data struc- 
tures are required for this computation. The join algorithm 
is performed on the local tree and the tree consisting of non- 
local regions to obtain all pairs of points within e distance 
(Phase 4). The computation is performed such that dupli- 
cate pairs (e.g., (a,b) and (b,a)) are not generated. 

Data Partitioning We have developed two data partition- 
ing strategies for partitioning the data across several proces- 
sors assuming that the n D-dimensional points are assigned 
among p processors such that each processor has approxi- 
mately 14 P points. 

The global part of the tree is built by assigning disjoint 
subsets of points to each processor. Each subset of points 
corresponds to a region in the space. To achieve this, the 
space is partitioned into p regions. Each of these p regions 
is assigned to a unique processor. 

PQ Algorithm This algorithm, Partitioning based on 
Quantiling (PQ), uses the entire dataset to partition the 
space into p disjoint regions. The PQ algorithm uses d 
(d 2 1) dimensions for partitioning the space. An equi- 
depth histogram is generated with z bins at every level. This 
is done recursively for d levels. Each bin is assigned to z 
disjoint subsets of processors. The equi-depth histogram is 
generated by using a quantiling algorithm, OPAQ, which 
has been proposed in [3]. OPAQ generates a good bounded 
approximation of an equi-depth histogram using one pass 
over the entire data. 

After estimating the quantiles, the points are redis- 
tributed among the sub-regions such that each processor be- 
longing to a sub-region will receive approximately the same 
number of points as the other processors in the same sub- 
region. In each of the following iterations of the algorithm, 
we perform the same process in each sub-region using some 
common unused dimension. After iteration i, there will be 
pf sub-regions, each having p d  processors. 

d--l 
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The PQ algorithm can be approximated by random sam- 
pling. This random sample is used by the PQ algorithm 
to build the global part of the tree. The global part of the 
tree determines the processor regions. After determining 
the processor regions, the entire set of data points is re- 
distributed once only among the processors. We call this 
version of the PQ algorithm the PQEst algorithm. The ex- 
periments reported in this paper have used PQ. 

PW Algorithm Our experimental results show that the 
most computation intensive part of the algorithm is per- 
forming the join tests. The PQ algorithm uses the number 
of points as a load metric. This may lead to poor load bal- 
ancing in the case that the dataset has a skewed distribution. 
For example, PQ algorithm might partition the space among 
the processors such that each sub-region has approximately 
equal number of points and all or most of the work required 
for generating the join output is located in one subpartition; 
say the first subpartition. In that case, processorpl will per- 
form almost all the required work and the speedup of the al- 
gorithm will be close to one, regardless of the total number 
of processors. To overcome this problem, we have devel- 
oped the PW algorithm which uses the number of join tests 
as a load metric. 

The main idea of the PW algorithm is that it partitions the 
space into p regions such that the amount of work (number 
of join tests+ traversal costs) associated with points corre- 
sponding to each region is approximately equal. Clearly, 
this is a chicken and egg problem. Computing the workload 
corresponding to a given point may require performing the 
entire similarity join (which is what we are trying to par- 
allelize). We achieve this by performing the computation 
(in parallel) on a small sample of size s using the PQ par- 
titioning strategy. A high-level description of the partition 
phase is presented in Figure 1. We only compute the num- 
ber of join tests for each point. This is used for determining 
a weight of each point in the sample tree. The weight of a 
point should be proportional to work required in the region 
around that point. This information is used to guide the 
decomposition of the entire dataset. A region tree is built 
using only the sample points and weights associated with 
them. The second stage redistributes the points among the 
processors using the region tree. 

In the PQ algorithm, the points were implicitly assigned 
equal weights. The PW algorithm assigns weights to points 
based on two factors: the estimated number of required join 
tests for each point, and the cost of traversing the tree for 
each point. Formally, we use the following function to as- 
sign weights to points: f ( p t )  = rD + k3Depth , where 
D is the dimensionality of the points, k is a positive con- 
stant, r is the estimated number of join tests for point p t ,  
and Depth is the estimated depth of the E-k-d-B tree un- 
der the assumption that the dataset has uniform distribution. 

Generate weights for the sample points 

Figure 1. An overview of the PW algorithm 

k is determined empirically. Note that 3Depth is the maxi- 
mum number of visited nodes during the course of the join 
algorithm (see Section 2). 

The partitioning algorithm is similar to the one in the PQ 
algorithm except that the weights of the points are incorpo- 
rated in finding the region boundaries. 

After partitioning the space into p regions, the entire 
dataset is redistributed among the processors using the re- 
gion boundaries. The size of the sample affects the accuracy 
of load balance as well as the overhead of the partitioning 
algorithm. 

The Local Tree Phase 
builds an 6-k-d-B tree using only the local data points. 

The Regions Phase Each processor requires non-local 
data to perform the computation of similarity join. In this 
phase, each processor determines the processors it needs to 
exchange this information. Let Inter, represent the set of 
processors with which processor i needs to communicate. 
Each processor i uses the global part of the tree to deter- 
mine the Inter, set. 

Let processor j belongs to Interi set. Processors i and 
j need to determine the intersected regions between them 
and then send to each other some of the points which be- 
long to the intersected regions. Our approach to find the 
intersected region between processors i and j works as fol- 
lows. The local E-k-d-B trees of the processors are used 
to identify the intersected regions. One parameter of this 
approach is a level number 1. For this level 1, each proces- 
sor i (j) generates two lists represented by SimpleLeveZt 
(SimpZeLevel:) and Levelf (Level;). These lists represent 
the Zth level of the local tree of processor i ( j ) .  An entry r of 
SimpleLeveZ: represents the rth sub-tree R. The entry is 0 
or 1 depending on whether the sub-tree is empty or not re- 
spectively. However, an entry r of the Level: list represents 
the rth sub-tree R and all the “join-able” sub-trees which 
are needed to be joined with R at the lth level of the tree. A 
value of 1 is assigned to this entry if either sub-tree R or any 
of its joinable subtrees are non-empty. Otherwise, a value 
of 0 is assigned. Note the sizes of the SimpleLevel: and 
Level: lists are (i)’. The value of the 1 parameter, which is 

In this phase, each processor 
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used in building these lists, affects the performance of the 
overall algorithm. We intend to determine the value of l 
empirically. 

The points of the subtree T of processor i (j) are 
part of the intersected region with processor j (i) if 
SimpleLewelf[r] = 1 (SimpleLewel~[r] = 1) and 
LeweZf[r] = 1 (Lewelf[r] = 1). Processors i and j ex- 
change their Level lists to determine their intersected re- 
gions locally. 

For potential result points (a ,b)  such that a and b be- 
long to the same processor, we assume that the computa- 
tion is performed by the processor which contains these 
two points. However, the situation is different for poten- 
tial result points (a, b) such that a and b belong to different 
processors i and j respectively. The computation can be 
performed on processor i or j. Clearly, it is possible to per- 
form this computation on a processor different than i and j. 
However, this option has not been considered in this paper 
due to our belief that this will result in extra communication 
without significantly affecting the load balance. 

For skewed datasets, an inappropriate assignment of 
computation for such points can result in substantial load 
imbalance, even assuming that the computations that re- 
quire only local data points are well balanced. Processors 
i and j need to exchange some of the points of the inter- 
sected regions such that a good load-balance is achieved. 
This problem is an optimization problem where there are 
p processors. Each of them has an intersected region with 
the other processors. Let nij be the number of points which 
are local to processor i and belong to the intersected regions 
between processors i and j. We need to assign some of the 
nij points to processor j and some of the nji points to pro- 
cessor i. We have developed local and global assignment 
strategies for assignment of these computations. These dif- 
fer in whether they use global or local information. The 
strategy based on global information (nij V l  5 i,j 5 p 
and i # j) uses information about all the processors for 
performing this assignment. The strategy based on local 
information uses only information gathered by processor i 
from its interi list of processors (i.e., it only uses nij and 

Using a global assignment algorithm, one can potentially 
obtain a better load balance. However, this may not be 
preferable due to potentially higher costs and poor scala- 
bility. In the particular global algorithm used in this paper, 
a series of decisions are made iteratively to assign the work 
of intersected regions among the processors. In our local 
assignment method, processors i and j divide the work of 
their intersected region into two halves such that each pro- 
cessor will perform half of the work. 

nji). 

The Join Phase We need to perform the join on the local 
trees using the sequential join algorithms [4]. In performing 

the join for the points of the intersected regions, we ensure 
that we do not generate duplicates. The assignment methods 
(of Phase 3) guarantee that no duplicates are generated. 

4. Experimental Results 

We implemented the different schemes defined in the 
previous Section on an IBM SP-2 with 16 processors us- 
ing MPI standard [6]. The clock speed of the processors is 
66.7 MHz, the memory size is 128 MB per processor, and 
the operating system is AIX version 4. 

We studied the following four datasets which were gen- 
erated synthetically. 

1. 

2. 

3. 

4. 

Uniform Distribution (DS1): The point values along 
each dimension were generated randomly in the range 

Gaussian Distribution (DS2): Along each dimen- 
sion, the values were generated according to a Gaus- 
sian distribution-with mean of 1.0 and standard devia- 
tion of 0.25. Note, the range of the points is [0,2]. 
Mixed Distribution 1 (DS3): The range ([0,2]) along 
each dimension is divided into two parts: [0,0.5] and 
(0.5,2]. 25% of the points were generated in the first 
range [0,0.5] with Gaussian distribution (mean = 0.25 
and standard deviation = 0.0625) and the rest of the 
points were generated randomly with a uniform distri- 
bution in the other range (0.5,2]. 
Mixed Distribution 2 (DS4): This dataset is similar to 
Mixed Distribution 1. 6.25% of the points were gen- 
erated in [0,0.125] with Gaussian distribution (mean = 
0.0625 and standard deviation = 0.015625) and the rest 
of the points were generated randomly with a uniform 
distribution in (0.125,2]. 

lo, 21. 

We have performed a set of experiments to determine 
appropriate values for the important parameters of the algo- 
rithms. The results of these experiments are: the value of IC 
(which is used in the weight function) is set to one, the sam- 
ple size (used in the PW algorithm) is set to 10% the value 
of level 1 is set to two, and the number of dimensions used 
for partitioning is set to two. The choice of number of di- 
mensions for partitioning is data-dependent. However, we 
expect that using two dimensions will be better for larger 
numbers of processors. 

Table 1 presents the time requirements of PW and PQ 
algorithms using local and global algorithms for assigning 
the intersected regions. These results are representative of 
results for other values of the parameters and show that the 
local assignment strategy is superior to the global assign- 
ment strategy. Since the local strategy is more scalable, it 
should be the strategy of choice for larger numbers of pro- 
cessors. The rest of the experiments presented in this Sec- 
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tion assume that the local algorithm is used for assigning 
the intersected regions. 

DS4 11 50.36 I 88.87 11 572.34 I 564.74 

le 1. The total execution time (secs) on 
16 processors using different assignment 
strategies. Total number of points is 256k 
12-d points. 6 is 0.1. 

Figure 2 gives the speedups for PQ and PW for the 
four datasets on 4 and 16 processors. These results clearly 
demonstrate the efficacy of weighted quantiling. For 16 
processors, PW is significantly better for all data distribu- 
tions. For 4 processors, PW is comparable to PQ for uni- 
form2 and Gaussian distributions, and PW is significantly 
better for the two mixed distributions. In fact, for mixed 
distribution 2 (DS4), PQ resulted in no speedup for both 4 
and 16 processors. This is because almost all the work has 
been performed by one of the processors. We conclude that 
weighted quantiling is more robust as compared to simple 
quantiling in the presence of data skew and does not dete- 
riorate in the absence of data skew. These are important 
considerations for any practical algorithm. 

5. Conclusions 

We have presented a cost model for performing the simi- 
larity join using the 6-k-d-B tree and used it to optimize the 
leaf size. This new leaf size is shown to be better in most 
situations compared to previous work that used a constant 
leaf size. We have also presented novel parallel algorithms 
for the similarity join. A load-balancing strategy based on 
weighted equi-depth histograms was shown to be superior 
to the one based on unweighted equi-depth histograms. The 
weights for the weighted strategy were based on the same 
cost model that was used to determine optimal leaf sizes. 
Further, the cost of the weighted strategy is proportional to 
the overall cost of the similarity join process. 

We are not aware of any previous work on the paral- 
lelization of high-dimensional similarity join except [8], 
which was done concurrently. A reasonable comparison 
will require some detailed experimental andor theoretical 
analysis. 

Figure 2. Speedup for the four datasets of size 
256k 12-d points. E is 0.1. 
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