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Abstract 

Various approximations of classic negation have been proposed for logic program­
ming. But the semantics for those approximations are not entirely clear. In this paper 
a. proof-theoretic operator, we call it failure operator, denoted as Fp, is associated with 
each logic program to characterize the meaning of various negations in logic program­
ming. It is shown that the failure operator Fp is a dual of the Tp immediate consequence 
operator developed by Van Emden and Kowalski and is downward continuous. It has 
the desirable properties entirely analogous to what Tp has such as continuity, having a 
unique least fixpoint and a unique greatest fixpoint. It provides natural proof theories 
for various version negations in logic programming. We prove that set complementation 
provides the isomorphism between the fixpoints of Fp and those ofTp, which illustrates 
the duality of Fp and Tp. The existing treatment of negation in logic programming can 
be given in a simple and elegant fixpoint characterization. 

1 Introduction 

Logic programs consist of :finite sets of clauses. Each clause can be viewed as an inference rule 
consisting of two distinct parts: an antecedent and a consequent. Such a delineation provides 
a declarative meaning for a clause in that the consequent is true when the antecedent is 
true. Based on such a point of view Van Emden and Kowalski in [2] developed a closure 
operator, Tp, for a logic program P. The lattice l..p on which Tp operates, l..p =< 28 P, ~>, 
is a complete lattice. The operator is the motivation behind the SLD-resolution proof 
procedure which allows positive information to be deduced from a logic program. They 
show that the operator Tp is upward continuous over Lp. Hence, the operator always has a 
least fixed point, Tp t w which corresponds to the success set of the program. The success 
set is taken to be the intended meaning of the program. The least :fixpoint of the program 
is a set of ground atoms and has a very important property: an ground atom is in the set 
if and only if it is a logical consequence of the program. This approach is very satisfactory 
when one just wants to extract positive information from the program. However, negation 
remains something of a problem when negation is involved. The solution to the problem 
has been to use default rules such Closed World Assumption, Negation as Failure and the 
Herbrand Rule to implicitly infer negative information from the program. Those default 

1 



rules are characterized by complements of fixpoints of Tp which are generally complements 
of recursively enumerable sets. The most natural notion of negation, complementation, is 
simply not available. It is desirable to provide some kind of proof procedures for deducting 
negative information embedded in the program. We found the Fp operator to be exactly 
a dual of Tp. It provides a natural proof procedure to deduct negative information from a 
logic program. 

We now present the intuition behind Fp operator. Contrary to van Emden and Kowal­
ski's approach, we look at a logic program as a finite set of inference rules which provide us 
with negative information about a logic program instead. Let's look at the following clause: 

(1) 

Informally, in van Emden and Kowalski's approach the clause is viewed to represent ex­
plicitly the positive information of A, in the sense that if truthhood of each B; is established 
then truthhood of A can be established from (1). On the other hand, from an alternative 
point of view the clause can be interpreted to explicitly represent the negative information 
about A, in the sense that if one fails to establish any of B;s then A can not be established 
from (1). Suppose that the following clauses are precisely those clauses whose consequent 
is A in a logic program P. 

A-Bu, B12, ... , B1n1 • 

A- B21> B22, ... , B2n2 • 

If one fails to to establish A from all the clause above then it is safe to claim the 
unprovability of A from P under close world assumption. 

It is the motivation that is behind Fp operator. 
In this paper we associate each logic program the failure operator, denoted as Fp. Fp 

operates on a truth space Lp which is a dual of Lp on which Tp operates. We prove a series 
of theorems which state that the failure operator Fp is actually a dual of the operator Tp 
in some sense. It shares almost all the attractive properties which T p has, even including 
upward continuity (over Lp ). we can characterize most existing treatment of negation in 
logic programming and give a simple and elegant fixpoint characterization of negations. We 
prove that the complement of the least fixed point of Tp is the least fixed point of Fp which 
is reached in w steps when negations are not allowed in clause bodies. We have hopes that 
result like Theorem 6.1 will help to shed more light on the meaning of negation in logic 
programming. We will show that Fp along with Tp provides a very natural framework for 
the general consideration of logic programming semantics in [3]. 

We begin with a background on lattice in section 2. In section 3 we briefly recall some 
definitions and notations for logic programming from [1]. Then in section 5 we introduce the 
notion of F-interpretation and F-model for a logic program. We give the definition of Fp 
and present some results concerning fixed-points of Fp. Finally we present the relationship 
between Fp and Tp. 
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2 Background From Lattice 

This section introduces the requisite concepts and results regarding lattices, mappings and 
their :fixpoints. 

Definition 2.1 Let S be a set. A binary relation R on S is a subset of S X S. By the 
converse of a binary relation R is meant the relation R-1 such that (x, y) E R if and only 
if(y,x) E R- 1 . 

We denote the fact that (x, y) E R by xRy. 

Definition 2.2 A binary relation R on a setS is a partial order if it satisfied the following 
conditions: 

1. for all x E S, xRx. 

2. for all x, y E S, xRy and yRx imply x = y. 

3. for all x,y,z E S, xRy and yRz imply xRz. 

We use the standard notation and use ~ to denote a partial order. 

Definition 2.3 A partial ordered system P is a pair < S, ~> where S is a set and 
~ is a partial order on S. Let T be a operator T : S --+ S. The partial ordered system 
P =< S, ~- 1 > is called a dual of P. P is called a complete self dual, if and only if there 
is an isomorphism h : S --+ S such that the following conditions are satisfied: 

e for all X E S, h( h( X)) = Xi 

• for all x,y E S, x ~ y ~ h(y) ~ h(x). 

Definition 2.4 Let P =< S, ~> be a complete self dual with an isomorphism h : S--+ S 
satisfying the conditions mentioned above and let T : S --+ S be a function. A function TD 
is called a dual if the followings hold: 

• for all x E S,T»(x) = h(T(h(x))); and 

• for all x E S,T(x) = h(TD(h(x))). 

Definition 2.5 A partial ordered set L =< a,~> is a complete lattice if for every subset 
X of A its greatest lower bound and least upper bound exist. 

3 Background From Logic programming 

We assume that our language L for predicate logic with equality symbol = is fixed in 
advance, and contains a countably infinite set of n-place function symbols and a countably 
infinite set of n-place predicate symbols for each natural number n. We refer the reader to 
[1] for terminology and notation concerning terms, atoms, literals and substitutions 
that are not otherwise presented in this paper. 
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Definition 3.1 A program clause is of the form: 

where A, B1 , B2 , ••• , Bn ( 0 ~ n) are atoms. 

Definition 3.2 A goal is of the form: 

where n ~ 1 and each Bi is an atom. 

Definition 3.3 A logic program is a finite set of program clauses. 

In addition, we assume that any program clauses and goals do not contain any occurrence 
of the equality symbol. 

By an alphabet :Ep of a logic program P we mean the set of constants, predicate and 
function symbols which occur in the program. In addition, any alphabet is assumed to 
contain a countably infinite set of variable symbols, connective ( •, V, A, V, 3, i-) and the 
usual punctuation symbols. 

The set of all ground terms of a logic program Pis called the Herbrand universe, denoted 
as Up and the set of all ground atoms is called the Herbrand base, denoted as Bp. We use 
p• to denote the ground instantiation of a logic program P. An Herbrand interpretation I 
for a logic program Pis a subset of the Herbrand Base of P. An Herbrand model of Pis 
an Herbrand interpretation of P that makes all clauses in P true. 

It is easy to prove that Lp =< 2Br, ~>is a complete lattice. The greatest member of 
Lp is Bp and the least member is 0. Similarly one can prove that Lp =< 2Br, 2> is also 
a complete lattice. 

4 Semantics 

A Herbrand interpretation is a set of atoms which are precisely true in the interpretation. 
Since we are interested in its counterpart we define the notion of an F-interpretation for a 
logic program. 

Definition 4.1 Let P be a logic program and I be an Herbrand interpretation for P Then 
Bp - I is called an F -interpretation of P. 

The class of Herbrand interpretations of a logic program with subset as the partial 
order forms the complete lattice Lp. From Definition 4.1 we can see that the class ofF­
interpretations of a logic program also forms the complete lattice Lp which is a dual of Lp. 
The following proposition states the relationship between Lp and Lp. 

Proposition 4.1 Let P be a logic program. Then Lp is a dual of Lp and Lp is a complete 
self dual. 
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Proof: It is obvious that the set complement is the isomorphism which links Lp and Lp. 0 
The notion of Herbrand models is intended to capture the meaning of logical conse­

quence of a logic program. Next we use the concept ofF-model to capture the meaning of 
"immediate failure" in logic programming. 

Definition 4.2 An F-interpretation I of a logic program P is an F-model for P if for 
each ground atom A E I then for each ground clause of the form 

It is straightforward to prove the following proposition. 

Proposition 4.2 Let I 1,I2 be two F-models of logic program P. Then their union is also 
an F -model of P. 

Proposition 4.2 is a dualized property of Herbrand models of a logic program, which 
indicates that Herbrand models of a logic program are closed under set intersection. 

5 Failure operator and its fixpoints 

Van Emden and Kowalski obtain a deep characterization of the least Herbrand model of 
a logic program P by using T p operator. T p act like an immediately logical consequence 
operator. It transforms an Herbrand interpretation into a new Herbrand interpretations 
which contains all facts that can be deduced from the logic program by using the old 
interpretation. It provides the link between the declarative and procedural semantics of a 
logic program P. The least Her brand model is precisely the set of ground atoms which are 
logical consequences of the program. 

We found that one can obtain a characterization of the least F-models of logic programs 
by using Fp. To this end we associate every program with the complete lattice Lp. 

Definition 5.1 Let P be a logic program. The mapping Fp is defined as follows. Let I be 
a F -interpretation. Then Fp : 2Bp --t 2Bp is defined as follows: 

A F-model of a logic program can be characterized by Fp operator. Its easy proof is 
omit here. 

Theorem 5.1 Let P be a logic program. Then I is an F-model of P if and only I~ Fp(I). 

We next show that Fp is continuous and hence monotonic over Lp. For that propose 
we need the lemma stated below: 

Lemma 5.1 Let X be a directed subset of Lp. Then for all I E X 

{B1, B2, ... , Bn} n lub(X) :/; 0 {:::::> {Bb B2, ... , Bn} n I:/; 0. 
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Proof: Let S = { Bt, B2, ... , Bn} 
( ==> ): This direction is obvious since 

lub(X) = n I. 
lEX 

( ~ ): Suppose that S n I :I 0 for all I E X. Then we have that for all I E X 

m1 = II n Sl ~ 1. 

Let 
k = min{m1II EX}. 

From its definition we have that 
1 ~ k ~ n. 

Thus there is a.t least a.n I 0 E X such that 

IonS= {B~,B~, ... ,Ba. 

Now we show that for all I E X 
Io n S r; In S. 

We prove it by contradiction. Suppose that there is a.n J E X such that 

IonS g; J n s. 
Thus it follows that 

3A( A E Io n S A A ¢ J n S). 

Hence 
(IonS) n (J n S) =Ion J n ScIonS. 

Since X is a. directed set a.nd I 0 , J EX there is a.n J 0 E X such that J 0 r; Ion J. Now we 
know 

IIo n J n Sl < k. 

Thus we have IJo n Sl ~ k -1 which contradicts the definition of k. Therefore, for all IE X 

Io n S r; In S. 

Hence 
lub(X) n S = ( n I) n S ~ Io n S ¥ 0 

lEX 

which completes the proof. 0 

The following result shows that Fp shares the continuity with Tp but in opposite direc­
tion. 

Theorem 5.2 Let P be a program. Then the mapping Fp is continuous, and hence mono­
tonic over Lp. 
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Proof: Let X be a directed subset of 2Bp. In order to prove Fp is continuous, we have to 
show that 

Fp(lub(X)) = lub(Fp ). 

Now we have that A E Fp(lub(X)) 
iff for all clause of the form 

such that lub( X) n { B1, B2, ••• , Bn} ::/; 0 
iff for all clause of the form 

A- B1tB2, ... ,Bn E P* 

such that In {B17 B2, ••• , Bn} ::/; 0 for all IE X by Lemma 5.1 
iff A E Fp(I) for all IE X 
iff A e lub(Fp(X)). 

We now define the ordinal powers of Fp. 

Definition 5.2 Consider a logic ·program P. We define 

Fp 10 = Bp Fp! 0 = 0 
Fp 1 (n+ 1) = Fp(Fp 1 n) Fp! (n+ 1) = Fp(Fp! n) 
Fp 1 a = nn<a Fp 1 n Fp ! a = Un<a Fp ! n 

where n is a successor ordinal, and a is a limit ordinal. 

0 

The next result is an analogue theorem for Fp. It is an application of Kleene's Theorem 
in [1]. 

Theorem 5.3 Let P be a logic program. Then 

lfp(Fp) = Fp 1 w. 

Let Mp be the union of all F-models of a logic program P. The folowing is an another 
analogue result for Fp parallel to Tp. 

Theorem 5.4 Let P be a logic program. Then 

Proof: 

Mp = glb{I: I is a F-model for P} 
= glb{I: I~ Fp(I)} by Theorem 5.1 
= lfp(Fp) Tarski Theorem. 
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6 Relationship between Tp and Fp 

Now we come to the first major result of the theory. This theorem states the relationship 
between Tp and Fp. 

Theorem 6.1 Let P be a logic program. Then for any S ~ Bp 

Proof: 

Fp(Bp- S) ={AlVA+- BbB2,. . . ,Bn E P*{Bt,B2, ... ,Bn} n (Bp-S) -f;0} 
={AlVA+- Bt,B2, ... ,Bn E P*((3i: 1 ~ i ~ n)Bi f/. S)} 
= Bp- {AI3A +- Bt, B2, .. . , Bn E P*-,((3i: 1 ~ i ~ n)Bi ¢ S)} 
= Bp- {AI3A +- Bt,B2, ... ,Bn E P*,{Bt,B2, ... ,Bn} ~ S} 
= Bp- Tp(S) 

0 
Before we present results about relationship between Fp and Tp we recall a definition 

from [1]. 

Definition 6.1 (Lloyd 1988) Consider a logic program P. We define 

Tp l 0 = 0 Tp! 0 = Bp 
Tp l (n + 1) = Tp(Tp l n) Tp! (n+ 1) = Tp(Tp! n) 
Tp f a = Un<a Tp f n Tp ! a = nn<a Tp ! n 

where n is a successor ordinal, and a is a limit ordinal. 

Now we are in a proposition to present the duality between Fp and Tp. 

Theorem 6.2 Let P be a logic program. Then we have 

1. Tp l a = Bp - Fp l a. 

2. Tp ! a = Bp - Fp ! a. 

3. Fp l a = Bp - Tp l a . 

..f. Fp ! a = Bp - Tp ! a. 

Proof: We prove ( 1) by using transfinite induction. 

• Induction base: o: = 0. 

Tp 10 = 0 
= Bp- Bp 
= Bp- Fp l 0 by definition of Fp 1 0 
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• Induction hypothesis: the equation (1) holds for all ordinals (3:::; a. 

• Induction step: 

Case a: a + 1 is a successor ordinal. Then 

Tp j (a+ 1) = Tp(Tp j a) 
= Bp- Fp(Bp- Tp j a) 
= Bp- Fp(Fp j a) 
= Bp- Fp j a+ 1 

Case b: a + 1 is a limited ordinal. Then 

Tp j (a+ 1) = U,B::;aTP j f3 
= U,B::;a(Bp- Fp j (3) 
= Bp- n.B<aFP j f3 
= Bp - Fp -j (a+ 1) 

by Definition 6.1 
by Theorem 6.1 
by the induction hypothesis 
by Definition 5.2 

by Definition 6.1 
by the induction hypothesis 

by Definition 5.2 

Similarly we can prove the equations (2), (3) and (4). 0 
The following result establishes the relationship between fixpoints of Fp and those of 

Tp which illustrates the duality of Fp and Tp. 

Corollary 6.1 Let P be a logic program. Then 

•lfp(Fp)=Fpjw=Bp-Tpjw. 

• gfp(Fp) = Bp- gfp(Tp). 

Proof: It follows immeditaely from the definitions of Fp j wand gfp(FP), and Theorem 
6.2. 0 

The next result shows that the atoms in the least fi.xpoint of Fp are precisely those 
ground atoms that are not a logical consequence of the logic program P; the greatest fixed 
point of Fp are precisely those ground atoms that false in every Herbrand models. It also 
gives alternative characterization of finite failure set by using Fp operator. 

Corollary 6.2 Let P be a logic program. Then 

• Fp j w ={A E Bp: A is not a logical consequence of P}. 

• Fp l w = {A E Bp :A has a finite failed SLD-tree}. 

• gfp(Fp) ={A E Bp: A is false in every Herbrand model ofP}. 

Proof: It follows directly from Corollary 6.1 and the definition of Tp. 0 
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