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Nonlinear Hydrodynamics of Disentangled Flux-Line Liquids

Panayotis Benetatos and M. Cristina Marchetti
Physics Department, Syracuse University, Syracuse, NY 13244

(July 14, 2011)

In this paper we use non-Gaussian hydrodynamics to study the magnetic response of a flux-line
liquid in the mixed state of a type-II superconductor. Both the derivation of our model, which goes
beyond conventional Gaussian flux liquid hydrodynamics, and its relationship to other approaches
used in the literature are discussed. We focus on the response to a transverse tilting field which
is controlled by the tilt modulus, c44, of the flux array. We show that interaction effects can
enhance c44 even in infinitely thick clean materials. This enhancement can be interpreted as the
appearance of a disentangled flux-liquid fraction. In contrast to earlier work, our theory incorporates
the nonlocality of the intervortex interaction in the field direction. This nonlocality is crucial for
obtaining a nonvanishing renormalization of the tilt modulus in the thermodynamic limit of thick
samples.

PACS: 74.60-w, 74.60Ec

I. INTRODUCTION

The static and dynamical properties of magnetic flux
lattices in type-II superconductors have been the focus of
much theoretical and experimental work over the last ten
years1,2. Interest in this field was revived by the discovery
of the high-Tc materials, where thermal fluctuations melt
the Abrikosov flux lattice at temperatures and fields well
below the mean field transition at Hc2(T )3,4. The flux
lattice melting is a first order transition in clean samples5,
with an associated jump in the bulk magnetization, and
it has been observed experimentally6–13. In conventional
low-temperature type-II superconductors, the region of
the phase diagram where thermal fluctuations are impor-
tant is extremely small and mean field theory provides a
good description of the physics of the flux-line array. In
the high-Tc materials, in contrast, the melted flux liquid
replaces the Abrikosov lattice over a large region of the
phase diagram. Understanding the properties of the flux
liquid is therefore crucial for controlling the magnetic re-
sponse of these materials.

The conventional Abrikosov flux lattice is character-
ized by two broken symmetries. First, the translational
symmetry is broken by the ordering of the magnetic flux
lines in a triangular lattice in the plane perpendicular
to the external field. Secondly, the gauge symmetry
along the field is broken by the alignment of the vor-
tices with the external field. A natural question then
arises of whether these two symmetries are recovered si-
multaneously upon melting, or rather they are recovered
in succession at two different temperatures. The latter
scenario would allow for the appearance of a disentan-
gled flux liquid phase where translational symmetry is
recovered, but the longitudinal gauge symmetry is still
broken. At a second transition temperature the disen-
tangled flux liquid would then be replaced by an entan-
gled flux liquid where the longitudinal gauge symmetry is
also recovered. Alternatively, if both symmetries are re-
covered simultaneously, the Abrikosov lattice would melt

directly into an entangled flux liquid. The precise nature
of such an entangled liquid remains an open question14.
The existence of a disentangled liquid phase, exhibiting
longitudinal superconductivity – the ability to support
currents flowing without dissipation in the direction par-
allel to the flux lines – in clean samples has been proposed
some time ago by Feigel’man and collaborators15. Early
simulations provided support for Feigel’man’s ideas16–18,
but more recent numerical work indicates that the two
transitions observed in earlier work may have been the
consequence of finite size effects19,20. Recent numerical
results support the scenario that the Abrikosov lattice
melts directly into an entangled liquid and no disentan-
gled liquid phase exists in infinitely thick samples19–21.
Open questions, however, remain concerning the role of
various approximations used in the different numerical
models, particularly the range of the intervortex interac-
tion.

A closely related property of the vortex array that pro-
vides a direct measure of longitudinal vortex correlations
is the tilt modulus, c44. It can be probed by measur-
ing the response of the flux array to a small additional
magnetic field δH⊥, applied perpendicular to the exter-
nal field ẑH0 responsible for the onset of the vortex state.
Such a transverse field tilts the lines away from the direc-
tion of alignment with H0. Correlated disorder induced,
for instance, by aligned damage tracks in the material
can drive 1/c44 to zero, yielding a transverse Meissner
effect, which has been proposed as the signature of the
Bose glass phase22,23. The role of correlated disorder in
enhancing c44 in the liquid phase has also been observed
experimentally in materials with a single family of twin
planes by using the dc flux transformer configuration24.
These materials contain practically no small-scale disor-
der, so that the macroscopic flux liquid regions in the
channels between twin planes are very clean. The ex-
periments suggest that the enhancement of c44, inter-
preted as the onset of disentangled liquid phase, be a
finite-size effect, that decreases with increasing sample
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thickness25. In thick samples the experiments indicate
that the vortex-lattice melting and the loss of longitudi-
nal superconductivity coincide in clean materials. Even
though a true Meissner effect with vanishing 1/c44 is not
expected in infinitely thick, clean samples, it is clear that
interactions can enhance the tilt modulus of clean flux
liquids and suppress the transverse response of the su-
perconductor.

In this paper we employ hydrodynamics to evaluate
the renormalization of the tilt modulus of a clean flux
liquid due to interactions. Our starting point is a long-
wavelength hydrodynamic free energy that includes non-

Gaussian couplings in the hydrodynamic fields. It there-
fore goes beyond the Gaussian flux-line liquid hydrody-
namic free energy discussed before in the literature26,27.
We show that such a non-Gaussian hydrodynamic free
energy can either be written down phenomenologically
or it can be derived by using the mapping of the clas-
sical statistical mechanics of vortex lines with nonlocal

interactions onto the quantum statistical mechanics of
two-dimensional charged bosons, introduced some time
ago by Feigel’man and collaborators15. Our central re-
sult is the expression for the renormalized wave vector-

dependent tilt modulus given in Eq. 1.7 below. This
is a perturbative result that extends earlier results by
other authors28,29 in two important ways. First, it incor-
porates both the finite range and the nonlocality of the
intervortex interaction in the field direction. This nonlo-
cality plays a crucial role in controlling the tilt response.
It is only when the nonlocality is properly accounted for
that a finite renormalization of c44 is obtained in a clean
flux-line liquids of infinite thickness. In addition, our
formalism allows us to evaluate the full wave vector de-
pendence of the renormalized tilt modulus - a result that
was not discussed before in the literature.

Before discussing our result in more detail, it is use-
ful to make contact with already existing work. The tilt
modulus of the Abrikosov lattice is easily calculated from
the Ginzburg-Landau free energy for a superconductor in
a field. It is dispersive both in the longitudinal and in the
in-plane directions due to the non-local character of the
intervortex interaction and it has a rather complicated
expression, particularly for layered material. It naturally
separates in the sum of two contributions,

c44(q⊥, qz) = cv44(qz) + cc44(q⊥, qz), (1.1)

with q⊥ and qz wave vectors perpendicular and parallel
to the external field, respectively. The first term on the
right hand side of Eq. (1.1) is the single vortex contribu-
tion, arising from the self-energy part of the tilt energy.
Neglecting its weak logarithmic dependence on qz, it is
given by31–34

cv44 ≈ n0ǫ̃1, (1.2)

where n0 = B0z/φ0 is the average areal density of vor-
tices, with B0z the mean induction along the external
field direction and φ0 = hc/2e the flux quantum, and ǫ̃1

is the single-vortex tilt energy defined below. The second
term in Eq. (1.1) is the compressional contribution from
intervortex interactions. It is strongly dispersive and in
layered materials it is given by32–34

cc44(q⊥, qz) =
B2

0z

4π

1

1 + q2z λ̃
2
⊥ + q2⊥p

2λ̃2
⊥

, (1.3)

where λ̃⊥ = λ⊥/(1 − H/Hc2)
1/2 is the effective pene-

tration length in the ab plane (the field is applied along
the ĉ axis) and p is the anisotropy ratio. It is important
to stress that the long wavelength tilt modulus,

c44 = c44(q⊥ = 0, qz = 0) =
B2

0z

4π

(

1 +
1

4πλ̃2
⊥p

2n0

)

(1.4)

is generally dominated by the large compressional con-
tribution (B2

0z/4π). The second term inside the brackets
in Eq. (1.4), arising from the single-vortex contribution,
is important only at very low vortex densities.

The tilt modulus of a flux-line liquid cannot be eval-
uated directly. It is, however, expected that the bare
flux-liquid tilt modulus, denoted here by c044(q⊥, qz), does
not differ considerably from that of the lattice given in
Eq. (1.1)35. In fact, a direct coarse-graining of the mi-
croscopic intervortex interaction yields a Gaussian long-
wavelength free energy of an entangled flux-line liquid
with a tilt modulus given precisely by Eq. (1.1) above36.
Interactions responsible for nonlinearities in the long-
wavelength free energy will, however, renormalize c044.

The renormalization of c44 in flux-line liquids has been
studied before by employing the analogy between the di-
rected vortex lines induced in a three dimensional super-
conductor by the external field ẑH0 and the imaginary-
time world lines of two dimensional bosons37,3,4. The
most severe approximation made in the form of this bo-
son mapping introduced by Nelson3,4, is that the pair-
wise interaction between flux lines is approximated as
local in the field direction (z), i.e., only the interaction
between vortex segments at equal height z is considered.
This corresponds to an instantaneous pairwise interac-
tion between the bosons. One of the consequences of this
approximation is that it completely neglects the com-
pressional part of the tilt modulus. Hence in this model
c44 is given by the single vortex part, which is inversely
proportional to the boson superfluid density, ns,

cv44 =
B2

0z

4π

1

4πλ2
⊥p

2ns
. (1.5)

The superfluid phase of bosons (ns = n0) corresponds to
an entangled liquid of magnetic flux lines with cv44 given
by Eq. (1.2). A finite normal-fluid fraction of bosons
of density nn = n0 − ns corresponds to a disentangled
fraction of flux liquid and enhances the tilt modulus. A
normal-fluid phase of bosons with ns = 0 corresponds
to a disentangled flux liquid with infinite tilt modulus
and transverse Meissner effect. Täuber and Nelson (TN)
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recently employed this boson mapping to evaluate the
renormalization of cv44 due to sample thickness, differ-
ent boundary conditions and various type of disorder28.
They found that for finite sample thickness (correspond-
ing to a nonzero boson temperature) there is a nonvan-
ishing normal-fluid component which suppresses cv44. On
the other hand, the normal-fluid density always vanishes
for infinitely thick samples (or vanishing boson tempera-
ture), so that the flux liquid is always entangled in this
limit.

Feigel’man and coworkers15 incorporated the nonlocal-
ity of the intervortex interaction in the field direction
in the boson formalism. They showed that the statisti-
cal mechanics of vortex lines with nonlocal interactions
maps onto that of two-dimensional charged bosons. This
nonlocal mapping incorporates the compressional part
of the vortex tilt modulus. Larkin and Vinokur29 and
later Geshkenbein30 used this nonlocal boson mapping
to generalize the expression (1.5) obtained by TN. These
authors proposed that the long-wavelength renormalized
tilt modulus can be written in terms of the superfluid
density ns of two-dimensional bosons interacting with a
gauge field as

cLV44 =
B2

0z

4π

(

1 +
1

4πλ̃2
⊥p

2ns

)

. (1.6)

The superfluid density was evaluated perturbatively by
Feigel’man and coworkers15 for the case where the re-
pulsive interaction among the bosons is infinitely long-
ranged, corresponding to a vortex liquid with λ⊥ → ∞.
These authors argued that in this limit a distinct dis-
entangled flux liquid phase with diverging c44 exists in
infinitely thick superconducting samples.

The calculation of the interaction-renormalization of
the flux liquid tilt modulus via hydrodynamics described
here has the advantage that it naturally incorporates the
nonlocality of the intervortex interaction and it allows
us to easily treat the case of finite λ. The non-Gaussian
hydrodynamics used as the starting point contains bare
elastic constants that are determined by the intervortex
interaction. In particular, the bare tilt modulus is given
by Eq. (1.1). The corrections to c44 due to the nonlinear-
ities are evaluated perturbatively. Our main result is an
expression for the wave vector-dependent renormalized
tilt modulus, given by

1

cR44(q⊥, qz)
=

1

c044(q⊥, qz)

[

1 − n0ǫ̃1
c044(q⊥, qz)

nn(q⊥, qz)

n0

]

,

(1.7)

where nn(q⊥, qz) has the rather complicated integral ex-
pression given in Eq. (6.7) below. The corrections to
the tilt modulus incorporated in nn can be interpreted
in terms of a disentangled fraction of the flux liquid -
hence a “normal-fluid component”. When the nonlocal-
ity of the intervortex interaction in the field direction is

neglected, Eq. (1.7) becomes identical to the result ob-
tained by Täuber and Nelson (see Eq. (3.33) of Ref. 28).
In this case the long-wavelength c44 is not renormalized
in infinitely thick samples.

Our result, Eq. (1.7), is also simply related to the
Larkin-Vinokur formula given in Eq. (1.6). This is im-
mediately seen by introducing a normal fluid fraction in
Eq. (1.6) as nn = n0 − ns, and then expanding for small
values of the normal fluid fraction, nn/n0 << 1, to ob-
tain

1

cLV44

≈ 1

c044

[

1 − n0ǫ̃1
c044

nn
n0

]

, (1.8)

with c044 given by Eq. (1.4). This expression is formally
identical to the long-wavelength (q⊥ = 0, qz = 0) limit of
our result.

We find that interaction effects in a clean flux liq-
uid do lead to a nonvanishing renormalization of the
tilt modulus in the thermodynamic limit of thick sam-
ples. This correction is present only if the nonlocality of
the intervortex interaction is properly incorporated. The
correction remains, however, small at all but very low
(B < 1Tesla) fields. Our results are perturbative and
cannot be used to infer quantitative conclusions about
the existence of a true disentangled flux liquid phase.
One of the main outcomes of our work is the development
of a transparent hydrodynamic framework that can be
used to study the role of the nonlocality of the intervor-
tex interaction on the tilt response, both in clean materi-
als and in the presence of disorder of various geometries.
Note that in conventional, Gaussian hydrodynamics the
effect of disorder on c44 cannot be detected.

In section II we discuss the general form of the London
free energy used as the starting point to study the mag-
netic properties of superconductors in the mixed state.
The various response functions of interest are also defined
there. After discussing the response to a tilt field in sec-
tion III, we review and contrast in sections IV and V, re-
spectively, the results obtained by conventional Gaussian
hydrodynamics and by the local boson mapping. After
showing how hydrodynamics can be derived from the bo-
son model in section VI, we introduce our non-Gaussian
hydrodynamic model and discuss its relationship to pre-
vious work. Our results are discussed in section VII. Fi-
nally, a rigorous derivation of the nonlocal, non-Gaussian
hydrodynamics from the charged boson analogy is dis-
played in Appendix A, and the perturbative evaluation of
the renormalization of c44 from interactions is displayed
in Appendix B.

II. MAGNETIC RESPONSE OF THE VORTEX

ARRAY

High-Tc superconductors are uniaxial, strongly type-II
materials with very large values of the Ginzburg-Landau
parameter κ = λ/ξ. For applied fields Hc1 << H <<
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Hc2, their mixed state can be described in the London
limit with a Ginzburg-Landau Hamiltonian given by

H[θ,A] =
1

2

∫

r

{

c2

4πλ̃2
µ

(φ0

2π
∂µθ −Aµ

)2

+

+
1

4π
(∇ × A)2

}

. (2.1)

Here the z direction has been chosen along the anisotropy
(c) axis of the superconductor. Greek indices µ, ν, ... run
over all Cartesian components (µ = x, y, z) and summa-
tion is intended in Eq. (2.1). Latin indices i, j, k, ... run

only over x and y. The integral
∫

r
... ≡

∫ L

0 dz
∫

dr⊥... is
over the volume Ω = LA of the superconductor, with L
the thickness in the direction of the c axis and A the area
in the ab plane. Also, λ̃µ = λµ/(1 −H/Hc2)

1/2 , where
λx = λy = λ⊥ are the penetration depths from supercur-
rents in the ab plane, while λz = pλ⊥ is the penetration
depth from supercurrents along the c axis, with p the
anisotropy ratio arising from an effective mass tensor for
the superconducting electrons (p = (mz/m⊥)1/2). Fi-
nally, A is the total vector potential, with B = ∇ × A

the internal field in the material, and φ0 = hc/2e is the
flux quantum. The corresponding Gibbs free energy func-
tional is

G[θ,H] = H[θ,A] − 1

4π

∫

r

B · H, (2.2)

where H = ∇ × Aext is the applied external field.
The London free energy functional can be rewritten in

terms of interacting vortex lines by introducing a “vortex
line density” vector defined as

T̂(r) =
1

2π
∇ × (∇θ). (2.3)

Here and below a hat (̂ ) is used, when needed, to dis-
tinguish microscopic fluctuating quantities from average

ones. We will specifically consider situations where the
magnetic field responsible for the onset of the vortex state
is applied along the z direction. Vortex line configura-
tions are then conveniently characterized by a set of N
single-valued functions rn(z), which specify the position
of the n-th vortex line in the xy plane as it wanders along
the z axis. The three-dimensional position of each flux
line is parametrized as Rn(z) = [rn(z), z] and the vortex
density vector can be written as

T̂(r) =

N
∑

n=1

dRn(z)

dz
δ(2)(r⊥ − rn(z)), (2.4)

where r = (r⊥, z). The vortex density vector can be

written as T̂(r) =
(

t̂, n̂
)

, where t̂ is a two-dimensional
vector describing the local tilt of flux lines away from the
direction of the external field and n̂ is the areal density
of vortices,

n̂(r) =
N

∑

n=1

δ(2)(r⊥ − rn(z)), (2.5)

t̂(r) =

N
∑

n=1

drn(z)

dz
δ(2)(r⊥ − rn(z)) . (2.6)

The vortex density vector is also directly related to the
superfluid velocity of the electrons in the superconductor,
vs = (φ0/2π)∇θ − A, by

φ0T̂ − B̂ = ∇ × vs. (2.7)

The Cartesian components of the local supercurrent are
jsµ = (c/4πλ̃2

µ)v
s
µ (no summation over µ intended here).

After some manipulations (see, for instance, Ref. 17 for
the details) and neglecting spin wave fluctuations, one
obtains

G[T̂,H] =
1

8πΩ

∑

q

{

[

φ0T̂µ(q) − B̂µ(q)
]

Uµν(q)
[

φ0T̂ν(−q) − B̂ν(−q)
]

+ |B̂(q)|2 − 2H(q) · B̂(−q)

}

, (2.8)

with

Uµν(q) =
1

λ̃⊥q2

[

δµν − δµiδνj
(λ̃2
z − λ̃2

⊥)q2⊥
λ̃2
zq

2
⊥ + λ̃2

⊥q
2
z

PTij (q⊥)
]

. (2.9)

Here, q = (q⊥, qz) and PTij (q⊥) = δij − q̂⊥iq̂⊥j is the two-dimensional transverse projection operator, with q̂⊥ =

q⊥/q⊥. The corresponding longitudinal projection operator is PLij (q⊥) = δij − PTij (q⊥).
In this paper we will only consider magnetic field fluctuations due to fluctuations in the vortices’ degrees of freedom.

This London part of the field fluctuations is obtained by minimizing the Ginzburg-Landau free energy (2.8) for fixed

vortex configurations T̂ (q) and it is given by

B̂(q) = B̂V (q) + B̂M (q), (2.10)

where B̂V (q) is the part of the internal field due to the vortices,

B̂Vµ (q) =
(

1 + U(q)
)−1

µσ
Uσν(q)φ0T̂ν(q) (2.11)

=
1

1 + λ̃2
⊥q

2

[

δµν − δµiδνj
(λ̃2
z − λ̃2

⊥)q2⊥
1 + λ̃2

⊥q
2
z + λ̃2

zq
2
⊥

PTij (q⊥)

]

φ0T̂ν(q),
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and B̂M (q) is the Meissner response of the material to a spatially inhomogeneous external field,

B̂Mµ (q) =
(

1 + U(q)
)−1

µν
Hν(q) (2.12)

=
1

1 + λ̃2
⊥q

2

[

λ̃2
⊥q

2δµν + δµiδνj
(λ̃2
z − λ̃2

⊥)q2⊥
1 + λ̃2

⊥q
2
z + λ̃2

zq
2
⊥

PTij (q⊥)

]

Hν(q).

In addition to the contributions given in Eq. (2.10), there are field fluctuations representing thermal deviations from
the solution of the London equation, which are neglected here. By inserting Eqs. (2.11) and (2.12) into Eq. (2.8), we
obtain the vortex free energy functional expressed entirely in terms of vortex degrees of freedom,

G[T̂,H] =
1

2Ω

∑

q

{

T̂µ(q)Vµν(q)T̂ν(−q) − 1

φ0
Hµ(q)Vµν(q)T̂ν(−q) − 1

4π
Hµ(q)

(

1 + U(q)
)−1

µν
Hν(−q)

}

, (2.13)

where

Vµν(q) = V0

(

1 + U(q)
)−1

µσ
Uσν(q) (2.14)

=
V0

1 + λ̃2
⊥q

2

[

δµν − δµiδνj
(λ̃2
z − λ̃2

⊥)q2⊥
1 + λ̃2

⊥q
2
z + λ̃2

zq
2
⊥

PTij (q⊥)

]

,

are the Fourier components of the anisotropic intervortex interaction, with V0 = φ2
0/4π. One important property of

the intervortex interaction is its nonlocality. In particular, the nonlocality in the z direction, reflecting that flux-line
elements at different z heights repel each other via a Yukawa-like potential, will play a very important role in the
discussion below.

The Gibbs free energy of the vortex system is given by

G(H, T ) = −kBT lnZ(H, T ), (2.15)

where

Z(H, T ) =

∫ ′

DT̂(r)e−G/kBT (2.16)

is the canonical partition function. The prime over the
integral sign indicates that the integration must be per-
formed with the constraint ∇ · B̂ = 0. The average local
field in the superconductor is then given by

B(r) =< B̂(r) >= −4π
δG

δH(r)
, (2.17)

where the brackets denote a statistical average with
Boltzmann weight ∼ exp[−G/kBT ].

For a spatially homogeneous external field applied
along the z direction, H(r) = ẑH0, we obtain the fa-
miliar form1,

G0(T̂, H0) = −NLH0φ0

4π
(2.18)

+
1

2Ω

∑

q

T̂µ(q)Vµν(q)T̂ν(−q).

For a uniform applied field H = ẑH0, the Meissner part
of the transverse local field given in Eq. (2.12) vanishes.
The local field in the superconductor is entirely due to
the vortices and it given by Eq. (2.11). From here on
we will always refer to the vortex system created by the

homogeneous field H = ẑH0 and the local field is to be
understood as the field given by Eq. (2.11).

The focus of this paper is on the response of the vor-
tex array created by the external field ẑH0 to a small
additional spatially inhomogeneous external field δH(r).
The Gibbs free energy functional in the presence of this
perturbation can be written as

G(T̂, ẑH0 + δH) = G0(T̂, H0) + δG(T̂, δH), (2.19)

where G0 is given by Eq. (2.18) and the perturbation is

δG(T̂, δH) = − 1

4π

∫

r

B̂V · δH (2.20)

= −1

c

∫

r

ĵs · δAext. (2.21)

The local field B̂V in Eq. (2.20) is the field in the ab-
sence of the perturbation δH and is related to the vortex
degrees of freedom via Eq. (2.11). It does not include
the Meissner response to the perturbation δH. The su-

percurrent is defined as ĵs = (c/4π)∇ × B̂V .
Below we will use 〈...〉0 to denote a statistical average

over the unperturbed ensemble described by G0, while
〈...〉H will denote the average over the perturbed ensem-
ble, with free energy given by Eq. (2.19). The mean
local field BH in the material in the presence of the per-
turbation δH can be written as the sum of vortex and
Meissner parts as

BH(q) = 〈B̂V (q)〉H + δBM (q), (2.22)

where δBM (q) is the Meissner response to the pertur-
bation, given by Eq. (2.12) with H(q) = δH(q). To
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linear order in the perturbing field, the vortex contribu-
tion can be expressed in terms of correlation functions in
the unperturbed ensemble as,

〈B̂Vµ (q)〉H = 〈B̂Vµ (q)〉0 +
β

4π
〈B̂Vµ (q)B̂Vν (−q)〉c0δHν(q),

(2.23)

where 〈...〉c is the connected part of the correlator, i.e.,
〈AB〉c = 〈AB〉 − 〈A〉〈B〉. Finally, the corresponding lin-
ear response function defines the magnetic susceptibility
χij(q) of the material according to

BHµ (q) − 〈B̂Vµ (q)〉0 =
[

4πχµν(q) + δµν
]

δHν(q). (2.24)

The components of the susceptibility tensor can also be
expressed in terms of vortex density correlations,

4πχµν(q) = −Vµν
V0

+
φ2

0

kBTV 2
0

Vµσ(q)Vνλ(−q)Tσλ(q), (2.25)

where Tµν(q) is the correlation function of the vortex
density vector,

Tµν(q) = 〈T̂µ(q)T̂ν(−q)〉c0. (2.26)

The density-vector correlation function can be expressed
in terms of derivatives of the partition function of the
perturbed system as

〈T̂µ(q)T̂ν(q
′)〉c0 = (φ0kBT )2(V −1)µκ(V

−1)νλ (2.27)

×
[δ2 lnZ(H0ẑ + δH, T )

δHκ(q)δHλ(q′)

]

δH=0
,

where (V −1)µν are the components of the inverse of the
interaction tensor (2.14).

The tensor Tµν is block diagonal, with Tµν = (Tij , Tzz).
The component Tzz is the density-density correlation
function or structure function of the vortices,

Tzz(q) = S(q) = 〈δn̂(q)δn̂(−q)〉0, (2.28)

where δn̂(q) = n̂(q)−n0Ωδq,0 describes the fluctuation of
the local density field from its mean value n0 = B0z/φ0,
with B0z ≈ H0 the equilibrium value of the z compo-
nent of the internal field. The in-plane part Tij is the
tilt-tilt autocorrelator and it is the central quantity of
interest here. It can be written in terms of transverse
and longitudinal components as

Tij(q) = TL(q)PLij (q⊥) + TT (q)PTij (q⊥). (2.29)

The transverse part of the tilt autocorrelator determines
the tilt modulus of the vortex array. The wave-vector-
dependent tilt modulus is defined by

TT (q) =
n2

0kBT

c44(q⊥, qz)
. (2.30)

Finally, in order to make contact with the literature,
it is useful to write the perturbing field in terms of a vec-
tor potential, δH = ∇ × δAext. The linear response to
the vector potential δAext is then characterized by the
helicity tensor Υµν , which relates the induced current to
δAext,

jHµ (q) = −cΥµν(q)δAext
ν (q), (2.31)

where jH is the total screening current induced in the ma-
terial by the perturbing vector potential, comprising of
both the vortex and Meissner contributions. The helicity
tensor can be immediately related to the components of
the susceptibility tensor,

Υµν(q⊥) = −ǫµσξǫναβqσqαχξβ(q). (2.32)

Using Eq. (2.25), it can also be expressed in term of the
correlations of the vortex density tensor.

III. TILTING FIELD

In the remainder of this paper we focus on the response
of the vortex array to a spatially inhomogeneous field
δH⊥(q) applied normal to the direction of H0 and that
tilts the flux lines away from the z direction. As dis-
cussed by Chen and Teitel17, we distinguish two types
of perturbations. The first is a tilt perturbation, corre-
sponding to a tilting field which is spatially homogeneous
in the xy plane and may be modulated in the z direction.
The long wavelength response to this tilt perturbation is
determined by the long wavelength tilt modulus, c44, de-
fined as

n2
0kBT

c44
= lim

qz→0
lim
q⊥→0

TT (q⊥, qz). (3.1)

The order of the limits (q⊥ → 0 first, followed by qz → 0)
is important here and reflects the physical situation of the
relevant experiment. The vanishing of the long wave-
length tilt modulus signals the onset of a transverse
Meissner effect, where the perturbing field is completely
expelled from the material (as seen from Eq. (2.13), the
corresponding static susceptibility equals −1/4π). This
occurs, for instance, in vortex arrays pinned by columnar
defects.

The second physical experiment of interest here is the
response to a tilting field δH⊥(q⊥) which is spatially ho-
mogeneous in the z direction (i.e., independent of qz)
and generates a shear perturbation of the vortex array.
Such a field can be obtained from a vector potential
δAext = ẑδAext

z (r⊥), which induces screening currents
along the z direction. In the literature the response of
the superconductor to such a shear perturbation is often
characterized by the corresponding component of the he-
licity modulus (Υzz(q⊥)) defined in Eq. (2.31), which
in turn is related to the transverse part of the tilt-tilt
correlator by
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Υzz(q⊥) =
1

4π

q2⊥
1 + q2⊥λ̃

2
z

[

1 − V0

kBT

TT (q⊥, qz = 0)

1 + q2⊥λ̃
2
z

]

,

(3.2)

where the first term arises from the Meissner part of the
response. The long wavelength limit of the helicity mod-
ulus is

lim
q⊥→0

Υzz(q⊥) =
q2⊥
4π

[

1 − V0

kBT
lim
q⊥→0

TT (q⊥, qz = 0)
]

.

(3.3)

The vanishing of limq⊥→0 TT (q⊥, qz = 0) yields
limq⊥→0 4πΥzz(q⊥)/q2⊥ = 1, which corresponds to a per-
fect Meissner response in the z direction and signals lon-
gitudinal superconductivity.

We emphasize, however, that both the perturbations
just described simply probe the magnetic response of the
superconductor, which is the true equilibrium test of su-
perconductivity. In fact the relevant response function in
each case (tilt or helicity modulus) is simply the trans-
verse part of the susceptibility tensor,

χT (q) = PTij (q⊥)χij(q). (3.4)

The long wavelength tilt modulus is given by

n2
0V0

c44
= 1 + 4π lim

qz→0
χT (q⊥ = 0, qz), (3.5)

and the component of the helicity modulus that controls
longitudinal superconductivity is

lim
q⊥→0

Υzz(q⊥) = − lim
q⊥→0

q⊥
2χT (q⊥, qz = 0). (3.6)

In a flux-line lattice the transverse part of the tilt-tilt
correlator is non-analytic at small wave-vectors and the
different order of limits of the two perturbations dis-
cussed above is important. This is because the vortex
array has a nonzero long wavelength shear modulus, c66.
As a result, the flux lattice exhibits longitudinal super-
conductivity, with limq⊥→0 TT (q⊥, qz = 0) = 0, and

lim
q⊥→0

χlattice
T (q⊥, qz = 0) = − 1

4π
, (3.7)

but no transverse Meissner effect, as limqz→0 TT (q⊥ =
0, qz) 6= 0 and

lim
qz→0

χlattice
T (q⊥ = 0, qz) = − 1

4π
+
V0n

2
0

c44
. (3.8)

In a flux-line liquid, in contrast, we find that the order
of limits is not important and the flux array in general ex-
hibits neither longitudinal superconductivity, nor perfect
Meissner effect, as

lim
qz→0

χliquid
T (q⊥ = 0, qz) = lim

q⊥→0
χliquid
T (q⊥, qz = 0) (3.9)

= − 1

4π
+
V0n

2
0

cR44
,

where cR44 is the flux liquid tilt modulus, renormalized by
interaction effects. We will see below, however, that in-
teractions can yield a strong upward renormalization of
c44 even in clean flux liquids.

IV. GAUSSIAN HYDRODYNAMICS

A useful framework for discussing the long wavelength
properties of flux-line liquids that naturally incorporates
all nonlocalities of the intervortex interaction is hydrody-
namics, where vortex fluctuations are described in terms
of a few coarse-grained fields. By long wavelengths, we
mean wavelengths large compared to the spacing between
CuO2 planes in the ẑ direction, and large compared to
the intervortex spacing in the ab plane normal to ẑ.

The coarse-grained hydrodynamic fields for a flux-line
liquid are the fluctuating areal density,

n̂H(r) =

N
∑

n=1

δ
(2)
BZ(r⊥ − rn(z)), (4.1)

and a tilt field,

t̂H(r) =

N
∑

n=1

drn
dz

δ
(2)
BZ(r⊥ − rn(z)) . (4.2)

Here δ
(2)
BZ(r⊥) is a smeared-out two-dimensional δ-

function with a finite spatial extent of the order of the
inverse of the Brillouin zone boundary kBZ =

√
4πn0. It

is defined as

δ
(2)
BZ(r⊥) =

1

A

∑

q⊥≤kBZ

e−iq⊥·r⊥ . (4.3)

We stress that these hydrodynamic fields differ from the
microscopic fields defined in Eq. (2.5) and (2.6) as they
are coarse-grained quantities obtained by averaging out
the more microscopic and rapidly varying degrees of free-
dom.

A Gaussian hydrodynamic free energy containing
terms quadratic in the deviations of the fields from their
equilibrium values can be obtained by coarse-graining the
microscopic energy of interacting vortices given in Eq.
(2.19), with the result36,

FG =
1

2n2
0

∫

r

∫

r′

[

B(r − r′)δn̂H(r)δn̂H(r′) (4.4)

+K(r− r′)t̂H(r) · t̂H(r′)
]

,

where δn̂H(r) = n̂H(r)−n0 and B(r) and K(r) are non-
local liquid elastic constants. The density and tilt fields
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are not independent quantities, but are related by a “con-
tinuity” equation expressing the constraint that vortex
lines cannot start or stop inside the sample,

∂zδn̂
H + ∇⊥ · t̂H = 0. (4.5)

The Gaussian hydrodynamic free energy is rewritten in
a more familiar form by passing to Fourier space,

FG =
1

2n2
0Ω

∑

q

[

c011(q)|δn̂H(q)|2 + c044(q)|t̂H(q)|2
]

,

(4.6)

where c011(q) and c044(q) are the bare compressional and
tilt moduli of the flux liquid. The compressional modulus
is given by

c011(q) =
B2

0z

4π

1 + q2λ̃2
⊥p

2

(1 + q2λ̃2
⊥)(1 + q2z λ̃

2
⊥ + q2⊥p

2λ̃2
⊥)

. (4.7)

The bare tilt modulus is found to be to a good approxi-
mation identical to the flux lattice tilt modulus given in
Eqs. (1.1-1.3)35,36.

In this Gaussian approximation, the probability of a
fluctuation is proportional to exp(−FG/kBT ) and aver-
ages must be carried out subject to the continuity con-
straint, Eq. (4.5). The correlation functions of the hy-
drodynamic fields are then immediately calculated and
are given by

〈δn̂H(−q)δn̂H(q)〉G =
n2

0kBTq
2
⊥

c044(q)q2z + c011(q)q2⊥
, (4.8)

〈t̂Hi (−q)δn̂H(q)〉G =
n2

0kBTq⊥iqz
c044(q)q2z + c011(q)q2⊥

, (4.9)

〈t̂Hi (−q)t̂Hj (q)〉G = T 0
T (q)PTij (q⊥) + T 0

L(q)PLij (q⊥) ,

(4.10)

with

T 0
T (q) =

n2
0kBT

c044(q)
(4.11)

and

T 0
L(q) =

n2
0kBTq

2
z

c044(q)q2z + c011(q)q2⊥
. (4.12)

The long wavelength tilt modulus is determined by the
transverse part of the tilt autocorrelator, according to
Eq. (4.11). To this Gaussian order it is then identically
given by its bare value, c044, given in Eq. (1.4). Gaussian
hydrodynamics does not allow for any renormalization of
the tilt modulus, even in the presence of disorder. This
is because a disorder potential couples to the flux-line
areal density that, within a Gaussian theory, is in turn
decoupled from the transverse part of the tilt field. In
particular, this naive hydrodynamic theory does not de-
scribe the possibility of a disentangled flux-line liquid,
with a tilt modulus enhanced by interaction or disorder.
In other words, Gaussian hydrodynamics is by definition
a theory of entangled flux-line liquids.

V. 2D BOSON MODEL

Considerable progress in understanding the properties
of vortex-line arrays has been made by employing the
formal analogy between the classical statistical mechan-
ics of directed lines in three dimensions and the quantum
statistical mechanics of two-dimensional bosons. The ad-
vantage of this approach is that it can incorporate inter-
action effects accounting for localization or disentangle-
ment of the vortices. The drawback is that this model,
at least in its simplest implementation employed by Nel-
son and coworkers3,4,38,28, neglects the nonlocality of the
intervortex interaction. We will show below that the non-
locality of the interaction in the field (z) direction plays
a crucial role in controlling the tilt modulus.

In this section we briefly review the local version of the
boson mapping employed by Nelson and coworkers3,4,38

and the results obtained recently for the tilt modulus by
Täuber and Nelson28 using this model.

Neglecting the nonlocality of the intervortex interac-
tion, the free energy of interacting vortex lines in a field
H = H0ẑ + δH⊥ given in Eq. (2.19) is approximated as

G({rn},H) = NL
(

H0
φ0

4π
− ǫ1

)

+

∫

z

{ N
∑

n=1

ǫ̃1
2

[drn
dz

]2

+
1

2

∑

m 6=n

V⊥(|rn(z) − rm(z)|)
}

(5.1)

−φ0

4π

∫

z

N
∑

n=1

δH⊥(rn(z), z) · drn
dz

,

where ǫ̃1 = ǫ1/p
2, with ǫ1 = ǫ0 lnκ the effective line

tension and ǫ0 = (φ0/4πλ̃⊥)2 a characteristic energy
scale. The nonlocality relating fields and vortex vari-
ables has been neglected also in the last term of Eq.

(5.1). Two crucial approximations have been made in
rewriting the general intervortex energy given in (2.8) in
the form (5.1). First, the leading elastic term in the self-
energy part of Eq. (2.8) has been linearized, according to
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√

1 + 1
p2

(

drn

dz

)2 ≈ 1 + 1
2p2

(

drn

dz

)2
. Secondly, the pair in-

teraction among different flux lines has been replaced by
an interaction V⊥(r⊥) acting locally in each constant-z
plane, given by

V⊥(r⊥) =
φ2

0

8π2λ̃2
⊥

K0(r⊥/λ̃⊥) , (5.2)

with K0(x) a modified Bessel function. Of these approx-
imations the latter is the most severe, since it amounts
to neglecting the qz dependence of the elastic constants -
an approximation that strongly affects the tilt modulus,
as we will see below. Letting G({rn(z)},H) = µNL +

FN ({rn(z)},H), with µ = H0
φ0

4π − ǫ1 = φ0(H0−Hc1)/4π
a chemical potential, the grand canonical partition func-
tion of the vortex liquid can be written as

Zgr(H) =

∞
∑

N=0

1

N !
eβLµN

N
∏

n=0

∫

Drn(z)e−FN(H)/kBT .

(5.3)

The integral in Eq. (5.3) is over all vortex line configu-
rations. It has the form of a quantum-mechanical parti-
tion function in the path integral representation for the
world lines of N particles of mass ǫ̃1, moving through
imaginary time z and interacting with the repulsive pair
potential V⊥(r⊥). The vortex model with this simplified
interaction can therefore be mapped into a model of 2D
massive bosons with instantaneous pairwise interaction.
The mapping results in the following correspondences:

z ↔ τ (5.4)

L↔ h̄βboson

ǫ̃1 ↔ m

kBT ↔ h̄

H0
φ0

4π
− ǫ1 ↔ µ,

where βboson = 1/kBTboson is the inverse temperature of
the bosons. The precise mapping of the grand canoni-
cal vortex line partition function onto the Feynman path
integral in imaginary time τ of a gas of two-dimensional
bosons requires the introduction of a second quantized
Hamiltonian corresponding to Eq. (5.1) and is described
in the literature4,38–40. Some care must be taken in deal-
ing with the tilting field δH⊥ which introduces velocity-
dependent terms into the fictitious boson Lagrangian.
One important difference between the flux-line array and
the boson system is in the boundary conditions in the fic-
titious time variable z. The mapping of the free energy
(5.1) of vortex lines onto the “action” of two-dimensional
bosons is exact only when one imposes periodic bound-
ary conditions for the flux lines in the z direction, i.e.,
rn(L) = rn(0). In contrast the natural boundary con-
dition for flux line would be free boundary conditions,

corresponding to
(

drn

dz

)

z=L
=

(

drn

dz

)

z=0
= 0. As shown

by Täuber and Nelson28, the choice of the boundary con-
ditions does affect the tilt modulus of a finite-thickness
sample. We will not, however, discuss this here as we are
ultimately interested in infinitely thick samples.

To complete the mapping, the grand canonical parti-
tion function (5.1) is first rewritten in a coherent-state
path integral representation as

Zgr(H) =

∫

Dψ(r⊥, z)

∫

Dψ∗(r⊥, z)e
−S[ψ,ψ∗;h]/kBT .

(5.5)

The boson “action” in the imaginary-time path integral
is

S[ψ, ψ∗;h] =

∫

r

[

ψ∗
(

kBT∂z −
(kBT )2

2ǫ̃1
∇2

⊥

)

ψ (5.6)

−kBT
2ǫ̃1

h · (ψ∗
∇⊥ψ − ψ∇⊥ψ

∗) − 1

2ǫ̃1
h2|ψ|2

+

∫

dr′⊥V⊥(r⊥ − r′⊥)|ψ(r⊥, z)|2|ψ(r′⊥, z)|2
]

,

and h(r) = (φ0/4π)δH⊥(r). The complex fields ψ and ψ∗

correspond to boson annihilation and creation operators
in the second quantized Hamiltonian. It is convenient to
rewrite these fields in terms of an amplitude and a phase
as

ψ(r⊥, z) =
√

n̂(r⊥, z)e
iθ(r⊥,z). (5.7)

The magnitude n̂(r⊥, z) of the field ψ corresponds to the
fluctuating local boson density. The phase field θ deter-
mines the boson momentum density,

g(r⊥, z) = kBT n̂∇⊥θ . (5.8)

Upon inserting Eq. (5.7) into Eq. (5.6), the action can
be written in terms of density and phase variables as

S[ψ, ψ∗;h] =

∫

r

{

ikBT n̂∂zθ (5.9)

+
(kBT )2

8ǫ̃1

(∇⊥n̂)2

n̂
+

(kBT )2

2ǫ̃1
n̂(∇⊥θ)

2

−kBT
ǫ̃1

in̂h · ∇⊥θ −
h2

2ǫ̃1
n̂

+

∫

dr′⊥V⊥(r⊥ − r′⊥)n̂(r⊥, z)n̂(r′⊥, z)

}

,

where we have dropped surface terms that vanish for pe-
riodic boundary conditions.

The tilt-tilt correlator Tij(q) can be calculated using
Eq. (2.27), with the result,
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Tij(q) =
kBT

ǫ̃1
δij〈n̂(q)〉h=0 −

(kBT

Ωǫ̃1

)2 ∑

p,p′

p⊥ip
′
⊥j〈n̂(q − p)θ(p)n̂(−q − p′)θ(p′)〉h=0 , (5.10)

where the brackets denote an average over the full non-
linear action (5.9), evaluated at h = 0.

To proceed, a standard approximation is to consider
only small fluctuations of the fields from their mean val-
ues. Letting

n̂(r⊥, z) = n0 + δn̂(r⊥, z), (5.11)

and retaining only terms quadratic in the fields in the
action, the corresponding Gaussian action in zero tilting
field is given by

SG[ψ, ψ∗;0] =

∫

r

{

ikBTδn̂∂zθ (5.12)

+
(kBT )2

8ǫ̃1

(∇⊥δn̂)2

n
+

(kBT )2

2ǫ̃1
n0(∇⊥θ)

2

+

∫

r′⊥

V⊥(r⊥ − r′⊥)δn̂(r⊥, z)δn̂(r′⊥, z)

}

.

To Gaussian order the tilt autocorrelator is given by

T 0
ij(q) =

n0kBT

ǫ̃1
δij +

(n0kBT

ǫ̃1

)2

q⊥iq⊥j〈θ(q⊥)θ(−q⊥)〉G ,

(5.13)

where 〈...〉G denotes an average over the Gaussian action
(5.12). The correlation functions of the fluctuating fields
are easily calculated within the Gaussian approximation,
with the result,

〈δn̂(−q)δn̂(q)〉G =
n0kBTq

2/ǫ̃1
q2z + ǫB(q)2/(kBT )2

, (5.14)

〈θ(−q)δn̂(q)〉G =
qz

q2z + ǫB(q)2/(kBT )2
, (5.15)

〈θ(−q)θ(q)〉G =
ǫ̃1ǫB(q)2/(n0q

2(kBT )2)

q2z + ǫB(q)2/(kBT )2
, (5.16)

where

ǫB(q⊥)

kBT
=

[ n0kBTq⊥
2V⊥(q⊥)

ǫ̃1
+ (

kBTq⊥
2

2ǫ̃1
)2

]1/2

(5.17)

corresponds to the Bogoliubov spectrum of the two-
dimensional boson superfluid. The quartic term in the
Bogoliubov spectrum arises from the |∇⊥n̂|2 “kinetic”
term in the action. To this Gaussian order of approxi-
mation the tilt modulus is dispersionless and simply the
bare part of the single-vortex contribution to c44, given
by

c044 = cv044 = n0ǫ̃1, (5.18)

as given in Eq. (1.2). By comparing the correlation
functions given in Eqs. (5.14-5.16) to those of the hy-
drodynamic fields given in Eqs. (4.8-4.10), we see that
the results obtained by these two methods agree with
each other provided we drop the term of O(q4⊥) in the
Bogoliubov spectrum (which is of higher order in the
wave vector and therefore is consistently neglected in
a long wavelength theory) and make the identifications
c044(q⊥, qz) = n0ǫ̃1 and c011(q⊥, qz) = n2

0V⊥(q⊥). The
quantity that replaces the “Bogoliubov spectrum” in hy-
drodynamics is a characteristic inverse length scale ξ−1

z

that controls the decay of correlations along the z direc-
tion, given by

[

ǫ(q⊥)

kBT

]1/2

→ ξ−1
z (q⊥, qz) = q⊥

√

c011(q⊥, qz)

c044(q⊥, qz)
. (5.19)

Notice, however, that, in contrast to the boson spec-
trum, the correlation length ξz depends on qz, not just
on q⊥. This dependence arises from the nonlocality of
the intervortex interaction in the field direction and will
have important consequences on the renormalization of
c44. Finally, we stress that the hydrodynamic tilt field
does not simply map onto the momentum density of two-
dimensional bosons, which in turn is related to the boson
phase variable by Eq. (5.8). The boson momentum den-
sity is to lowest order purely longitudinal while the tilt
field always has a transverse part.

Täuber and Nelson evaluated perturbatively the cor-
rections to cv44 arising from terms beyond Gaussian in the
free energy28. These corrections can be obtained by fac-
torizing the fourth order correlator on the right hand side
of Eq. (5.10) as a product of Gaussian correlators using
Wick’s theorem41. For the long wavelength tilt modulus,
these authors obtained

1

cvR44
=

1

n0ǫ̃1

[

1 − nBn
n0

]

, (5.20)

where

nBn =
LkBT

8ǫ̃1

∫

d2q⊥

(2π)2

[

q⊥

sinh LǫB(q⊥)
2kBT

]2

(5.21)

is the normal-fluid density of the two-dimensional boson
liquid. The long-wavelength tilt modulus can also be
written as

1

cvR44
=

nBs
n2

0ǫ̃1
, (5.22)
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where nBs = n0 − nBn is the boson superfluid density. As
easily seen from Eq. (5.21) and discussed in TN28, the
normal-fluid density is finite only for samples of finite
thickness L, corresponding to a nonzero boson tempera-
ture. In this case one obtains a renormalization of the tilt
modulus due to finite-size effects. The sign of this cor-
rection is sensitive to the choice of boundary conditions
(the result for periodic boundary conditions is displayed
here). The normal fluid density vanishes, however, for
L → ∞. The local boson model therefore predicts that
the tilt modulus of an infinitely thick, clean supercon-
ductor is unrenormalized and equals its bare value n0ǫ̃1.
In other words, the flux-line liquid is always entangled in
the thermodynamic limit.

VI. NON-GAUSSIAN HYDRODYNAMICS AND

DISENTANGLED FLUX LIQUIDS

Our goal in the remainder of this paper is to construct
a non-Gaussian fully nonlocal hydrodynamic theory and
use it to evaluate the renormalization of the tilt modulus.
As a first step in this direction, in this section we derive
a non-Gaussian hydrodynamic free energy from the local

boson action given in Eq. (5.9). Of course such a hydro-
dynamic theory neglects interactions that are nonlocal
in z and will mainly be used as a guide for constructing
a more general non-Gaussian nonlocal hydrodynamics in
the next section. The non-Gaussian terms in the free
energy renormalize the tilt modulus. When these cor-
rections are evaluated perturbatively, the resulting cR44 is
identical to that obtained by by Täuber and Nelson us-
ing the boson formalism28. The main goal of this section
is to emphasize the relationship between the boson for-
malism and hydrodynamics and to stress that equivalent
results can be obtained by either method.

To derive the hydrodynamic free energy from the bo-
son action, we employ the method used by Kamien and
collaborators42 for the formally analog problem of di-
rected polymers in a nematic solvent. We begin by elimi-

nating the term (kBT )2

2ǫ̃1
n̂(∇⊥θ)

2 in Eq. (5.10) in favor of
a new vector field P, via a Hubbard-Stratonovich trans-
formation, with the result

Zgr(H) =

∫

DP̂Dn̂Dθe−S′[P̂,n̂,θ;h]/kBT , (6.1)

where

S′[P̂, n̂, θ;h] =

∫

r

{

ikBT n̂∂zθ +
(kBT )2

8ǫ̃1

(∇⊥n̂)2

n̂
+

(kBT )

ǫ̃1
in̂∇⊥θ ·

[

kBT P̂− h
]

(6.2)

+
n̂

2ǫ̃1

[

(kBT P̂)2 − h2
]

+

∫

r′⊥

V⊥(r⊥ − r′⊥)n̂(r⊥, z)n̂(r′⊥, z)

}

.

If we integrate over P̂ in Eq. (6.3), we return to the original nonlinear action. Instead we integrate over θ which only
appears linearly in the new action. This integration results in a δ-functional, yielding

Z̃gr(H) =

∫

Dn̂DP̂ exp
[2kBTn

2
0

ǫ̃1

∫

r

ln(n̂(r)/n0)
]

e−S̃H [n̂,P̂;h]/kBT δ
(

∂zn̂+ ∇⊥ · n
ǫ̃1

(kBT P̂ + h)
)

, (6.3)

with

S̃H [n̂, P̂;h] =
1

2

∫

r

{(kBT )2

ǫ̃1
n̂P̂2 +

(kBT )2

4ǫ̃1

(∇⊥n̂)2

n̂
− n̂

2ǫ̃1
h2 +

∫

r′⊥

V⊥(r⊥ − r′⊥)n̂(r⊥, z)n̂(r′⊥, z)
}

. (6.4)

In obtaining Eq. (6.4) we have discretized the nonlin-
ear action (5.10) in real space, according to

∫

r

f(r) → v0
∑

i

fi, (6.5)

with v0 an elementary volume, v0 = ǫ̃1/(2kBTn
2
0). This

is the volume of a box with base area equal to 1/n0 and
height equal to the single-vortex entanglement length,

lz =
ǫ̃1

2kBTn0
. (6.6)

The term containing the logarithm of the fluctuating den-
sity arises from the Jacobian of the functional integration
over the full nonlinear action. It represents the nonlinear
“ideal gas” part of the flux liquid free energy.

Statistical averages have to be performed by integrat-
ing over the fields n̂(r) and P̂(r) with the constraint pro-
vided by the δ-functional in Eq. (6.3). Comparison of
Eq. (6.3) to the hydrodynamic free energy (4.6) of a
flux-line liquid with the constraint (4.5) suggests a phys-

ical interpretation for the auxiliary vector field P̂. The
quantity n̂(kBT P̂ + h)ǫ̃1 takes the place of the hydro-
dynamic tilt field t̂H introduced in the previous section.
The difference between the vector field P̂ and the tilt
field can be understood by noting that, as pointed out
by Nelson and Le Doussal38, the canonically conjugate
momentum of the fictitious particle that corresponds to
the n-th flux-line is pn = i

(

ǫ̃1
drn

dz + h
)

. The vector field

P̂ can then be interpreted as a sort of “velocity” field,
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while the tilt field t̂H represents the canonically conju-
gate momentum density. The two differ in the presence
of an applied transverse field h that contributes to the
single-vortex “canonical momentum”.

The relationship between the effective action S̃H and
the hydrodynamic free energy of a tilted flux-line liquid
is made more transparent by performing and additional
change of variable that replaces the field P̂ by a tilt field

defined as

t̂(r) =
n̂(r)

ǫ̃1

[

kBT P̂(r) + h(r)
]

. (6.7)

The Jacobian of this transformation cancels the Jacobian
of the Hubbard-Stratonovich transformation used earlier
and we obtain,

Zgr(H) =

∫

Dn̂Dt̂e−SH [n̂,t̂;h]/kBT δ
(

∂zn̂+ ∇⊥ · t̂
)

, (6.8)

with

SH [n̂, t̂;h] =
1

2kBT

∫

r

[

ǫ̃1
t̂2

n̂
+

(kBT )2

4ǫ̃1

(∇⊥n̂)2

n̂
− h · t +

∫

r′⊥

V⊥(r⊥ − r′⊥)n̂
(

r⊥, z)n̂(r′⊥, z)
]

. (6.9)

The effective action of a tilted flux-line liquid given in
Equation (6.9) becomes formally identical to the corre-
sponding nonlinear hydrodynamic free energy, provided
we make the identifications,

n̂(r) ↔ n̂H(r), (6.10)

t̂(r) ↔ t̂H(r),

n0ǫ̃1 ↔ c044(q),

n0
2V⊥(q⊥) ↔ c011(q).

The corresponding hydrodynamic free energy is nonlin-
ear, but local in z, and it given by

F ℓ[n̂H , t̂H ;h] = kBTSH [n̂, t̂;h]. (6.11)

The subscript “ℓ” indicates that only local interaction
among the vortices has been retained in this hydrody-
namic free energy. The free energy F l contains the term
quadratic in the density gradient that is neglected in con-
ventional hydrodynamics. We will retain this term here
to make our comparison with the results of the boson
theory more transparent. Also this term will be needed
below to provide a large wave vector cutoff to the inte-
grals determining the renormalized tilt modulus.

The long wavelength part of the tilt-tilt autocorrelator
can now be evaluated using the definition, Eq. (2.27).
The non-Gaussian terms in the local hydrodynamic free
energy (6.11) are separated out by writing

F ℓ = F ℓG + δF ℓ, (6.12)

where F ℓG is given by Eq. (4.6), but with the values spec-
ified in Eqs. (6.10) for the elastic constants, and

δF ℓ = − ǫ̃1
2n0

∫

r

t̂2 δn̂

n̂
. (6.13)

The tilt autocorrelator is then evaluated perturbatively
in the non-Gaussian part δF ℓ of the free energy. The
perturbation expansion is outlined in Appendix B. To
leading order, we obtain

Tij(q) = T 0
ij(q) + δTij(q), (6.14)

where T 0
ij(q) is the bare part of the correlator, given by

Eq. (4.10-4.12). The hydrodynamic limit of the correc-
tion δTij(q) is given by

lim
qz→0

δTij(0, qz) =
n0kBT

ǫ̃1
δij −

(kBT )2

ǫ̃1
2LA

∑

q′

⊥
,q′

z

q′iq
′
j

(ǫB(q′⊥)/(kBT ))2 − q′
2
z

[(ǫB(q′⊥)/(kBT ))2 + q′2z]
2
. (6.15)

This result is identical to that obtained obtained by
Täuber and Nelson via the boson formalism. In partic-

ular, the long wavelength tilt modulus defined according
to Eq. (3.1) is found to be given by Eq. (5.20), with

nBn =
n0kBT

2LA

∑

q⊥,qz

q2⊥
(ǫB(q⊥)/(kBT ))2 − q2z

[(ǫB(q⊥)/(kBT ))2 + q2z ]
2
, (6.16)

which becomes identical to Eq. (5.21) in the thermodynamic limit of large sample size.

VII. TILT MODULUS FROM NONLOCAL,

NON-GAUSSIAN HYDRODYNAMICS

As discussed in the Introduction, neglecting the inter-
action among vortex segments at different “heights” z
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has severe effects on the flux liquid tilt modulus, namely
it completely neglects its compressional part, which is the
largest contribution over a wide part of the (H,T ) phase
diagram. Hence our desire to develop a simple formalism
for the calculation of the tilt modulus of a flux-line liquid
that incorporates such nonlocalities.

A generalization of the boson mapping that incorpo-
rates the z-nonlocality of the vortex interaction was pro-
posed some time ago by Feigel’man and collaborators15.
The z-nonlocality yields a retarded interaction among
the bosons that can be handled by the introduction of a
Chern-Simons gauge field. In the limit of infinite pene-
tration depth, λ⊥, considered by these authors, the flux-
line array then maps onto a charged superfluid. These
authors argued that the charged boson system possesses
a normal-fluid phase at zero temperature, corresponding
to a thermodynamically distinct disentangled flux liquid

phase, with infinite tilt modulus and longitudinal super-
conductivity.

Nonlocality is incorporated in a natural way in hy-
drodynamics. A nonlinear hydrodynamic free energy
that incorporates all nonlocalities of the intervortex in-
teraction can be obtained phenomenologically by coarse-
graining of the microscopic energy of the vortex liquid,
following the methods described in Ref. 36. Care must
be taken in handling the self-interaction between seg-
ments of the same flux-line at different z heights, which
is responsible for the non-Gaussian terms in the hydro-
dynamic free energy. Such non-Gaussian terms are ne-
glected in the linearized theory, but as seen in the pre-
vious section they control the renormalization of the tilt
modulus. The nonlinear hydrodynamic free energy ob-
tained by such a procedure is given by

F =
1

2n2
0

∫

r

∫

r′

{

[ n2
0ǫ̃1

n̂H(r)
δ(r − r′) +Kc(r − r′)

]

t̂H(r)t̂H(r′) +B(r − r′)δn̂H(r)δn̂H(r′)

}

, (7.1)

where B(r) is the real space compressional modulus and
Kc(r) is the interaction part of the real space tilt mod-
ulus. The first term in Eq. (7.1) arises from the self-
energy part of the interaction and it represents a sort
of nonlinear “kinetic” contribution to the total energy of
the flux-line array. To make contact with conventional
notation, it is convenient to rewrite the interaction part
of the free energy in wave-vector space,

F =
1

2

∫

r

ǫ̃1
[t̂H(r)]2

n̂H(r)
(7.2)

+
1

2n2
0Ω

∑

q

{

cc044(q)|t̂H(q)|2 + c011(q)|δn̂H(q)|2
}

where the bare compressional modulus, c011(q), and the
interaction part of the bare tilt modulus, cc044(q), are given
in Eqs. (4.7) and (1.3), respectively.

The non-Gaussian hydrodynamic free energy can also
be derived from the action of two-dimensional bosons
with retarded interaction written down by Feigel’man
and collaborators by successively eliminating nonhydro-
dynamic fields in favor of hydrodynamic fields via formal
manipulations analogous to those described in the pre-
vious section. This derivation is outlined in Appendix
A. The resulting free energy differs from the phenomeno-
logical one given in Eq. (7.2) only in that it contains
an additional term proportional to density gradients (see
Appendix A). This term is usually neglected in hydro-
dynamics because it is of higher order in the gradients.
We will, however, retain it here as it provides an intrinsic
large-wave-vector cutoff to the integrals determining the
renormalized tilt modulus. It can be incorporated in the
free energy of Eq. (7.2) by the replacement

c011(q) → c011(q) + (kBT )2n0q
2
⊥/(4ǫ̃1). (7.3)

It is convenient for the following to separate out the non-
Gaussian part of the hydrodynamic free energy of Eq.
(7.2) by letting

F = FG + δF, (7.4)

where FG is given by Eq. (4.6), and

δF = −1

2

∫

r

ǫ̃1[t̂
H(r)]2

n0

δn̂H(r)

n̂H(r)
. (7.5)

The tilt autocorrelator can be evaluated by treating the
non-Gaussian part of the free energy (7.5) perturbatively.
Some details are given in Appendix B. The dimension-
less parameter that controls the expansion in δF/kBT is
proportional to (ǫ̃1/2kBT

√
n0)

2 = (lz/a0)
2, with lz the

entanglement length given in Eq. (6.6). Small values of
lz/a0 correspond to an entangled flux-line liquid. The
“kinetic” nonlinearities that are incorporated perturba-
tively stiffen the tilt modulus of the line liquid, making
it therefore less entangled.

The nonlinearities embodied in δF yield corrections to
all the correlation functions. Here, we only display the
result for the transverse part of the tilt-tilt correlator,
that determines the wave vector-dependent tilt modulus.
Using Eq. (2.30), the wave vector-dependent tilt modu-
lus is given by

1

cR44(q⊥, qz)
=

1

c044(q⊥, qz)

[

1 − n0ǫ̃1
c044(q⊥, qz)

nn(q⊥, qz)

n0

]

,

(7.6)

with
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nn(q⊥, qz) =
kBT

LA

∑

q′

⊥
,q′

z

{

q′
2
⊥

c044(q
′)

1

q′2z + [ξz(q′)]−2
− n0ǫ̃1(q⊥ − q′

⊥)2

c044(q
′)c044(q − q′)

1

(qz − q′z)
2 + [ξz(q − q′)]−2

}

(7.7)

+
n0ǫ̃1kBT

LA

∑

q′

⊥
,q′

z

(q̂⊥ · q̂′
⊥)2(q⊥ − q′

⊥)2[ξz(q
′)]−2 −

[

1 − (q̂⊥ · q̂′
⊥)2

]

q′
2
⊥q

′
z(q

′
z − qz)

c044(q
′)c044(q − q′)

[

q′2z + [ξz(q′)]−2
][

(qz − q′z)
2 + [ξz(q − q′)]−2

] ,

and

[ξz(q)]−2 =
q2⊥

c044(q)

[

c011(q) +
(kBT )2n0q

2
⊥

4ǫ̃1

]

. (7.8)

The length scale ξz(q) differs from the one defined in Eq. (5.19) in that it contains an additional term arising from the
coupling to the density gradient contained in our free energy and usually neglected in hydrodynamics. For simplicity,
we use, however, the same notation as in Eq. (5.19).

The long-wavelength tilt modulus is determined by nn = limqz→0 limq⊥→0 nn(q⊥, qz), given by

nn =
kBT

LA

∑

q⊥,qz

q2⊥
c044(q)

[

1 − n0ǫ̃1
c044(q)

]

1

q2z + [ξz(q)]−2
+
n0ǫ̃1kBT

2LA

∑

q⊥,qz

q2⊥
[c044(q)]2

[ξz(q)]−2 − q2z
[

q2z + [ξz(q)]−2
]2 . (7.9)

Equations (7.6-7.9) are the central result of this paper.
If the z-nonlocality of the intervortex interaction is ne-
glected in Eq. (7.7) by replacing the elastic constants on
the right-hand side with the corresponding values used in
the the local boson formalism, according to Eq. (6.10),
then Eq. (7.7) becomes identical to the result obtained by
TN. In particular, the first term on the right hand side of
Eq. (7.9) is absent in the local boson model of TN, where
c044 = n0ǫ̃1. The long-wavelength normal fluid density is
then given by Eq. (5.21) and vanishes for L→ ∞.

The normal fluid density given in Eq. (7.9) can be eval-
uated explicitly for the case of an isotropic superconduc-
tor (p = 1) in the limit of infinite thickness (L→ ∞). Af-
ter inserting in Eq. (7.9) the expression for the nonlocal
bare elastic constants given in Eqs. (4.7) and (1.1-1.3),
the qz integral in Eq. (7.9) can be evaluated. The re-
sulting normal-fluid fraction depends on the three length
scales that characterize the system. These are the aver-
age intervortex spacing, a0 = 1/

√
n0, the the ab plane

London penetration depth, λ̃⊥, and the single-vortex en-
tanglement length, lz. We have introduced two dimen-

sionless parameters,

u =
2lz√
πa0

=
2ǫ̃1

kBT
√

4πn0
, (7.10)

and a dimensionless volume fraction of vortex lines,

v∗ =
1

4πn0λ̃2
⊥

, (7.11)

The renormalized long-wavelength tilt modulus is written
in terms of our dimensionless parameters as

1

cR44
=

1

c044

[

1 − v∗

1 + v∗
nn
n0

]

(7.12)

and the normal fluid fraction is given by

nn
n0

=
1

2u

∫ ∞

0

dx{K(x|u, v∗) + L(x|u, v∗)} , (7.13)

where

K(x|u, v∗) =
x2[1 + (x + v∗)(1 + x/u2)] + 2z1z2x(x + v∗)√

x+ v∗z1z2(z1 + z2)[
√

1 + x+ v∗(x+ z1z2) + z1z2(z1 + z2)]
, (7.14)

L(x|u, v∗) = v∗
x(z2

1 + z2
2)

z1z2(z1 + z2)(z2
1 − z2

2)
, (7.15)

with

z1,2 =
1√
2
{1 + x+ (x/u)2 + v∗ ± [(1 + (x/u)2 − x− v∗)2 + 4v∗]1/2}1/2 . (7.16)
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These integrals have been evaluated numerically. The
resulting normal fluid fraction is shown in Fig. 1 as a
function of u for several values of the volume fraction
v∗. We note that the dependence on v∗ is rather weak,
particularly for small values of u.

0.0 1.0 2.0 3.0 4.0 5.0
u

0.0

1.0

2.0

3.0

n n/
n 0

v*=0.01
v*=0.1
v*=0
v*=1
v*=100

Fig.1.The normal-fluid fraction given by Eq. (7.13) as a
function of u for five different values of v∗. Notice the
weak dependence of nn/n0 on v∗ for small values of u.

For v∗ = 0 (which can be interpreted as either the high
density limit or the infinite λ⊥ case treated by Feigel’man
and collaborators15), the normal-fluid density given in
Eq. (7.13) reduces – up to an overall factor of 2 – to
the result obtained by Feigel’man et al.15,43. Our Eq.
(7.9) generalizes the result obtained by Feigel’man and
coworkers to the case of finite penetration depth.

We stress that our calculation is perturbative and we
have only evaluated the leading correction in perturba-
tion theory. As discussed above, the small parameter in
the perturbation theory is proportional to u2 ∼ (lz/a0)

2.
In other words, the unperturbed state is an entangled
flux liquid, with a very small value of the z-axis coher-
ence length lz, and interactions stiffen the vortices, en-
hancing the tilt modulus. We can estimate the values
of magnetic field and temperature where our perturba-
tion theory breaks down as determined by the root of the
equation

v∗

1 + v∗
nn
n0

= 1. (7.17)

The solution u0(v
∗) of Eq. (7.17) defines a line BD0(T )

in the (H,T ) phase diagram that can be interpreted as an
estimate of the phase boundary between entangled and
disentangled liquid regions. For B > BD0(T ) the liquid is
entangled, while for B < BD0(T ) the perturbation theory
breaks down, signaling the appearance of a disentangled
flux-line liquid. Of course, in order to interpret the region
B < BD0(T ) as a disentangled flux liquid theBD0(T ) line
must lie in the molten region of the (H,T ) phase diagram.

At high density, v∗ << 1 and Eq. (7.17) can be approx-
imated as nn/n0 ∼ 1/v∗ >> 1. It is clear from Fig. 1
that the roots of this equation occur at large values of u,
where nn/n0 ∼ (1/2)ln(u). We then estimate that our
perturbation theory breaks down for u0(v

∗) ∼ exp(2/v∗).
Converting to field and temperature, this corresponds to
BD0(T ) ∼ (Hc1/2 lnκ) ln(Hc1φ0/πkBT 4p2

√
lnκ), with

Hc1 = φ0/4πλ̃
2
⊥ lnκ. Below this line, c44 is strongly

renormalized upward by interactions and a large dis-
entangled flux-line liquid fraction may appear. Con-
versely, at low density, v∗ >> 1 and Eq. (7.17) becomes
nn/n0 ∼ 1. The solution of this equation depends weakly
on v∗, as seen from Fig. 1, and is approximately u0 ∼ 2,
corresponding to BD0(T ) ∼ (φ0/4π)(ǫ̃1/kBT )2. This re-
sult coincides with the estimate obtained by Feigel’man
et al15, but it applies in a different field regime. The
solution u0(v

∗) of Eq. (7.17) for general values of v∗

has been obtained numerically and is shown in Fig. 2 as
a solid line. For small v∗ (high vortex-line density) Eq.
(7.17) predicts that the perturbation theory breaks down
at very large values of u, in a region that is well beyond
its range of applicability.

0.0 2.0 4.0 6.0 8.0
v*

0.0

10.0

20.0

30.0

40.0

u

u0(v*)
u1(v*)

Fig.2.The solid line is the numerical solution of Eq.
(7.17). It defines the line u0(v

∗) in the (u, v∗) param-
eter space where the perturbation expansion of the tilt
autocorrelator breaks down. The dashed line is u1(v

∗),
where nn/n0 = 1.

We now wish to compare our perturbative result to the
nonperturbative expression for c44 proposed by Larkin
and Vinokur and given in Eq. (1.6). As discussed in the
Introduction, if the Larkin-Vinokur formula is expanded
for small values of the normal fluid fraction nn/n0, the
leading term has the form given in Eq. (1.8), which is
identical to the long wavelength limit of our result (7.6),
provided we identify nn in Eq. (1.8) with our perturba-
tive expression for the normal fluid density given in Eq.
(7.9). It is then tempting to conjecture that a nonpertur-
bative generalization of our calculation may indeed yield
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the expression (1.6) proposed by Larkin and Vinokur for
the renormalized long wavelength tilt modulus, but with
a normal fluid fraction given by Eq. (7.9), corresponding
to

1

cR44
=

1

cc44 + n0 ǫ̃1
1−nn/n0

, (7.18)

with nn given by Eq. (7.9). We stress that Eq. (7.18),
which is simply a rewriting of the Larkin-Vinokur result,
is purely a conjecture in the context of our work. It is,
however, interesting to explore its consequences. Accord-
ing to Eq. (7.18), the condition for the vanishing of 1/cR44,
corresponding to the onset of a macroscopic disentangled
fluid fraction, would read

nn
n0

= 1 . (7.19)

The numerical solution of this equation, denoted by
u1(v

∗), is shown in Fig. 2 as a dashed line. We note that
the line u0(v

∗), where the perturbation theory breaks
down, and the line u1(v

∗), where the conjectured nonper-
turbative form of 1/cR44 vanishes, coincide at large v∗, but
diverge at small v∗. In this high density region it appears
that the perturbation theory strongly underestimates the
stiffening of c44 from interactions. The line u1(v

∗) defines
a second “disentanglement line”, BD1(T ), in the (H,T )
phase diagram. Assuming u1(v

∗) ∼ 2 ∼ constant over
the range of v∗ values of interest, we estimate BD1(T ) ∼
(φ0/4π)(ǫ̃1/kBT )2. Notice that the field BD1(T ) (which
coincides with BD0(T ) at low vortex density) is of the
order of the melting field Bm(T ) of the vortex lattice.
Using a Lindeman criterion for melting, this is found to
be Bm(T ) = (16c4Lφ0p

2/(lnκ)2(ǫ̃1/kBT )2, where cL is
the Lindeman parameter44.

Before discussing the location of the disentanglement
lines BD0(T ) and BD1(T ) in the (H,T ) phase diagram,
we recall that the explicit evaluation of the integrals de-
termining the normal fluid density has been carried out
for isotropic superconductors (p = 1). To estimate the
relevance of our result to the anisotropic CuO2 materi-
als, we have used the above estimate for the boundary
between disentangled and entangled liquid regions and
inserted parameter values typical of these materials. To
justify this approximation, we note that for p >> 1 the
compressional part of the tilt modulus arising from the
nonlocality of the vortex interaction in the z direction be-
comes less important relative to the vortex part. As it is
precisely this nonlocality that is responsible for a nonva-
nishing renormalization of c44 in infinitely thick samples,
we expect that the results that we have obtained for the
isotropic case will provide an upper bound for the size
of the renormalization in anisotropic materials. A sketch
of a phase diagram showing the location of the disentan-
glement lines BD0(T ) (dashed line) and BD1(T ) (dotted
line) is shown in Fig. 3. It is not drawn to scale.

Using parameter values of YBCO and BSCCO we have
estimated that in both these materials at high fields

(B > 1Tesla) the BD0(T ) boundary defining the break-
ing down of our perturbation theory lies well within the
flux lattice phase. At low fields there is a possibility for
a disentangled phase in the reentrant liquid region. This
region is, however, rather narrow, particularly in YBCO
where it is expected to have a width of the order of 1
Gauss45. For this reason, while we have drwan in Fig.
3 the “horizontal” part of the BD0(T ) curve as passing
through this reentrant liquid phase, it could very well
be that this line is located either above (in the lattice)
or below (in the Meissner phase) the sketched position.
The disentanglement line BD1(T ) is shown as dotted in
Fig. 3 and it is estimated to lie in the liquid phase. The
existence of this line is, however, just a conjecture in the
context of our work, as our results are strictly perturba-
tive. In general we expect the actual disentanglement line
to lie between our perturbative estimate BD0(T ) and the
conjecturedBD1(T ). It could therefore lie almost entirely
in the solid phase, indicating that a true thermodynamic
disentangled liquid phase does not exist. This conclu-
sion would appear to agree with the latest results from
simulations19–21. Further work beyond the naive lowest
order perturbation expansion discussed here is needed,
however, to settle this point.

Meissner Phase

Abrikosov

(T)

Lattice

Flux Liquid

H

T

B

B

H
T

H c

c

2

1

Bm

D0

D1

c

(T)

(T)

(T)

(T)

Fig.3. A sketch (not to scale) of the phase diagram show-
ing the location of the “disentanglement” lines discussed
in the text. The dashed line, BD0(T ), marks the break-
ing down of the perturbation expansion for the inverse
tilt modulus; the dotted line, BD1(T ), corresponds to
nn/n0 = 1 and signals the divergence of the conjectured
form of cR44, given in Eq. (7.18). The width of the reen-
trant liquid phase is in reality much smaller than shown
here and the line BD0(T ) may or may not pass through
it. Bm(T ) is the melting line. Hc2(T ) marks the onset
of a Meissner effect and is not a sharp phase transition.

One important outcome of our work is that the nonlo-
cality of the intervortex interaction in the field direction
has important qualitative effects on the tilt modulus. In
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particular, it always yields a finite – although often small
– upward renormalization of c44 even in infinitely thick
samples. This renormalization is absent in calculations
based on the local boson mapping28. In fact, in the work
of TN an important role is played by the invariance of
the flux-line interaction under an affine transformation
or uniform tilt (corresponding to Galilean invariance of
a pure boson system). L.D. Landau46 has shown that
the Galilean invariance implies that the superfluid den-
sity at the ground state (T = 0) of a superfluid equals
the total density. The affine transformation invariance

is not present in the more general intervortex free en-
ergy that allows for pairwise interaction among vortex
segments at different heights, z. This nonlocality breaks
the “Galilean invariance” and yields a tilt-tilt interac-
tion which penalizes any misalignment of the flux-lines,
therefore favoring disentanglement.

M.C.M. has benefitted from conversations with David
Nelson and Steven Teitel. This work was supported by
the National Science Foundation at Syracuse through
Grants DMR-9730678 and DMR-9805818.

VIII. APPENDIX A - DERIVATION OF NONLOCAL HYDRODYNAMICS FROM THE PARTITION

FUNCTION OF 2D CHARGED BOSONS

In this appendix we show that the nonlocal, non-Gaussian hydrodynamic free energy given in Eq. (7.2) can be
derived by formal manipulations of the partition function of a two-dimensional charged boson fluid. Feigel’man and
collaborators15 have shown that the partition function of an array of flux-lines described in the London approximation
by the Ginzburg-Landau free energy of Eq. (2.18) can be mapped onto that of a two-dimensional system of bosons
interacting via a massive vector potential. The nonlocality of the intervortex interaction is incorporated via a gauge
field that mediates a retarded interaction among the bosons. The coherent-state formulation of the boson problem
yields the imaginary-time action:

Sc[ψ, ψ∗,a,A] =

∫ βh̄

0

dτ

∫

dr⊥
{

ψ∗[ h̄∂τ + ia0 −
1

2m
(h̄∇⊥ + ia⊥)2 − µ ]ψ + Vsr(ψψ

∗) +
p2

2g2
(∇⊥ × a⊥)2 +

1

2g2

[

ẑ × (∂τa⊥ − ∇a0)
]2

+
i

2
√
πλ̃⊥g

(∇ × a) · A +
1

8π
(∇ × A)2

}

. (8.1)

The correspondence between vortex and boson variables is summarized in Eq. (5.4). The coupling constant g

corresponds to the strength of the vortex interaction, according to g2 ↔ φ2
0/(4πλ̃

2
⊥) and p is the anisotropy parameter

that here allows for different scalar an transverse interaction among the bosons. A is the vector potential of the real
magnetic field (∇×A = B), and a = (a0,a⊥) is a gauge field that mediates the non-instantaneous interaction among
the bosons. The boson chemical potential µ has to be determined so that the equilibrium boson density nB equals
the vortex density, nB = n0 = B/φ0. Finally, Vsr is a short range repulsion (on scale ξ) between the bosons. This
action is based on the gauge ∇ · A = 0 and ∇⊥ · a⊥ = 0. The choice of ∇⊥ · a⊥ = 0 instead of ∇ · a = 0 reflects
the assumption of nonrelativistic velocities for the bosons, corresponding to small tilt of the flux lines away from the
z direction47. By rewriting the boson fields in terms of an amplitude and a phase, as defined in Eq. (5.7), we obtain

Sc[n̂, θ, a,A] =

∫ βh̄

0

dτ

∫

dr⊥
{

ih̄n̂∂τθ + in̂a0 +
h̄2

8m

(∇⊥n̂)2

n̂
+ Vsr(n̂) +

n̂

2m
a2
⊥ +

h̄

m
n̂(∇θ) · a⊥ − µn̂+

h̄2

2m
n(∇⊥θ)

2 +
p2

2g2
(∇⊥ × a⊥)2 +

1

2g2

[

ẑ × (∂τa⊥ − ∇a0)
]2

+

i

2
√
πλ̃⊥g

(∇ × a) · A +
1

8π
(∇ × A)2

}

. (8.2)

The assumption of small fluctuations allows us to extend the range of θ from [−π, π] to [−∞,+∞]. As described in

section V, we now eliminate the phase θ in favor of a vector field P̂ via a Hubbard-Stratonovich transformation, to
obtain

S̃′
c[n̂, P̂,a,A] =

∫ βh̄

0

dτ

∫

dr⊥
{ h̄2

2m
n̂P̂2 +

n̂

2m
a2
⊥ + in̂a0 +

h̄2

2m

(∇⊥n̂)2

n̂
− µn̂+ Vsr(n̂) +

p2

2g2
(∇⊥ × a⊥)2 +

1

2g2

[

ẑ × (∂τa⊥ − ∇a0)
]2

+
i

2
√
πλ̃⊥g

(∇ × a) · A +

1

8π
(∇ × A)2 +

n0h̄
2

m
ln(

n̂

n0
)
}

, (8.3)
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with the constraint

∂τ n̂+ ∇⊥ · n̂
m

(h̄P̂ + ia⊥) = 0 . (8.4)

The last term in the action in Eq. (8.3), logarithmic in the density, is the Jacobian of the transformation. We then
make a change of variables,

t̂ =
n̂

m
(h̄P̂ + ia⊥) , (8.5)

and obtain

S′
c[n̂, t̂,a,A] =

∫ βh̄

0

dτ

∫

dr⊥
{mt̂2

2n̂
− ia⊥ · t̂ + in̂a0 − µn̂+ Vsr(n̂) +

h̄2

8m

(∇⊥n̂)2

n̂
+

p2

2g2
(∇⊥ × a⊥)2 +

1

2g2

[

ẑ × (∂τa⊥ − ∇a0)
]2

+
i

2
√
πλ̃⊥g

(∇ × a) · A +
1

8π
(∇ × A)2

}

, (8.6)

with the constraint

∂τ n̂+ ∇⊥ · t̂ = 0 . (8.7)

The Jacobian of this transformation cancels that of the previous one.
Finally, we define an effective action Seff

c for the bosons by integrating out both the vector potential A(r) and the
gauge field a(r),

∫ ′

Dn̂Dt̂DADa e−S′

c
[n̂,t̂,a,A]δ(∂τ n̂+ ∇⊥ · t̂) =

∫

Dn̂Dt̂e−Seff

c
[n̂,t̂]δ(∂τ n̂+ ∇⊥ · t̂). (8.8)

The prime over the integral sign on the left hand side of the equation indicates that the integration over A and a

has to be performed by taking into account the constraints imposed by our choice of gauge. The vector potential and
gauge field are most easily integrated out by rewriting the field part of the action (8.6) in Fourier space, with the
result,

Seff
c [n̂, t̂] =

∫ βh̄

0

dτ

∫

dr⊥
{ mt̂2

2n̂
− µn̂+ Vsr(n̂) +

h̄2

8m

(∇⊥n̂)2

n̂

}

+
1

2Ω

∑

q

{ g2λ̃2
⊥

1 + q2z λ̃
2
⊥ + q2⊥p

2λ̃2
⊥

|t̂T (q)|2 +
q2

q2⊥

g2λ̃2
⊥

1 + q2λ̃2
⊥

|n̂(q)|2
}

, (8.9)

where t̂T (q) = q̂⊥ × t̂(q). By making use of the continuity constraint given in Eq. (8.7), we can write

g2λ̃2
⊥

1 + q2z λ̃
2
⊥ + q2⊥p

2λ̃2
⊥

|t̂T (q)|2 +
q2

q2⊥

g2λ̃2
⊥

1 + q2λ̃2
⊥

|n̂(q)|2 =
g2λ̃2

⊥

1 + q2z + q2⊥p
2λ̃2

⊥

|t̂(q)|2 +

g2λ2(1 + q2p2λ̃2
⊥)

(1 + q2λ̃2
⊥)(1 + q2z λ̃

2
⊥ + q2⊥p

2λ̃2
⊥)

|n̂(q)|2. (8.10)

Finally, if we replace the short range repulsion Vsr(n̂) by a short-wavelength cutoff and identify the boson density n̂
and momentum field t̂ with the corresponding hydrodynamic quantities for the vortices, we see that Eq. (8.9) yields
precisely the nonlocal non-Gaussian hydrodynamic free energy discussed in section VI.

IX. APPENDIX B - PERTURBATIVE CORRECTIONS TO THE TILT MODULUS FROM NONLINEAR

HYDRODYNAMICS

The wave-vector dependent tilt modulus is defined in terms of the transverse part of the tilt-tilt correlator as in
Eq. (3.1). In the hydrodynamic approximation, the tilt-tilt correlator can be written as

Tij(r, r
′) =

∫

Dn̂(r)Dt̂(r)t̂i(r)t̂j(r
′)e−F/kBT δ(∂zn̂+ ∇⊥ · t̂)

∫

Dn̂(r)Dt̂(r)e−F/kBTδ(∂zn̂ + ∇⊥ · t̂)
, (9.1)
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Where F is the hydrodynamic free energy given in Eq. (7.2). The free energy can be written as the sum of a Gaussian
part, FG, and non-Gaussian corrections, δF , as in Eq. (7.4). We want to calculate up to lowest-order in the small
parameter, u2, nonlinear corrections to the tilt autocorrelator. By keeping only terms up to fourth order in the
fluctuations of the hydrodynamic fields, the non-Gaussian part of the free energy is given by,

δF ≈ − ǫ̃1
2n2

0Ω
2

∑

q1,q2

t̂i(q1)t̂i(q2)δn̂(−q1 − q2) +
ǫ̃1

2n3
0Ω

3

∑

q1,q2,q3

t̂i(q1)t̂i(q2)δn̂(q3)δn̂(−q1 − q2 − q3) . (9.2)

The tilt-tilt correlator is then evaluated in Fourier space perturbatively in the non-Gaussian part of the free energy,
with the result,

Tij(q,q
′) = Ωδq+q′,0T

0
ij(q) − 1

kBT
〈t̂i(q)t̂j(q

′)δF 〉cG +
1

2(kBT )2
〈t̂i(q)t̂j(q

′)(δF )2〉cG , (9.3)

where 〈...〉cG denotes a cumulant average over the Gaussian ensemble with weight ∼ exp(−FG/kBT ). The first term
on the right hand side of Eq. (9.3) is the Gaussian result given in Eqs. (4.10-4.12).

Using Wick’s theorem, the corrections arising from the non-Gaussian part of the free energy are easily expressed in
terms of the correlations in the Gaussian ensemble given in Eq. (4.8-4.12), with the result

PTij (q⊥)〈t̂i(q)t̂j(q
′)δF 〉cG = Ωδq+q′,0[T 0

T (q)]2
ǫ̃1
n3

0

1

Ω

∑

q1

〈|δn̂(q1)|2〉G (9.4)

and

PTij (q⊥)〈t̂i(q)t̂j(q
′)(δF )2〉cG = 2Ωδq+q′,0[T 0

T (q)]2PTij (q⊥)
ǫ̃21
n4

0

1

Ω

∑

q1

{

〈t̂Hi (q1)t̂
H
j (−q1)〉G〈|δn̂H(q − q1)|2〉G +

〈t̂Hi (q1)δn̂
H(−q1)〉G〈t̂Hj (q1 − q)δn̂H(q − q1)〉G

}

. (9.5)

By substituting the expressions for the Gaussian correlators given in Eqs. (4.8-4.12), we obtain the following expression
for the transverse part of the tilt autocorrelator to lowest order in the non-Gaussian terms,

TT (q) =
n2

0kBT

c044(q)
(9.6)

−n
3
0ǫ̃1(kBT )2

[c044(q)]2
1

LA

∑

q′

⊥
,q′

z

{

q′
2
⊥

c044(q
′)

1

q′2z + [ξz(q′)]−2
− n0ǫ̃1(q⊥ − q′

⊥)2

c044(q
′)c044(q − q′)

1

(qz − q′z)
2 + [ξz(q − q′)]−2

}

−n
4
0ǫ̃

2
1(kBT )2

[c044(q)]2
1

LA

∑

q′

⊥
,q′

z

(q̂⊥ · q̂′
⊥)2(q⊥ − q′

⊥)2[ξz(q
′)]−2 −

[

1 − (q̂⊥ · q̂′
⊥)2

]

q′
2
⊥q

′
z(q

′
z − qz)

c044(q
′)c044(q − q′)

[

q′2z + [ξz(q′)]−2
][

(qz − q′z)
2 + [ξz(q − q′)]−2

] .
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