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Abstract

The discretisation problem for even quadratic twists is almost under-

stood, with the main question now being how the arithmetic Delaunay

heuristic interacts with the analytic random matrix theory prediction.

The situation for odd quadratic twists is much more mysterious, as the

height of a point enters the picture, which does not necessarily take

integral values (as does the order of the Shafarevich-Tate group). We

discuss a couple of models and present data on this question.

1.1 Introduction

Let E : y2 = x3 +Ax+B be a fixed rational elliptic curve, and consider

the sets S+(X) and S−(X) of quadratic twists of E that contain respec-

tively the even1 and odd twists Ed : dy2 = x3 + Ax + B with |d| < X a

fundamental discriminant. For even twists, the Birch–Swinnerton-Dyer

conjecture [BSD] states that

L(Ed, 1) = Ωd
gd · #Xd

T 2
d

where Ωd is the real period, gd is the global Tamagawa number, Xd is the

Shafarevich-Tate group,2 and Td is the order of the torsion subgroup, all

of these quantities being with respect to the quadratic twist Ed. Random

1 A twist is even if the order of vanishing of its L-function at s = 1 (that is, its
analytic rank) is even, which is the same as saying that the sign of its functional
equation is +1; similarly for odd twists.

2 We allow the order to be zero, in which case we suspect a curve of higher rank.
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2 J. Brian Conrey et al.

matrix theory applied with orthogonal symmetry [CKRS] predicts that

Prob
[

L(Ed, 1) ≤ x
]

≈ x1/2(log x)3/8 as x → 0, (1.1)

where we use the ≈ notation to indicate that the quotient of the two

sides tends to an unspecified constant that depends on E. Since #Xd

is a square while gd and Td are well-understood integers, we get a dis-

cretisation from (1.1) — we expect that L(Ed, 1) = 0 if, say, we have

that L(Ed, 1) ≤ gdΩd/T 2
d . Because Ωd essentially acts like ≈ 1/

√

|d|,
this gives a rough prediction that

Prob
[

L(Ed, 1) = 0
]

≈ (log |d|)C/|d|1/4

as |d| → ∞, where the constant C is well-understood, largely dependent

on the rational 2-torsion structure of E. Finally, these heuristics lead to

a conjecture about the number of positive rank twists in S+(X), namely

that there should be about ≈ X3/4(log X)C of them as X → ∞.

The situation is somewhat different for odd twists; here we have that

L(Ed, 1) = 0 from the functional equation, and now the BSD conjecture

takes into account the regulator Rd:

L′(Ed, 1) = Ωd
gd · Rd#Xd

T 2
d

.

This regulator is rather mysterious, and, as in the case of regulators and

class numbers for real quadratic fields, does not seem totally disjoint

from the Shafarevich-Tate group. The heuristic of Delaunay [D] gives

some idea of how we might expect #X to be distributed, but for the

regulator we have only the lower bound of size c log |d| of Silverman [Si]

and a conjectured upper bound3 of |d|1/2+ǫ of Lang [L].

Also, the analogue of (1.1) has a different exponent; we have4

Prob
[

L′(Ed, 1) ≤ x
]

≈ x3/2(log x)3/8 as x → 0. (1.2)

In analogy with the class number problem5 we might be so bold as to

guess that Rd#Xd is always large if nonzero, say as big as |d|1/2−ǫ.

Since Ωd acts like ≈ 1/
√

|d|, this then implies that L′(Ed, 1) ≫ 1/|d|ǫ.
More generally, we might guess that

¿ L′(Ed, 1) ≫ 1/|d|θ for curves of analytic rank 1 ? (1.3)

3 Assuming BSD and GRH we essentially get Lang’s conjecture; in place of GRH,
by bounding L′(Ed, 1) via convexity, we get a crude upper bound of |d|1+ǫ.

4 The exponent on the logarithm is −r2/2 + r/2 + 3/8, where r is the order of the
zero enforced at s = 1; see [Sn1] for the general case, and [Sn2] for the case r = 1.

5 Note, however, that our L-values are at the center of the critical strip, while those
for the class number problem are at the edge.
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at least in a statistical sense, that is, there are disproportionately few

twists with nonzero L′-values smaller than this.

From this, in analogy with the above argument (and ignoring loga-

rithmic factors) we obtain that as |d| → ∞ we have

Prob
[

L′(Ed, 1) = 0
]

≈ 1/|d|3θ/2,

so that the number of twists of rank greater than 1 should be about

X1−3θ/2 as X → ∞. We now proceed to give models and data which

suggest various values for θ. Note that the only provable (assuming BSD)

bound is that L′(Ed, 1) ≫ 1/
√

|d|, which would lead to a prediction of

only X1/4 odd twists of rank greater than 1. However, for an infinite

family of curves E and under the assumption of the Parity Conjecture,

Rubin and Silverberg [RS, 8.2] can prove that there are ≫ X1/3 twists

of rank at least 3.

The above conjecture (1.3) implies that Rd and Xd are linked in a

mysterious way; if we have a generator of small height (so that Rd is

small), then this tends to make Xd be larger than general. The con-

structions of Rubin and Silverberg by their very nature yield points

that are of height that is polynomial in log |d| — indeed, almost any

parametrised family will have this feature, as writing down points of

larger height is not feasible. These facts together suggest that by taking

families with small generators we can generate large values of X. How-

ever, this does not work quite so simply in practise — we do get large

values of X, but not always (as we will see in Section 1.4). This is one

of the reasons why we might suggest a statistical version of (1.3) rather

than a universal lower bound.

1.2 A model from Heegner points (largely due to Birch)

Suppose that E has rank zero and d < 0 is a fundamental discrimi-

nant that is a square modulo 4N , where N is the conductor of E, and

also assume for simplicity that gcd(d, 6N) = 1. By work of Gross and

Zagier [GZ], we have a construction for a point Pd on Ed that gives a

torsion point precisely when the rank of Ed is greater than 1; indeed,

the height λ of the constructed point is proportional to L′(Ed, 1):

λ(Pd) =

√

|d|
4Ωvol

L(E, 1)L′(Ed, 1),

where here Ωvol is the area of the fundamental parallelogram associated

to a minimal model for E. When the rank of Ed is 1, the point Pd has
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infinite order but is not in general a generator of the free part of the

group of rational points; the index of Pd depends on #Xd, but cancels

out in the end.

The construction of the point Pd goes via class-field theory; we get a

point Ud over the Hilbert class field via a complex multiplication result

largely due to Shimura, and then sum the conjugates to get a point first

in the imaginary quadratic field Q(
√

d) and then in Q itself. The num-

ber of conjugates of Ud in the Hilbert class field is essentially the class

number h of Q(
√

d). These points, all being conjugate, have the same

height. To get the height of the resulting point in Q, we model the situ-

ation by assuming that we are summing h unit vectors in h-dimensional

space; this leads to the prediction that the height is almost surely close

to h which is of size
√

|d|. If we assume that the height of Ud is not

too small we then get a prediction that L′(Ed, 1) ≫ 1/|d|ǫ, leading to

about X1−ǫ twists in S−(X) which have rank 3 or greater. However, it

is not clear why the height of Ud might not be of size 1/|d|C itself, as its

coordinates are in a field whose degree is of size
√

|d|.
We can try to test the validity of this model by taking d with L′(Ed, 1)

small and then computing the height of the point Ud in the Hilbert class

field. However, when the class field has large degree (that is, when the

class number is large), it will be difficult to recognise the coordinates

of Ud, so we cannot take |d| too large here. We were thus unable to

generate enough examples to perform any real test of the model.

1.3 Alternative ideas

A less profound idea is to assert that the connection between rank 1

and rank 3 twists should be the same as the connection between rank 0

and rank 2 twists, at least to first approximation. Heuristics and random

matrix theory [CKRS] give X3/4+ǫ rank 2 curves amongst even quadratic

twists up to X . If we thus guess that there about X3/4 twists of rank 3

up to X , via reverse-engineering the argument of two sections previous,

this could then be used to determine a value of θ = 1/6.

We note that there are two random matrix models that have been

proposed for modeling the zeros of L-functions associated with elliptic

curves. The prediction (1.2) of Snaith [Sn1] is extended to higher ranks

by looking at a zero-dimensional subset of SO(even) (for even twists)

or SO(odd) (for odd twists) with r eigenvalues conditioned to lie at 1.

This model predicts Prob[L(r)(Ed, 1) ≤ x] ≈ xr+1/2(log x)−r2/2+r/2+3/8.

In contrast, Miller [M2] has proposed his Independent Model, with
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eigenvalue distribution decomposing as a sum of (2⌊r/2⌋ + 1) point-

masses and the eigenvalue distribution of the symmetry group SO(even)

or SO(odd). In this case the rth derivative analogue of (1.1) and (1.2) is

given by (1.1) for SO(even) symmetry and (1.2) for SO(odd) symmetry.

There is both theoretical evidence [M1, Y] and numerical data [M2] that

the 1- and 2-level densities of zeros follow Miller’s Independent Model

for L-functions associated with parameterised families of elliptic curves

with r constructed points that generate the infinite part of the Mordell-

Weil group. But there is no evidence to suggest that the Miller model

should hold in the case of quadratic twists, and in fact the exponent 3/2

in (1.2) is supported by the shape of the value distribution of L′(Ed, 1)

(see Figure 1.1) as well as by the results in Section 1.4.1. This illustrates

that for odd twists the zero of L(Ed, s) at s = 1 is apparently not inde-

pendent — in contrast to a case of Young’s [Y] where the zero was the

result of a constructed rational point on the elliptic curve.

Finally there is a model due to A. Granville. Let E be a fixed elliptic

curve given by the model y2 = x3+Ax+B. Here we make a heuristic for

the number of integral points (d, u, v, w) with dw2 = v(u3+Auv2 +Bv3)

and D < |d| < 2D and X < |u|, |v| < 2X . There are about ≈ X2 such

(u, v)-pairs, and each leads to a right-hand side which is of size X4. The

number of integers that are of size X4 and are d times a square with

D < |d| < 2D is ≈ D
√

X4/D, and thus the probability that an integer

of size X4 is of this form is ≈
√

DX4/X4. Multiplying this by our ≈ X2

possibilities for (u, v), we get a total of ≈
√

D integral solutions, inde-

pendent of X . Summing this dyadically over X , we get ≈
√

D log Y

total solutions up to Y , and switching to logarithmic heights, we get

that the number of points of height less than H on the D twists of E

is ≈ H
√

D. We then note (under GRH) that Ed has regulator at most

size |d|1/2+ǫ; if Ed is of rank 3, since a random 3-dimensional lattice of

this covolume should have a vector whose length is of size (|d|1/2+ǫ)1/3,

we then expect a point of height less than |d|1/6+ǫ on Ed. From the

above, we expect no more than about X1/2+1/6+ǫ such twists up to X .

The prediction of ≈ H
√

D such (d, u, v, w)-tuples can be proved via a

sieve argument for small H , but is more dubious for large H . Indeed,

with just one twist of rank r with generator of maximal height h, we get

(H/h)r/2 points of height less than H ; with r = 3 and H → ∞ we outdo

the linear growth predicted by the model. However, we only need H to

be a small power of D, and it is unclear how far the heuristic can be

pushed. Note that the obvious generalisation of this heuristic predicts

an upper bound of X1/2+1/2r+ǫ for the number of rank r twists.
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1.4 Data

We now give tables and graphs that concern the above heuristics and

conjectures. In our first graph (Figure 1.1), we plot the L′ values for

odd twists of X0(11) with |d| < 106. We are most concerned with the

behaviour as L′ → 0, so we zoom in on this point; there are about 300000

total curves, of which 760 have L′ = 0.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.1  0.2  0.3  0.4  0.5

Fig. 1.1. Cumulative L′-distribution for odd twists of X0(11) for |d| < 106.

Looking at this graph, it looks as though there is an abrupt cut-

off. We find that the smallest nonzero value of L′(Ed, 1) is about 0.051

for d = 477121. However, it should be noted that it might be superior

to look at the distribution of L′(Ed, 1)/
(

log |d|
)

, due to the fact that the

average value of L′(Ed, 1) is proportional to log |d| (see [BFH, I, MM]).

This changes the picture quantitatively (see Figure 1.2), as the gap

size becomes comparable to that of the L-distribution at the top of

the graph.6

We compare the situation between even and odd twists. For |d| < 106

there are about 30 times more even twists with L(Ed, 1) = 0 than odd

twists with L′(Ed, 1) = 0; however this factor of 30 is dependent on

6 It can be noted that log |d| is about size |d|1/6 for our d, and thus it becomes
difficult to distinguish in our data between a logarithm and a power of d.
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Fig. 1.2. Cumulative distributions for L (top) and normalised L′ for |d| < 106.

our cutoff of 106, and as we note below, it is not clear what happens

asymptotically. If we restricted our range of d to a shorter interval, say

9 · 105 < |d| < 106, then the upper graph of L-values would be close to

steplike, since the size of d is the only continuous variable in the BSD

formula. However, the lower graph would still be rather smooth, since in

the rank 1 case the regulator cannot be modelled as a discrete variable.

Letting S−

0 (X) be the subset of S−(X) with L′(Ed, 1) = 0, if we

believe that #S−

0 (X) ∼ cXA(log X)B we can try to fit the data to get

the exponent A. For X0(11) there are 760 odd twists with L′ = 0 with

|d| < 106. The best-fit exponent for the data is A = 0.86, though if we

just look at the last 380 curves, we get A = 0.82. The computations

of Elkies7 [E] for X0(32) go up to 107, and give A = 0.84 overall and

A = 0.80 for the last half of the data; of course, we are ignoring log-

factors, so A = 0.75 is quite reasonable. For X0(14) we get A = 0.94

and for X0(15) we get A = 0.95. These might seem large, but Elkies has

A = 0.93 at 106 before it drops significantly as indicated above. Also,

since X0(14), X0(15), and X0(32) all have nontrivial 2-torsion while

X0(11) does not, we might expect the exponent of the logarithm to be

7 He divides even fundamental discriminants by 4, and so has different curve counts.
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larger for them, which could lead to a larger observed value of A across

the range of our dataset. For comparison with the even twist case, the

dataset of Rubinstein [R] for the number of rank 2 imaginary quadratic

twists of X0(11) has best-fit exponents of about 0.89, 0.86, 0.84 up to

106, 107, 108, while we expect the exponent to be 0.75.

To get a dataset of twists with points of small height, we looked at the

dth twist of y2 = x3 − 1 for d = t3 − 1; the curve dy2 = x3 − 1 will have

the point (t, 1) whose height is of size of log d. As mentioned above, if

(1.3) holds, we would expect such curves to have large values of #Xd.

Though we get some large examples like t = 624 and d = 242970623

for which #Xd = 472, this idea does not always work so well. For

instance, with t = 810 and d = 531440999 we have #Xd = 1, where

here we have L′(Ed, 1) ≈ 0.0315; similarly t = 902 and d = 733870807

has #Xd = 1, though in this case L′(Ed, 1) ≈ 0.0546 is not quite so

small. Note also that the results of Delaunay and Duquesne [DD] for

curves connected to the simplest cubic fields show #X = 1 to occur

quite often.

More extensive experiments using techniques similar to those of Elkies

are planned — indeed, it would be nice to have data for the odd twists

comparable to that which [CKRS2] has for even twists. Up to this point,

our experiments for odd twists have simply computed the value of L′ for

every twist up to X and so takes X2 total time, while the method of

Elkies takes X3/2 time, as does8 the computation of [CKRS2].

1.4.1 Quadratic twists in arithmetic progressions

We can note that the computations of Elkies [E] already give indirect

evidence that (1.2) is probably correct. While Elkies notes a strange

discrepancy in the counts Ed with rank 3 for d modulo 16, in fact, as

explained in the last section of [CKRS], we expect such discrepancies

for all (prime) moduli p whose Frobenius trace ap is nonzero. In partic-

ular, of the d with Ed ∈ S−

0 (X) we expect that the number of nonzero

quadratic residues mod p is not the same as the number of quadratic

nonresidues. The derivation in [CKRS] gives a ratio of
(p+1+ap

p+1−ap

)k where

the exponent k = −1/2 is taken to be the rightmost pole of the distribu-

tion function; in the rank 1 case, the corresponding calculation of [Sn1]

implies that we should take k = −3/2. This is a reasonably testable pre-

diction, given that the dataset of Elkies has 8740 curves. In Table 1.1 we

8 With convolution techniques this can be reduced to essentially linear time, which
is one reason why we seek to improve on [E] via p-adic computations and Θ-series.
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give the results for some primes that are 1 mod 4; since ap = 0 for other

odd primes the ratio should be 1, and indeed it is always quite close.

Here the R and N columns count the d for which Ed has rank 3 and d

is respectively a nonzero quadratic residue and a quadratic nonresidue

mod p, while the E column calculates their experimentally-determined

ratio, and C is the conjectured ratio from the above with k = −3/2.

Table 1.1. Effects of residuosity in arithmetic progressions for rank 3

quadratic twists for the congruent number curve (data from Elkies)

p R N E C

5 4240 1951 2.17 2.83
13 1827 5580 0.33 0.25
17 3186 4197 0.76 0.72
29 5873 2249 2.61 2.83
37 4451 3820 1.17 1.17
41 2711 5411 0.50 0.48
53 2672 5723 0.47 0.45
61 5239 3245 1.61 1.63
73 4696 3688 1.27 1.28
89 3648 4828 0.76 0.72
97 2958 5526 0.54 0.57

929 4836 3876 1.25 1.16
937 4679 4035 1.16 1.13
941 4807 3922 1.23 1.20
953 4196 4524 0.93 0.92
977 4791 3929 1.22 1.21
997 4019 4712 0.85 0.83

Note that the fit is not as tight for small primes; indeed this also shows

up in the even rank case, even when accounting for a secondary term

as in [CPRW]. Given our dataset size, the confidence interval width for

the experimental value is about 0.1 across most of our data range. If

we take all the primes up to 1000 and do a fit for the best k, we get a

result of −1.41, which is reasonably close to our expected value of −3/2.

This gives us a modicum of confidence that (1.2) is correct; we hope a

consideration of the secondary term will give an even better fit.

1.4.2 Beyond twists

To go further, we can look at generic elliptic curves (rather than just

twists); for this the database of Stein and Watkins [SW] is useful. Here

we might guess some bound like L′(E, 1) ≫ 1/|∆|θ/6 in analogy with
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the prediction (1.3) of L′(Ed, 1) ≫ 1/|d|θ for quadratic twists.9 How-

ever, as above, we really have no idea how to generate a good value

of θ. The Stein-Watkins database (ECDB) has 11372286 curves of prime

conductor less than 1010 (we make the choice of prime conductor so

as to exclude twists from our data; looking at other curves does not

change the result too much), of which 5253162 have analytic rank 1.

The minimal L′-value for these curves is about 0.193 for the curve10

[0, 0, 1,−76931443,−259719125220] of conductor 8519438341. We get11

423944 curves of analytic rank 3, and 1296 of analytic rank 5. In Fig-

ure 1.3 we again see fewer curves with small normalised L′-value with

the normalised gap for L′ about as big as that for L.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0  0.1  0.2  0.3  0.4  0.5
Fig. 1.3. Cumulative distributions for L and normalised-L′ for ECDB curves.
The plot going from the lower-left to the upper-right is that for L′.

9 This analogy comes from the fact that the discriminant grows like d6 in quadratic
families, and our impression is that the discriminant is better than the conductor
as a measure of the likelihood that the L-derivative vanishes. Actually we might
suspect the real period to be the most significant datum in general, but it should
be approximately |∆|1/12 up to log-factors. In any case, considering the conductor
is more difficult, even with the ABC conjecture.

10 Here and below a curve y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 is denoted by
[a1, a2, a3, a4, a6].

11 The usual caveats about not being able to prove that a curve actually has analytic
rank r when r ≥ 4 apply here.
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It was noted to us by N. D. Elkies that the small values of L′ corre-

spond to curves with large cancellation between c3
4 and c2

6. See Table 1.2

for the smallest values of L′ in the database. For the even rank case,

the smallest 85 L-values all come from Neumann-Setzer [N, Se] curves

(with conductor of the form u2 + 64), with the next smallest coming

from [1, 1, 1,−2413424773,−45636080008772] of conductor 6375846313;

these thus similarly exhibit large cancellation between c3
4 and c2

6. Indeed,

many of the curves come from families similar to those investigated by

Delaunay and Duquesne [DD].

Table 1.2. Small L′-values for prime conductor curves in the ECDB

L′ conductor equation

0.193 8519438341 [0, 0, 1,−76931443, −259719125220]
0.217 8072290789 [0,−1, 1,−168735150, 843694875000]
0.218 7807742161 [1, 0, 0,−162115427, 794469530026]
0.219 7598316169 [1,−1, 1,−157763487, 762746660718]
0.219 972431659 [1,−1, 0,−42359524, −106103907983]
0.220 7344220789 [1,−1, 1,−153528564, 732242039802]
0.225 6436262197 [1,−1, 1,−133616676, 594515948970]
0.226 6347138731 [0, 1, 1,−131764782, 582122479302]
0.226 2829273949 [1,−1, 1,−119862711, −505066414494]
0.229 5907969559 [1,−1, 1,−122639979, 522783273972]

Following a suggestion of A. Venkatesh, we can consider whether all

the small L′ values (possibly including L′ = 0) essentially come from

a small number of parametrised families. We can make a heuristical

argument against the analogous claim that all rank 2 curves should come

from parametrised families. A heuristic of Watkins [W] gives that there

should be at least X19/24−ǫ curves of analytic rank 2 with conductor

less than X , whereas we expect12 there only to be about X2/3+ǫ curves

with two small generators.

We can go to curves of larger rank and look at the distribution of

L′′(E, 1)/2! and L′′′(E, 1)/3! for curves of (analytic) rank 2 and 3 in

the database. If we ignore various examples of small conductor, the

smallest value of L′′(E, 1)/2! for a curve of larger conductor is about

1.554 for the curve [0, 0, 1,−2664919573,−52951013063110] of conduc-

tor 6264757621, where again we see the large cancellation between c3
4

and c2
6. For rank 3 the smallest value of L′′′(E, 1)/3! for curves of larger

12 This type of heuristic appears (though not explicitly) in the work of Elkies and
Watkins [EW]. They only consider small generators that are integral, but by
passing to rationality we only lose logarithmic factors.
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conductor is about 8.089 for the curve [0, 0, 1,−7990342, 8693530176]

whose conductor is 1531408357. Though there is large cancellation be-

tween c3
4 and c2

6 here, it is not as noticeable as in the cases above;

however, the large cancellation appears again for the next-best curve

[0, 0, 1,−217363231, 1233466148550] of conductor 6352778197 for which

we have L′′′(E, 1)/3! ≈ 8.24. As noted above, it is better to divide

the L(r)-values through by the expected average value, which is propo-

tional to (log N)r, before making these comparisons; upon doing this,

the listed curves of conductor 6264757621 and conductor 6352778197

have the smallest respective values.

1.5 Conclusion

Via the use of random matrix theory, we have given a link (as in the case

of rank 2 quadratic twists) between the distribution of L′-values and the

number of rank 3 quadratic twists, but are unable to gain much insight

into solving the discretisation problem. Although we might expect a

smooth distribution function for L′(Ed, 1) (especially as it is an analytic

and not an arithmetic object), there is some evidence of a rather abrupt

cutoff in the distribution. This has led some of the authors of this

paper to conjecture (1.3) in a universal form, while others remain more

skeptical.13 We have also discussed various methods for modelling the

number of rank 3 quadratic twists of a given elliptic curve. However,

currently we do not have enough data to feel confident in eliminating

any of the suggestions.
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