
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

3-1991

Duality in Logic Programming Duality in Logic Programming

Feng Yang

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yang, Feng, "Duality in Logic Programming" (1991). Electrical Engineering and Computer Science -
Technical Reports. 119.
https://surface.syr.edu/eecs_techreports/119

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/119?utm_source=surface.syr.edu%2Feecs_techreports%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-10

Duality in Logic Programming

FengYang

March 1991

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

Duality in Logic Programming

Feng Yang

School of Computer & Information Science
Syracuse University

Syracuse, N.Y. 13244-4100

March 14, 1991

Abstract

Various approximations of classic negation have been proposed for logic program­
ming. But the semantics for those approximations are not entirely clear. In this paper
a. proof-theoretic operator, we call it failure operator, denoted as Fp, is associated with
each logic program to characterize the meaning of various negations in logic program­
ming. It is shown that the failure operator Fp is a dual of the Tp immediate consequence
operator developed by Van Emden and Kowalski and is downward continuous. It has
the desirable properties entirely analogous to what Tp has such as continuity, having a
unique least fixpoint and a unique greatest fixpoint. It provides natural proof theories
for various version negations in logic programming. We prove that set complementation
provides the isomorphism between the fixpoints of Fp and those ofTp, which illustrates
the duality of Fp and Tp. The existing treatment of negation in logic programming can
be given in a simple and elegant fixpoint characterization.

1 Introduction

Logic programs consist of :finite sets of clauses. Each clause can be viewed as an inference rule
consisting of two distinct parts: an antecedent and a consequent. Such a delineation provides
a declarative meaning for a clause in that the consequent is true when the antecedent is
true. Based on such a point of view Van Emden and Kowalski in [2] developed a closure
operator, Tp, for a logic program P. The lattice l..p on which Tp operates, l..p =< 28 P, ~>,
is a complete lattice. The operator is the motivation behind the SLD-resolution proof
procedure which allows positive information to be deduced from a logic program. They
show that the operator Tp is upward continuous over Lp. Hence, the operator always has a
least fixed point, Tp t w which corresponds to the success set of the program. The success
set is taken to be the intended meaning of the program. The least :fixpoint of the program
is a set of ground atoms and has a very important property: an ground atom is in the set
if and only if it is a logical consequence of the program. This approach is very satisfactory
when one just wants to extract positive information from the program. However, negation
remains something of a problem when negation is involved. The solution to the problem
has been to use default rules such Closed World Assumption, Negation as Failure and the
Herbrand Rule to implicitly infer negative information from the program. Those default

1

rules are characterized by complements of fixpoints of Tp which are generally complements
of recursively enumerable sets. The most natural notion of negation, complementation, is
simply not available. It is desirable to provide some kind of proof procedures for deducting
negative information embedded in the program. We found the Fp operator to be exactly
a dual of Tp. It provides a natural proof procedure to deduct negative information from a
logic program.

We now present the intuition behind Fp operator. Contrary to van Emden and Kowal­
ski's approach, we look at a logic program as a finite set of inference rules which provide us
with negative information about a logic program instead. Let's look at the following clause:

(1)

Informally, in van Emden and Kowalski's approach the clause is viewed to represent ex­
plicitly the positive information of A, in the sense that if truthhood of each B; is established
then truthhood of A can be established from (1). On the other hand, from an alternative
point of view the clause can be interpreted to explicitly represent the negative information
about A, in the sense that if one fails to establish any of B;s then A can not be established
from (1). Suppose that the following clauses are precisely those clauses whose consequent
is A in a logic program P.

A-Bu, B12, ... , B1n1 •

A- B21> B22, ... , B2n2 •

If one fails to to establish A from all the clause above then it is safe to claim the
unprovability of A from P under close world assumption.

It is the motivation that is behind Fp operator.
In this paper we associate each logic program the failure operator, denoted as Fp. Fp

operates on a truth space Lp which is a dual of Lp on which Tp operates. We prove a series
of theorems which state that the failure operator Fp is actually a dual of the operator Tp
in some sense. It shares almost all the attractive properties which T p has, even including
upward continuity (over Lp). we can characterize most existing treatment of negation in
logic programming and give a simple and elegant fixpoint characterization of negations. We
prove that the complement of the least fixed point of Tp is the least fixed point of Fp which
is reached in w steps when negations are not allowed in clause bodies. We have hopes that
result like Theorem 6.1 will help to shed more light on the meaning of negation in logic
programming. We will show that Fp along with Tp provides a very natural framework for
the general consideration of logic programming semantics in [3].

We begin with a background on lattice in section 2. In section 3 we briefly recall some
definitions and notations for logic programming from [1]. Then in section 5 we introduce the
notion of F-interpretation and F-model for a logic program. We give the definition of Fp
and present some results concerning fixed-points of Fp. Finally we present the relationship
between Fp and Tp.

2

2 Background From Lattice

This section introduces the requisite concepts and results regarding lattices, mappings and
their :fixpoints.

Definition 2.1 Let S be a set. A binary relation R on S is a subset of S X S. By the
converse of a binary relation R is meant the relation R-1 such that (x, y) E R if and only
if(y,x) E R- 1 .

We denote the fact that (x, y) E R by xRy.

Definition 2.2 A binary relation R on a setS is a partial order if it satisfied the following
conditions:

1. for all x E S, xRx.

2. for all x, y E S, xRy and yRx imply x = y.

3. for all x,y,z E S, xRy and yRz imply xRz.

We use the standard notation and use ~ to denote a partial order.

Definition 2.3 A partial ordered system P is a pair < S, ~> where S is a set and
~ is a partial order on S. Let T be a operator T : S --+ S. The partial ordered system
P =< S, ~- 1 > is called a dual of P. P is called a complete self dual, if and only if there
is an isomorphism h : S --+ S such that the following conditions are satisfied:

e for all X E S, h(h(X)) = Xi

• for all x,y E S, x ~ y ~ h(y) ~ h(x).

Definition 2.4 Let P =< S, ~> be a complete self dual with an isomorphism h : S--+ S
satisfying the conditions mentioned above and let T : S --+ S be a function. A function TD
is called a dual if the followings hold:

• for all x E S,T»(x) = h(T(h(x))); and

• for all x E S,T(x) = h(TD(h(x))).

Definition 2.5 A partial ordered set L =< a,~> is a complete lattice if for every subset
X of A its greatest lower bound and least upper bound exist.

3 Background From Logic programming

We assume that our language L for predicate logic with equality symbol = is fixed in
advance, and contains a countably infinite set of n-place function symbols and a countably
infinite set of n-place predicate symbols for each natural number n. We refer the reader to
[1] for terminology and notation concerning terms, atoms, literals and substitutions
that are not otherwise presented in this paper.

3

Definition 3.1 A program clause is of the form:

where A, B1 , B2 , ••• , Bn (0 ~ n) are atoms.

Definition 3.2 A goal is of the form:

where n ~ 1 and each Bi is an atom.

Definition 3.3 A logic program is a finite set of program clauses.

In addition, we assume that any program clauses and goals do not contain any occurrence
of the equality symbol.

By an alphabet :Ep of a logic program P we mean the set of constants, predicate and
function symbols which occur in the program. In addition, any alphabet is assumed to
contain a countably infinite set of variable symbols, connective (•, V, A, V, 3, i-) and the
usual punctuation symbols.

The set of all ground terms of a logic program Pis called the Herbrand universe, denoted
as Up and the set of all ground atoms is called the Herbrand base, denoted as Bp. We use
p• to denote the ground instantiation of a logic program P. An Herbrand interpretation I
for a logic program Pis a subset of the Herbrand Base of P. An Herbrand model of Pis
an Herbrand interpretation of P that makes all clauses in P true.

It is easy to prove that Lp =< 2Br, ~>is a complete lattice. The greatest member of
Lp is Bp and the least member is 0. Similarly one can prove that Lp =< 2Br, 2> is also
a complete lattice.

4 Semantics

A Herbrand interpretation is a set of atoms which are precisely true in the interpretation.
Since we are interested in its counterpart we define the notion of an F-interpretation for a
logic program.

Definition 4.1 Let P be a logic program and I be an Herbrand interpretation for P Then
Bp - I is called an F -interpretation of P.

The class of Herbrand interpretations of a logic program with subset as the partial
order forms the complete lattice Lp. From Definition 4.1 we can see that the class ofF­
interpretations of a logic program also forms the complete lattice Lp which is a dual of Lp.
The following proposition states the relationship between Lp and Lp.

Proposition 4.1 Let P be a logic program. Then Lp is a dual of Lp and Lp is a complete
self dual.

4

Proof: It is obvious that the set complement is the isomorphism which links Lp and Lp. 0
The notion of Herbrand models is intended to capture the meaning of logical conse­

quence of a logic program. Next we use the concept ofF-model to capture the meaning of
"immediate failure" in logic programming.

Definition 4.2 An F-interpretation I of a logic program P is an F-model for P if for
each ground atom A E I then for each ground clause of the form

It is straightforward to prove the following proposition.

Proposition 4.2 Let I 1,I2 be two F-models of logic program P. Then their union is also
an F -model of P.

Proposition 4.2 is a dualized property of Herbrand models of a logic program, which
indicates that Herbrand models of a logic program are closed under set intersection.

5 Failure operator and its fixpoints

Van Emden and Kowalski obtain a deep characterization of the least Herbrand model of
a logic program P by using T p operator. T p act like an immediately logical consequence
operator. It transforms an Herbrand interpretation into a new Herbrand interpretations
which contains all facts that can be deduced from the logic program by using the old
interpretation. It provides the link between the declarative and procedural semantics of a
logic program P. The least Her brand model is precisely the set of ground atoms which are
logical consequences of the program.

We found that one can obtain a characterization of the least F-models of logic programs
by using Fp. To this end we associate every program with the complete lattice Lp.

Definition 5.1 Let P be a logic program. The mapping Fp is defined as follows. Let I be
a F -interpretation. Then Fp : 2Bp --t 2Bp is defined as follows:

A F-model of a logic program can be characterized by Fp operator. Its easy proof is
omit here.

Theorem 5.1 Let P be a logic program. Then I is an F-model of P if and only I~ Fp(I).

We next show that Fp is continuous and hence monotonic over Lp. For that propose
we need the lemma stated below:

Lemma 5.1 Let X be a directed subset of Lp. Then for all I E X

{B1, B2, ... , Bn} n lub(X) :/; 0 {:::::> {Bb B2, ... , Bn} n I:/; 0.

5

Proof: Let S = { Bt, B2, ... , Bn}
(==>): This direction is obvious since

lub(X) = n I.
lEX

(~): Suppose that S n I :I 0 for all I E X. Then we have that for all I E X

m1 = II n Sl ~ 1.

Let
k = min{m1II EX}.

From its definition we have that
1 ~ k ~ n.

Thus there is a.t least a.n I 0 E X such that

IonS= {B~,B~, ... ,Ba.

Now we show that for all I E X
Io n S r; In S.

We prove it by contradiction. Suppose that there is a.n J E X such that

IonS g; J n s.
Thus it follows that

3A(A E Io n S A A ¢ J n S).

Hence
(IonS) n (J n S) =Ion J n ScIonS.

Since X is a. directed set a.nd I 0 , J EX there is a.n J 0 E X such that J 0 r; Ion J. Now we
know

IIo n J n Sl < k.

Thus we have IJo n Sl ~ k -1 which contradicts the definition of k. Therefore, for all IE X

Io n S r; In S.

Hence
lub(X) n S = (n I) n S ~ Io n S ¥ 0

lEX

which completes the proof. 0

The following result shows that Fp shares the continuity with Tp but in opposite direc­
tion.

Theorem 5.2 Let P be a program. Then the mapping Fp is continuous, and hence mono­
tonic over Lp.

6

Proof: Let X be a directed subset of 2Bp. In order to prove Fp is continuous, we have to
show that

Fp(lub(X)) = lub(Fp).

Now we have that A E Fp(lub(X))
iff for all clause of the form

such that lub(X) n { B1, B2, ••• , Bn} ::/; 0
iff for all clause of the form

A- B1tB2, ... ,Bn E P*

such that In {B17 B2, ••• , Bn} ::/; 0 for all IE X by Lemma 5.1
iff A E Fp(I) for all IE X
iff A e lub(Fp(X)).

We now define the ordinal powers of Fp.

Definition 5.2 Consider a logic ·program P. We define

Fp 10 = Bp Fp! 0 = 0
Fp 1 (n+ 1) = Fp(Fp 1 n) Fp! (n+ 1) = Fp(Fp! n)
Fp 1 a = nn<a Fp 1 n Fp ! a = Un<a Fp ! n

where n is a successor ordinal, and a is a limit ordinal.

0

The next result is an analogue theorem for Fp. It is an application of Kleene's Theorem
in [1].

Theorem 5.3 Let P be a logic program. Then

lfp(Fp) = Fp 1 w.

Let Mp be the union of all F-models of a logic program P. The folowing is an another
analogue result for Fp parallel to Tp.

Theorem 5.4 Let P be a logic program. Then

Proof:

Mp = glb{I: I is a F-model for P}
= glb{I: I~ Fp(I)} by Theorem 5.1
= lfp(Fp) Tarski Theorem.

7

6 Relationship between Tp and Fp

Now we come to the first major result of the theory. This theorem states the relationship
between Tp and Fp.

Theorem 6.1 Let P be a logic program. Then for any S ~ Bp

Proof:

Fp(Bp- S) ={AlVA+- BbB2,. . . ,Bn E P*{Bt,B2, ... ,Bn} n (Bp-S) -f;0}
={AlVA+- Bt,B2, ... ,Bn E P*((3i: 1 ~ i ~ n)Bi f/. S)}
= Bp- {AI3A +- Bt, B2, .. . , Bn E P*-,((3i: 1 ~ i ~ n)Bi ¢ S)}
= Bp- {AI3A +- Bt,B2, ... ,Bn E P*,{Bt,B2, ... ,Bn} ~ S}
= Bp- Tp(S)

0
Before we present results about relationship between Fp and Tp we recall a definition

from [1].

Definition 6.1 (Lloyd 1988) Consider a logic program P. We define

Tp l 0 = 0 Tp! 0 = Bp
Tp l (n + 1) = Tp(Tp l n) Tp! (n+ 1) = Tp(Tp! n)
Tp f a = Un<a Tp f n Tp ! a = nn<a Tp ! n

where n is a successor ordinal, and a is a limit ordinal.

Now we are in a proposition to present the duality between Fp and Tp.

Theorem 6.2 Let P be a logic program. Then we have

1. Tp l a = Bp - Fp l a.

2. Tp ! a = Bp - Fp ! a.

3. Fp l a = Bp - Tp l a .

..f. Fp ! a = Bp - Tp ! a.

Proof: We prove (1) by using transfinite induction.

• Induction base: o: = 0.

Tp 10 = 0
= Bp- Bp
= Bp- Fp l 0 by definition of Fp 1 0

8

• Induction hypothesis: the equation (1) holds for all ordinals (3:::; a.

• Induction step:

Case a: a + 1 is a successor ordinal. Then

Tp j (a+ 1) = Tp(Tp j a)
= Bp- Fp(Bp- Tp j a)
= Bp- Fp(Fp j a)
= Bp- Fp j a+ 1

Case b: a + 1 is a limited ordinal. Then

Tp j (a+ 1) = U,B::;aTP j f3
= U,B::;a(Bp- Fp j (3)
= Bp- n.B<aFP j f3
= Bp - Fp -j (a+ 1)

by Definition 6.1
by Theorem 6.1
by the induction hypothesis
by Definition 5.2

by Definition 6.1
by the induction hypothesis

by Definition 5.2

Similarly we can prove the equations (2), (3) and (4). 0
The following result establishes the relationship between fixpoints of Fp and those of

Tp which illustrates the duality of Fp and Tp.

Corollary 6.1 Let P be a logic program. Then

•lfp(Fp)=Fpjw=Bp-Tpjw.

• gfp(Fp) = Bp- gfp(Tp).

Proof: It follows immeditaely from the definitions of Fp j wand gfp(FP), and Theorem
6.2. 0

The next result shows that the atoms in the least fi.xpoint of Fp are precisely those
ground atoms that are not a logical consequence of the logic program P; the greatest fixed
point of Fp are precisely those ground atoms that false in every Herbrand models. It also
gives alternative characterization of finite failure set by using Fp operator.

Corollary 6.2 Let P be a logic program. Then

• Fp j w ={A E Bp: A is not a logical consequence of P}.

• Fp l w = {A E Bp :A has a finite failed SLD-tree}.

• gfp(Fp) ={A E Bp: A is false in every Herbrand model ofP}.

Proof: It follows directly from Corollary 6.1 and the definition of Tp. 0

Acknowledgements

I wish to thank Dr. Howard Blair and Dr. Allen L. Brown for helpful discussions and
comments.

9

References

[1] W .L. Lloyd. Foundation of Logic programs. Springer-Verlag, second edition, 1988.

[2] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a programming
language. JACM, 23(4):733-742, oct. 1976.

[3] Feng Yang. A unified framework for three-valued semantical treatments of logic pro­
gramming. Submitted for publication, 1991.

10

	Duality in Logic Programming
	Recommended Citation

	SU-CIS-91-10_001c
	SU-CIS-91-10_002c
	SU-CIS-91-10_003c
	SU-CIS-91-10_004c
	SU-CIS-91-10_005c
	SU-CIS-91-10_006c
	SU-CIS-91-10_007c
	SU-CIS-91-10_008c
	SU-CIS-91-10_009c
	SU-CIS-91-10_010c
	SU-CIS-91-10_011c

