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Patterned Geometries and Hydrodynamics at the Vortex Bose Glass Transition

M. Cristina Marchetti† and David R. Nelson∗

∗Lyman Laboratory of Physics, Harvard University, Cambridge, MA 01238
†Physics Department, Syracuse University, Syracuse, NY 13244

(February 1, 2008)

Patterned irradiation of cuprate superconductors with columnar defects allows a new generation
of experiments which can probe the properties of vortex liquids by confining them to controlled
geometries. Here we show that an analysis of such experiments that combines an inhomogeneous
Bose glass scaling theory with the hydrodynamic description of viscous flow of vortex liquids can be
used to infer the critical behavior near the Bose glass transition. The shear viscosity is predicted to
diverge as |T − TBG|−z at the Bose glass transition, with z ≃ 6 the dynamical critical exponent.

In the mixed state of cuprate superconductors the mag-
netic field is concentrated in an array of flexible flux
bundles that, much like ordinary matter, can form crys-
talline, liquid and glassy phases1. The dynamics of the
flux-line array determines the resistive properties of the
material and has therefore been the focus of much at-
tention. Novel types of glasses are also possible because
of pinning in disordered samples2. In particular, the in-
troduction of columnar damage tracks by heavy-ion ir-
radiation yields a low-temperature “Bose glass” phase,
in which every vortex is trapped on a columnar defect3

and the pinning efficiency of vortex lines is strongly
enhanced4–6. At high temperatures the vortices delocal-
ize in an entangled flux-line liquid. The high tempera-
ture liquid transforms into a Bose glass via a second order
phase transition at TBG, characterized by universal criti-
cal exponents3,7. We show here that there are very strong
divergences in the vortex shear viscosity and other trans-
port coefficients as this transition is approached from the
liquid, similar to behavior conjectured for glass transi-
tions in ordinary forms of matter, and propose experi-
ments which test our predictions. Vortex matter with
columnar defects thus provides a concrete example of a
glassy phase accessed via a genuine second order phase
transition and characterized by universal critical expo-
nents.

The Bose glass transition has been studied theoret-
ically by viewing the vortex line trajectories as the
world lines of two-dimensional quantum mechanical
particles8,3. The thickness of the superconducting sam-
ple corresponds to the inverse temperature of the ficti-
cious quantum particles. In thick samples the physics of
vortex lines pinned by columnar defects becomes equiva-
lent to the low temperature properties of two-dimensional
bosons with point disorder. The low temperature phase
is a Bose glass where the vortices behave like localized
bosons. It has vanishing linear resistivity and an infinite
tilt modulus3. The entangled flux liquid phase is resistive
and corresponds to a boson superfluid9.

Although an exact theory of the continuous transition
at TBG(B) from the Bose glass to the entangled flux liq-
uid (or “superfluid”) is not available, most physical prop-

erties can be described via a scaling theory in terms of
just two undetermined critical exponents3,10,11. In the
low temperature Bose glass each flux line is localized in
the vicinity of one or more columnar pins. Its excur-
sion in the direction perpendicular to the applied field
is characterized by a correlation length that diverges at
TBG, l⊥(T ) ∼ |T − TBG|

−ν⊥ . There is also a diverg-
ing correlation length along the applied field direction
(here the z direction), l‖(T ) ∼ |T − TBG|

−ν‖ , where

ν‖ = 2ν⊥
11. The time scale τ for relaxation of a fluc-

tuation of size l⊥ is assumed to diverge with a critical
exponent z, τ ∼ lz⊥ ∼ |T − TBG|

−zν⊥3. The universal
critical exponents as determined by the most recent sim-
ulations are ν⊥ ≃ 1 and z ≃ 4.6 ± 212. Scaling can then
be used to relate physical quantities to these diverging
length and time scales. In particular, the resistivity ρ(T )
for currents applied in the ab plane is predicted to vanish
as T → TBG from above as ρ ∼ |T −TBG|

ν⊥(z−2)3. Some
predictions of the scaling theory have been tested exper-
imentally, but there are as yet no direct measurements
of the transport coefficients usually associated with glass
transitions in conventional forms of matter, such as the
shear viscosity. As we shall see, the behavior of the shear
viscosity is determined by the dynamical critical expo-
nent z that controls the divergence of the relaxation time
in the Bose glass phase. A measurement of the shear
viscosity would provide a direct probe of the diverging
relaxation time associated with glassy behavior13.

Patterned irradiation of cuprate superconductors with
columnar defects allows for a new generation of experi-
ments that may in fact provide a direct probe of viscous
critical behavior near the Bose glass transition14. By
starting with a clean sample, at temperatures such that
point disorder is negligible, it is possible to selectively
irradiate regions of controlled geometry. An example
is shown in Fig. 1. The side regions have been heav-
ily irradiated, and are characterized by a high matching

field B
(2)
φ and transition curve T

(2)
BG, while the channel is

lightly irradiated with a lower matching field B
(1)
φ < B

(2)
φ

and transition curve T
(1)
BG. When T

(1)
BG < TBG < T

(2)
BG, the

flux array in the channel is in the liquid state, while the

1
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contacts are in the Bose glass phase. Flow in the re-
sistive flux liquid region is impeded by the “Bose-glass
contacts” at the boundaries, as the many trapped vor-
tices in these regions provide an essentially impenetrable
barrier for the flowing vortices. As discussed in Ref. 15,
the pinning at the boundaries propagates into the liq-
uid channels by a viscous length δ that depends on the
flux liquid viscosity. As the temperature is lowered at

constant field, so that the Bose glass transition T
(1)
BG of

the liquid region is approached from above (Fig. 2) the
growing Bose glass correlations increase δ and strongly
suppress the flow in the channel and the associated flux
flow voltage drop across the channel.
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FIG. 1. A weakly irradiated channel (white region)
where the flux liquid is sandwiched between two heavily
irradiated Bose-glass contacts (shaded regions). A cur-
rent J applied across the channel yields flux motion along
the channel. The reduced field profiles given by Eq. (9)
are shown for a few values of δ/L and can be measured
by a series of voltage taps.

In this paper we analyze experiments with flux flow in
such confined geometries by combining the predictions
of the Bose glass scaling theory – generalized to the spa-
tially inhomogeneous case – with the hydrodynamics of
viscous flow of vortex liquids15. Our analysis shows that
the viscous length δ controlling boundary pinning is just
the Bose-glass localization length, l⊥, and therefore pro-
vides a prescription for measuring the Bose glass scaling
near the transition. Both flow in the channel geometry
sketched in Fig. 1 and in the Corbino disk geometry (Fig.
3) used recently by López et al.16 is discussed. Such ex-
periments can be used to extract the critical behavior
of various transport coefficients and map out the entire
critical region. In particular, the flux liquid shear viscos-
ity is predicted to diverge as |T − TBG|

−z at the Bose
glass transition. Because z ≃ 4.6 ± 2.0, this powerful
divergence is reminiscent of the Vogel-Fulcher behavior
η ∼ exp

[

c/(T − Tg)
]

conjectured for glass transitions in
conventional forms of matter.

The Bose glass scaling theory summarized earlier is
easily generalized to the case of spatially inhomogeneous
flow in constrained geometries. Considering for simplic-
ity the channel geometry, a generalized scaling ansatz for

the local electric field from flux motion at position x in
a channel of thickness L takes the form

E(T, J, x, L) = b−(1+z)E

(

b1/ν⊥ t,
bν⊥bν‖Jφ0

ckBT
,
x

b
,
L

b

)

,

(1)

where b > 1 is the length scaling parameter and t =
|T − TBG|/TBG the reduced temperature. This ansatz
follows from the usual assumption that the continuous
transition is described by a single diverging length scale
and the homogeneity condition on the relevant physical
quantities at the transition (see, e.g., Refs. 3,11).
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FIG. 2. A sketch of the (B, T ) phase diagram for
the flux array in the weakly irradiated channel region.

The heavy line B
(1)
BG(T ) denotes the continuous transi-

tion from the Bose glass to the entangled liquid. Also

shown is the location B
(2)
BG(T ) of the Bose glass tran-

sition line in the heavily irradiated contacts. When a

field B
(1)
BG(T ) < B < B

(2)
BG(T ) is applied, the flux array

in the channel is in the liquid state, while the contacts
are in the Bose glass phase. By decreasing the tempera-
ture at constant field as indicated by the arrow, the Bose
glass transition of the channel region is approached from
above.

The response in the Bose glass is generally nonlinear
in the applied current J . By choosing b = t−ν⊥ ∼ l⊥(T )
we obtain

E(T, J, x, L) = l
−(1+z)
⊥ E

(

1,
l⊥l‖Jφ0

ckBT
,

x

l⊥
,

L

l⊥

)

. (2)

In the entangled flux liquid the response is linear at small
current. Upon expanding the right hand side of Eq. (2)
we obtain for J → 0

E(J → 0, x, L) ≃ ρ0

( l⊥
a0

)2−z

JF(x/l⊥, L/l⊥), (3)

where a0 is the vortex spacing and ρ0 =
(

n0φ0/c
)2

(1/γ0)

is the Bardeen-Stephen resistivity of noninteracting flux

2



lines, with γ0 a bare friction. A scaling form for the re-
sistivity ρ(T, L) = ∆V/(LJ), with ∆V the net voltage
drop across the channel, is easily obtained by integrating
Eq. (3), with the result,

ρ(T, L) = ρf (T )f(L/l⊥) (4)

with f(x) = 1
x

∫ x

0 duF(u, x) a scaling function and ρf (T )
the bulk resistivity,

ρf (T ) = ρ0

( l⊥
a0

)2−z

≡
(n0φ0

c

)2 1

γ
. (5)

In the second line of Eq. (5) the dependence on the Bose
glass correlation length l⊥ has been incorporated in a

renormalized friction coefficient γ = γ0

(

l⊥
a0

)z−2

that di-

verges at the transition as γ ∼ |T − TBG|
ν⊥(z−2)3. For

L ≫ l⊥, the channel geometry has no effect and one must
recover the bulk result, leading to f(x ≫ 1) ∼ 1.

The scaling function F can be determined by assum-
ing that the long wavelength electric field of Eq. (3)
is described by hydrodynamic equations15. For simple
geometries where the current is applied in the ab plane
and the flow is spatially homogeneous in the z direction,
these reduce to a single equation for the coarse-grained
flux liquid flow velocity v(r),17

− γv + η∇2
⊥v + fL = 0, (6)

The second term in Eq. (6) is the flux liquid vis-
cosity η(T, H) and represents the viscous drag arising
from intervortex interactions and entanglement. Finally,
fL = − 1

cn0φ0ẑ × J is the Lorentz force density driving
the flux motion. Intervortex interaction at the Bose-glass
boundaries translates into a no-slip boundary condition
for the flux liquid flow velocity. By preventing the free
flow of flux liquid, the Bose glass boundaries can signif-
icantly decrease the macroscopic flux-flow resistivity of
the superconductor. Once the velocity field is obtained
by solving Eq. (6) with suitable boundary conditions,
the electric field profile in the superconductor is found
immediately from E(r) = n0φ0

c ẑ × v(r). It is instructive
to rewrite Eq. (6) as an equation for the local electric
field,

− δ2∇2
⊥E + E = ρfJ, (7)

where δ =
√

η/γ is the viscous length. When the first
term on the right hand side is absent, i.e., the flux liquid
viscosity is small, this equation of “viscous electricity” re-
duces to Ohm’s law with flux flow resistivity given by the
bulk value, ρf (T ). Interactions, however, make the vis-
cous drag important and as a result the electrodynamics
of flux-line liquids is highly nonlocal near the Bose glass
transition.

The solution of the hydrodynamic equation for the sim-
ple channel geometry sketched in Fig. 1, with a homo-
geneous current J = −x̂J applied across the channel, is
given by

E(x, L) = ρfJ

[

1 −
cosh(x/δ)

cosh(L/2δ)

]

, (8)

and is shown in Fig. 1. Upon comparing Eq. (8) to Eq.
(3), we see that the quantity in square brackets in Eq.
(8) is the scaling function F and find that the viscous
length δ is in fact the Bose glass length l⊥. As the fric-
tion diverges at TBG according to γ ∼ |T−TBG|

−ν⊥(z−2),
this identification immediately gives that the flux liquid
shear viscosity also diverges at the Bose glass transition
with

η = l2⊥γ ∼ |T − TBG|
−ν⊥z. (9)

The scaling form for the resistivity is obtained by inte-
grating Eq. (8), with the result

ρ(T, L) = ρf (T )
[

1 −
2l⊥
L

tanh
( L

2l⊥

)]

. (10)

If l⊥ ≪ L, we recover the bulk result of Eq. (5),
ρ(T, L) = ρf (T ) ∼ |T − TBG|

ν⊥(z−2). Near the transi-
tion, where l⊥ ≫ L, the resistivity depends on the chan-
nel width and is controlled by the shear viscosity, with

ρ(T, L) ≃
ρfL2

12l2⊥
=

(n0φ0

c

)2 L2

12η(T )
∼ L2|T − TBG|

ν⊥z.

(11)

This strong divergence of the viscosity is precisely the
kind of behavior expected at a liquid-glass transition. In
this sense the Bose glass transition is an example of a
glass transition that is well understood theoretically and
where precise predictions are available.

R 1
x x x x x

voltage
taps

Flux
liquid Bose

glass

Bose
glass

2
R

FIG. 3. Top view of the Corbino disk geometry with
Bose glass contacts. The magnetic field is out of the page.
The vortex array is in the Bose glass state in the inner
and outer densely dotted regions and in the flux liquid
state in the weakly irradiated annular region. A radial
driving current drives flux motion in the azimuthal direc-
tion, and the voltage taps allow the electric field profile
to be determined.
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Another important patterned geometry is the Corbino
disk, recently used by López et al. for defect-free
materials16 to reduce boundary effects in the flux flow
measurements. Here we propose fabrication of a Corbino
disk with Bose glass inner and outer contacts sketched in
Fig. 3. A current I injected at the outer boundary and
extracted at the inner boundary yields a radial current
density J(r) = − I

2π(R2−R1)
r̂

r that drives vortex motion

in the azimuthal direction. The electric field induced by
flux motion is radial, E(r) = −E(r)r̂, and its magnitude
is obtained by solving Eq. (7) in a cylindrical geometry,
with the result,

E(r) =
ρfI

2π(R2 − R1)l⊥

[

l⊥
r

+ c1I1(
r

l⊥
) + c2K1(

r

l⊥
)

]

,

(12)

where

c1 =
K1(ρ2)/ρ1 − K1(ρ1)/ρ2

K1(ρ1)I1(ρ2) − K1(ρ2)I1(ρ1)
(13)

c2 =
I1(ρ1)/ρ2 − I1(ρ2)/ρ1

K1(ρ1)I1(ρ2) − K1(ρ2)I1(ρ1)
,

with ρ1,2 = R1,2/l⊥ and I1(x) and K1(x) Bessel func-
tions. The electric field profiles are shown in Fig. 4.
The resistivity is defined in terms of the net voltage drop
∆V12 between the inner and outer radii as ρ(T, R1, R2) =
∆V12/[I/2π(R2 − R1)]. Near the Bose glass transition,
where l⊥ ≫ R2, R1, we find

ρ ≃
(n0φ0/c)2

4η(T )

{R2
2 − R2

1

2
−

4R2
1R

2
2[ln(R2/R1)]

2

R2
2 − R2

1

}

. (14)

As in the channel geometry, the resistivity at the transi-
tion is completely determined by the diverging viscosity
and the geometrical parameters of the channel.
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FIG. 4. The electric field profile for the Corbino disk
geometry (Eq. (12)), with R1 = 2µm and R2 = 12µm,
with a width R2 − R1 = 10µm. The vertical axis
represents the reduced field 2πE(r)/(ρf I) in µm. The
dashed line is the electric field for vanishing viscosity,

E0(r) =
ρf I

2π(R2−R1)
1
r . The shaded regions represent the

Bose glass contacts.

Experiments with patterned geometries near the Bose
glass transformation provide an exciting opportunity to
probe viscous behavior near a second order glass tran-
sition. A similar scaling analysis leads to predictions
for the additional viscosities which characterize the dy-
namics of vortex matter15,18. For example, the viscous
generalization of Ohm’s law for transport parallel to the
applied field reads

− δ2
‖∂

2
zE‖ − δ2

⊥∇
2
⊥E‖ + E‖ = ρ‖J‖, (15)

with ρ‖ ∼ l−z
⊥ , δ‖ ∼ l‖, and δ⊥ ∼ l⊥.
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