
Syracuse University Syracuse University 

SURFACE SURFACE 

Theses - ALL 

5-15-2015 

Discrimination of age, sex, and individual identity using the upcall Discrimination of age, sex, and individual identity using the upcall 

of the North Atlantic right whale (Eubalaena glacialis) of the North Atlantic right whale (Eubalaena glacialis) 

Jessica McCordic 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/thesis 

 Part of the Life Sciences Commons 

Recommended Citation Recommended Citation 
McCordic, Jessica, "Discrimination of age, sex, and individual identity using the upcall of the North 
Atlantic right whale (Eubalaena glacialis)" (2015). Theses - ALL. 106. 
https://surface.syr.edu/thesis/106 

This Thesis is brought to you for free and open access by SURFACE. It has been accepted for inclusion in Theses - 
ALL by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/thesis
https://surface.syr.edu/thesis?utm_source=surface.syr.edu%2Fthesis%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=surface.syr.edu%2Fthesis%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/thesis/106?utm_source=surface.syr.edu%2Fthesis%2F106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ABSTRACT 

According to the source-filter theory proposed for human speech, physical attributes of the 

mammalian vocal production mechanism combine independently to result in individually 

distinctive vocalizations. In the case of stereotyped calls with all individuals producing a similar 

frequency contour, formants resulting from the shape and size of the vocal tract may be more 

likely to contain individually distinctive information than the fundamental frequency resulting 

from the vibrating source. However, the formant structure resulting from such filtering has been 

historically undervalued in the majority of studies addressing individual distinctiveness in non-

human species. The upcall of the North Atlantic right whale (Eubalaena glacialis) is 

characterized as a stereotyped contact call, and visual inspection of upcall spectrograms confirms 

presence of a robust formant structure. Here I present results testing age, sex, and individual 

distinctiveness of upcalls recorded from archival, suction cup mounted tags (Dtags). Multiple 

measurements were made using the fundamental frequency contour, formant structure, and 

amplitude of the upcalls. These three variable groupings were then tested alone and in 

combination with other groupings to assign upcalls to age classes based on reproductive 

maturity, age classes based on size, sex, and individual whales. To compare multiple 

classification methods, I used both discriminant function analysis and a classification and 

regression tree to classify calls to appropriate groups. In all analyses, the percentage of calls 

correctly assigned to the correct group—age, sex, individual—was significantly higher than 

chance levels. These results represent the first quantitative analysis of individual distinctiveness 

in mysticete whales and provide a baseline for further development of acoustic detection 

techniques that could be used to noninvasively track movements of whales across multiple 

habitats.  
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INTRODUCTION 

 

 

Identity Signaling  

 

Each animal communication system involves the same key components: a signaler 

generates a signal, sends their signal through an environmental medium, the receiver perceives 

the signal, and the receiver responds by making a decision based on information contained in the 

signal (Bradbury & Vehrencamp, 2011). The receiver’s response depends on the type and 

complexity of information that it can extract from the signal. A receiver must be able to filter 

signals from the noise of the environment. To increase reliability of signal perception for 

effective communication, one of the necessary components of signal evolution involves 

ritualized stereotypy (Bradbury & Vehrencamp, 2011). The broadest form of stereotypy allows 

receivers to reliably associate a particular signal with a conspecific. Within a species, there can 

also be signals which communicate membership within a group—e.g., sex (Ryan, 1990), kin 

group (Rendall et al., 1996), foraging group (Boughman, 1997)—adding information that may be 

beneficial to the receiver to make the appropriate response. Often signals simultaneously encode 

multiple types of information , such as male advertisement signals which indicate both sex and 

quality within a single signal (e.g., roaring red deer, Cervus elaphus (Clutton-Brock & Albon, 

1979)).  

The most specific form of stereotypy provides a signal of individual identity. 

Components of signals that encode individual identity cues will not necessarily be correlated 

with fitness and should be distinguishable from signals which only discriminate among more 

general categories such as age class or sex (Dale et al., 2001). Identity signaling occurs when the 

signaler produces a signal containing cues that exhibit little intra-individual variation while 
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maintaining a level of inter-individual variation such that the cues may be perceived by the 

receiver and reliably associated with that individual (Bradbury & Vehrencamp, 2011). There are 

clear benefits and costs to producing individually distinctive signals. Some potential benefits 

include increased altruism from kin, decreased harassment from territory neighbors, and 

decreased risk of inbreeding (Tibbetts & Dale, 2007). The costs associated with producing 

identity signals primarily correspond to the loss of potential cheating opportunities gained by 

remaining cryptic, as in cheating offspring that receive benefits from non-kin adults (McCulloch 

et al., 1999; Tibbetts & Dale, 2007).  

From a receiver perspective, there may be an energetic cost attributed to the increased 

cognition required to perceive differences among conspecifics. Species living in large groups 

typically have larger brains (Dunbar, 1998), and the higher processing power of larger brains in 

these species (Dávid-Barrett & Dunbar, 2013) likely contributes to both the increased complexity 

of signals in highly social species and the corresponding ability to perceive any differences in 

complex signals (e.g., (Freeberg et al., 2012)). Thus, the high metabolic expense of brain tissue 

relative to other tissue types (Aiello & Wheeler, 1995) may represent an additional cost of 

identity signaling.  

In vertebrates, signal complexity is generally positively correlated with complexity of 

social system, defined as the number of different types of interactions and individual encounters 

within the social group (Freeberg et al., 2012; Pollard & Blumstein, 2011), and individually 

distinctive signals likely follow this pattern with more complex signals used for identity 

signaling in more complex societies (Blumstein & Armitage, 1997; Pollard & Blumstein, 2011). 

In terms of information content within a signal, this is a logical conclusion since receivers in 

more complex social interactions involving repeated interactions with other conspecifics in a 



3 

 

group may benefit from being able to associate multiple types of information with each signaler. 

To increase the total amount of information within a call, the complexity of the signal itself must 

increase, typically involving simultaneous manipulation of multiple types of acoustic 

parameters—e.g., frequency, amplitude, and duration in acoustic signals (Freeberg et al., 2012).  

Individually distinctive signals should be present when the benefits of identity signaling 

outweigh the costs of being distinctive (Johnstone, 1997; Tibbetts & Dale, 2007). This seems to 

be the case in a variety of signaling modalities throughout animal systems including 

invertebrates and vertebrates (e.g., wasps (Polistes fuscatus) (Tibbetts, 2002), trout 

(Oncorhynchus mykiss) (Johnsson, 2010), golden hamsters (Mesocricetus auratus) (Johnston & 

Bullock, 2001)). In species that rely heavily on acoustic signaling, acoustic individual 

recognition has similarly been found to mediate crucial social interactions such as competition 

for mates (Reby et al., 1998), kin recognition (Blumstein & Munos, 2005), and particularly 

mother-offspring recognition (Charrier et al., 2002; Espmark, 1971; Sebe et al., 2007).  

 

Source-filter theory and its applications to non-human systems 

The source-filter theory of vocal production, initially proposed as a model of human 

vowel sound production, suggests that a vocalization is the result of independent contributions 

from a vibrating source and a structural filter: vocal folds in the larynx (source) and any airways 

between the larynx and the end of the vocal tract (filter), respectively (Fant, 1960; Titze, 2000). 

The vibrating vocal folds create a stable oscillation which in turn can be measured as a glottal 

wave and visualized as a waveform. The rate of this oscillation determines the fundamental 

frequency of the vocalization, and this rate is in turn affected by the length and mass of the vocal 

folds (Fitch & Hauser, 1995). The vocal tract and associated airways then act as a bandpass 
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filterbank, selectively amplifying and attenuating bands of frequencies to create broad spectral 

peaks known as formants (Titze, 2000). Within an individual, the relative spacing of the formant 

frequencies, termed formant dispersion, depends on the length of the vocal tract as well as its 

shape determined by complex movements of the musculature. Since humans have such complex 

oral musculature compared to other primates and terrestrial mammals (Fitch, 2000), the position 

of the lips and tongue for different phonemes can change the length of the vocal tract enough to 

affect formant frequencies. For example, certain vowel phonemes involving the lengthening of 

the vocal tract are characterized by having formants close together as in [u: food] while others 

involve a shortening of the vocal tract and corresponding formant frequencies that are far apart, 

as in [i: keep] (Titze, 2000). The overall frequencies of the formants for a specific sound, 

however, are determined by a range of factors including gender and age along with the length of 

the vocal tract (Titze, 2000), making formants a robust cue to discriminate among individuals 

producing the same phonemes. To identify speakers using a variety of phonemes, a combination 

of source-related frequency measurements and filter-related formant measurements provides the 

most reliable discrimination among individuals (Bachorowski & Owren, 1999).   

The source-filter theory was originally proposed for human speech studies but has found 

application within non-human bioacoustics research. In non-human mammals, Fitch (2000) 

suggests that the vocal tract is not as flexible as in humans, precluding the existence of the 

variety of phonemes present in human speech. Therefore, in non-human vocalizations, the 

location and dispersion of the formants is more directly linked with the shape and length of the 

vocal tract for all sounds (Fitch, 2000). Similar to humans, longer vocal tracts show formants 

with lower formant dispersion, and shorter vocal tracts have higher formant dispersion (Taylor & 

Reby, 2010). Unlike the length of the vocal tract, the mass and length of the vocal folds is less 



5 

 

constrained by morphological factors such as body size and may be more dependent on 

condition-related aspects such as hormone levels, potentially making the fundamental frequency 

less useful as a signal of individuality (Charlton et al., 2011; Taylor & Reby, 2010; Tibbetts & 

Dale, 2007).  

Despite the more reliable link between filer-related characteristics and overall physical 

structure of the animal, source-related characteristics are preferentially used to measure 

individuality in non-human vocalizations (Taylor & Reby, 2010). Modulation patterns in the 

fundamental frequency can encode information about the caller’s identity, perhaps best 

evidenced in the signature whistles of bottlenose dolphins (Tursiops truncatus) (Caldwell & 

Caldwell, 1968; Janik & Sayigh, 2013; Sayigh et al., 2007). Apart from such obvious signature 

contours, other species have shown individually distinctive cues related to source-based 

components of their vocalizations (Blumstein & Munos, 2005; Charrier et al., 2002; Vannoni & 

McElligott, 2007). The filter of the vocal tract, however, also provides a measure of acoustic 

individual distinctiveness resulting from morphological differences among individuals 

(Bachorowski & Owren, 1999; Lemasson et al., 2008; Reby et al., 2006). The importance of 

measurable source-related or filter-related cues in an identity signal may reflect differences in 

vocal anatomy and the relative ability of animals to produce various identity cues (Tibbetts & 

Dale, 2007). 

Additionally, distinctive acoustic cues are expected to be prevalent in socially complex 

species that rely on acoustic communication. In the marine habitat, sound travels much more 

efficiently than any other signaling modality available to mammalian taxa (Au & Hastings, 2010; 

Bradbury & Vehrencamp, 2011). Marine mammals, particularly cetaceans—whales and 

dolphins—are notably reliant on sound for communication (Tyack & Miller, 2002). There is a 



6 

 

large division within cetaceans between toothed whales and baleen whales—odontocetes and 

mysticetes, respectively—in terms of vocal anatomy and sound production, which may affect the 

physiological basis of identity signaling. 

Rather than using the larynx, odontocete whales use ‘phonic lips’ located in the nasal 

passages as an acoustic source (Dormer, 1979; Tyack & Miller, 2002), potentially decoupling 

any filter-related cues—generally resulting from the shape of the nasal and oral cavities—from 

physical attributes of the individual. Although the specific contributions of source- and filter-

related cues have not been studied in odontocetes, inferences can be made based on 

characteristics of known identity signals. As mentioned above, bottlenose dolphins produce 

frequency modulated whistles that are stereotyped within an individual but differ among 

individuals (Caldwell & Caldwell, 1968; Janik & King, 2013; Janik & Sayigh, 2013). The 

frequency contours of the whistles thus serve as “signatures” and have even been shown to be 

used referentially by other individuals (Janik & Sayigh, 2013; King et al., 2014). Some 

populations of killer whales (Orcinus orca) also use frequency contours for identification, but the 

different contours are used to distinguish among groups rather than among individuals (Riesch et 

al., 2006). Within the stereotyped group signatures, however, the frequency contours of 

individuals exhibit a level of inter-individual variability which is high enough to discriminate 

among different animals (Nousek et al., 2006).  

Mysticete vocal anatomy is homologous to that of terrestrial mammals (Reidenberg & 

Laitman, 2007). One notable difference, however, is the presence of a U-shaped structure 

supported by cartilage thought to be a homolog of the vocal folds in terrestrial mammals 

(Reidenberg & Laitman, 2007). Although it differs in its orientation within the larynx compared 

to terrestrial mammals, this “U-fold” is likely under similar muscular control and serves as the 
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vibrating sound source in baleen whales. Baleen whales also possess a laryngeal sac ventral to 

the larynx which may serve as an accessory air source in addition to the lungs (Adam et al., 

2013; Cazau et al., 2013; Reidenberg & Laitman, 2007; Schoenfuss et al., 2014). According to 

model-based approaches along with anatomical study, Cazau et al. (2013) propose that different 

configurations of the vocal anatomy may account for the various categories of calls—pure tonal, 

tonal with formants, and pulsatile—known to be produced by baleen whales. Although the study 

by Cazau et al. (2013) used humpback whales (Megaptera novaeangliae) as its model, the vocal 

anatomy of balaenid whales (Balaena mysticetus, Eubalaena spp.) is similarly arranged to that of 

humpbacks (Reidenberg & Laitman, 2007; Schoenfuss et al., 2014), and the same overall pattern 

is plausible in those species.  

Despite the homology of the mysticete vocal anatomy with terrestrial mammals and the 

corresponding implications for individually distinctive features based on the source-filter theory, 

there have been no explicit studies of identity signaling in this group. This gap is particularly 

surprising given the body of literature suggesting possible communication networks that may 

require individual recognition (e.g., (Hamilton & Cooper, 2010; Ramp et al., 2010; Weinrich, 

1991) and the use of passive acoustic monitoring to assess distribution and abundance of these 

whales (Clark & Clapham 2004; Mellinger et al. 2007; Van Parijs et al. 2009). 

The North Atlantic right whale (Eubalaena glacialis) is one of the most closely studied 

mysticete whales in the North Atlantic (Kraus & Rolland, 2007). Due to its critically endangered 

status and slow population recovery rate (Waring et al., 2014), there has been a great interest in 

tracking the population and distribution of these whales within their coastal habitat. Moreover, 

the acoustic repertoire of the North Atlantic right whale is relatively well-described and has been 

used to remotely monitor the presence and behavior of these whales (Mellinger et al. 2007; Parks 
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& Clark 2007; Clark et al. 2007; Parks et al. 2011). As with all other mysticete whales, however, 

no study has yet explored individuality in the calls of the North Atlantic right whale despite the 

inherent assumption of some level of recognition within a likely contact call—the “upcall” 

(Parks & Tyack, 2005). The upcall of right whales has been used as a primary cue to species 

presence via passive acoustic monitoring. Determining whether individually distinctive cues are 

present in this call will not only provide insight into the vocal production mechanism and 

acoustic behavior of right whales, but it will also improve monitoring efforts, allowing a greater 

resolution of information from remote recorders (e.g., Mellinger et al. 2007).  

 

Study System: the North Atlantic right whale (Eubalaena glacialis) 

Habitat Usage and Distribution 

 The North Atlantic right whale occupies a coastal range extending along the eastern coast 

of North America (Kraus & Rolland, 2007). Right whales are routinely found in five major 

habitat areas within the United States and Canada: Bay of Fundy/Grand Manan Basin, Roseway 

Basin, Cape Cod Bay, Great South Channel, and Southeast United States (Kraus & Rolland, 

2007). Due to their risk of collisions with vessels and entanglement in fishing gear, all five 

habitat areas have been incorporated into conservation and management areas. In the United 

States, the Great South Channel, Cape Cod Bay, and Southeast habitats have been listed as 

critical habitat areas and established as Seasonal Management Areas (SMAs). SMAs include 

mandatory reductions in shipping speed during the times that whales are most likely to be in 

those habitats (Lagueux et al., 2011; Merrick, 2005). In Canadian waters, the Roseway Basin and 

Grand Manan Basin Right Whale Conservation Areas have guidelines for speed reductions, 
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although these areas do not have legislated regulations as in the United States critical habitat 

areas (Hoyt, 2011).  

Each year, pregnant females, adult males, and some juveniles of the North Atlantic right 

whale population migrate from high-latitude summer feeding areas in the Gulf of Maine and Bay 

of Fundy to low-latitude winter calving areas off the Southeastern United States (Kraus & 

Rolland, 2007). Unlike other baleen whale species (e.g., humpback whales (Katona & Beard, 

1990)), this migration does not involve a large portion of the population. Rather, a combination 

of visual surveys and passive acoustic monitoring has confirmed the presence of North Atlantic 

right whales in high-latitude habitats year-round; however the specific habitat use in these 

locations is still unknown and may vary according to site (Mellinger et al., 2007; Bort et al., 

2015).  

 

Social System 

Although typically considered as a solitary species since they do not travel in tightly 

associated pods (e.g., May-Collado et al., 2007), right whales frequently engage in social 

interactions with conspecifics (Kraus & Hatch, 2001; Parks et al., 2007; Kraus et al., 2007). In all 

habitat areas, right whales can be found engaging in surface active groups (SAGs) involving at 

least two whales interacting in close proximity at the surface (Kraus & Hatch, 2001; Parks et al., 

2007; Kraus et al., 2007). Whales from all age classes and both sexes engage in SAGs, and group 

compositions range from all juveniles to all adult and all female, mixed sex, to all male groups 

(Parks et al., 2007). Originally proposed as mating groups due to the high visibility of sexual 

interactions (Kraus & Hatch 2001), there have also been observations of all-juvenile SAGs and 

all-male SAGs involving sexual behaviors (Parks et al., 2007). All-female SAGs have also been 
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observed, indicating that the SAG may function in diverse social contexts (Parks et al., 2007). 

Despite the seasonal calving intervals, there is also no seasonal restriction to SAGs to suggest 

fertilization occurs solely as a result of these groups, and the groups have been documented in 

both feeding areas and calving areas (Parks et al., 2007). A subset of SAGs, however, are 

thought to result in reproduction, taking the structure of a central female with several males 

competing for the “alpha” position adjacent to the female to increase their chances of mating 

success (Kraus & Hatch, 2001; Kraus et al., 2007).  

 Along with short-term SAGs, North Atlantic right whales likely engage in long-term 

social interactions. A standard definition of “association” in baleen whales consists of two or 

more individuals within one or two body lengths of each other and traveling in the same 

direction or exhibiting synchronous behaviors (Mobley & Herman, 1985; Weinrich, 1991). This 

definition does not take into account the primarily acoustic world of baleen whales, where 

individuals could easily be associated acoustically while separated by relatively large distances 

of hundreds to thousands of meters. Hamilton (2002) discusses several important observations 

regarding sociality in the North Atlantic right whale. In all habitats except Massachusetts Bay 

(Cape Cod Bay), right whales formed non-random associations with other individuals. In both 

the Roseway Basin feeding area and the Southeast US calving area, strong bonds among 

individuals were represented more than in other habitat areas. The Bay of Fundy habitat also 

exhibits non-random associations; male-male and female-female associations were most 

prevalent. While Hamilton (2002) excludes mother-calf pairs from his analysis, Hamilton and 

Cooper (2010) show that mother-calf pairs can remain associated after the first year, and mothers 

were observed with previous calves in the Southeast US habitat despite not calving that year.  
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 Although these studies offer invaluable information about sociality, they are necessarily 

limited by visual observation methods. Indeed, the very definition of an association between two 

whales is biased by what an observer can see at the surface, but as a species dependent on 

acoustic communication, right whales could likely remain acoustically associated at distances on 

the scale of kilometers. Propagation testing of upcalls produced by the closely related North 

Pacific right whale (E. japonica) indicate that some acoustic features of the upcall are still 

present even at ranges over 20km (McDonald & Moore, 2002; Munger et al., 2011).  

 

Acoustic Behavior 

The acoustic repertoire of the North Atlantic right whale is well-studied and includes 

broadband sounds, variable tonal calls, and stereotyped tonal calls (Bort et al., 2015; Matthews et 

al., 2014; Parks et al., 2005; Parks & Tyack, 2005; Parks, 2003; Parks et al., 2011). Broadband 

sounds known as “gunshots” are known to be produced by males and, based on analysis of 

seasonal occurrence of gunshots, are likely used in a reproductive context (Matthews et al., 2014; 

Parks et al., 2005; Parks & Tyack, 2005) (Fig. 1). Variable tonal calls include high-frequency 

“scream” calls associated with SAGs, potentially used by adult females to attract other whales to 

participate in a SAG (Parks, 2003) (Fig. 1).   

 The upcall of the North Atlantic right whale is a stereotyped tonal call produced by all 

North Atlantic right whales (Fig. 1) (Parks & Tyack, 2005; Parks & Clark, 2007). The call is also 

produced by North Pacific right whales (E. japonica) (McDonald & Moore, 2002) and Southern 

right whales (E. australis) (Clark, 1982) and is named for the increase in frequency from 

approximately 100Hz to 400Hz over its duration (Clark, 1982). The presumed function of the 

call is to maintain acoustic contact among individuals and potentially facilitate reunion or joining 
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events (Clark, 1982).  During playback experiments, Southern right whales responded to 

playbacks of upcalls with upcalls of their own and swam towards the experimental speaker, 

providing evidence for this call as a contact call (Clark & Clark, 1980).  

 

Hypothesis 

Based on the proposed social context of the upcall and its acoustic structure, I 

hypothesize that upcalls of North Atlantic right whales contain acoustic cues that will allow for 

statistical discrimination of age, sex, and individual identity. To test this hypothesis, I will 

measure source-related and filter-related characteristics of the vocalization produced by different 

individual whales. 
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Figure 1: Spectrograms representing the major calls within the North Atlantic right whale repertoire: (a) the upcall—a stereotyped tonal call, (b) 

the scream call—a variable tonal call, and (c) the gunshot—a short duration broadband call. Note the different frequency scale for the gunshot.
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METHODS 

 

Data collection 

Archival Tags 

Data were collected through digital archival acoustic recording tags (Dtags) attached to 

88 individual North Atlantic right whales with four silicone suction cups (Nowacek et al., 2001; 

Johnson & Tyack, 2003; Nowacek et al., 2004; Friedlaender et al., 2009; Parks et al., 2011) in 

three critical habitat areas (Table 1). This dataset represents all existing Dtag records from North 

Atlantic right whales collected between 2001 – 2014.  

Prior to tagging, all whales were photographed to visually determine their identity. Right 

whales have individually distinctive patterns of rough patches of skin called callosities on their 

rostrum, mandibles, and near the blowhole (Hamilton et al., 2007). Photographs of whales were 

compared to the North Atlantic Right Whale Catalog (NARWC) to confirm the identity of each 

whale.  

After a period of behavioral observation and photo-identification to determine the 

identity of the tagged whale, Dtags were deployed by small (> 10m) vessels using a handheld or 

cantilever carbon-fiber pole with a housing that holds the tag at the end of the pole until it is 

secured on the whale. The tag contains an anodic corrosive wire designed to release the tag from 

the whale at a predetermined time up to 24h after deployment, although most tags release before 

this time due to skin sloughing, contact with other whales, or other forces (Nowacek et al., 

2001).  

Dtags were equipped with a hydrophone, three-axis accelerometer, compass, and pressure 

sensor (Johnson & Tyack, 2003; Nowacek et al., 2001). For this study, I used only the acoustic 

data from the tag records.  
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Table 1: Summary of data collection, including all Dtag records. Number of tag records 

containing upcalls, the call of interest for this study, are shown in parentheses.  

 

Habitat Area Months Years 

 

Total number of tag 

records analyzed 

(records containing  

focal upcalls) 

 

Citation 

     

Bay of Fundy, Canada July, August 1999 – 2005 58 (13) Johnson & Tyack, 2003; 

Nowacek et al., 2004; 

Parks et al., 2011; 

Parks et al., 2011 

     

Cape Cod Bay, MA, 

United States 

April 2009, 2010 18 (5) Parks et al., 2012 

     

Southeast United States January, February 2006, 2014 12 (6) Parks and Nowacek, 

unpublished data 

     

 

 

Determining age and sex 

The NARWC also contains data regarding sex and age of cataloged whales. Sex was 

determined using either visual assessment of the genital slit (Payne & Dorsey, 1983) or genetic 

information obtained via skin biopsy (Brown et al., 1994). Exact age was only known if a right 

whale was sighted with its mother during its first year, but minimum age for other whales can be 

estimated as the number of years elapsed since the first sighting of the animal. The average age 

of first calving for female right whales is nine years of age (Kraus & Hatch, 2001; Payne & 

Dorsey, 1983); thus, for this study, whales were considered juvenile if their exact age at time of 

tagging was known to be between one and eight years of age. Whales were considered as adults 

if their exact age or minimum age at time of tagging was nine years old or greater.  

The distinction between sexually mature and sexually immature individuals does not, 

however, reflect any difference in size which may influence acoustic parameters of the upcalls. 
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Right whales grow quickly in their first year but exhibit a dramatic decrease in growth rate 

between 1 and 2 years of age (Fortune et al., 2012). To account for this, age was separately 

categorized by size, where small whales between one and two years of age were separated from 

large whales that had an exact age or minimum age of three years of age or older.  

 

 

Call detection and acoustic measurements 

Spectrograms of complete recordings from Dtags were visually inspected for presence of 

upcalls using Raven Pro 1.5 (Cornell Bioacoustics Research Program 2014). To ensure selection 

of calls from the focal (tagged) animal, I only used upcalls with a high signal-to-noise ratio 

(SNR) (> 10 dB) produced when the tagged whales were also noted to be >5 body lengths away 

from any other whale, providing a high confidence that the call was produced by the tagged 

whale (e.g., Parks et al. 2011) (N = 24 individuals). These upcalls were then extracted from the 

full tag record as individual files. Waveforms of these files were examined in Raven Pro 1.5 to 

determine whether the amplitude of the signal exceeded the dynamic range of the recorder, a 

phenomenon known as clipping. Any clipped files were excluded from further analyses. 

Depending on the deployment, the hydrophone recorded acoustic data at sample rates between 

16 and 96 kHz. Since acoustic sampling rate affects the resolution of the data and any subsequent 

visualizations such as spectrograms, remaining files were resampled to the lowest sample rate for 

any tag, 16kHz, using AviSoft SASLab Pro (Avisoft Bioacoustics, 2013). Additionally, to 

improve validity of classification analysis, whales with fewer than 3 calls were excluded, leaving 

a total of 13 individuals (Table 2).  
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Table 2: Tag records used in analysis. SEUS = Southeast United States, BOF = Bay of Fundy, 

Canada, CCB = Cape Cod Bay, Massachusetts, USA; EGNO = NARWC catalog number; M = 

male, F = female, J = juvenile (< 9 years old), A = adult (≥ 9 years old), S = small (< 3 years 

old), L = large (≥ 3 years old), U = unknown.  

 

 

Acoustic Measurements 

Three groupings of variables were measured for this study: time-frequency, formant, and 

amplitude (Table 3). Time-frequency variables include duration, duration 90%, frequency 

contour, minimum frequency, maximum frequency, start frequency, and end frequency. Formant 

variables include frequency of formants 1 – 3, bandwidth of formants 1 – 3, ratio of formant 2 to 

formant 1, ratio of formant 3 to formant 2, and ratio of formant 3 to formant 1. Amplitude 

variables include the root mean square (RMS) amplitude for quartiles 1 – 4, maximum amplitude 

for quartiles 1 – 4, and minimum amplitude for quartiles 1 – 4. 

 

Habitat Year 
Julian 

Day 
EGNO Sex 

Age 

Class 

(Reprod.) 

Age 

Class 

(Size) 

 

Exact 

Age at 

time of 

tagging 

 

Minimum 

age at 

time of 

tagging 

Tag 

Duration 

(hh:mm:ss) 

Number 

of focal 

upcalls 

           

SEUS 2006 21 3442 M J S 2 -- 1:21:07 7 

SEUS 2006 24 3430 F J S 2 -- 0:54:06 5 

SEUS 2014 40 2123 F A L 23 -- 1:33:27 10 

CCB 2009 107 3579 M J L 4 -- 4:02:26 12 

CCB 2010 93 3610 M U L U 4 3:04:57 3 

CCB 2010 95 3101 F A L 9 -- 4:02:56 4 

BOF 2001 227 2145 F A L 10 -- 4:11:37 23 

BOF 2002 221 2350 M A L U 11 7:54:00 3 

BOF 2002 222 3103 F J S 1 -- 1:44:00 6 

BOF 2005 210 3323 M J L 3 -- 10:52:00 10 

BOF 2005 213 1241 F A L 23 -- 0:20:00 66 

BOF 2005 215 2413 F A L 11 -- 11:20:00 7 

BOF 2005 226 3360 F U U U 2 9:00:00 5 
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Time-frequency measurements 

Spectrograms of individual upcall files were visually inspected in Raven Pro 1.5 (Hann window, 

window size = 2048 points, sample rate 16 kHz, overlap = 50%, frequency resolution = 7.81Hz, 

time resolution = 64ms, view y-axis = 0 – 1 kHz, view x-axis = 5.983s), and selection boxes 

were manually drawn around the fundamental frequency to restrict measurements of the 

frequency contour to the fundamental frequency of the calls. Individual frequency values for 

each successive spectral slice were stored as separate variables for each call, allowing for direct 

comparison of the frequency content at the same point in time within the call (Fig. 2).  

Formant measurements 

I measured formants using Praat (version 5.3.17, Boersma & Weenik 2012), an open-source 

speech analysis software. Praat measures formants using linear predictive coding (LPC), and this 

method is sensitive to false positive measurements from background noise, particularly in higher 

frequencies where the SNR of formants decreases. To reduce the effects of this noise, I used 

Adobe Audition 3.0 (Adobe Systems Incorporated, 2007) to remove background noise from 

files. Once sound files were loaded into Adobe Audition 3.0, I selected a portion of background 

noise at least 0.128s in length (2048 sample points) that occurred a minimum of 0.5s before the 

onset of the call and captured it as a noise reduction profile to be used in the Noise Reduction 

process within Adobe Audition 3.0. This tool loads a power spectrum of the background noise 

and then subtracts a fraction of those frequencies from the rest of the file. Settings of the Noise 

Reduction process were as follows: FFT size = 2048, noise reduction level = 100%, attenuation 

level = 40dB, precision factor = 7, smoothing factor = 1, transition width = 1dB, spectral decay 

rate = 65%. Spectrograms were visually assessed after de-noising to ensure that the formant 

structure was not degraded by noise removal.  
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De-noised files were read into Praat, and the frequency values of the formants were 

automatically extracted using the ‘LPC: To Formant (Burg)’ command. Analysis parameters 

were as follows: time step = 0.0 (auto), maximum number of formants = 4, maximum formant = 

5500Hz, window length = 0.025s, pre-emphasis from 50Hz. The first three formants were used 

in analysis based on the discussion of the decreased performance of formant tracking by Praat 

when measuring the maximum formant (Vannoni & McElligott, 2007). Formant values and 

bandwidths were then saved in comma separated files, and the mean measurement of each of the 

first three formants and corresponding bandwidths were used as the formant values of each call 

for analysis (Fig. 3).  

Amplitude measurements 

Using Raven Pro 1.5, new selection boxes were generated based on those used for the Peak 

Frequency Contour measurements. To measure amplitude for the entire call including all three 

formants, boxes were extended to include frequencies up to 3.5 kHz. Selections were then 

divided into equal-duration quartiles to capture amplitude differences over the course of a single 

call. Maximum amplitude, minimum amplitude, and root mean square (RMS) amplitude (Raven 

units) were measured for each call, and all amplitude measurements were normalized as a 

fraction of the maximum peak-to-peak amplitude for a given tag record (Fig. 4).  
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Figure 2: Spectrogram showing time-frequency measurements of an upcall in Raven Pro 1.5.  

Selection box shown in red, frequency contour measurements are shown in light blue, and the 

time points marking 5% (left) and 95% (right) of the spectrogram power spectral density are 

shown in dark blue. Spectrogram parameters same as described in text for time-frequency 

measurements 
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Figure 3: Formant measurements from Praat spectrogram. Red dots indicate measurement of 

formant values for each time window (0.025s). Brackets indicate approximate frequency 

locations of first three formants.  
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Figure 4: Amplitude measurements from waveform in Raven Pro 1.5. Vertical bars represent 

divisions between four equal-duration quartiles. Maximum, RMS, and minimum amplitude 

measurements are color-coded (orange, red, blue, respectively) and are explicitly indicated in the 

fourth quartile.   
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Table 3: Explanation of acoustic measurements. Time-frequency and formant measurements 

were taken from the spectrogram, and amplitude measurements were taken from the waveform. 

 

Parameter Class Description 

Duration (s) Time-frequency Total length of selection box, calculated as End Time - 

Begin Time 

   

Duration 90% (s) Time-frequency Difference between time points marking 95% and 5% of 

spectrogram power spectral density 

   

Frequency Contour (Hz) Time-frequency Contour composed of discrete values calculated by 

measuring the peak frequency of each successive 

spectrogram slice within the selection. Number of 

frequency contour values varies according to the 

duration (range 8 – 32 values) 

   

Minimum Frequency (Hz) Time-frequency Minimum value in Frequency Contour 

   

Maximum Frequency (Hz) Time-frequency Maximum value in Frequency Contour 

   

Start Frequency (Hz) Time-frequency First value in Frequency Contour 

   

End Frequency (Hz) Time-frequency Last value in Frequency Contour 

   

Formant 1 and Bandwidth (Hz) Formant Mean value of frequency and bandwidth measurements 

from first formant for each call 

   

Formant 2 and Bandwidth (Hz) Formant Mean value of frequency and bandwidth measurements 

from second formant for each call 

   

Formant 3 and Bandwidth (Hz) Formant Mean value of frequency and bandwidth measurements 

from third formant for each call 

   

Formant 2:Formant 1 Formant Ratio calculated by dividing the second formant by the 

first formant 

   

Formant 3:Formant 2 Formant Ratio calculated by dividing the third formant by the 

second formant 

   

Formant 3:Formant 1 Formant Ratio calculated by dividing the third formant by the first 

formant 

   

RMS amplitude (Raven units) 

(Quartiles 1 - 4) 

Amplitude Root mean square amplitude, normalized to maximum 

peak-to-peak amplitude for a given call 

   

Minimum Amplitude (Raven units) 

(Quartiles 1 - 4) 

Amplitude Minimum amplitude, normalized to maximum peak-to-

peak amplitude for a given call 

   

Maximum Amplitude (Raven units) 

(Quartiles 1 - 4) 

Amplitude Minimum amplitude, normalized to maximum peak-to-

peak amplitude for a given call 
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Statistical Analysis 

All variables were assessed for normality using Q-Q plots of values of each variable plotted 

against a theoretical normal distribution. The only measurement variables that were not normally 

distributed were the four minimum amplitude measurements, and these were log-transformed to 

achieve normality for further analyses. A multivariate analysis of variance (MANOVA) was 

performed to determine whether statistical differences exist among groups for all call parameters 

prior to further analyses. The resulting call parameters were then used to classify calls to age 

class, sex, and individual and to determine which variables were important for discrimination, 

three analytical tools were used: principal components analysis (PCA), discriminant function 

analysis (DFA), and classification and regression trees (CART). PCA and DFA were conducted 

in SPSS Version 22.0 (IBM Corp, 2013), and CART was done in R (version 2.15.2, R Core 

Team 2012).  

Principal Components Analysis 

The SPSS Factor Analysis tool was used to conduct a PCA using all of the measurement 

variables as well as different combinations of time-frequency, formant, and amplitude variables. 

Principal Components Analysis (PCA) is a nonparametric analysis that reduces dimensionality of 

the data by redefining values according to principal components that describe the maximum 

variation in the data. Prior to conducting each PCA in SPSS, the suitability of the data for 

component analysis was assessed using the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of 

sphericity. The KMO test measures sampling adequacy by determining the proportion of 

variance caused by underlying factors within the dataset; high values (>0.6) indicate that factor 

analysis will be useful. Bartlett’s test of sphericity tests the null hypothesis that all measurement 

variables are unrelated (i.e., the correlation matrix is an identity matrix) (Parinet et al., 2004). For 
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all sets of variables, the KMO value was greater than 0.6 and the Bartlett’s test of sphericity 

resulted in p<0.05, meaning the dataset is well-suited for PCA. The total number of components 

is equal to the number of measurement variables, but a component will only be extracted from 

the list of total components if its initial eigenvalue, a measure of the variance explained by each 

component, is greater than 1. The importance of each variable on the principal components can 

be determined using its principal component loadings, expressed as the correlation of each 

variable with the corresponding component. For this study, variables with a correlation 

coefficient > |0.5| were identified as important variables for a given component. After the PCA 

was completed, PCA scores were used as inputs to a discriminant function analysis (see method 

below) to determine which groupings of variables resulted in principal components that are best 

suited to discriminate between age classes, sexes, and individuals (e.g., Vannoni & McElligott 

2007). 

Discriminant Function Analysis 

To evaluate the effect of continuous variables on group membership, I ran DFA using the 

Discriminant Analysis tool in SPSS using all variables as well as different combinations of time-

frequency, formant, and amplitude measurements. To test any discrimination which may be 

explained by the principal components, I also ran a DFA using the principal component scores of 

all calls as dependent variables and the categories mentioned above as the independent variables. 

The analysis creates sets of functions that result in the greatest separation of groups. Each 

function takes the linear form 

YD = β1X1 + β2X2 + … + βkXk-1 

where YD is the discriminant score, X represents each measurement variable, and β is the 

coefficient that best separates the groups. The number of functions is equal to either the number 
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of measurement variables or the number of groups minus one, whichever is smaller. In this 

particular study, stepwise DFA produced 1 function when classifying age class and sex (N of 

groups – 1) and a maximum of 12 functions when classifying by individual (N of individuals – 

1). To predict membership of each case (call) within a class—age class, sex, individual—DFA 

standardizes all coefficients to a Z-score (mean = 0, SD = 1) to produce discriminant scores for 

each case. The assigned scores are then used to predict group membership and a canonical score 

for the group centroid. The scores of the first two discriminant functions of each case were 

plotted to visually assess any clustering patterns and overlap among age classes, sexes, or 

individuals. 

To assess the relative classification success using different types of measurements, I ran a 

stepwise DFA with different combinations of variables as an indication of the relative 

contributions of the source- and filter-based parameters. Stepwise DFA is a more conservative 

approach as it only includes those variables which are most important to separating the groups 

rather than using all possible variables as in a full DFA. The importance of a measurement 

variable in the stepwise process is determined by the F value of the regression coefficient that 

variable would have if it were included in the equation. At each “step” a new measurement 

variable is considered and the F values of the new variable and remaining variables are assessed. 

If the F value of the new variable is high enough, it is included in the next step. Likewise, if the F 

value of a variable that is already included in the analysis decreases beyond a certain threshold, it 

is removed (criteria used for this analysis: F > 3.84 to enter, F < 2.71 to remove). Prior 

probabilities were based on group size (number of calls per individual or age/sex group) in all 

analyses. Cross-validation using the “leave-one-out” method was also done in SPSS to assess the 

relative performance of each classification analysis.  
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Important variables were chosen as variables included in the final stepwise DFA that also 

had their highest correlation with a canonical discriminant function that was determined to be 

significant (p<0.05) according to a X
2
 test with degrees of freedom based on the number of 

individuals (categorical variable) and the number of continuous discriminant variables. The X
2
 

test in this case tests the null hypothesis that the canonical discriminant function is equal to zero, 

or that addition of the function adds no further discriminating ability (e.g., Boughman 1997).  

Classification and Regression Trees 

Classification and Regression Trees (CART) uses recursive partitioning to create a bifurcating 

tree based on measurement values that best split the data. Splits are assessed using a measure of 

impurity, or the proportion of cases belonging to the non-majority group after each split. CART 

analysis was completed using the function “rpart” included in the R package “rpart” (Therneau et 

al., 2014). Since the tree is partitioning the data according to membership within categories, the 

‘class’ method was used in the function. Trees were initially computed with a minimum of 2 

cases (calls) per terminal node and then pruned to reflect the tree with the lowest standardized 

cross-validation error (Legendre & Legendre, 2012). I ran the CART analysis using all 

measurement variables as well as combinations of time-frequency, formant, and amplitude 

variables. Terminal nodes are labeled as the category with the majority of cases assigned to that 

node; misclassified calls, therefore, are any calls assigned to a particular terminal node which do 

not belong to that category. Percent correct classification was calculated using the number of 

misclassifications at the terminal nodes for the entire pruned tree. Cross-validation using the 

“leave-one-out” method was also done using the “rpart” package to assess the relative 

performance of each classification analysis.   
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RESULTS 

Analyses of age class discrimination by reproductive status were performed using 148 calls from 

11 individuals (6 adults, 5 juveniles), analyses of age class discrimination by size were 

performed using 151 calls from 12 individuals (9 larger, 3 smaller), and analyses of sex and 

individual discrimination were performed using 161 calls from 13 individuals (5 males, 8 

females; median number of calls per individual = 7, range = 3 – 66 calls per individual). The 

MANOVA for each grouping—age, size, sex, and individual—confirmed presence of group 

differences in measurement parameters (p < 0.001 for all analyses; age: F1,146 = 3.37; size: F1,149 

= 4.38; sex: F1,159 = 2.70; individual: F12,148 = 2.40). Descriptive statistics for important 

classification variables described below are found in Table 1, Appendix A.  

 

 

Principal Components Analysis 

Principal components analysis was performed on all calls (N = 13 individuals, 161 calls) to 

determine the components which best describe the variation in the data. All PCA results 

including important variables for each analysis are summarized in Tables 2 – 8, Appendix A. A 

brief summary of PCA results is presented in Table 4. The PCA using all variables resulted in 13 

principal components that describe 82.1% of variance. All cases are plotted in a scatterplot 

matrix of the first three components, which describe 42.5% of the variance (Fig. 5). To 

discriminate between age classes, the PCA using a combination of time-frequency and formant 

variables produced components which in turn represented the highest correct classification 

(80.4%) when used as inputs to stepwise DFA. To discriminate between sexes, the PCA using all 

variables produced components which in turn represented the highest correct classification 

(77.0%) when used as inputs to stepwise DFA. To discriminate among individuals, the PCA 



29 

 

using a combination of time-frequency and amplitude variables produced components which in 

turn represented the highest correct classification (71.4%) when used as inputs to stepwise DFA. 

Scatterplot matrices for age and sex discrimination are presented in Figs. 1 – 3, Appendix B. 
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Figure 5: Scatterplot matrix of first three principal component scores of the PCA using time-frequency and amplitude variables. The 

first three components explained 48.4% of the variation in the data, and all 9 components in the analysis explained 79.4%. Colors 

indicate individual whales, and lines are drawn from each call to the group centroid of principal component scores for that individual.  
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Table 4: Percent variance explained by all principal components and first three principal 

components when analysis was completed for different variable groupings 

 

 

 

% Variance 

explained by 

all components 

Total number of 

principal components 

% Variance explained 

by first three 

components 

Formants 77.6 3 77.6 

Amplitude 88.7 3 88.7 

Time-frequency 78.2 7 55.6 

Time-frequency + 

formants 
79.3 10 46.6 

Time-frequency + 

amplitude 
79.4 9 48.4 

Formants + amplitude 84.9 6 66.0 

All 82.1 13 42.2 

 

Discriminant Function Analysis 

All stepwise DFA results including a list of important variables for each analysis are summarized 

in Tables 9 – 12, Appendix B. A plot of discriminant scores for all calls based on the DFA using 

all variables to discriminate among individual callers is shown in Fig. 6. Plots of discriminant 

scores for the combinations of variables resulting in the highest percentage of correct 

classifications for the other categories—age class based on reproductive maturity, age class 

based on approximate size, sex—are shown in Figures 4 – 6, Appendix B. For individual 

discrimination, time-frequency variables alone result in a higher percentage of correctly 

classified calls (67.7%) than either formant variables alone (42.2%) or amplitude variables alone 

(60.9%). When combining two groups of variables, the combination of time-frequency and 

amplitude variables resulted in a higher percentage of correct classification (79.5%) than either 

time-frequency and formant variables (72.0%) or formant and amplitude variables (57.8%). The 

highest classification success occurred when all three groups of variables—time-frequency, 

formant, and amplitude—were included in the stepwise DFA (83.2%) (Table 5).   
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Table 5: Percent correct classification results from stepwise DFA 

 

 

 

 

 
Age (Reprod.) 

(N=11) 

Age (Size) 

(N = 11) 
Sex (N=13) Individual (N=13) 

Variable Groupings 
% Correct 

Classification 

Cross-

validation 

Error (%) 

% Correct 

Classification 

Cross-

validation 

Error (%) 

% Correct 

Classification 

Cross-

validation 

Error (%) 

% Correct 

Classification 

Cross-

validation 

Error (%) 

Formants 77.0 23 78.1 21.9 79.5* 21.7 42.2 60.2 

Amplitude 81.1* 18.9 91.4 8.6 70.2 34.8 60.9 44.1 

Time-frequency 81.1* 20.3 92.1* 8.6 74.1 29.8 67.7* 39.8 

Time-frequency + 

formants 
80.4 20.3 92.7 7.9 80.1 21.7 72 39.1 

Time-frequency + 

amplitude 
82.4 20.3 94** 7.9 74.5 25.5 79.5 30.4 

Formants + amplitude 83.8** 16.2 91.4 8.6 83.9** 18.6 57.8 47.2 

All 80.4 20.3 94** 7.9 83.2 19.9 83.2** 26.7 

 *highest percent classification for a single variable grouping 

**highest percent classification overall 
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A given variable grouping was used a maximum of four times: once with no other 

variables, once with each of the other two variable groupings, and once in the analysis including 

all variables. When discriminating between reproductive age classes, variables that were used in 

all four possible analyses were duration 90%, 18
th

 frequency contour value, and the bandwidth of 

the third formant. When discriminating between size-based age classes, variables that were used 

in all four possible analyses were duration 90%, end frequency, 18
th 

frequency contour value, 

25
th

 frequency contour value, maximum amplitude of the 4
th

 quartile, and RMS amplitude of the 

4
th

 quartile. When discriminating between the sexes, variables that were used in all four analyses 

were the 21
st
 frequency contour value, formant 2, formant 1 bandwidth, formant 3 bandwidth, 

formant 3/formant 1 ratio, and the log(minimum amplitude) of the second quartile. When 

discriminating among individuals, variables that were important in all four possible analyses 

were duration 90%, 18
th

 frequency contour value, log(minimum amplitude) of the third quartile, 

and RMS amplitude of the fourth quartile.  

 

Classification and Regression Trees 

A full summary of the CART classification results including important variables and number of 

splits for each tree is presented in Tables 13 – 16, Appendix A. A brief summary of classification 

results is presented in Table 6. Use of all variables resulted in the pruned tree with the highest 

percentage of calls classified to the correct individual (Fig. 7). Pruned trees resulting in the 

highest percentage of correct classifications for other categories—age class based on 

reproductive maturity, age class based on size, and sex—are shown in Figures 7 – 9, Appendix 

B. In classification trees, the variable used in the first split describes the largest division in the 

data. For age class based on reproductive maturity, the tree produced using all variables resulted 



34 

 

in the highest percentage of correct classifications (94.6%), contained 7 splits, and used duration 

90% to determine the first split. For age class based on approximate size, the tree produced using 

important variables from the DFA resulted in the highest percentage of correct classifications 

(94.7%), contained 6 splits, and used duration 90% to determine the first split. For sex, the tree 

produced using time-frequency and amplitude variables resulted in the highest percentage of 

correct classification (93.2%), contained 13 splits, and used the maximum amplitude of the 2
nd

 

quartile to determine the first split. For individual, the tree produced using all variables resulted 

in the highest percentage of correct classification (86.3%), contained 18 splits, and used duration 

90% to determine the first split.  
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Figure 6: Canonical discriminant scores for first two discriminant functions using all variables to discriminate among individuals.  

Correct classification based on 9 discriminant functions was 85.1%. Colors indicate individual whales, and lines are drawn from each 

call to the group centroid of canonical discriminant scores for that individual.  
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Table 6: Classification results from CART analysis. 

 

 

Variable 

Groupings 
Age (Reprod.) (N=11) Age (Size) (N=12) Sex (N=13) Individual (N=13) 

 

% Correct 

Classification 

Number 

of Splits 

Cross-
validation 

Error (%) 

 

% Correct 

Classification 

Number 

of Splits 

Cross-

validation 
Error (%) 

% Correct 

Classification 

Number 

of Splits 

Cross-

validation 
Error (%) 

% Correct 

Classification 

Number 

of Splits 

Cross-

validation 
Error (%) 

Formants 89.2* 4 26 90.7 8 42.0 75.8 1 44.0 61.5 8 84.0 

Amplitude 89.2* 5 26 91.4* 3 18.0 83.2* 4 49.0 62.1* 5 81.0 

Time-frequency 85.8 4 36 89.4 1 21.0 72.7 2 55.0 61.5 4 83.0 

Time-frequency + 

formants 
91.2 4 27 92.1 2 20.0 79.5 2 52.0 58.4 3 70.0 

Time-frequency + 

amplitude 
90.5 5 31 89.4 1 18.0 93.2** 11 44.0 83.9 16 83.0 

Formants + 
amplitude  

91.9 5 28 91.4 3 16.0 75.8 1 41.0 64.6 6 84.0 

DFA Variables 90.5 6 37 94.7** 6 24.0 92.5 13 42.0 73.3 12 71.0 

All 94.6** 7 32 89.4 1 20.0 75.3 1 47.0 86.3** 18 68.0 

 *highest percent correct classification for a single variable grouping 
**highest percent correct classification overall 
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Figure 7: Classification tree using all variables to classify calls to individuals. Branches displayed to the left of a split contain cases 

which satisfy the criterion defined at each split. Terminal nodes are labeled with the catalog number of the individual with the majority 

of calls assigned to that node. Overall percentage of correct classification was 86.3%. The classification success of each node is listed 

as misclassifications/total number of calls.  
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DISCUSSION 

Summary of Results  

In this thesis, I examined the upcall produced by North Atlantic right whales to test for 

acoustic characteristics that could be used to discriminate between age classes, between sexes, 

and among individuals. Using Discriminant Function Analysis (DFA) and Classification and 

Regression Trees (CART) with the measured parameters, calls were classified to the correct age 

category, sex category, and individual well above that expected by random chance. For age 

discrimination and individual discrimination via stepwise DFA, time-frequency variables alone 

consistently resulted in the highest percentage of calls being correctly classified to the correct 

age class or individual compared to formant or amplitude variables alone. Additionally, when 

considering pairings of sets of variables, the combination of time-frequency variables and 

amplitude variables resulted in the overall highest correct classification for both age and 

individual. For sex discrimination, DFA using formant variables alone resulted in the highest 

percentage of correct classifications compared to other sets of variables alone, and DFA using 

the pairing of formants and amplitude resulted in the highest overall percentage of correct 

classification.  

For CART analyses, regardless of classification group—reproductive age, size-based age, 

sex, individual—amplitude variables alone resulted in a higher percentage of correctly classified 

calls compared to formant or time-frequency variables alone. However, for all classification 

groups except for reproductive age class, the lowest cross-validation error was represented by a 

different variable grouping. In CART, the correct classifications are correlated with the number 

of splits, thus the performance of different variable groupings should be assessed with caution 

and may not be the best means of comparing CART models.   
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When considering specific variables, duration of the call (duration 90%) was included in 

all stepwise discriminant analyses for individual and age, suggesting that time-related aspects of 

the upcalls are most important to distinguish between age classes and among individuals. The 

18
th

, 19
th

, and 21
st
 frequency contour values were also included in several of the analyses, and the 

relative importance of these variables may be an effect of duration. These variables were also 

important in the CART analysis, with duration 90% being used to determine the first split for 

both types of age discrimination and the 19
th

 frequency contour value being used to determine 

the first split for individual. Although not explicitly included as a separate variable, the number 

of frequency contour values (median = 18, range 8 – 32) serves as an additional metric of 

duration since the contour is sampled at equally spaced time points. Thus, for discrimination 

purposes, the value of the 18
th

 – 21
st
 frequency contours may indicate a dividing point between 

longer calls and shorter calls lacking information after those time points. The results of the 

Principal Components Analysis (PCA) also support this interpretation, as the frequency contour 

values of the last portion of the call were consistently grouped with duration 90% in the first 

component. The frequency values from the beginning portion of the call, however, were also 

grouped with end frequency, possibly indicating an overall frequency bandwidth effect.  

Whereas duration-related parameters were most important for discriminating age and 

individual identity, this was not the case when discriminating between the two sexes. Unlike 

either age or individual, sex discrimination was most successful using formant variables. In both 

DFA and CART analyses, the frequency of formant 2 was important in distinguishing between 

the two sexes, and DFA also used the ratio between the third and first formants. The ratio 

between formants is a metric of formant dispersion, or the relative spacing of formant 

frequencies. In the PCA, when the formant variables were not combined with other variable 
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groupings, the majority of specific variables were used in the first component, indicating that 

there is an overall ‘formant effect’. In context of the importance of formant 2 for stepwise DFA 

and CART, measurements of additional formants may be unnecessary to achieve discrimination 

of sexes, but further study is needed to confirm this effect.  

Stereotyped calls of other mammalian species follow a pattern similar to the North 

Atlantic right whale in terms of duration and frequency parameters being important for 

discriminating among individuals. In Amazonian manatees (Trichechus inunguis) (Sousa-Lima, 

2002; Sousa-Lima et al., 2008) and killer whales (Orcinus orca) (Nousek et al., 2006), individual 

discrimination is possible using duration and frequency parameters, and the same features are 

used by Sousa-Lima et al. (2002; 2008) to distinguish calves from adult manatees. When 

discriminating among individual yellow-bellied marmots (Marmota flaviventris), Blumstein and 

Munos (2005) describe many frequency-related measurements, including overall duration, that 

contribute to identity cues.  

In terrestrial mammals, formant dispersion is related to the length of the vocal tract 

(Charlton et al., 2011; Taylor & Reby, 2010). Although I had predicted formant variables to be 

important for individual discrimination (as in fallow deer (Vannoni & McElligott, 2007)), when 

considering the sexual size dimorphism in adult right whales (Brown et al., 1994; Payne & 

Dorsey, 1983) the importance of formants in discriminating between sexes still follows the 

source-filter paradigm in terms of lower formants with lower formant dispersion being produced 

in larger females. Formant frequencies did not, however, result in the highest classification 

success when discriminating between size-based age classes, which appears to counter the 

source-filter paradigm of formants as a size indicator (e.g., Reby & McComb, 2003). This 

unexpected result may suggest internal propagation mechanisms outside of the airways that 
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create unique filtering within the mysticete vocal system. Examination of this hypothesis would 

require modeling of tissues surrounding the vocal apparatus. If the tissues function as an 

additional acoustic filter, formant frequency and formant dispersion may not necessarily 

correspond directly with body size as in terrestrial mammals.  

 

Improvements and Future Work 

The importance of frequency variables and duration suggests that differences are most 

likely to be related to physiological or morphological attributes of the whale, but the 

corresponding importance of amplitude may be an artefact of specific tagging events. Due to the 

size of right whales, even when tagging the same body area, the relative location of the tag to the 

relevant vocal anatomy may vary among whales by meters. This distance may be enough to 

affect near-field propagation of the calls and result in unpredictable and unrepeatable effects on 

the received amplitude of the calls (Richardson et al., 1995). While specifically impacting the 

amplitude measurements, near-field effects may also impact measurements of formants which 

are extracted based on the long-term power spectrum of the call. Amplitude measurements are 

further complicated if the tag changes its position on the whale over the course of the tag record, 

which can occur often during tag deployment since the suction cups are not embedded into the 

skin (e.g., Parks et al. (2012) exclude data collected after shifts of the tag to retain integrity of 

kinematic data).  

One of the biggest limitations to this study is the lack of multiple recordings of the same 

individual separated by time and space. Without such separation, there is a risk of idiosyncratic 

attributes of a particular day or tagging event that may have affected the calls of any given 

individual. Furthermore, knowing how whales change aspects of their identity signals as they 
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move through different habitats over the course of a year or if call parameters change over an 

individual’s lifetime will also inform monitoring efforts. Given the ability to discriminate 

between age classes in this study, changes in vocal parameters over an individual whale’s 

lifetime are very likely and could be measured with repeated recordings of the same animal 

throughout its life.  

Within a single year, it is possible that changing behavioral contexts in different habitat 

areas (e.g., Hamilton 2002) may affect how distinctive whales are in those habitats. For example, 

a whale may alter its calls to be more distinctive while participating in a SAG, or a mother may 

have more robustly identifiable calls while she has a calf. Mother-offspring recognition has been 

observed in several species (Charrier et al., 2002; Sebe et al., 2007; Torriani et al., 2006) and is 

likely to be a strongly selected trait in right whales where calves are dependent on their mothers 

for their entire first year (Kraus et al., 2007). Given the dynamic nature of the marine 

environment, separation of mother and calf occurs frequently, and recognition of an acoustically 

distinctive contact call or reunion call would be a selective advantage in this species. It would be 

interesting to determine whether calls of calves are as distinctive as calls of older animals 

represented in this study and whether recognition is done by the mother, the calf, or both.  

 As an upcall propagates through the environment, certain aspects of the call will degrade 

or become distorted due to transmission loss or multipath effects. In general, lower frequencies 

experience less transmission loss over distance compared to higher frequencies (Richardson et 

al., 1995). Shallow habitats can affect propagation of calls by creating a waveguide which allows 

the sound waves to reflect off of the sea floor and sea-air interface (Wiggins et al., 2004). 

Munger et al. (2011) describe propagation effects on the upcalls of North Pacific right whales in 

a shallow habitat (~70m) resulting in distinct, arrivals of the call and corresponding multipath 
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arrivals of time- and frequency-distorted versions of the call at distances > 20 km. This likely has 

direct consequences for the use of duration as an identifying feature since the duration of the 

entire received call—including multipath signals—will change over long distances. Additionally, 

the increased attenuation of higher frequencies may suggest that formant information will be 

preferentially lost over distance, but Mercado & Frazer (1999) identify 2400 Hz as an 

unexpectedly optimal frequency for propagation for singing humpback whales in Hawaiian 

waters. In this study, the second formant was important for discriminating between sexes, and 

the mean value for all whales was 2015 Hz. There is a possibility, therefore, that formant 

information may reliably propagate through the environment and allow conspecifics to assess 

information about sex from upcalls.  

Additionally, although Dtags are an excellent way to ensure the identity of a caller, they 

do not allow assessment of any aforementioned propagation effects. Using a directional 

hydrophone or multiple recorders, it is possible to assign calls to individual whales without using 

tags (e.g., Parks & Tyack, 2005). With such techniques, the propagation of specific acoustic 

features, especially those which are likely to encode individuality, could be measured if the same 

individual were recorded using a Dtag and hydrophones at varying distances. Ideally, 

propagation tests would also involve playing synthetically altered calls, perhaps excluding 

amplitude modulation or selectively removing formants, and re-recording them at known 

distances from the source (e.g., Charrier et al., 2009). This testing would allow researchers to 

analyze which call parameters are attenuated over distance, providing a means for more specific 

predictions for variables that may be useful to the receiver. In king penguins (Aubin et al., 2000) 

and black-capped chickadees (Christie et al., 2004), calls become more distinctive after 

propagating through the environment. Further research is needed to determine whether such an 
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effect might also occur in right whale upcalls, but if other right whales are using acoustic cues 

from a distinctive signaler, those cues must propagate through the environment at least far 

enough to reach the receiver. Surely such distances will be farther than the distance from a 

whale’s vocal apparatus to its own recording tag, and propagation testing will reveal to what 

extent such features are relevant for both conspecific receivers and passive acoustic monitoring.  

Given the proposed context of the upcall as a long-distance contact call (Clark, 1982), 

any features used for recognition would need to be robust over long distances. It would be 

interesting to determine whether the time-frequency variables important for close-range 

discrimination, measured from Dtags in this study, are equally important at increasing distances. 

Charrier et al. (2009) conducted playback studies in different environments to test the 

propagation of mother fur seal reunion calls. The authors found that distance of recording 

differentially affected the propagation of relevant identity cues, degrading amplitude-related cues 

but retaining frequency cues with increasing distance. In the same study, Charrier et al. (2009) 

also measured propagation in different habitats and determined that the ambient noise of the 

habitat itself has an effect on the propagation of salient call features.   

In different habitats, vocalizations of right whales may also be affected by changes in 

ambient noise (Parks et al., 2009). In a given year, North Atlantic right whales move through 

several different types of habitats with drastically different environments in terms of acoustic 

propagation, particularly whales that migrate to the calving grounds from high-latitude habitats 

(Parks et al., 2009). Parks et al. (2009) describe subtle variations in upcall parameters that 

correspond with differing noise profiles in three major habitat areas: Bay of Fundy, Cape Cod 

Bay, and the Southeast US. Duration, minimum frequency, and peak frequency showed variation 

among the three habitats, although the distributions of parameters for each habitat were largely 
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overlapping. The results of this thesis suggest that the distributions of measurements in Parks et 

al. (2009) may have been influenced by the presence of particular individuals in those habitats, 

although more ground-truthing would be necessary before such a conclusion were possible.  

 

Implications for Monitoring 

Marine passive acoustic monitoring (PAM) describes a system in which a recorder is 

used to collect acoustic information from a particular study site (Mellinger et al. 2007). 

Recordings may come from manned recorders, such as a hydrophone towed behind a vessel, or 

unmanned, autonomous recorders. From a methodological standpoint, autonomous recorders are 

particularly useful in the marine environment since towed hydrophone deployments are limited 

by sea state, seasonal weather conditions, and travel distance to a study site (Au & Hastings, 

2010). 

With autonomously recorded data of stereotyped calls, unless information regarding age, 

sex, or identity can be extracted from the calls, there can be no further resolution of observation 

beyond a presence-absence assessment. One exception to this occurs if certain vocalizations are 

only produced by a particular age class or sex—e.g., song of humpback whales is only known to 

be produced by males (Payne & McVay, 1971). In the North Atlantic right whale, the broadband 

gunshot has only been recorded from adult males, and the tonal scream calls have thus far only 

been attributed to females (Parks et al., 2005; Parks et al., 2007). Seasonal occurrence of these 

vocalizations may indicate an increase in reproductive SAGs and the corresponding importance 

of the habitats in which these SAGs occur (Bort et al., 2015; Matthews et al., 2014). However, 

such vocalizations do not allow inference of presence or seasonal behavior of animals that do not 
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fit into the categories—i.e., one cannot conclude presence of females if the only vocalizations are 

known to be produced by males. 

Thus, for monitoring purposes, the most information would be available when a 

stereotyped call is produced by all individuals and contains features that allow discrimination of 

individuals. The upcall of right whales is consistently reported as the most prevalent call in 

several passive acoustic monitoring studies, and it has often been used to confirm the presence of 

North Atlantic right whales in several habitats (Mellinger et al., 2007; Van Parijs et al., 2009; 

Mussoline et al., 2012; Bort et al., 2015). It is possible to use multiple autonomous or towed 

recorders to localize successive vocalizations and track an individual whale’s movements within 

an area (e.g., (Urazghildiiev, 2014; Van Parijs et al., 2009). However, a major limitation of this 

technique becomes apparent when long periods of silence between bouts of calls prevent 

assignment of subsequent calls to a particular individual (discussed in Urazghildiiev, 2014).  

Based on the results of this study, however, information is available within the upcall that 

can allow statistical determination of sex, age class, or individual identity. Furthermore, 

especially with multiple simultaneous recorders, deployment time is limited by battery life and 

available data storage space. The tradeoffs of these practical considerations often result in 

recorders with sample rates that are only sufficient to record the fundamental frequency of a call 

of interest—e.g., Mellinger et al. (2007) and Bort et al. (2015) were limited to sample rates of 

2kHz for right whale monitoring. This study shows that even in the “low frequency” calls of the 

North Atlantic right whale, there may be additional discrimination possible if higher frequencies 

are included in autonomously recorded datasets. Identification of age class, sex, or individual 

identity using a single receiver may allow for longer deployments and higher sample rates.  
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APPENDIX A: ADDITIONAL TABLES 

Table 1: Descriptive statistics of variables by age, sex, and individual 

Table 2: Results from principal components analysis using all variables. Table indicates 

important variables, eigenvalues, and percent variance explained for the first three 

principal components 

Table 3: Results from principal components analysis using time-frequency and formant 

variables. Table indicates important variables, eigenvalues, and percent variance 

explained for the first three principal components 

Table 4: Results from principal components analysis using time-frequency and amplitude 

variables. Table indicates important variables, eigenvalues, and percent variance 

explained for the first three principal components 

Table 5: Results from principal components analysis using formant and amplitude variables. 

Table indicates important variables, eigenvalues, and percent variance explained for the 

first three principal components 

Table 6: Results from principal components analysis using time-frequency variables.  

Table 7: Results from principal components analysis using formant variables.  

Table 8: Results from principal components analysis using amplitude variables.  

Table 9: Results of stepwise DFA discriminating between age classes determined by 

reproductive maturity (N = 11 whales, 148 calls). Important variables are listed in the 

order in which they entered the analysis. 

Table 10: Results of stepwise DFA discriminating between age classes determined by 

approximate size (N=12 whales, 151 calls). Important variables are listed in the order in 

which they entered the analysis. 

Table 11: Results of stepwise DFA discriminating between sexes (N = 13 whales, 161 calls). 

Important variables are listed in the order in which they entered the analysis. 

Table 12: Results of stepwise DFA discriminating among individual whales (N=13 whales, 161 

calls). Important variables are listed in the order in which they entered the analysis. 

Table 13: Results of CART analysis discriminating between age classes determined by 

reproductive maturity (N = 11 whales, 148 calls).  

Table 14: Results of CART analysis discriminating between age classes determined by 

approximate size (N = 12 whales, 151 calls).  

Table 15: Results of CART analysis discriminating between sexes (N = 13 whales, 161 calls).  

Table 16: Results of CART analysis discriminating among individuals (N = 13 whales, 161 

calls).  

Table 17: Confusion matrix for DFA using all variables to classify calls to age classes 

determined by reproductive age.  

Table 18: Confusion matrix for DFA using all variables to classify calls to age classes 

determined by approximate size.  

Table 19: Confusion matrix for DFA using all variables to classify calls to sex 

Table 20: Confusion matrix for DFA using all variables to classify calls to individual.  
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Table 1: Descriptive statistics of variables by age, sex, and individual. All values are mean ± SD.  

  

Age 

(Reprod.) 

Duration 90% 1
st
 frequency 

contour value 

End frequency 18
th

 frequency 

contour value 

Formant 3 Bandwidth 

Adult 

(N = 6) 
0.87 ± 0.22 110.41 ± 30.17 204.08 ± 49.25 118.70 ± 86.80 848.18 ± 139.76 

Juvenile 

(N = 5) 
0.56 ± 0.21 103.13 ± 26.70 185.00 ± 59.59 32.50 ± 67.48 779.37 ± 136.97 

Age  

(Size) 

Duration 90% 1
st
 frequency contour 

value 

End frequency 18
th

 frequency 

contour value 

Larger 

(N = 9) 
0.85 ± 0.21 108.05 ± 28.85 208.36 ± 52.87 102.03 ± 90.95 

Smaller 

(N = 3) 
0.46 ± 0.17 107.48 ± 29.50 162.88 ± 44.76 36.94 ± 67.65 

             
 25

th
 frequency contour value Maximum amplitude, 

4
th

 quartile 
RMS amplitude, 4

th
 quartile  

Larger 

(N = 9) 
27.28 ± 71.10 0.12 ± 0.09 0.04 ± 0.02    

Smaller 

(N = 3) 
12.31 ± 52.94 0.12 ± 0.10 0.02 ± 0.02    
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Table 1 (continued): Descriptive statistics of variables by age, sex, and individual. All values are mean ± SD. 

 

  

Sex Duration 90% 1
st
 frequency contour 

value 

End frequency 

Female 

(N = 8) 
0.71 ± 0.22 108.77 ± 29.71 201.77 ± 59.09 

Male 

(N = 5) 
0.79 ± 0.27 106.80 ± 27.62 196.31 ± 50.18 

 

 21
st
 frequency contour 

value 

Formant 2 Formant 1 Bandwidth 

Female 

(N = 8) 
22.39 ± 64.24 1895.85 ± 209.65 477.20 ± 137.39 

Male 

(N = 5) 
83.36 ± 91.46 2071.10 ± 191.92 558.81 ± 113.75 

 

 Formant 3 Bandwidth Formant 3:Formant 1 log(minimum 

amplitude), 2
nd

 quartile 

Female 

(N = 8) 
886.48 ± 142.71 3.25 ± 0.51 -0.26 ± 0.12 

Male 

(N = 5) 
796.28 ± 133.09 3.23 ± 0.75 -0.29 ± 0.09 
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Table 1 (continued): Descriptive statistics of variables by age, sex, and individual. All values are mean ± SD. 

 

 

 

 

 

 

 

 

  

EGNO Duration 90% 1st frequency 

contour value 

End frequency 18
th

 frequency contour 

value 

log(minimum 

amplitude), 3
rd

 quartile 

RMS amplitude, 4
th

 

quartile 

2145 0.78 ± 0.23 111.7 ± 22.7 270.3 ± 59.5 218.8 ± 103.5 -0.2 ± 0.2 0 ± 0 

2350 0.93 ± 0.19 109.7 ± 32.3 201.1 ± 40.4 137.1 ± 57.8 -0.3 ± 0.1 0 ± 0 

3103 0.61 ± 0.19 78.1 ± 7.8 145.1 ± 18.5 13.4 ± 35.5 -0.2 ± 0.1 0 ± 0 

3323 0.80 ± 0.16 100.0 ± 11.6 193.8 ± 33.8 46.9 ± 104.8 -0.3 ± 0 0.1 ± 0 

1241 0.86 ± 0.18 130.6 ± 27.7 184.2 ± 21.6 56.9 ± 97.2 -0.3 ± 0 0 ± 0 

2413 0.84 ± 0.11 103.1 ± 18.6 225.0 ± 27.8 0.0 ± 0.0 -0.3 ± 0 0 ± 0 

3360 0.80 ± 0.21 100.0 ± 13.7 193.0 ± 26.3 107.0 ± 92.9 -0.3 ± 0 0 ± 0 

3579 0.73 ± 0.16 92.5 ± 20.2 242.2 ± 67.1 14.3 ± 49.6 -0.3 ± 0 0.1 ± 0 

3610 0.83 ± 0.21 106.8 ± 11.9 237.0 ± 96.5 0.0 ± 0.0 0 ± 0 0 ± 0 

3101 0.50 ± 0.08 115.2 ± 25.8 205.1 ± 54.3 0.0 ± 0.0 -0.3 ± 0 0.1 ± 0 

3442 0.41 ± 0.12 107.3 ± 16.7 153.9 ± 29.9 41.1 ± 71.2 -0.3 ± 0 0 ± 0 

3430 0.47 ± 0.29 177.1 ± 19.7 273.4 ± 28.2 59.9 ± 103.7 -0.4 ± 0 0 ± 0 

2123 0.55 ± 0.08 95.1 ± 25.9 131.5 ± 16.7 0.0 ± 0.0 -0.3 ± 0.1 0.1 ± 0 
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Table 2: Results from principal components analysis using all variables. Table indicates important variables, eigenvalues, and percent 

variance explained for the first three principal components 

All variables 
Total Number of Principal Components 13   

  

% Variance Explained by all 

components 
82.1   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Duration 90% End frequency RMS amplitude, 3rd quartile 

 

Duration Maximum frequency Maximum amplitude, 4th quartile 

 

17th frequency contour value Minimum frequency RMS amplitude, 4th quartile 

 

18th frequency contour value Start frequency log(minimum amplitude), 1st quartile 

 

19th frequency contour value 2nd frequency contour value log(minimum amplitude), 2nd quartile 

 

20th frequency contour value 3rd frequency contour value log(minimum amplitude), 3rd quartile 

 

21st frequency contour value 4th frequency contour value log(minimum amplitude), 4th quartile 

 

22nd frequency contour value 5th frequency contour value 

 

 

23rd frequency contour value 6th frequency contour value 

 

 

24th frequency contour value 

  

 

25th frequency contour value 

  

 

26th frequency contour value 

  

 

6th frequency contour value 

  

 

8th frequency contour value 

  

 

Formant 2:Formant 1 

  

 

Maximum amplitude, 2nd quartile 

  

 

RMS amplitude, 2nd quartile 

  

 

Maximum amplitude, 3rd quartile 

  

 

RMS amplitude, 3rd quartile 

    Maximum amplitude, 4th quartile     

Eigenvalues 10.7 7.5 6.7 

% Variance 18.1 12.8 11.3 

Cumulative 18.1 30.8 42.2 
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Table 3: Results from principal components analysis using time-frequency and formant variables. Table indicates important variables, 

eigenvalues, and percent variance explained for the first three principal components 

 

Time-frequency + formants 
Total Number of Principal Components 10   

  

% Variance Explained by all 

components 
79.3   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Duration 90% End frequency 12th frequency contour value 

 

Duration Maximum frequency 13th frequency contour value 

 

17th frequency contour value Minimum frequency 14th frequency contour value 

 

18th frequency contour value Start frequency 15th frequency contour value 

 

19th frequency contour value 2nd frequency contour value 16th frequency contour value 

 

20th frequency contour value 3rd frequency contour value 

 

 

21st frequency contour value 4th frequency contour value 

 

 

22nd frequency contour value 5th frequency contour value 

 

 

23rd frequency contour value 6th frequency contour value 

 

 

24th frequency contour value 7th frequency contour value 

 

 

25th frequency contour value 8th frequency contour value 

 

 

26th frequency contour value 

  

 

27th frequency contour value 

  

 

28th frequency contour value 

    8th frequency contour value     

Eigenvalues 9.54 7.273 5.11 

% of Variance 20.299 15.475 10.873 

Cumulative % 20.299 35.774 46.647 
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Table 4: Results from principal components analysis using time-frequency and amplitude variables. Table indicates important 

variables, eigenvalues, and percent variance explained for the first three principal components 

 

  

Time-frequency + 

amplitude 
Total Number of Principal Components 9 

 

  

% Variance Explained by all 

components 79.4   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Duration 90% End frequency Maximum amplitude, 2nd quartile 

 

Duration Maximum frequency RMS amplitude, 2nd quartile 

 

18th frequency contour value Minimum frequency Maximum amplitude, 3rd quartile 

 

19th frequency contour value Start frequency RMS amplitude, 3rd quartile 

 

20th frequency contour value 2nd frequency contour value Maximum amplitude, 4th quartile 

 

21st frequency contour value 3rd frequency contour value RMS amplitude, 4th quartile 

 

22nd frequency contour value 4th frequency contour value log(minimum amplitude), 1st quartile 

 

23rd frequency contour value 5th frequency contour value log(minimum amplitude), 2nd quartile 

 

24th frequency contour value 6th frequency contour value log(minimum amplitude), 3rd quartile 

 

25th frequency contour value 

 

log(minimum amplitude), 4th quartile 

 

26th frequency contour value 

  

 

8th frequency contour value 

  

 

Maximum amplitude, 2nd quartile 

  

 

RMS amplitude, 2nd quartile 

  

 

Maximum amplitude, 3rd quartile 

  

 

RMS amplitude, 3rd quartile 

    Maximum amplitude, 4th quartile     

Eigenvalues 10.106 7.488 6.618 

% of Variance 20.212 14.976 13.235 

Cumulative % 20.212 35.188 48.423 
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Table 5: Results from principal components analysis using formant and amplitude variables. Table indicates important variables, 

eigenvalues, and percent variance explained for the first three principal components 

 

  

Formant + amplitude Total Number of Principal Components 6   

  

% Variance Explained by all 

components 84.9   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Maximum amplitude, 2nd quartile Formant 1 log(minimum amplitude), 4th quartile 

 

Maximum amplitude, 3rd quartile Formant 2 log(minimum amplitude), 3rd quartile 

 

RMS amplitude, 3rd quartile Formant 3:Formant 1 log(minimum amplitude), 2nd quartile 

 

RMS amplitude, 2nd quartile Formant 3:Formant 2 Formant 2:Formant 1 

 

log(minimum amplitude), 4th quartile Formant 2:Formant 1 Formant 3 

 

log(minimum amplitude), 3rd quartile Formant 3 

 

 

Maximum amplitude, 1st quartile 

  

 

log(minimum amplitude), 2nd quartile 

  

 

RMS amplitude, 1st quartile 

  

    

    

    

    

    

    

            

Eigenvalues 7.615 4.026 2.228 

% of Variance 36.262 19.17 10.608 

Cumulative % 36.262 55.432 66.039 
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Table 6: Results from principal components analysis using time-frequency variables. Table indicates important variables, eigenvalues, 

and percent variance explained for the first three principal components 

 

  

Time-frequency 
Total Number of Principal Components 

7   

  

% Variance Explained by all 

components 78.2   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Duration 90% End frequency 12th frequency contour value 

 

Duration Maximum frequency 13th frequency contour value 

 

17th frequency contour value Minimum frequency 14th frequency contour value 

 

18th frequency contour value Start frequency 15th frequency contour value 

 

19th frequency contour value 2nd frequency contour value 16th frequency contour value 

 

20th frequency contour value 3rd frequency contour value 28th frequency contour value 

 

21st frequency contour value 4th frequency contour value 29th frequency contour value 

 

22nd frequency contour value 5th frequency contour value 30th frequency contour value 

 

23rd frequency contour value 6th frequency contour value 

 

 

24th frequency contour value 7th frequency contour value 

 

 

25th frequency contour value 8th frequency contour value 

 

 

26th frequency contour value 

  

 

27th frequency contour value 

  

 

28th frequency contour value 

    8th frequency contour value     

Eigenvalues 9.1 7.2 4.8 

% of Variance 24.0 19.0 12.6 

Cumulative % 24.0 43.0 55.6 
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Table 7: Results from principal components analysis using formant variables. Table indicates important variables, eigenvalues, and 

percent variance explained for the first three principal components 

 

  

Formant 
Total Number of Principal Components 

3   

  

% Variance Explained by all 

components 77.6   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Formant 1 Formant 2:Formant 1 Formant 3 Bandwidth 

 

Formant 1 Bandwidth Formant 3 Formant 3:Formant 2 

 

Formant 2 

  

 

Formant 2:Formant 1 

  

 

Formant 3 

  

 

Formant 3:Formant 1 

    Formant 3:Formant 2     

Eigenvalues 4.0 1.6 1.4 

% of Variance 44.7 17.3 15.6 

Cumulative % 44.7 62.0 77.6 
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Table 8: Results from principal components analysis using amplitude variables. Table indicates important variables, eigenvalues, and 

percent variance explained for the first three principal components 

Amplitude 
Total Number of Principal Components 

3   

  

% Variance Explained by all 

components 88.7   

 

Variables Strongly Correlated with First Three Principal Components 

 

1 2 3 

 

Maximum amplitude, 1st quartile log(minimum amplitude), 1st quartile Maximum amplitude, 1st quartile 

 

RMS amplitude, 1st quartile log(minimum amplitude), 2nd quartile RMS amplitude, 1st quartile 

 

Maximum amplitude, 2nd quartile log(minimum amplitude), 3rd quartile 

 

 

RMS amplitude, 2nd quartile log(minimum amplitude), 4th quartile 

 

 

Maximum amplitude, 3rd quartile 

  

 

RMS amplitude, 3rd quartile 

  

 

Maximum amplitude, 4th quartile 

  

 

RMS amplitude, 4th quartile 

  

 

log(minimum amplitude), 1st quartile 

  

 

log(minimum amplitude), 2nd quartile 

  

 

log(minimum amplitude), 3rd quartile 

    log(minimum amplitude), 4th quartile     

Eigenvalues 7.3 2.1 1.2 

% of Variance 60.7 17.8 10.2 

Cumulative % 60.7 78.5 88.7 
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Table 9: Results of stepwise DFA discriminating between age classes determined by 

reproductive maturity (N = 11 whales, 148 calls). Important variables are listed in the order in 

which they entered the analysis. 

 

Variable Grouping 
% Correct 

Classification 
Important Variables 

Formants 77 Formant 1 

  

Formant 3 Bandwidth** 

  

Formant 3:Formant 2 

Amplitude 81.1 Maximum amplitude, 3rd quartile 

  

RMS amplitude, 1st quartile 

  

RMS amplitude, 3rd quartile 

  

log(minimum amplitude), 4th quartile 

  

log(minimum amplitude), 3rd quartile 

Time-frequency 81.1 Duration 90%** 

  

18th frequency contour value** 

  

9th frequency contour value 

Time-frequency + formants 80.4 Duration 90%** 

  

18th frequency contour value** 

  

Formant 3 Bandwidth** 

  

Formant 2 Bandwidth 

Time-frequency + amplitude 82.4 Duration 90%** 

  

18th frequency contour value** 

  

9th frequency contour value 

  

log(minimum amplitude), 4th quartile 

  

log(minimum amplitude), 1st quartile 

Formants + amplitude 85.1 Maximum amplitude, 3rd quartile 

  

RMS amplitude, 1st quartile 

  

Q3normRMS 

  

Formant 1 

  

Formant 3:Formant 2 

  

Formant 3 Bandwidth** 

All 80.4 Duration 90%** 

  

18th frequency contour value** 

  

Formant 3 Bandwidth** 

  

Formant 2 Bandwidth 

   

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 10: Results of stepwise DFA discriminating between age classes determined by 

approximate size (N=12 whales, 151 calls). Important variables are listed in the order in which 

they entered the analysis. 

   
 

  

Variable Grouping 
% Correct 

Classification 
Important Variables 

Formants 78.1 Formant 2:Formant 1 

Amplitude 91.4 log(minimum amplitude), 4th quartile 

  

RMS amplitude, 4th quartile** 

  

Maximum amplitude, 4th quartile** 

  

Maximum amplitude, 3rd quartile 

  

RMS amplitude, 1st quartile 

  

RMS amplitude, 2nd quartile 

Time-frequency 92.1 Duration 90%** 

  

End frequency** 

  

25th frequency contour value** 

  

20th frequency contour value 

  

31st frequency contour value 

Time-frequency + formants 92.7 Duration 90%** 

  

End frequency** 

  

25th frequency contour value** 

  

20th frequency contour value 

  

Formant 1 Bandwidth 

Time-frequency + amplitude 94 Duration 90%** 

  

RMS amplitude, 4th quartile** 

  

Maximum amplitude, 4th quartile** 

  

End frequency** 

  

25th frequency contour value** 

  

log(minimum amplitude), 1st quartile 

  

log(minimum amplitude), 3rd quartile 

Formants + amplitude 91.4 log(minimum amplitude), 4th quartile 

  

RMS amplitude, 4th quartile** 

  

Maximum amplitude, 4th quartile** 

  

Maximum amplitude, 3rd quartile 

  

RMS amplitude, 1st quartile 

  

RMS amplitude, 2nd quartile 

All 94 Duration 90%** 

  

RMS amplitude, 4th quartile** 

  

Maximum amplitude, 4th quartile** 

  

End frequency** 

  

25th frequency contour value** 

  

log(minimum amplitude), 1st quartile 

  

log(minimum amplitude), 3rd quartile 

 *variables which were used in 3 of 4 analyses for a given variable grouping 

**variables used in all analyses for a given variable grouping 
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Table 11: Results of stepwise DFA discriminating between sexes (N = 13 whales, 161 calls). 

Important variables are listed in the order in which they entered the analysis. 

 

Variable Grouping 
% Correct 

Classification 
Important Variables 

Formants 79.5 Formant 2** 

  

Formant 3 Bandwidth** 

  

Formant 1 Bandwidth** 

  

Formant 3:Formant 1** 

Amplitude 70.2 Maximum amplitude, 2nd quartile* 

  

log(minimum amplitude), 2nd quartile** 

Time-frequency 74.1 21st frequency contour value** 

  

13th frequency contour value* 

Time-frequency + formants 80.1 Formant 2** 

  

21st frequency contour value** 

  

Formant 3 Bandwidth** 

  

Formant 1 Bandwidth** 

  

7th frequency contour value 

  

13th frequency contour value* 

  

PFC15 

  

Formant 3:Formant 1** 

Time-frequency + amplitude 74.5 21st frequency contour value** 

  

log(minimum amplitude), 2nd quartile** 

  

Maximum amplitude, 2nd quartile* 

Formants + amplitude 83.9 Formant 2** 

  

Formant 3 Bandwidth** 

  

Maximum amplitude, 3rd quartile 

  

log(minimum amplitude), 2nd quartile** 

  

Formant 1 Bandwidth** 

  

Formant 3:Formant 1** 

All 83.2 Formant 2** 

  

21st frequency contour value** 

  

Formant 3 Bandwidth** 

  

Formant 1 Bandwidth** 

  

7th frequency contour value 

  

Maximum amplitude, 2nd quartile* 

  

log(minimum amplitude), 2nd quartile** 

  

Formant 3:Formant 1** 

  

13th frequency contour value* 

  

14th frequency contour value 

   * variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 12: Results of stepwise DFA discriminating among individual whales (N=13 whales, 161 

calls). Important variables are listed in the order in which they entered the analysis. 

  

Variable Grouping 
% Correct 

Classification 
Important Variables 

Formants 42.2 Formant 2* 

  

Formant 1 

Amplitude 60.9 Maximum amplitude, 3rd quartile* 

  

RMS amplitude, 4th quartile** 

  

log(minimum amplitude), 3rd quartile** 

  

RMS amplitude, 3rd quartile 

  

RMS amplitude, 1st quartile 

Time-frequency 67.7 Duration 90%** 

  

18th frequency contour value** 

  

End frequency 

  

21st frequency contour value* 

Time-frequency + formants 72.0 Duration 90%** 

  

18th frequency contour value** 

  

Duration 

  

Formant 2* 

  

9th frequency contour value 

  

End frequency 

Time-frequency + amplitude 79.5 Duration 90%** 

  

RMS amplitude, 4th quartile** 

  

log(minimum amplitude), 3rd quartile** 

  

8th frequency contour value 

  

18th frequency contour value** 

  

Maximum amplitude, 3rd quartile* 

  

RMS amplitude, 2nd quartile 

  

21st frequency contour value* 

Formants + amplitude 57.8 Maximum amplitude, 3rd quartile* 

  

RMS amplitude, 4th quartile** 

  

Formant 2 

  

log(minimum amplitude), 3rd quartile** 

  

RMS amplitude, 3rd quartile 

All 83.2 Duration 90%** 

  

RMS amplitude, 4th quartile** 

  

18th frequency contour value** 

  

Formant 1 Bandwidth 

  

log(minimum amplitude), 3rd quartile** 

  

21st frequency contour value* 

   

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 13: Results of CART analysis discriminating between age classes determined by 

reproductive maturity (N = 11 whales, 148 calls).  

Variable 

grouping 

Number 

of 

Splits 

% Correct 

Classifications 
Variable at First Split Variables Used in Tree 

Formants 4 89.2 Formant 1 Formant 1** 

    Formant 1 Bandwidth 

    Formant 3 Bandwidth** 

    Formant 3:Formant 2 

Amplitude 5 89.2 log(minimum amplitude), 4th 

quartile 

log(minimum amplitude), 1st quartile 

    log(minimum amplitude), 4th 

quartile* 

    Maximum amplitude, 3rd quartile** 

    RMS amplitude, 1st quartile* 

    RMS amplitude, 4th quartile 

Time-

frequency 

4 85.8 Duration 90%** 10th frequency contour value 

    Duration 

    Duration 90% 

    Start frequency 

Time-

frequency + 

formants 

4 91.2 Duration 90%** Duration 

    Duration 90% 

    Formant 1** 

    Formant 3 Bandwidth** 

Time-

frequency + 

amplitude 

5 90.5 Duration 90%** Duration 90% 

    log(minimum amplitude), 4th 

quartile* 

    Maximum amplitude, 2nd quartile 

    Maximum amplitude, 3rd quartile** 

    RMS amplitude, 1st quartile* 

Formant + 

Amplitude 

5 91.9 log(minimum amplitude), 4th 

quartile 

Formant 3 Bandwidth** 

    Formant 1** 

    Maximum amplitude, 3rd quartile** 

    RMS amplitude, 4th quartile 

    log(minimum amplitude), 4th 

quartile* 

All 7 94.6 Duration 90%** Duration 90% 

    Formant 1** 

    Formant 3 Bandwidth** 

    log(minimum amplitude), 2nd quartile 

    Maximum amplitude, 3rd quartile** 

    Maximum frequency 

DFA 

Variables 

6 90.5 Duration 90% 18th frequency contour value 

    Duration 90% 

    Formant 1 Bandwidth 

    RMS amplitude, 1st quartile* 

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 14: Results of CART analysis discriminating between age classes determined by 

approximate size (N = 12 whales, 151 calls).  

 

 

  

  

Variable 

grouping 

Number 

of 

Splits 

% Correct 

Classifications 
Variable at First Split Variables Used in Tree 

Formants 8 90.7 Formant 1 Formant 1 Bandwidth 

    Formant 2 Bandwidth 

    Formant 3 Bandwidth 

    Formant 1 

    Formant 2:Formant 1 

    Formant 3 

    Formant 3:Formant 2 

Amplitude 3 91.4 log(minimum amplitude), 4th quartile RMS amplitude, 4th quartile 

    log(minimum amplitude), 1st quartile 

    log(minimum amplitude), 4th quartile 

Time-

frequency 

1 89.4 Duration 90%** Duration 90% 

Time-

frequency + 

formants 

2 92.1 Duration 90%** Duration 90% 

   Maximum frequency 

Time-

frequency + 

amplitude 

1 89.4 Duration 90%** Duration 90% 

Formants + 

amplitude 

3 91.4 log(minimum amplitude), 4th quartile RMS amplitude, 4th quartile 

    log(minimum amplitude), 1st quartile 

    log(minimum amplitude), 4th quartile 

All 1 89.4 Duration 90%** Duration 90% 

DFA Variables 6 94.7 Duration 90%** Duration 90% 

   Formant 1 Bandwidth 

   18th frequency contour value 

   RMS amplitude, 4th quartile 

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 15: Results of CART analysis discriminating between sexes (N = 13 whales, 161 calls).  

 

Variable 

Grouping 

Number 

of 

Splits 

% Correct 

Classifications 
Variable at First Split Variables Used in Tree 

Formants 1 75.8 Formant 2** Formant 2** 

Amplitude 4 83.2 Maximum amplitude, 2nd quartile Maximum amplitude, 2nd quartile 

    Maximum amplitude, 3rd quartile 

    RMS amplitude, 4th quartile 

Time-

frequency 

2 72.7 21st frequency contour value 18th frequency contour value 

    21st frequency contour value 

Time-

frequency + 

formants 

2 79.5 Formant 2** 9th frequency contour value 

    Formant 2** 

Time-

frequency + 

amplitude 

11 93.2 Maximum amplitude, 2nd quartile 13th frequency contour value 

    14th frequency contour value 

    17th frequency contour value 

    9th frequency contour value 

    Maximum amplitude, 2nd quartile 

    Maximum amplitude, 3rd quartile 

    Maximum frequency 

    RMS amplitude, 3rd quartile 

Formant + 

Amplitude 

1 75.8 Formant 2** Formant 2** 

All 1 75.8 Formant 2** Formant 2** 

DFA 

Variables 

10 92.5 Maximum amplitude, 2nd quartile Formant 1 Bandwidth 

    18th frequency contour value 

    Maximum amplitude, 2nd quartile 

    RMS amplitude, 4th quartile 

    log(minimum amplitude), 3rd 

quartile 

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 16: Results of CART analysis discriminating among individuals (N = 13 whales, 161 

calls).  

Variable 

Grouping 

Number 

of 

Splits 

% Correct 

Classifications 
Variable at First Split Variables Used in Tree 

Formants 8 61.5 Formant 2:Formant 1 Formant 1 

    Formant 1 Bandwidth 

    Formant 2:Formant 1 

    Formant 3 Bandwidth 

Amplitude 5 62.1 Maximum amplitude, 3rd quartile log(minimum amplitude), 1st quartile 

    log(minimum amplitude), 2nd quartile* 

    Maximum amplitude, 3rd quartile 

    RMS amplitude, 3rd quartile** 

    RMS amplitude, 4th quartile** 

Time-

frequency 

4 61.5 19th frequency contour value** 10th frequency contour value 

    15th frequency contour value* 

    19th frequency contour value** 

    Duration 90%** 

Time-

frequency 

+ formants 

3 58.4 19th frequency contour value** 10th frequency contour value 

    19th frequency contour value** 

    Duration 90%** 

Time-

frequency 

+ 

amplitude 

16 83.9 19th frequency contour value** 12th frequency contour value 

    15th frequency contour value* 

    16th frequency contour value 

    19th frequency contour value** 

    Duration 

    Duration 90%** 

    Maximum amplitude, 1st quartile 

    Maximum amplitude, 2nd quartile 

    Maximum amplitude, 4th quartile 

    Maximum frequency 

    RMS amplitude, 3rd quartile** 

    RMS amplitude, 4th quartile** 
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Table 16 (cont’d): Results of CART analysis discriminating among individuals (N = 13 whales, 

161 calls).  

 
Variable 

Grouping 

Number 

of Splits 

% Correct 

Classifications 
Variable at First Split Variables Used in Tree 

Formant + 

Amplitude 

6 64.6 Maximum amplitude, 3rd 

quartile 

Formant 3:Formant 2 

    Maximum amplitude, 3rd quartile 

    RMS amplitude, 3rd quartile** 

    RMS amplitude, 4th quartile** 

    log(minimum amplitude), 1st 

quartile 

    log(minimum amplitude), 2nd 

quartile* 

All 18 86.3 19th frequency contour value** 15th frequency contour value* 

    16th frequency contour value 

    19th frequency contour value** 

    2nd frequency contour value 

    Duration 

    Duration 90%** 

    End frequency 

    Formant 1 

    Formant 2 

    log(minimum amplitude), 2nd 

quartile* 

    Maximum amplitude, 2nd quartile 

    Maximum amplitude, 4th quartile 

    Maximum frequency 

    RMS amplitude, 3rd quartile** 

    RMS amplitude, 4th quartile** 

DFA 

Variables 

12 73.3 Duration 90% 18th frequency contour value 

   21st frequency contour value 

   Duration 90% 

   Formant 1 Bandwidth 

    log(minimum amplitude), 3rd 

quartile 

    Maximum amplitude, 2nd quartile 

    RMS amplitude, 1st quartile 

    RMS amplitude, 2nd quartile 

    RMS amplitude, 4th quartile 

* variables which were used in 3 of 4 analyses for a given variable grouping 

** variables used in all analyses for a given variable grouping 
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Table 17: Confusion matrix for DFA using formant and amplitude variables to classify calls to 

age class based on reproductive maturity. Rows indicate the actual (original) age class, and 

columns indicate the predicted age class. Values in each cell represent the total number of calls 

assigned to a particular age class, with numbers on the diagonal representing correct 

classifications. 

 

 

 

 

 

 

 

 

 

 

 

Table 18: Confusion matrix for DFA using time-frequency and amplitude variables to classify 

calls to age class based on approximate size. Rows indicate the actual (original) age class, and 

columns indicate the predicted age class. Values in each cell represent the total number of calls 

assigned to a particular age class, with numbers on the diagonal representing correct 

classifications. 

 

 

 

 

 

 

 

 

 

Table 19: Confusion matrix for DFA using formant and amplitude variables to classify calls to 

age class based on approximate size. Rows indicate the actual (original) age class, and columns 

indicate the predicted age class. Values in each cell represent the total number of calls assigned 

to a particular age class, with numbers on the diagonal representing correct classifications. 

 

  

Predicted Group Membership 

 

  

Male Female Total 

Original 

Group 

Membership 

Male 103 6 109 

Female 20 32 52 

  

  

Predicted Group Membership 

 

  

Adult Juvenile Total 

Original Group 

Membership 

Adult 93 5 98 

Juvenile 17 33 50 

  

Predicted Group Membership 

 

  

Small Large Total 

Original Group 

Membership 

Small 27 6 33 

Large 3 115 118 
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Table 20: Confusion matrix for DFA using all variables to classify calls to individual. Rows indicate the actual (original) catalog 

number, and columns indicate the predicted catalog number. Values in each cell represent the total number of calls assigned to a 

particular individual, with numbers on the diagonal representing correct classifications.  

 

 

 

 

Predicted Group Membership 

  

 

  2145 2350 3103 3323 1241 2413 3360 3579 3610 3101 3442 3430 2123 Total 

 

Original 

Group 

Membership 

2145 6 2 0 1 0 0 0 0 1 0 0 0 0 10 

 2350 2 62 0 0 1 0 0 0 0 0 1 0 0 66 

 3103 0 0 4 0 1 0 0 0 0 0 0 0 2 7 

 3323 0 0 0 4 0 1 0 0 0 0 0 0 0 5 

 1241 1 0 0 0 5 0 0 0 0 0 0 0 1 7 

 2413 0 0 0 0 0 5 0 0 0 0 0 0 0 5 

 3360 0 1 0 0 0 0 8 0 0 0 1 0 0 10 

 3579 0 1 0 1 0 0 0 10 0 0 0 0 0 12 

 3610 0 0 0 0 0 0 0 0 3 0 0 0 0 3 

 3101 0 0 1 0 0 0 0 1 0 1 0 1 0 4 

 3442 0 2 0 0 0 0 0 0 0 0 21 0 0 23 

 3430 0 0 0 0 0 0 0 0 0 0 0 3 0 3 

 2123 0 0 0 2 0 0 0 0 1 0 1 0 2 6 
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APPENDIX B: ADDITIONAL FIGURES 

 

Figure 1: Scatterplot matrix of first three principal component scores of the PCA using time-

frequency and formant variables showing grouping by reproductive age. 

Figure 2: Scatterplot matrix of first three principal component scores of the PCA using time-

frequency and formant variables showing grouping by size-based age.  

Figure 3: Scatterplot matrix of first three principal component scores of the PCA using formant 

and amplitude variables showing grouping by sex.  

Figure 4: Canonical discriminant scores for one discriminant function using formant and 

amplitude variables to discriminate between age classes based on reproductive age. 

Figure 5: Canonical discriminant scores for one discriminant function using time-frequency and 

amplitude variables to discriminate between age classes based on approximate size.  

Figure 6: Canonical discriminant scores for one discriminant function using formant and 

amplitude variables to discriminate between sexes.  

Figure 7: Classification tree using all variables to classify calls to an age category based on 

reproductive age.  

Figure 8: Classification tree using all variables to classify calls to an age category based on 

approximate size.  

Figure 9: Classification tree using time-frequency and amplitude variables to classify calls by 

sex. 
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Figure 1: Scatterplot matrix of first three principal component scores of the PCA using time-frequency and formant variables showing 

grouping by reproductive age. The first three components explained 46.6% of the variation in the data, and all 10 components in the 

analysis explained 79.3%. Colors indicate age based on reproductive status (adult, juvenile), and lines are drawn from each call to the 

group centroid of principal component scores for that category.  
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Figure 2: Scatterplot matrix of first three principal component scores of the PCA using time-frequency and formant variables showing 

grouping by size-based age. The first three components explained 46.6% of the variation in the data, and all 10 components in the 

analysis explained 79.3%. Colors indicate age based on approximate size (adult, juvenile), and lines are drawn from each call to the 

group centroid of principal component scores for that category.  
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Figure 3: Scatterplot matrix of first three principal component scores of the PCA using formant and amplitude variables showing 

grouping by sex. The first three components explained 66.0% of the variation in the data, and all 6 components in the analysis 

explained 84.9%. Colors indicate sex (male, female), and lines are drawn from each call to the group centroid of principal component 

scores for that category. 
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Figure 4: Canonical discriminant scores for one discriminant function using formant and 

amplitude variables to discriminate between age classes based on reproductive age. Correct 

classification based on this function was 85.1%. The number of calls as well as the mean and 

standard deviation for the discriminant scores of each category are provided.  
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 Figure 5: Canonical discriminant scores for one discriminant function using time-frequency and 

amplitude variables to discriminate between age classes based on approximate size. Correct 

classification based on this function was 94.0%. The number of calls as well as the mean and 

standard deviation for the discriminant scores of each category are provided.  
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 Figure 6: Canonical discriminant scores for one discriminant function using formant and 

amplitude variables to discriminate between sexes. Correct classification based on this function 

was 83.9%. The number of calls as well as the mean and standard deviation for the discriminant 

scores of each category are provided.
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Figure 7: Classification tree using all variables to classify calls to an age category based on reproductive age. Branches displayed to 

the left of a split contain cases which satisfy the criterion defined at each split. Terminal nodes are labeled with the age category (A = 

adult, J = juvenile) with the majority of calls assigned to that node. Overall percentage of correct classification was 94.6%. The 

classification success of each node is listed as misclassifications/total number of calls.  
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Figure 8: Classification tree using all variables to classify calls to an age category based on approximate size. Branches displayed to 

the left of a split contain cases which satisfy the criterion defined at each split. Terminal nodes are labeled with the age category (L = 

large (≥ 3 years of age), S = small (< 3 years of age)) with the majority of calls assigned to that node. Overall percentage of correct 

classification was 94.7%. The classification success of each node is listed as misclassifications/total number of calls.  
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Figure 9: Classification tree using time-frequency and amplitude variables to classify calls by sex. Branches displayed to the left of a 

split contain cases which satisfy the criterion defined at each split. Terminal nodes are labeled with the age category (M = male, F = 

female) with the majority of calls assigned to that node. Overall percentage of correct classification was 93.2%. The classification 

success of each node is listed as misclassifications/total number of calls.  
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